US007827404B1
a2 United States Patent (10) Patent No.: US 7.827.404 B1
Freed et al. 45) Date of Patent: *Nov. 2, 2010
(54) SECURE SOCKETS LAYER PROXY 6,052,785 A 4/2000 Lin et al.
ARCHITECTURE 6,094,485 A 7/2000 Weinstein et al
6,101,543 A 8/2000 Alden et al.
(75) Inventors: Michael Freed, Pleasanton, CA (US); U s
Elango Gallllesall, Palo AltOj CA ([JS) 6,157,955 A 12/2000 Narad et al.
6,223,260 Bl 4/2001 Guyral et al.
(73) Assignee: Juniper Networks, Inc., Sunnyvale, CA 6,240,513 B1* 5/2001 Friedman et al. 713/152
(US) 6,253,337 Bl 6/2001 Maloney et al.
(*) Notice: Subject to any disclaimer, the term of this 0,313,857 B 42002 Ma |
patent is extended or adjusted under 35 6,374,329 Bl 4/2002 McKinney et al.
U.S.C. 154(b) by 953 days. 6,377,990 Bl 4/2002 Slemmer et al.
6,389,462 Bl 5/2002 Cohen et al.
Thi.s patent 1s subject to a terminal dis- 6397259 Bl 5/2002 Lincke et al.
claimer. 6,400,724 B1 6/2002 Yao
6,415,329 Bl 7/2002 Gelman et al.
(22) Filed: Novw. 6, 2006 6,434,687 Bl 8/2002 Huppenthal
o 6,442,687 Bl 8/2002 Savage
Related U.S. Application Data 6.449.658 Bl 0/7007 T afe of al
(63) Continuation of application No. 09/900,496, filed on
Jul. 6, 2001, now Pat. No. 7,149,892.
(51) Int.CL. (Continued)
HO4L 9/00 (2006.01)
GOGF 15/16 (2006.01) OTHER PUBLICATIONS
GOGE 11/00 (2006.01) _ ‘ ‘ Harmon, William “32-Bit Bus Master Ethernet Interface for the
(52) US.CL ...l 713/168; 713/151; 713/152; 68030 (Using the Macintosh SE/30).” Apr. 1993,
713/155;°713/160; 713/150; 714/4; 709/228
(58) Field of Classification Search 713/168 (Continued)
See application file for complete search history. ‘ |
Primary Examiner—Shin-Hon Chen
(56) References Cited (74) Attorney, Agent, or Firm—Shumaker & Sieffert, P.A.

U.S. PATENT DOCUMENTS

5,293,424 A 3/1994 Holtey et al.
5,613,136 A 3/1997 Casavant et al.
5,721,855 A 2/1998 Hinton et al.
5,825,890 A 10/1998 Elgamal et al.
5,841,873 A 11/1998 Lockhart et al.
5,978,918 A 11/1999 Scholnick et al.
6,009,502 A 12/1999 Boeuf
6,052,728 A 4/2000 Fujiyama et al.

(Cirect Mode)

(57)

ABSTRACT

A method for secure communications between a client and
one ol a plurality of servers performed on an intermediate
device coupled to the client and the plurality of servers.

M0 CEaLAD A T L]
1111 __. 2223 1432
Sand STH k3133 Inkertept Packs Destined B Gorver 300 4 Reoolva TYK Pactd ’
' Fachca ISE 0 Accommodate Headers Pt W) i)
Ard Exlomgom ¥ nomosry;
Forerard
0n b sare (204)
Send 157 STR, ALF, b oatt
Sund AGE b Clan! f 11.1.5 PN 1.1.4.1
Uiring anrver 30 H* i soua o pir)
P2 i 210
Sad ALK 103338 A/_//. Ferwards ACK I- Racsben Chant 42K
FiF Fal
L —————— .. .—. .|
Srart 251, Honshale ESLAD ey PRt e
with Server 300 (2200 alent usihg mevver Ul smeroer's (R 3428
|
Handshike
heperiiation 535}
AR b |l Dvimppt Pkl S5 Rooord; San TCP
Bypication Dl Tecqrantial Merber, 56 Sagusnia
[20%) Murber, InieRzaton Vircies (V). &
Exmctne ACK {or DE5) b 351 TGP N
tchese: POMWART PACKET [N CLERE,
TOFCRTM 2N \
Fachat o Fost 5,
I MM
Prasivs Claar Pached A
Rocet sad Dacrypt ar
Sarwr Fadkal Ly Exdract ACK, compare Wik ol e Berver
(252} A¥a ard cloar Wl wiiries whish
haws: eopacted ALY ket than oregeal o
v ACK
Baya TCF Mumbar s 531
Secpeial Bk In £51 TGP database: Bronypd &
Cand ALK F‘gﬁl
Ratetvs ACK, eompam wh el sxpecied
Cenl'a ACHKS Kl tacr ol snlrian which brwe >
ez ACHS k= o cregued b recotvod
A
Focvosrd ALK

It for sa2sion duretior)

Glea datshere m
W catnection

20 Claims, 7 Drawing Sheets

US 7,827,404 Bl
Page 2

U.S. PATENT DOCUMENTS

6,470,027 Bl 10/2002 Birrell, Jr.
6,473,425 B1 10/2002 Bellaton et al.
6,484,257 Bl 11/2002 Ellis

6,490,251 B2 12/2002 Yin et al.
6,539,494 Bl 3/2003 Abramson et al.
6,578,074 Bl 6/2003 Bahlmann
6,584,567 Bl 6/2003 Bellwood et al.
6,598,167 B2 7/2003 Devine et al.
6,606,708 Bl 8/2003 Devine et al.
6,654,344 B1 11/2003 Toporek et al.
6,681,327 B1* 1/2004 Jardinc..ovvvnvvnnnnnn. 713/153
6,732,175 Bl 5/2004 Abjanic
6,732,269 Bl 5/2004 Baskey et al.
6,785,719 Bl 8/2004 Jacobson et al.
6,799,202 Bl 9/2004 Hankinson et al.
6,820,215 B2 11/2004 Harper et al.
6,952,768 B2 10/2005 Wray

6,993,651 B2 1/2006 Wray et al.

2001/0042190 Al
2002/0007443 Al

OTHER PUBLICATIONS

Troutman, Denise “DP83916EB-AT: High Performance AT Compat-
ible Bus Master Ethernet Adapter Card,” Nov. 1992,

“Integrated SSL Processing and Intelligent Traffic Management” F5
Networks, Inc., http://www.15.com/I5products/bigip/sslaccelerator/
index.html, printed Apr. 5, 2001.

11/2001 Tremblay et al.
1/2002 Gharachorloo et al.

“SSL Accelerator Frequently Asked Questions™ F5 Networks, Inc.,
http://www.15.com/t5products/bigip/sslaccelerator/sslac-
celeratorfag.html, printed Apr. 5, 2001.

“Why Do We Need Cryptographic Accelerators?” Accelerated
Encryption Processing, 1999, http://www.aep.1e/technical/ITC7/
html.

“SSL Primer” CacheFlow Technical Note, CacheFlow Inc., Oct.

2000.

“SSL 3.0 Specification”, http://home.netscape.com/eng/ssl3/3-
SPEC.HTM.

Kegel, Dan “SSL Acceleration”, Mar. 28, 2001, http://www.kegel.
com/ssl/hw.html.

MacVittie, Lorn “E-Commerce Security Gets a Boost”, Mar. 20,
2000, http://www.networkcomputing.com/shared/
printArticle?article=nc/1105/110513full html&pub.

MacVittie, Lor “Web Server Director Comes Out on Top of the Pile”,
Feb. 5, 2001, http://www.networkcomputing.com/shared/
printArticle?article=nc/1203/1203flbfull. html&pub.

MacVittie, Lor “Cryptographic Accelerators Provide Quick Encryp-
tion”, Apr. 19, 1999, http://networkcomputing.com/shared/
printArticle?article=nc/1008/1008r1full . html&pub.

Freier, Karlton, Kocher, The SSL Protocol Version 3.0, Netscape
Communications, Transport Layer Security Working Group, Nov.
18, 1996. http://wp.netscape.com/eng/ssl3/draft302 .txt.

Douglas E. Comer, “Internetworking with TCP/IP: Principles, Pro-
tocols, and Architectures,” 2000, Prentice Hall, 4” Edition, pp. 101-
106.

* cited by examiner

U.S. Patent Nov. 2, 2010 Sheet 1 of 7 US 7.827.404 B1

Figure 1

Web Client 10)

S5L session with

encrypted trafflc
botween Glient and
SSL Accelerator
HTTP session with
clear text trathc
botwoon S50
Accelerator and
Webh Servers
i Web Servers
300
250,
!"lb-'b ﬁrlﬁr:b =
| | | | HTTE/TCP
L Ll L

web tier il:l [I: I_l I_"II

e Arriwbinrdtor

YWob ofemt — Woebt sanrr

Figure 2B

U.S. Patent Nov. 2, 2010 Sheet 2 of 7 US 7.827.404 B1

FIGURE4 _
Cliont Server

100 : 300

Syn
! ; Active OponfSyn_sent ———— E . ACK+SYN '
| [Rstablished JACK J——

(ACK Reccived)
Link Established,

YWeb S50 Wah

cliem accelaratar server

FIGURE 3

U.S. Patent Nov. 2, 2010 Sheet 3 of 7 US 7,827,404 B1

FIGURE 6 (Direct Mode)

~Clant 100 ~ SSLAD 250 LCRVER3W
2.2l 2333

| Send SN & 2.3.3.2 Intercept Facket Destined for Server 300; Recelve SYN Packat
j Feduss MSS to Accommodate Heoders Poxt 80 26

| Ard Exiensions If netessary,

I Forward

Cm to server. {204)

tattl TOP STN, ACK 1o CF

, Send AGK to Clianl at 1.1.1.1 P 30 1.11.1
Using server 300 IF &5 source Pyl
Provt 443 P 210
Serd ACK 10 3.3.3.3 Fetaive Chent ACK
2l

SSLAD sends approprafte responsas fo
' glient using setver 200's P Using servers IF 3.3.2.3
{250

Stsxt 851 Hamdshake

. r Deirypt Packet, SSL Recond: Save TGP

Application Data B ‘Sequential Number, S50 Sequental
(265) | Humber, Initialization Vactor {IV), &
- | Expected ACK (lor DES) m S5L TCP
databeasa: FORWARD PACKET IN CLEAR
TOPORT 80 {70)
) Receive grd Dacrypt | Receive Claar Packat.
Sarver Fackel 1| Extracl ACK, compare with all a:q:e:led Server
{282} j ACKs and clear sl ehines which
’ have expacted ACK'S kess than or equa lo
fecehed ACK;
ﬁa\re TEP Sequental I‘-Iumhﬂr and 551
I |)
[l Recaiva Chent AGH

Reteive ACK, compare with 2/l expecled
Client's ACKS and claar all enlies which have
expacted ACK's less than or equal (o received

ACK:
Forward AGK

(263)

[confinve for aes.sinn duration)

" Clear dalabase i
h‘ﬂ sothechon I

U.S. Patent Nov. 2, 2010 Sheet 4 of 7 US 7.827.404 B1

FIGURE 6 (Load Balance Mode)

SEL AD 750 | ~ SERVER 300
2222 l 3333

Retieve Packet Destined for SSL 250! Reciive SYN Packel
Fiplace Destinabon IF with Server IF | 206
3.3.3.3 Reduce MSS o Accommadate Hoadars and
Fdansions I pecessary: Greale SS1L-TCP Datghase Entry:
set expected ACK; Save TGP Sequential
Number: and Forwards SYN
Cn o server. (204)

intercept Packet (destined for 1.1.1.1), Changes dand TGP SYN, ACK o Cliedt |
slate of SSL-TCP Database: compare with & 1.1.1.1 |
expecled Server's ACKs and clear all entries 208

whith have expected ACK's less than or equal fo

received ACK: Forwand ACK fo Chent 2t 1.1.1.1
Replacing server 300 1P With SSL a5 sourcs

P 210
 Forwards ACK Receive Clent AGK
214 |

Send S5YM lo 2.2.2.2
202

e ACK I 2.2.2.2

212

Start SELHHE neshake | SSLAD sends gporoprite fesponses
with S8L AD {222}) . o client using SSL Devies 1P (232)

L

Hendshake
Negrdiation (235)

Decrypt S5L Record; Save TGP
' Saquental Number, 550 Sequental
? Number, Inftialization Vector [IV),
| Expecied ACK [{lor DES) in SEL TCP databass;
eplame Destinafion IP 2.2.2 10 3.3.2.3; FORWARD
FACKET N CLEAF. :
TOFORETBO {270

Send Encrypted
hpplicatian Dats
To2.22.2

2094

- e Receive dear
| | Packet oh Porl B0, process

and redum 1':'1111

Receive Glear Packet, Exiract ACK,
compate with all expecled Server's ACKs | - — -
antd cloar all entries which have expected AGKs |
k53 than or egual ta reeeived ACK;
Save TOP Saquantial Mumber and 531,
Saquential Pair, IV and ACK in S5L TCP database;

Encrypt and Forwatd t Enerypled Packel to 1,1.1.1, use
Source (P 2.2.2.2 (280)

Receive ACK, compare with al expected Client's . y
ACKs and clear all entries which have expected _—-}I—E%VE ALK
- ACK's less thap or egual to received ACK; l

Recaiva and Desrypt
Sarvel Packet
(262)

Save TCP Sequential Number and S5L
Sequantial Fair in 551 T0P database

(confinue for s255i0n duration) I

| Clear database o
kil connecton

U.S. Patent Nov. 2, 2010 Sheet 5 of 7 US 7,827,404 B1

FIGURE 7 (Full TCP Proxy Mode)

SSLAD) ~ SERVER
2222 - 3.3.3.3

Send SYNI0 3333 [{0, I_.,_ Intercopt Packet Destined for 3.3.3.3;

Reduce M5S v Actommodale Headers
And Extensions if nacassary; Creats S5L-TCP
Database Entry: S&l expecied ACK,
Save TOF Sequential Number,

(&04-1)

Send SYN+ACK to Chent ot 1.1.1.1

(207)
["Send ACK to SSLAD l "I Recelve AGK Change TCP state to Established |

Lh-_. . et —

[Start SSL Handshake SSLAD gends approprate
with SSLAD —H responses to client (230)
Handshake Negotizte TCP Sassion with Eewér'

Hegotiztion (235) 226 |

Teminale Cliant's HTTFS TGP session

Send Encrypted

and copy clear data to Server's HTTP TCP session;
Application Data Forward to cliehl via Server TGP session
2653 (270¢)
—Hacelye clear
Packel on Port 80, process
and retlum to 1.1.1.1 |
275

Yerfiinate Senver's HTTP TCP session

Receve and Liecrypt

Server Packet and copy clear dala to Clienf's
282 HTTPS TGP sasslon: Forward fo cliant
(264) — :

"

| HES'E”TJF#J_] | i Coar HETP and HTTPS TGP sessions | l

{continue for session duration) i

U.S. Patent Nov. 2, 2010 Sheet 6 of 7 US 7,827,404 B1

Figure 8
Normal SSL Record

IP/TCP SSLHeader | DATA | HMAC | PadPad |
Header | MLI5 Length
IR | SHAetc. | |

Multi-Segment;

U.S. Patent Nov. 2, 2010 Sheet 7 of 7 US 7,827,404 B1

Cut Through
Communcation

(Figure 3)

Figure 9a

l.oad Balancing
(Figure 6)

Full TCP Proxy
(Figure 7)

Figure 9b

Full Proxy

Determine
Corner Case

Return to Cut

Through

US 7,827,404 Bl

1

SECURE SOCKETS LAYER PROXY
ARCHITECTURE

This application 1s a continuation of U.S. application Ser.
No. 09/900,496, filed Jul. 6, 2001, the entire contents of
which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention relates to improving the performance of
secure communications between network-coupled devices,
such as computers. In particular, to improving performance of
secure communications using the Secure Sockets Layer
(SSL) protocol between a client and a server communicating
across an open source, global communications network such
as the Internet.

2. Description of the Related Art

Many commercial and consumer networking applications
require secure communications over a network. In particular,
on the Internet, electronic commerce must be performed 1n a
secure communications environment. Currently, the default
standard for secure communications between a Web client
and a Web server 1s the Secure Sockets Layer protocol or SSL,
developed by Netscape Communications Corporation,
Mountain View, Calif.

Virtually all online purchases and browser-based monetary
transactions that occur on the Internet are secured by SSL.
However, SSL 1s not just limited to securing e-commerce.
Financial institutions implement SSL to secure the transmis-
s1on of PIN numbers and other confidential account informa-
tion. Insurance companies implement SSL to secure trans-
mission of confidential policy information. Organizations
who have established Business-to-Business (B2B) extranets
implement SSL to secure transactions between the company
and 1ts partners, suppliers, and customers. Private organiza-
tions implement SSL 1n their intranets to confidentially trans-
fer information to and from employees.

The process of SSL encryption and decryption 1s compu-
tationally mtensive on the server and the client communicat-
ing via SSL. For the client, typically performing only one SSL
communication session, this intensity 1s not a problem. How-
ever, for the server performing multiple sessions, SSL. CPU
overhead can be a significant problem. Many security-sensi-
tive Web sites that have implemented SSL experience bottle-
necks created by the managing and processing ol SSL ses-
sions. The end-result 1s that SSL degrades Web server
performance considerably and Web transactions are slowed
to a crawl.

In general, SSL 1s comprised of two protocols: the SSL
Handshake protocol and the SSL Record protocol. An SSL
transaction consists of two distinct parts: the key exchange,
and the bulk data transfer. The SSL. Handshake Protocol
handles key exchange and the SSL Record Protocol handles
the bulk data transfer. The key exchange begins with an
exchange of messages called the SSL handshake. During the
handshake, the server authenticates itself to the client using
public-key encryption techniques. Then, the client and the
server create a set of symmetric keys that they use during that
session to encrypt and decrypt data and to detect if someone
has tampered with the data. The SSL handshake also allows
the client to authenticate itself to the server (as would be
required for an on-line banking operation, for example).

Besides authenticating the server to the client, the SSL
Handshake Protocol: allows the client and server to negotiate
the cipher suite to be used; allows the client and the server to
generate symmetric session keys; and establishes the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

encrypted SSL connection. Once the key exchange 1s com-
plete, the client and the server use this session key to encrypt
all communication between them. They perform this encryp-
tion with a symmetric key encryption algorithm, such as RC4
or DES. This 1s the function of the SSLL Record Protocol.

Generally, the request for an SSL session comes from the
client browser to the Web server. The Web server then sends
the browser 1ts digital certificate. The certificate contains
information about the server, including the server’s public
key. Once the browser has the server’s certificate, the browser
verifies that certificate 1s valid and that a certificate authority
listed 1n the client’s list of trusted certificate authorities 1ssued
it. The browser also checks the certificates expiration date and
the Web server domain name. Once a browser has determined
that the server certificate 1s valid, the browser then generates
a 48-byte master secret. This master secret 1s encrypted using
server’s public key, and 1s then sent to the Web server. Upon
receiving the master secret from the browser, the Web server
then decrypts this master secret using the server’s private key.
Now that both the browser and the Web server have the same
master secret, they use this master secret to create keys for the
encryption and MAC algorithms used in the bulk-data pro-
cess of SSL. Since both participants used the same master
key, they now have the same encryption and MAC key, and
use the SSL encryption and authentication algorithms to cre-
ate an encrypted tunnel through which data may pass
securely.

An SSL session may include multiple secure connections;
in addition, parties may have multiple simultaneous sessions.
The session state includes the following elements: a session
identifier (an arbitrary byte sequence chosen by the server to
identify an active or resumable session state); a peer certifi-
cate (an X509.v3[X309] certificate of the peer); a compres-
sion method; a cipher spec (the bulk data encryption algo-
rithm (such as null, DES, etc.) and a MAC algorithm (such as
MD35 or SHA)); a master secret (a 48-byte secret shared
between the client and server); an “is resumable” flag (1ndi-
cating whether the session can be used to 1nitiate new con-
nections). The connection state includes the following ele-
ments: server and client random byte sequences that are
chosen by the server and client for each connection; server
write MAC secret used in MAC operations on data written by
the server; client write MAC secret used 1n MAC operations
on data written by the client; a server write key; a client write
key; in1tialization vectors maintained for each key and 1nitial-
1zed by the SSL handshake protocol; and sequence numbers
maintained by each party for transmitted and received mes-
sages for each connection. When a party sends or recetves a
change cipher spec message, the appropriate sequence num-
ber 1s set to zero.

When a number of Web clients are connecting to a particu-
lar Web site having a number of servers, each server will be
required to handle a number of clients in the secure transac-
tion environment. As a result, the processing overhead that 1s
required by each server to perform to the secure sockets layer
encryption and decryption 1s very high. If this were the only
solution to providing secure communications protocols
between the client and server, each transactional Web site
would be required to provide an large number of servers to
handle to the expected traflic.

Accordingly, a solution has been developed to provide an
acceleration device as a built-in expansion card in the server
or as a separate stand-alone device on the network. The accel-
erator provides SSL encryption and oftloads the processing
task of encryption and decryption for the client using SSL
from the server. A general representation of this solution 1s

shown 1n FIG. 1.

US 7,827,404 Bl

3

FIG. 1 shows a Web client 100 coupled to the Internet 50
that may be coupled via a router 75 to an SSL accelerator
device 250. The SSL accelerator device 250 1s coupled to a
plurality of Web servers 300. Generally, a secure SSL session
with encrypted traffic 1s first established between SSL accel-
erator 120 and the Web client. Communication between the
SSL accelerator 250 and the Web servers 300 occurs as clear
text traffic. Hence, a secure network must connect the Web
servers 300 and the SSL accelerator 250.

Commercial SSL acceleration devices include Rainbow’s
CryptoSwifta eCommerce accelerator and F5’s BIG IP
e-Commerce Controller. Typically, commercially available
SSL acceleration devices operate as shown 1n FIG. 2A and
FIG. 2B. In FIG. 2A, the SSL accelerator 1s coupled between
the Web client 100 and the Web server 300. Communication
between the SSL accelerator and the Web client occurs
through a secure TCP protocol such as HT'TPS. Communi-
cation between the SSL accelerator and the Web server occurs
through clear HT'TP/TCP protocol.

FI1G. 2B 1llustrates how SSL functions 1n the Open Systems
Interconnect (OSI) Reference Model and 1n typical accelera-
tors. The web client transmits data to the accelerator 250 1n an
encrypted form to the secure port 443 of the accelerator. In the
client, the application layer protocol hands unencrypted data
to the session layer; SSL encrypts the data and hands 1t down
through the layers to the network IP layer, and on to the
physical layers (now shown). Normally, a server will receive
the encrypted data and when the server receives the data at the
other end, 1t passes 1t up through the layers to the session layer
where SSL decrypts 1t and hands it off to the application layer
(HT'TP). The same happens in the typical SSL accelerator
within the accelerator, where the data 1s handed to the appli-
cation layer, processed, then returned down the stack from the
HTTP layer to the IP layer for transmission to port 80 (1n the
clear) on the server coupled to the SSL accelerator. Once at
the server, the data returns up the stack for processing 1n the
application layer. Since the client and the SSL device have
gone through the key negotiation handshake, the symmetric
key used by SSL 1s the same at both ends.

In essence, the HTTP packet must travel through the TCP
stack four times, creating a latency and CPU overhead and
requiring full TCP stack support in the accelerator. This also
requires a great deal of random access memory, usually
around 8-10 kB per TCP session, for retransmission support.
This type of architecture also has scalability and fault toler-
ance problems because all of the TCP and SSL state databases
are concentrated on one SSL accelerator device.

The device of the present invention overcomes these limi-
tations by providing a packet based decryption mechanism
and intercepting secure packets between a Internet coupled
Web server and Internet coupled Web client.

SUMMARY OF THE INVENTION

In one aspect, the i1nvention comprises an accelerator
coupled between a client computer and a server computer,
both of which are coupled to the Internet. The accelerator
intercepts packet based communications between the client
and the server, such as TCP/IP packet communications, and
encrypts or decrypts data carried 1n the packets to reduce the
workload of servers communicating in encrypted formats
with a number of concurrent clients. In one advantageous
implementation, the invention 1s utilized 1n a routing device
positioned to conduct communications traific between the
client and the server. The invention finds particular usetulness
in accelerating the secure sockets layer (SSL) protocol uti-
lized 1n Internet commerce applications.

10

15

20

25

30

35

40

45

50

55

60

65

4

In one embodiment, the invention, roughly described,
comprises a method for secure communications between a
client and one of a plurality of servers performed on an
intermediary device coupled to the client and the plurality of
servers. The method may 1nclude the steps of establishing an
open communications session between the intermediary
device and the client via an open network; negotiating a
secure communications session with the client; establishing
an open communications session with the one of the plurality
of servers via a secure network; receiving encrypted data
from the client via the secure communications session;
decrypting encrypted application data; forwarding decrypted
application data to the server via the secure network; receiv-
ing application data from the server via the secure network;
encrypting the application data; and sending encrypted appli-
cation data to the client.

In a further embodiment, the invention comprises an appa-
ratus coupled to a public network and a secure network,
communicating with at least one client via the public network
and communicating with one of a plurality of servers via the
secure network. The apparatus 1includes a network interface
communicating with the public network and the secure net-
work, at least one processor, programmable dynamic memory
addressable by the processor, a communications channel cou-
pling the processor, memory and network communications
interface, a proxy TCP commumnications engine, a proxy SSL
communications engine, a server TCP communications
engine; and a packet data encryption and decryption engine.

In a still further embodiment, the invention 1s method of
providing secure communications between a plurality of cus-
tomer devices and an enterprise. The method includes the
steps of: providing a device enabled for secure communica-
tion with customer devices and having an IP address of the
enterprise; recerving communications directed to the enter-
prise 1n secure protocol; decrypting data packets of the secure
protocol to provide decrypted packet data; forwarding the
decrypted packet data to at least one server of the enterprise;
receiving application data from a secure server of the enter-
prise; encrypting the application data received from the enter-
prise; and forwarding encrypted application data to the cus-
tomer.

These and other example embodiments of the imnvention
will appear more clearly from the following description in
which the preferred embodiment of the invention has been set
forth 1n conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be described with respect to the particu-
lar embodiments thereof. Other objects, features, and advan-
tages of the invention will become apparent with reference to
the specification and drawings 1n which:

FIG. 1 1s a block diagram 1llustrating the arrow usage of a
SSL accelerator 1n accordance with the prior art.

FIG. 2A 1s a block diagram 1illustrating the protocol con-
nections scheme between a client, SSL. accelerator, and Web
server.

FIG. 2B 1s a block diagram illustrating the computational
exercise of SSL accelerator accordance with the prior art.

FIG. 3 1s a block diagram 1llustrating the computational
exercise of an SSL accelerator prepared 1n accordance with
the present invention.

FIG. 4 1s block diagram illustrating the initial TCP/IP con-
nection between a client and a server.

FIG. 5 1s a block diagram illustrating the sequence of
communications 1n a first embodiment of the present mnven-

US 7,827,404 Bl

S

tion between a client, an SSL accelerator device implement-
ing a direct mode 1n accordance with the present invention,
and a Web server.

FIG. 6 1s a block diagram illustrating the sequence of
communications and a second embodiment of the present
invention between a client, an SSL accelerator device imple-
menting a load balancing mode in accordance with the
present invention, and a Web server.

FIG. 7 1s a block diagram illustrating the sequence of
communications and a second embodiment of the present
invention between a client, an SSL accelerator device imple-
menting a full TCP/IP and SSL proxy mode in accordance
with the present invention, and a Web server.

FIG. 8 1s a block diagram illustrating SSL mulitsegmenta-
tion.

FIGS. 9a and 95 are block diagrams illustrating the various
modes of implementing the mvention.

DETAILED DESCRIPTION

The present mvention provides a unique system and
method for implementing SSL acceleration, and indeed any
encryption or decryption methodology, to offload to the com-
putational overhead required with the methodology from a
server or client. The mvention 1s particularly suited to ofl-
loading encryption and decryption tasks from a server which
1s normally required to handle a multitude of concurrent
sessions. The system may include an SSL acceleration
device, which operates to intercept secure communications
between, for example, a Web based Internet client such as a
Web browser operating on a personal computer, and a Web
server. The SSL acceleration device will intercept communi-
cations directed to the server and act as a proxy in various
embodiments of the invention. In a first embodiment, the SSL
acceleration device acts as a complete proxy, substituting
itself for the server and both the TCP/IP handshaking
sequence and the SSL encryption and decryption sequence. In
a second embodiment, the SSL acceleration device passes
through the TCP/IP handshaking sequence and performs only
SSL proxy encryption and decryption. In yet another embodi-
ment, a layer-7 switching interface 1s utilized between the
server and the client 1n the accelerator device. In additional
embodiments, both a full TCP/IP proxy mode and a pass
through mode are used interchangeably.

FIG. 3 shows how the system of the present invention
differs in general from that of the prior art, and illustrates the
manner 1 which the SSL encryption and decryption proxy 1s
implemented. Typically, when a Web client wishes to send
data via a secure protocol to an SSL enabled Web server, 1t
will do so by communicating via a secure port 443. As shown
in FIG. 3, in accordance with the present invention, the SSL
accelerator will intercept data destined for port 443 of the web
server and, rather than the transmitting packets up and down
the TCP/IP stack as shown 1n FIG. 2B, will perform the SSL
encryption and decryption at the packet level before forward-
ing the packet on to 1ts destination. The accelerator will thus
decode the packet data and forward a clear text (HTTP)
packet the HT'TP port 80 of the Web server 300. A number of
operational modes of encryption and decryption, including a
direct or pass-though mode, a load balancing mode, and a full
proxy mode, are supported and the manner in which the
system of the ivention performs these tasks 1s hereinafter
described.

It should be recognized that the system of the present
invention may include a hardware device which may com-
prise a server add-in card, a network coupled device specifi-
cally constructed to perform the functions described herein,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

or a network coupled device having the capability of provid-
ing a plurality of functions, such as, for example, routing
functions on network communications. In one embodiment, a
dedicated device coupled to a network and suitable for per-
forming the operations described herein will include network
interface hardware, random access memory and a micropro-
cessor. In an alternative embodiment, a hardware device may
include a plurality of processors each with a dedicated
memory or sharing a common memory, with one or more of
the processors dedicated to one or more specific tasks, such as
performing the SSL encryption and decryption needed to
implement the present invention. One such device which 1s
optimal for performing the method of the present invention 1s
described 1n co-pending patent application serial no.
INEXSI-01020USO)] entitled MULTI-PROCESSOR SYS-
TEM, filed Jul. 6, 2001. It will be recognized that any number
of hardware Conﬁguratlons are available to implement the
system and method of the present invention.

FIG. 4 1llustrates the typical TCI/IP handshake sequence.
The “threeway handshake™ 1s the procedure used to establish
a TCP/IP connection. This procedure normally 1s initiated by
one TCP device (in FIG. 3, the client) and responded to by
another TCP device (in FI1G. 3, the server). The procedure also
works 1f two TCP simultaneously nitiate the procedure.

The simplest TCP/IP three-way handshake begins by the
client sending a SYN segment indicating that 1t will use
sequence numbers starting with some sequence number, for
example sequence number 100. Subsequently, the server
sends a SYN and an ACK, which acknowledges the SYN it
received from the client. Note that the acknowledgment field
indicates the server 1s now expecting to hear sequence 101,
acknowledging the SYN which occupied sequence 100. The
client responds with an empty segment containing an ACK
for the server’s SYN; the client may now send some data.

In the various embodiments of the present invention, the
SSL accelerator system 1ntercepts all communication
intended for the server from the client and vice versa, 1n order
to implement SSL when required.

The general system and method of the present mvention
will be described with respect to FIGS. 5-7. Various modes of
the ivention are 1llustrated. It should be understood that the
methods illustrated 1n FIGS. 5-7 are performed using instruc-
tions sets to direct performance of the atorementioned hard-
ware, and that one objective of implementing the system 1s to
minimize hardware requirements.

FIG. 5 1llustrates a direct, cut through processing method.
Packets from client to server are addressed from the client to
the server and from server to client, with the intermediary,
SSL device being transparent to both. In the embodiment
shown therein, the SSI. accelerator allows the client and
server to negotiate the TCP/IP session directly, making only
minor changes to the TCP/IP headers passing through the
accelerator device, and tracking session data 1n a data struc-
ture in memory to enable SSL session handling to occur. As
described herein, this mode 1s referred to herein as the “direct,
cut-through” mode, since the client and server “think™ they
are communicating directly with each other, and the SSL
accelerator 1s essentially transparent.

FIG. 6 illustrates a cut though, load balancing approach
where the SSL device acts as a proxy for one or more servers,
and the client recognizes the device as the server (1.e. packets
from the client are addressed to the device, and the device
handles passing of communications to the server via a secure
network 1n an unencrypted format.) In this embodiment, TCP
packets are re-addressed to the appropriate client or server by
altering the address of the packet before forwarding. The SSL
device acts as an SSL proxy for the server and may implement

US 7,827,404 Bl

7

a load balancing tunction, appearing to all clients as a single
server, while 1n reality directing traffic to a multitude of
servers as 1llustrated 1n FIG. 1.

FIG. 7 illustrates a full proxy mode, wherein the SSL
device acts as a proxy for one or more servers, and handles
both the SSL and TCP communications for the server.

While FIGS. 5-7 1llustrate a single process of communica-
tion, 1t will be understood that multiple sessions similar to
those 1llustrated in FIGS. 5-7 may be occurring on a single
SSL. accelerator device. Moreover, 1t should be understood
that various embodiments may likewise occur on a single
device.

In the embodiment shown 1in FIG. 5, SSL. accelerator
device 250 intercepts communications between the client 100
and server 300. Device 250 passes on the TCP/IP negotiation
communications between the client 100 and the server 300.

FI1G. 5 1llustrates a client device 100, having an IP address

of 1.1.1.1, attempting to establish an SSL session with server
300, having an IP address of 3.3.3.3. The SSL accelerator

device (SSLAD) 250 having an exemplary IP address of
2.2.2.2 will intercept traffic between client 100 and server 300
according to routing tables present on the Internet 1n accor-
dance with well-known techniques.

Initially, the client 100 sends a SYN packetto TCP port 443
of server 300 (at step 202). The SYN packet will define, for
example, an MSS of some length, for example, 1460 bytes.
(As should be generally understood, the MSS 1s the maximum
segment size and 1s a configurable TCP parameter allowing
an understanding between the communicating devices of the
maximum number of bytes of data allowed 1n a data packet;
the default1s 376 bytes.) The SSL Accelerator device 250 will
intercept (at step 204) the SYN packet transmitted by client
100 (at step 202). The SSL Accelerator may also perform
other functions on packet to enable the SSL acceleration
device to continue to perform 1ts SSL proxy functions. For
example, the SSL accelerator may reduce the initially defined
MSS value 1n the communication sequence between the client
and server 1n order to accommodate headers and extensions
utilized 1n the system of the present invention 1n the packet.
MSS reduction takes place by, responding to the imtial SYN
packet from the client 100 with a setting 1n the options field of
the TCP/IP header. For example, in the method of the present
invention, i1f Server 300 uses the same MSS value as the client
communicating with the SSL accelerator, the server will out-
put data equal to the MSS value 1n each packet, but the SSL
accelerator will require space for SSL overhead in returning
an encrypted packet to the client. Hence, the SSL may reduce
the SSL-Server MSS value to leave room for header informa-
tion back to the server. An exemplary value would be for the
MSS to equal the Client’s MSS less the SSL Overhead, but
other modifications or schemes may be used 1n accordance
with the present invention.

Next, the SSL accelerator will forward the client’s initial
SYN packet on to the server 300 at step 206 as clear text on
port 80. Server 300 will respond to the TCP SYN packet at
step 208 with 1ts own SYN and ACK packet addressed to the
client 100. The SSL accelerator device will then respond from
port 443 with SYN packet at step 210, and acknowledgement
packet ACK which verifies the MSS. The client will then
respond with an ACK on port 443 (at step 212) that 1s for-
warded on to server 300 at step 214 and the TCP session 1s
now established.

Client 100 will then begin an SSL session at 220 by starting,
the SSL handshake with the SSL accelerator device. In accor-
dance with the invention shown in FI1G. 5, the SSL accelerator
device 250 responds to the client with all appropriate hand-

shake responses 230, 235.

10

15

20

25

30

35

40

45

50

55

60

65

8

As 1s well known 1n the art, 1t 1s typically the responsibility
of the SSL handshake protocol to coordinate the states of the
client and server, thereby allowing the protocol state
machines of each to operate consistently, despite the fact that
the state may not be exactly parallel. Logically the state 1s
represented twice, once as the current operating state, and
(during the handshake protocol) again as the pending state.
Additionally, separate read and write states are maintained.
When the client or server receives a change cipher spec mes-
sage, 1t copies the pending read state into the current read
state. When the client or server sends a change cipher spec
message, 1t copies the pending write state into the current
write state. When the handshake negotiation 1s complete, the
client and server exchange change cipher spec messages), and
then communicate using the newly agreed-upon cipher spec.

In the system of the present invention, the SSL device takes
over therole typically occupied by the server in the handshake
protocol.

The SSL handshake occurring at step 235, 230 may occur
as follows. The client 200 sends a client hello message to
which the SSL accelerator 250 must respond with a server
hello message, or a fatal error will occur and the connection
will fai1l. The client hello and server hello are used to establish
security enhancement capabilities between client and server.
The client hello and server hello establish the following
attributes: protocol version, session ID, cipher suite, and
compression method. Additionally, two random values are
generated and exchanged: ClientHello.random and Server-
Hello.random.

Following the hello messages, the SSL. Accelerator 250
will send the certificate of server 300, 1f 1t 1s to be authenti-
cated. Additionally, a server key exchange message may be
sent, 1f 1t 1s required (e.g. if their server has no certificate, or
if 1ts certificate 1s for signing only). If the server 1s authenti-
cated, 1t may request a certificate from the client, 11 that 1s
appropriate to the cipher suite selected.

Next the SSL accelerator will send the server hello done
message, indicating that the hello-message phase of the hand-
shake 1s complete. The server will then wait for a client
response.

If the SSL accelerator has sent a certificate request mes-
sage, the client must send either the certificate message or ano
certificate alert. The client key exchange message 1s now sent,
and the content of that message will depend on the public key
algorithm selected between the client hello and the server
hello. If the client has sent a certificate with signing ability, a
digitally signed certificate verily message 1s sent to explicitly
verily the certificate.

At this point, the client sends a change cipher spec mes-
sage, and the client copies the pending Cipher Spec into the
current Cipher Spec. The client then immediately sends the
finmished message under the new algorithms, keys, and secrets.
In response, the SSL accelerator will send 1ts own change
cipher spec message, transier the pending to the current
Cipher Spec, and send its Finished message under the new
Cipher Spec. At this point, the handshake 1s complete and the
client and SSL accelerator may begin to exchange application
layer data.

During the handshaking sequence, the SSL accelerator will
update the TCP/SSL database and associate the SSL
sequence numbers with the TCP sequence numbers for the
session. Hence, each session will include a plurality of TCP-
SSL sequence number pairs, with the number of pairs per
session being variable based on a set number or time. These
pairs can then be used for rollback recovery 1n the event that
TCP or SSL packets are lost. The database storing these pairs
1s typically stored 1n the memory of the apparatus.

US 7,827,404 Bl

9

As shown at reference number 265, client 100 will now
begin sending encrypted application data to the SSL accel-
crator device 250. The client will send a request on port 443.
In the client’s request, the source IP will be mapped to the
client’s IP, the destination IP will be mapped to the virtual IP
of the SSL accelerator device, the source port will be mapped
to the client’s port and the destination port will be 443. This
request will include the sequence number and acknowledge-
ment (SEQ/ACK).

The accelerator device will process the data at step 270 on
the packet level and forward 1t to the server as clear text. When
encrypted application data 1s recerved by SSL acceleration
device 250 at step 270, the data 1n the packet 1s decrypted and
the SSL record extracted, and the TCP/SSL database record 1s
updated by storing the TCP sequential number, the SSL
sequential pair, the mnitialization vector and expected ACK.

The SSL accelerator 250 includes a TCP/SSL session data-
base to track all communication sessions occurring through 1t.
Each session will have one or more records associated with 1t,
with each record comprising an association of the TCP ses-
s1on sequence and the SSL sequence. Hence, on receiving the
initial SYN from client 100 at step 202, the SSL accelerator
will create a database entry for the particular session, associ-
ating the TCP-SSL sequence number pairs. The data may be
considered as a table, with each row 1n the table representing
one entry 1n a given session. Hence, for each session, a typical
record might include up to about 8-16 records, which include
a TCP sequence number, SSL session number, an 1nitializa-
tion vector (for DES and 3DES) and an expected ACK.

During decryption, the device may utilize portions of its
memory to buller segments as necessary for decryption. The
number and size of the buffers will depend on the cipher
scheme used and the configuration of the packets, as well as
whether the packets contain application data spanning mul-
tiple packets, referred to herein as multi-segment packets
(and 1llustrated with respect to FIG. 8). The SSL device can
allocate SSL butlers as necessary for TCP segments. If, for
example, application data having a length of 3000 bytes 1s
transmitted via TCP segments having a length of 100 bytes,
the device can, copy TCP segment 1 to a first SSL butlfer, and
start a timer, wait for packet 2 and when received, copy 1t to an
SSL buffer and restart the timer, and finally when packet 3 1s
received, the SSL accelerator will copy it, decrypt all appli-
cation data, authenticate it and forward the data on 1n the
clear. (An alternative, buflerless approach 1s described
below).

Decrypted packets are then forwarded 1n clear text to server
300 at port 80. The SSL accelerator device will forward the
data decrypted to port 80 of server with the client IP mapped
to the source 1P, the virtual IP as the destination IP, the client
port as the source port, and port 80 as the destination port. The
SSL accelerator device will also send a SEQ/ACK to the
server 300.

The server 300 recerves packet at step 275 and processes
the packet as required, and returns the packet in the clear to
SSL accelerator device 250. The server will respond with a
SEQ1/ACK]1 acknowledging the data and 1f necessary, send-
ing data of 1ts own with the destination IP as the client IP, the
source [P as the virtual IP, the destination Port as the clients
port, and a source port of 80.

Upon receiving the clear packet at step 280, the accelerator
device will extract the ACK, look to the database to compare
the ACK with all expected server ACKs less than or equal to
the received ACK, and save the TCP sequential number and
SSL sequential pair. The SSL accelerator device will then
encrypt the data for sPort 443, assigning the virtual IP of the
SSL. accelerator as the source IP, the client IP as the destina-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion IP, the destination port as the client port, the source port
as port 443, along with the appropriate SEQ/ACK, and return
the information to client’s HI'TP 443 port at step 372.

Client 100 will then receive and decrypt the packet at 282,
and send and ACK back to the server at 284. This ACK 1s
received by the SSL accelerator device at step 283, compare
with all expected client ACKS, clear all entries which have
expected ACKs less than or equal to this received ACK, and
torward the ACK on to server 300.

This process continues as long as the client and server
require. Upon completion of the transmission, the SSL accel-
crator will send a closed notily alert to the client, and the
client will respond to close notify alert.

FIG. 6 shows an alternative method of the present invention
wherein the SSL device may be utilized for load balancing
amongst a number of servers. In the embodiment of FIG. 5,
the packet destination addresses and source addresses were
not modified. In the embodiment of FIG. 6, the SSL. accel-
erator assumes the identity of the server, and handles and
distributes sessions to a multitude of servers by altering the
source and destination addresses of packets in a manner simi-
lar to that utilized 1n Network Address Translation (NAT).
While this example 1s illustrated with respect to a single
session, 1t should be understood that a multitude of similar
TCP/SSL sessions may be simultaneously occurring with a
multitude of servers. Routing tables associated with the SSL
sessions may be utilized by the SSL accelerator device to
track the routing of the sessions to individual servers 1n accor-
dance with well-known techniques.

In a manner similar to the embodiment shown 1n FIG. 5, the
client 100 sends a handshaking packet SYN packet to TCP
port 443 of SSL accelerator 250 rather than directly to server
300 (at step 202a) The SSL Accelerator device 250 will
receive (at step 204a) the SYN packet transmitted by client
100 and may perform functions on packet to enable the SSL
acceleration device to continue to perform 1ts SSL proxy
functions.

The SSL accelerator will forward the client’s mnitial SYN
packet on to the server 300 at step 206 as clear text on port 80.
The SSL accelerator SYN packet to server will identity the
source IP as the SSLAD 250 IP, the source port as the client’s
port, the destination IP as the virtual IP assigned by the SSL
accelerator device, and the destination port as port 80. Server
300 will respond to the TCP SYN packet at step 208a with 1ts
own SYN and ACK packet addressed to the client 100. Upon
receipt of the SYN/ACK packet from server 300, the SSL
acceleration device will change the state of the SSL-TCP
database by examining the database for expected ACKS from
the server, and once found, will clear the entry for the
expected ACK and any previous ACKS 1n the table. The SSL
accelerator device will then respond from port 443 to the
client with SYN packet at step 210a and the client will then
respond with an ACK on port 443 (at step 212) that 1s for-
warded on to server 300 at 214q and the TCP session 15 now
established.

It should be noted that the SSL device may implement a
load balancing selection algorithm in accordance with any of
anumber of techniques to select one or more servers 300, 301,
302, etc. to provide an even resource load amongst any num-
ber of servers communicating with the intermediary device.

The client 100 will then begin an SSL session at 220a by
starting the SSL. handshake with the SSL accelerator device
250. In the embodiment shown 1n FIG. 6, the SSL. accelerator
device 250 responds to the client with all appropriate hand-
shake responses 230, 235 and uses its own IP as the source.

A typical handshake occurring at step 235, 230 may occur
as set forth above with respect to FIG. 5, except that the client

US 7,827,404 Bl

11

1s communicating directly with the SSL accelerator device
(c.g. the destination IP from the client 1s that of the SSL
accelerator).

As shown at reference number 265a, client 100 will now
begin sending encrypted application data to the SSL accel-
erator device 250.

When encrypted application data 1s recerved by SSL accel-
cration device 250 at step 270, the data in the packet 1s
decrypted and the SSL record extracted, and the TCP/SSL
database record 1s updated by storing the TCP sequential
number, the SSL sequential pair, the mitialization vector and
expected ACK. The packet 1s then forwarded 1n clear text to
server 300 at port 80. The SSL accelerator device will forward
the data decrypted to port 80 of server utilizing the client IP as
the source IP, the SSL virtual IP as the destination IP, the
client port as the source port, and port 80 as the destination
port,

The server 300 recerves packet at step 275, processes the
packet as required, and returns the packet 1n clear to SSL
accelerator device 250. Upon recerving the packet at step 280,
the accelerator device will extract the ACK, compare the ACK
with all expected server ACKs less than or equal to the
received ACK, save the TCP sequential number and SSL
sequential pair, encrypt the packet and forward the encrypted
packet to client 100. The SSL accelerator device will then
encrypt the data for sPort 443, assigning as the source IP as
the virtual IP, the destination IP as the client IP, the destination
port as the client port, the source port as port 443, along with
the appropriate SEQ/ACK, and return the information to cli-
ent’s HTTP port 443. Upon completion of the transmission,
the SSL accelerator will send a closed notify alert and the
client will respond to close notity alert.

Client 100 will then recerve and decrypt the packet at 282,
and send and ACK back to the server at 284. This ACK 1s
received by the SSL accelerator device, compared with all
expected client ACKS, clear all entries which have expected
ACKSs less than or equal to this recerved ACK, and update the
sequential number pair. This ACK 1s then forwarded on to
server 300.

FIG. 7 shows yet another embodiment of the present inven-
tion wherein the SSL accelerator performs a full proxy for
both the TCP/IP negotiation process as well as the SSL
encryption process. As shown i FIG. 7, a SYN packet des-
tined for server will be received and responded to by the SSL
acceleration device 250. The SSL acceleration device, at step
207, performs all functions performed by the server and set
torth 1n steps 206, 208 and 216 in FIGS. 5 and 6. Later, at step
236, the SSL acceleration device 250 will negotiate its own
TCP/IP session with server 300 to forward decrypted infor-
mation to the server 300 1n the clear.

Client 100 sends a SYN packet TCP port 443 of server 300.
The SYN packet will define, for example, an MSS of 1460
bytes. The SSL accelerator device will respond from port 443
with SYN packet V, and acknowledgement packet ACK
which verily MSS=1460. The Client will then respond with
an ACK on port 443.

On receipt of the ACK packet at step 210, the TCP session
1s established and the TCP state 1s set to “established”. The
client 100 will then begin an SSL session at 2205 by starting
the SSL handshake with the SSL accelerator device 250. In
the embodiment shown in FI1G. 7, the SSL accelerator device
250 responds to the client with all appropriate handshake
responses 230, 235 and uses 1ts own IP as the source.

A typical handshake occurring at step 235, 230 may occur
as set forth above with respect to FIG. 7, except that the client
1s communicating directly with the SSL accelerator device. It

10

15

20

25

30

35

40

45

50

55

60

65

12

should be understood that the SSL Encryption in this embodi-
ment 1s essentially the same as the embodiment of FIG. 6.

Concurrently, at step 236, the SSL accelerator device will
negotiate with server 300, to establish a clear text session with
server 300. This 1s accomplished by the SSL accelerator
device sending a TCP/80 SYN packet to server identifying the
source IP (sIP) as the client 200 IP (cIP), the source port
(sPort) as the client’s port (cPort), the destination IP (dIP) as
the virtual IP (vIP) assigned by the SSL accelerator device,
and the destination port (dPort) as port 80

The server responds (238) with a SYN packet and ACK
packet, which will draw ACK from the SSL accelerator 250.
The SSL accelerator 250 1s now positioned to receive SSL
encrypted data from the client 100 and forward 1t as clear text
to server 300.

Once the SSL and TCP sessions are established, the client
can send SSL encrypted data to the accelerator 250. The SSL
session 1s terminated on the accelerator 250 and decrypted
SSL data 1s copied to the server’s TCP session at step 270c.
[Likewise, after clear data 1s forwarded to the server and
responded to (at step 275), clear data 1s received by the SSL
accelerator at step 280, copied to the client’s SSL session and
returned in encrypted form to the client at step 280. The
server’s TCP session within the SSL device 250 1s terminated
on SSL device 250. An ACK 1s sent when SSL data returned
to client 100 1s received.

In yet another alternative embodiment of the invention, a
further enhancement implemented in the SSL acceleration
device 1s that of a web switching or layer 7 protocol interface.
Devices incorporating content or “layer 7 switching are well
known 1n the art. Content or layer 7 switching may be imple-
mented any SSL acceleration device and communicate
directly with the Web server 300.

In this embodiment, the SSL accelerator device SSL layer
will negotiate with the layer 7 switching implementation on
the SSL device, to establish a clear TCP session on Port 80 to
the server 300. The SSL accelerator device will send a TCP/
80 SYN packet to the layer 7 switching which 1dentifies the
source IP as the client 200 IP, the source port as the client’s
port, the destination IP as the virtual IP assigned by the SSL
accelerator device, and the destination port as port 80

The switching layer responds with a SYN packet and ACK
packet which will draw the acknowledgement ACK from the
SSL accelerator device. The SSL accelerator device 250 1s
now positioned to recerve SSL encrypted data from the client
100 and forward it as clear text to server 300. SSL accelerator
device will then send the finished code to the client 100 to
indicate that the SSL protocol 1s ready.

The SSL accelerator device will decrypt the encrypted data
at the packet level by extracting data from the TCP packet sent
by client 100. and will forward the data decrypted to port 80
of the switching layer utilizing the client IP as the source IP,
the SSL virtual IP as the destination IP, the client port as the
source port, and port 80 as the destination port. The SSL
accelerator device will also send SEQ/ACK to the Web
switching layer. The switching layer will forward, the
decrypted data to TCP port 80 identitying the client IP as the
source IP port, the switching port as the source port, the
destination IP as real server 300 IP address, and the destina-
tion port as port 80.

The switching layer will then translate the destination IP
address to be source IP address, source IP address to the client
IP address, the destination IP address to the real server IP
address, and the source port to the real switching port. The
destination port will be 80 and the HI'TP/80 request will be
torwarded to server 300. The server will respond the HT'TP 80
response indicating that the destination IP 1s the client IP, the

US 7,827,404 Bl

13

source IP 1s the real server IP address, the destination port 1s
the Web switching port, the source port 1s port 80 and the
appropriate SEQ/ACK.

Switching layer will forward the HT'TP 80 response to the
SSL accelerator device substituting for IP the virtual IP
assigned to the server 300 by the SSL accelerator device,
substituting for the data for the client port, and the source port
equals 80 with the appropriate SEQ/ACK.

Once recerved by SSL accelerator device, the SSL accel-
erator device will encrypt the a data for port 443, assign the
source IP as the virtual IP, the destination IP as the client 100
IP, the destination port as the client port, the source port as
port 443, along with the appropriate SEQ/ACK and return the
information to client’s HI'TP 443 port. Upon completion of
the transmission, the SSL accelerator will send a closed notify
alert and the client will respond to close notify alert.

It should be further recognized that the system of the
present invention can implement hybrid of the foregoing
schemes. FIG. 9a shows an overview of the various modes
which may be implemented by the SSL device. As shown
therein, using cut-through communication, both a direct
mode (one to one communication between client and server)
and a load balancing (address redirection) schemes may be
utilized. In a full proxy mode, the SSL device performs both
TCP and SSL functions, with this mode being optionally
utilized for load balancing. F1G. 956 shows a further feature of
the device, allowing for mode switching: the system can
begin a tull TCP proxy mode session (in accordance with the
description of FIG. 6) and switch to cut through/direct modes
depending on the circumstances of the data transfer. Full
proxy TCP mode has the advantage that all cases of transmis-
s10n are supported. However, this embodiment requires more
buifer memory than TCP cut through mode shown in FIG. 5.

In the cut through modes, certain types of packet transmis-
s10ms can cause problems. For example, when the SSL record
transverses more than one TCP segment or when the client
window 1s very small, (for example, on the order of 200-300
bytes) and many small TCP segments are received.

The switching mode shown 1n FIG. 96 can therefore allow
the TCP proxy mode for SSL and TCP session setup, and then
cut through mode for normal data, with a roll back to the
proxy TCP mode for problem cases.

There are numerous types of communications problems
which may occur at various stages of data transfer between
the SSL Accelerator, the client and the server. Some examples
of these problems, and how the SSL device handles them, are
set forth below. However, 1t will be understood that the num-
ber and type of errors which are possible 1n this sequence, and
their attendant solutions, are too numerous to detail here.

One type of problem 1s lost packets. Most lost packet cases
can be recovered through use of the data structure mentioned
above. As the data structure maintains the TCP sequence
number, SSL sequence number, expected ACK and DES’s
Initialization vector, the SSL Accelerator device can roll back
the SSL number to the previous TCP number received.

A different problem occurs not packets are lost, but when
there 1s an SSL segmentation problem. Segmentation prob-
lems may occur when, for example, 1 SSL record spans over
3 TCP segments, 1.e.: where SSL length=3000, and the TCP
packet’s length=1000. This segmentation 1ssue 1s illustrated
in FI1G. 8. In this case, the Accelerator device cannot decrypt
and authenticate the packet, since the MAC algorithm data
will not arrive for another two segments.

I, 1n the method of the invention, the accelerator uses a
memory buliler, (as described above with respect to FIG. §5)
the Accelerator can allocate an SSL buffer for 3000 bytes,
copy TCP segment 1 to the SSL butfer, and start a timer. When

10

15

20

25

30

35

40

45

50

55

60

65

14

packet SSL/TCP packet 2 1s received, 1t will be copied to an
SSL bufier and the timer restarted. Then when packet 3 1s
received, the SSL accelerator will copy 1t, decrypt 1t, allocate
3 TCP, segments, and copy HITP data into 1t. This may then
be forwarded on 1n the clear.

An alternative embodiment of the present invention uti-
lizes a butferless or small buffer approach to handle the mul-
tisesgment problem. In the buflerless approach, individual
segments of multisegment SSL records are decrypted, but not
authenticated pI‘lOI‘ to bemg sent to the server. Upon receipt of
the last segment 1n the series (packet 3 in the above example),
the data will be authenticated, however, individual segments
are not. This greatly reduces the hardware requirements of the
device be requiring little or no buifer memory allocated to
multi1 segment SSL packets. For non-block ciphers, such as
RC2 and RC4, this decryption can be performed on the {ly.
However, for block 01phers such as 3DES/DES, some buil-
ering must occur. This 1s due to the fact that data for these
ciphers must be combined from blocks. In these cases, only
part of the data 1s decrypted and the rest 1s moved to the next
segment. Hence, 11 there are more than two segments, and the
encryption cipher 1s DES, with 8 byte blocks, the SSL device
will butter up to 7 bytes with additional 7 bytes sequentially
moved until the last segment, with the last segment always
having enough room to accommeodate the data without break-
ing the server’s MSS. In an exemplary design, the operational
modes are configurable by a user so that the sacrifice of
whether to potentially compromise security by not authenti-
cating each packet 1s the user’s choice. Nevertheless, because
for block ciphers 1t 1s impossible to know the padding length
before decryption 1s finished and the padding length 1s used to
start calculating authentication, then authentication of the
data in the multi-segment SSL data does occur upon receipt of
the last segment—and the receipt of the MAC algorithm data
and one 1s required to store all decrypted data into a butfer. If,
however, the data cannot be authenticated at that time, the
SSL device will send areset to the server and an ALERT to the
client, indicating a problem with the session has occurred and
notifying the user. For block ciphers, the system does some
buifering, but this mimimal buffering will reduce latency.

Another 1ssue may occur when a “small” window problem
occurs. Normally, communications between the Sever to Cli-
ent occur as shown 1n Table 1:

TABLE 1
Client SSL Accelerator Server
—JCPRO1=0
encrypt
—5SSLTCP4431 =0
«— TCPR0 2 = 1000
Encrypt
«— SSL TCP443 2 = 1000
«— TCPR0O 3 = 2000
Encrypt
«— SSL TCP443 3 = 2000
1TCP443 ACK =
3000 —
TCP80 ACK = 3000 —
The small window problem may occur when, for example,

the ServerMSS=1000, but Client understands an MSS=900.
In this situation, 1f the client sends an ACK W=3000, the SSL
accelerator will understand 1t 1s going to receive 3, 1000 byte
segments. This problem 1s illustrated 1n Table 3. In Table 3,
the server’s packet length 1s, for example, 100 bytes. So
instead of receiving 3, 1000 byte segments, the SSL accelera-
tor will recerve 30, 100 byte segments from the server. Once

US 7,827,404 Bl

15

the SSL. accelerator adds the SSL. overhead, which 1n this
example 1s 100 bytes, the packet size to be returned to the
client doubles for each packet from the server:

TABL.

2

(L]

SSL Accelerator

Client Server

Ack W =
3000 -->

Ack W = 2700 (SSL
expecting 3 1000Segments)

<--TCP1=0,1=100
Encrypt
<-- SSLTCP1=0,1=200

<--TCP 2 =100, 1= 100
Encrypt
<-- SSL TCP 2 =200, 1 = 200

<-- TCP 3 =200, 1= 100
Encrypt
<-- SSL TCP 3 =400, 1 = 200

S

i
b

<-- TCP 14 = 1400,
1 =100

Encrypt

<-- SSL TCP 4 =2800, 1 =200
<-- TCP 15 = 1500,
1 =100

Encrypt

<-- SSL TCP 5 =3000, 1 =200
<-- TCP 16 = 1600,
1 =100

The SSL accelerator cannot send TCP packet 16 because
client’s window 1s full already (with 13, 200 byte packets).

In this case, the SSL. accelerator will butter the Server’s
responses, starting from this point so that when a next TCP
ACK=3000 1s received from the client, the SSL. accelerator
will take the server response (packet 16) from the bulfer,
encrypt 1t and return 1t to the client.

If one of the foregoing problems occurs when the SSL
accelerator 1s in a mode which does not support that particular
type of communication, the SSL accelerator may switch
modes to enable that type of communication to be handled.

The foregoing detailed description of the mvention has
been presented for purposes of illustration and description. It
1s not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible 1n light of the above teaching. The described
embodiments were chosen 1n order to best explain the prin-
ciples of the invention and its practical application to thereby
enable others skilled 1n the art to best utilize the invention 1n
various embodiments and with various modifications as are
suited to the particular use contemplated. It 1s intended that
the scope of the invention be defined by the claims appended
hereto.

What is claimed 1s:
1. A method for secure communications between a client
and one of a plurality of servers performed on an intermediate
device coupled to the client and the plurality of servers, com-
prising;:
receiving encrypted application data from the client via a
secure communications session, wherein the encrypted
application data was encrypted by the client device by
encrypting application data at a session layer above a
packet level of a network stack of the client; and

decrypting the encrypted application data and forwarding
the decrypted application data to the server without pro-
cessing the application data with an application layer of
the network stack of the intermediate device.

10

15

20

25

30

35

40

45

50

55

60

65

16

2. The method of claim 1,

wherein forwarding the decrypted application data com-
prises forwarding the decrypted application data from
the intermediate device to the server using a communi-
cation session negotiated by the client and the server
when the mntermediate device operates 1n a direct mode,
and

wherein forwarding the decrypted application data com-
prises forwarding the decrypted application data from
the intermediate device to the server using a communi-
cation session negotiated by the server and the interme-
diate device when the intermediate device operates 1n a
proxy mode.

3. The method of claim 2 further comprising negotiating,
the secure communications session as a Secure Sockets Layer
(SSL) session.

4. The method of claiam 1,

wherein recewving encrypted application data comprise
receiving the application data as multi-segment records,

and wherein decrypting and forwarding comprises:

forwarding at least a portion of the decrypted application

data for each of the records prior to receiving com-
plete records;

discarding the portion of each of the records after for-
warding the portion to be discarded; and

authenticating the decrypted application data of each
record using a remaimng non-discarded portion of the

record upon recerving a final segment of the multi-
segment record.

5. The method of claim 1 wherein forwarding decrypted
application data comprises forwarding unauthenticated
application data.

6. The method of claim 5 wherein forwarding unauthenti-
cated application data includes subsequently authenticating
the data.

7. The method of claim 1 further comprising selecting one
of the plurality of servers to which to forward the decrypted
authentication data based on a load balancing algorithm that
calculates current processing loads associated with each of
the servers.

8. The method of claim 1 further comprising tracking data
passing between the client and the one of the plurality of
SErvers.

9. The method of claim 8 wherein tracking comprises
establishing a session tracking database that records, for each
session, a session 1D, a Transmission Control Protocol (TCP)
sequence number and a Secure Sockets Layer (SSL) session
number.

10. The method of claim 9 further comprising tracking, for
each session, an 1nitialization vector.

11. An apparatus comprising;:

a communications engine to decrypt encrypted application
data from a client at a packet level within a network stack
of the apparatus, wherein the encrypted application data
was encrypted by the client at a layer above a packet
level within a network stack of the client,

wherein the communications engine Jforwards the
decrypted application data to a server without process-

ing the application data with an application layer of the
network stack of the apparatus.

12. The apparatus of claim 11,

wherein the apparatus supports a direct mode and a proxy
mode,

wherein, when operating 1n the direct mode, the commu-
nications engine decrypts the data packets and forwards

US 7,827,404 Bl

17

decrypted data packets from the apparatus to the server
using a communication session negotiated by the client
and the server, and

wherein, when operating 1n the proxy mode, the commu-

nications engine forwards decrypted data packets from
the apparatus to the server using a communication ses-
s1ion negotiated by the server and the apparatus.

13. The apparatus of claim 11 further comprising a nego-
tiation manager that enables the apparatus as a Transmission
Control Protocol (TCP) and Secure Sockets Layer (SSL)
proxy for the server.

14. The apparatus of claim 11 further including a session
tracking database having at least one record per communica-
tion session between the client and the server.

15. The apparatus of claim 14 wherein the at least one
record includes a TCP sequence number and an SSL sequence
number.

16. The apparatus of claim 14 further including a recovery
manager using the database to recover from communication
CITOrs.

17. The apparatus of claim 11 wherein the communications
engine decrypts packets from SSL data that spans over mul-
tiple TCP segments.

18. The apparatus of claim 17 wherein the application data
1s not buifered during decryption.

19. The apparatus of claim 11,

wherein the communication engine performs an authenti-

cation process that authenticates the decrypted data after
a final segment of a multi-segment encrypted data record
1s received, and

10

15

20

25

18

wherein the authentication process discards at least a por-
tion of the data record after forwarding the portion to be
discarded and authenticates decrypted data using the
remaining portion of the data record atter the final seg-
ment 1s received.

20. An mtermediate network device to be positioned within
a network between a client and a server, the intermediate
network device comprising:

a communications engine that 1s configurable to operate 1n
a direct mode or a proxy mode;

wherein, when operating 1n the direct mode, the commu-
nications engine (1) intercepts encrypted data packets
sent by the client on a communication session between
the client and the server, (11) decrypts the data packets,
and (111) forwards decrypted data packets from the inter-

mediate network device to the server using the commu-
nication session between the client and the server, and

wherein, when operating in the proxy mode, the commu-
nications engine (1) recerves encrypted data packets sent
by the client on a communication session between the
client and the intermediate network device, (11) decrypts
the data packets, and (111) forwards decrypted data pack-
ets from the intermediate network device to the server
using the communication session between the interme-
diate network device and the server.

	Front Page
	Drawings
	Specification
	Claims

