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LOGIC ARRANGEMENT, DATA STRUCTURLE,
SYSTEM AND METHOD FOR MULTILINEAR
REPRESENTATION OF MULTIMODAL DATA
ENSEMBLES FOR SYNTHESIS,
RECOGNITION AND COMPRESSION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of U.S. patent
application Ser. No. 11/868,832 filed Oct. 8, 2007, now U.S.
Pat. No. 7,603,323 which 1s a continuation of U.S. patent
application Ser. No. 10/498,279 filed Jun. 4, 2004, now U.S.
Pat. No. 7,280,985 which 1s U.S. National Phase of Interna-
tional Application PCT/US02/39257 filed Dec. 6, 2002, the
entire disclosures of which are incorporated herein by refer-

ence. The present application also claims priority from U.S.
Patent Application Ser. Nos. 60/3377,912 filed Dec. 6, 2001,
60/383,300 filed May 23, 2002 and 60/402,374 filed Aug. 9,

2002, the entire disclosures of which are incorporated herein
by reference.

FIELD OF THE INVENTION

The present mnvention relates generally to a logic arrange-
ment, data structure, system and method for acquiring data,
and more particularly to a logic arrangement, data structure,
system and method for acquiring data describing at least one
characteristic of an object, synthesizing new data, recogniz-
ing acquired data and reducing the amount of data describing
one or more characteristics of the object (e.g., a human
being).

BACKGROUND OF THE INVENTION

Natural images are the composite consequence of multiple
factors related to scene structure, 1llumination and 1imaging.
Human perception of natural images remains robust despite
significant variation of these factors. For example, people
possess a remarkable ability to recognize faces given a broad
variety of facial geometries, expressions, head poses and
lighting conditions.

Some past facial recognition systems have been developed
with the aid of linear models such as principal component
analysis (“PCA”), independent component analysis (“ICA”).
Principal components analysis (“PCA”) 1s a popular linear
technique that has been used 1n past facial image recognition
systems and processes. By their very nature, linear models
work best when a single-factor varies 1n an 1mage formation.
Thus, linear techniques for facial recognition systems per-
form adequately when person identity 1s the only factor per-
mitted to change. However, 11 other factors (such as lighting,
viewpoint, and expression) are also permitted to modity facial
images, the recognition rate of linear facial recognition sys-
tems can fall dramatically.

Similarly, human motion 1s the composite consequence of
multiple elements, including the action performed and a
motion signature that captures the distinctive pattern of
movement of a particular individual. Human recognmition of
particular characteristics of such movement can be robust
even when these factors greatly vary. In the 1960’s, the psy-
chologist Gunnar Kohansson performed a series of experi-
ments 1n which lights were attached to people’s limbs, and
recorded a video of the people performing different activities
(e.g., walking, running and dancing). Observers of these
moving light videos in which only the lights are visible were
asked to classity the activity performed, and to note certain
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characteristics of the movements, such as a limp or an ener-
getic/tired walk. It was observed that this task can be per-
formed with ease, and that the observer could sometimes
determine even recognize specific individuals 1n this manner.
This may corroborate the 1dea that the motion signature 1s a
perceptible element of human motion. and that the signature
of a motion 1s a tangible quantity that can be separated from
the actual motion type.

However, there 1s a need to overcome at least some of the
deficiencies of the prior art techniques.

OBJECTS AND SUMMARY OF THE
INVENTION

Such need 1s addressed by the present invention. One of the
objects of the present invention 1s to provide a logic arrange-
ment, data structure, storage medium, system and method for
generating an object descriptor. According to an exemplary
embodiment of the present invention such data structure can
include a plurality of first data elements that have information
regarding at least one characteristic of the at least one object.
The mmformation of the first data elements 1s capable of being
used to obtain the object descriptor. The object descriptor 1s
related to the at least one characteristic and a further charac-
teristic of the at least one object, and 1s capable of being used
to generate a plurality of second data elements which contain
information regarding the further characteristic of the at least
one object based on the object descriptor.

In another exemplary embodiment of the present invention,
the method can include a plurality of first data elements
containing information regarding at least one characteristic of
the at least one object. The object descriptor 1s obtained based
on the information of the first data elements and 1s related to
the at least one characteristic and a further characteristic of
the object. A plurality of second data elements contaiming
information regarding the further characteristic of the at least
one object based on the object descriptor.

In still another exemplary embodiment of the present
invention, the storage medium including a software program,
which when executed by a processing arrangement, 1s con-
figured to cause the processing arrangement to execute a
series ol steps. The series of steps can include a plurality of
first data elements containing information regarding at least
one characteristic of the at least one object. The object
descriptor 1s obtained based on the information of the first
data elements and 1s related to the at least one characteristic
and a further characteristic of the object. A plurality of second
data elements containing information regarding the further
characteristic of the at least one object based on the object
descriptor.

In a further exemplary embodiment of the present inven-
tion, the logic arrangement 1s adapted for an execution by a
processing arrangement to perform a series of steps. The
series of steps can include a plurality of first data elements
containing information regarding at least one characteristic of
the at least one object. The object descriptor 1s obtained based
on the information of the first data elements and 1s related to
the at least one characteristic and a further characteristic of
the object. A plurality of second data elements containing
information regarding the further characteristic of the at least
one object based on the object descriptor.

Another of the objects of the present invention 1s to provide
a logic arrangement, data structure, storage medium, system
and method for 1dentifying a sample object of a plurality of
objects based upon a sample object descriptor. According to
an exemplary embodiment of the present invention such data
structure can include a plurality of first data elements that
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have information which i1s defined by at least two {irst primi-
tives. The first data elements are capable of being used to
obtain at least one of a plurality of object descriptors. The
exemplary data structure may also include a plurality of sec-
ond data elements that have information which is defined by
at least two second primitives. The second data elements are
capable of being used to obtain the sample object descriptor.
The at least one obtained object descriptor configured to be
compared to the sample object descriptor for determining
whether the object 1s potentially identifiable as one of the
object descriptors. Each of the plurality of object descriptors
1s associated with a respective one of a plurality of objects.

In another exemplary embodiment of the present invention,
the method can include a plurality of data elements which are
defined by at least two primitives are collected. At least one of
a plurality of object descriptors are obtained based on the
information of the data elements. The sample object descrip-
tor 1s compared to at least one of the object descriptors for
determining whether the sample object descriptor 1s 1dentifi-
able as one of the object descriptors. Each of the object
descriptors 1s associated with a respective one of a plurality of
objects.

In still another exemplary embodiment of the present
invention, the storage medium including a software program,
which when executed by a processing arrangement, 1s con-
figured to cause the processing arrangement to execute a
series of steps. The series of steps can include can include a
plurality of data elements which are defined by at least two
primitives are collected. At least one of a plurality of object
descriptors are obtained based on the information of the data
clements. The sample object descriptor 1s compared to at least
one of the object descriptors for determining whether the
sample object descriptor 1s 1dentifiable as one of the object
descriptors. Each of the object descriptors 1s associated with
a respective one of a plurality of objects.

In a further exemplary embodiment of the present mven-
tion, the logic arrangement 1s adapted for an execution by a
processing arrangement to perform a series of steps. The
series of steps can include a plurality of data elements which
are defined by at least two primitives are collected. At least
one of a plurality of object descriptors are obtained based on
the information of the data elements. The sample object
descriptor 1s compared to at least one of the object descriptors
for determining whether the sample object descriptor 1s 1den-
tifiable as one of the object descriptors. Each of the object
descriptors 1s associated with a respective one of a plurality of
objects.

Yet another of the objects of the present invention 1s to
provide a logic arrangement, data structure, storage medium,
system and method for reducing the dimensionality of one of
the at least two object descriptors. According to an exemplary
embodiment of the present mnvention such data structure can
include a plurality of data elements that have information
defined by at least two primitives. The data elements are
capable of being used to obtain one of the object descriptors.
The one of the object descriptors 1s capable having a reduced
dimensionality.

In another exemplary embodiment of the present invention,
the method can include a plurality of data elements defined by
at least two primitives are collected. The one of the object
descriptors based on the information of the data elements 1s
obtained. The dimensionality of the one of the object descrip-
tors 1s reduced.

In still another exemplary embodiment of the present
invention, the storage medium including a software program,
which when executed by a processing arrangement, 1s con-
figured to cause the processing arrangement to execute a
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4

series of steps. The series of steps can include can include a
plurality of data elements defined by at least two primitives
are collected. The one of the object descriptors based on the
information of the data elements 1s obtained. The dimension-
ality of the one of the object descriptors 1s reduced.

In a further exemplary embodiment of the present inven-
tion, the logic arrangement 1s adapted for an execution by a
processing arrangement to perform a series of steps. The
series of steps can include a plurality of data elements defined
by at least two primitives are collected. The one of the object
descriptors based on the information of the data elements 1s
obtained. The dimensionality of the one of the object descrip-
tors 1s reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention
will become apparent from the following detailed description
taken 1n conjunction with the accompanying figures showing
illustrative embodiments of the invention, 1n which:

FIG. 1 1s a block diagram of a data analysis system accord-
ing to an exemplary embodiment of the present invention;

FIG. 2 1s a flow diagram of an exemplary embodiment of a
process according to the present invention which analyzes
multilinear data;

FIG. 3 1s a flow diagram of an exemplary embodiment of a
core tensor computation procedure of the process of FIG. 2
which performs an N-mode SVD algorithm for decomposing
an N-dimensional tensor:

FIG. 4 1s a flow diagram of an exemplary embodiment of a
process of FI1G. 2 which synthesizes the remaining actions for
a new 1ndividual;

FIG. 5 1s aflow diagram of an exemplary embodiment of an
action generation procedure of the process of FIG. 2 which
synthesizes an observed action for a set of individuals;

FIG. 6 1s a flow diagram of an exemplary embodiment of an
individual recognition procedure of the process of FIG. 2
which recognizes an unidentified individual performing a
known actions as one of a group of individuals;

FI1G. 7 1s atlow diagram of an exemplary embodiment of an
action recognition procedure of the process of FIG. 2 which
recognizes an unknown action being performed by a known
individual;

FIG. 8 1s a flow diagram of another exemplary embodiment
ol a process according to the present invention which ana-
lyzes multilinear data;

FIG. 9 15 a flow diagram of an exemplary embodiment of
the mndividual recognition procedure of the process of FIG. 8
which recognizes an unidentified individual given an
unknown facial image;

FIG. 10 1s a flow diagram of an exemplary embodiment of
the expression recognition procedure of the process of FIG. 8
which recognizes of an unidentified expression being dis-
played by a known person;

FIG. 11 1s a flow diagram of an exemplary embodiment of
a data reduction process of the process of FIG. 8 which
dimensionally reduces the amount of data describing an indi-
vidual displaying an expression;

FIGS. 12A-12F are block diagrams of sample tensors and
equivalent mode-1, mode-2 and mode-3 flattened tensors
according to an exemplary embodiment of the present inven-
tion;

FIG. 13 1s a flow diagram of another exemplary embodi-
ment of a process according to the present invention which
analyzes multilinear data;
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FIG. 14 1s a flow diagram of an exemplary embodiment of
a core matrix computation procedure of the process of FIG.
13 which performs an SVD matrix algorithm for decompos-
ing a matrix; and

FI1G. 15 1s a tlow diagram of an exemplary embodiment of
a process of FI1G. 13 which synthesizes the remaining actions
for a new individual.

Throughout the figures, the same reference numerals and
characters, unless otherwise stated, are used to denote like
teatures, elements, components or portions of the i1llustrated
embodiments. Moreover, while the present invention will
now be described 1n detail with reference to the figures, 1t 1s
done so 1n connection with the i1llustrative embodiments. It 1s
intended that changes and modifications can be made to the
described embodiments without departing from the true
scope and spirit of the subject invention as defined by the
appended claims.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

(L]
Y

ERRED

FIG. 1 illustrates an exemplary embodiment of a data
analysis system 100 for use 1n the collection and analysis of
data describing various characteristics of different objects. In
this embodiment, a central server 102 1s provided in the
system 100, which provides therein a central processing unit
(“CPU”) 104, a data storage unmit 106 and a database 108. The
central server 102 1s connected to a communications network
110, which 1s 1n turn connected to an data capturing system
112. The data capturing system 112 can include at least one
camera (not shown for the sake of clarity). A first client server
114 1s provided 1n the system 100, which provides therein a
CPU 116, adata storage unit 118, and a database 120. The first
client server 114 1s connected to the communications network
110. A second client server 124 1s also provided 1n the system
100, which situates a CPU 126, a data storage unit 128, and a
database 130. The second client server 124 1s also connected
to the communications network 110. It should be understood
that the central server 102, the 1image capture system 112, the
first client server 114 and the second client server 124 can
forward data messages to each other over the communica-
tions network 110.

In a preferred embodiment of the present invention, the
data capturing System 112 can be a “VICON” system which
employs at least four video cameras. The VICON system can
be used to capture human limb motion and the like.

A multilinear data analysis application can be stored 1n the
data storage unmit 106 of the central server 102. This multilin-
car data analysis application 1s capable of recognizing an
unknown 1ndividual, an unknown object, an unknown action
being performed by an individual, an unknown expression, an
unknown illumination, an unknown viewpoint, and the like.
Such application can also synthesize a known action that has
never before recorded as being performed by an individual, as
well as an expression which has previously not been recorded
as being formed by an individual. Further the application can
reduce the amount of stored data that describes an object or
action by using dimensionality reduction techniques, and the
like. It should be understood that dimensionality reduction 1s
equivalent to compression and data reduction. The multilin-
car data analysis application preferably utilizes a corpus of
data, which 1s collected using the data capturing system 112
from different subjects. The corpus of data 1s stored in the
database 108 of the server 102, and can be organized as a
tensor D, which shall be described 1n further detail as follows.

A tensor, also known as an n-way array or multidimen-
sional matrix or n-mode matrix, 1s a higher order generaliza-
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6

tion of a vector (first order tensor) and a matrix (second order
tensor). A tensor can be defined as a multi-linear mapping
over a set of vector spaces. The tensor can be represented 1n
the following manner: AeIlR?* - - - *¥ where A is a tensor.
The order of the tensor A 1s N. A tensor 1s formed by a group
of primatives. Each primative 1s a set of mode vectors, such
that a first primative 1s a set of mode-1 vectors, a second
vector is a set of mode-2 vectors, an n” primative is a set of
mode-n vectors, etc. In an alternate embodiment, the prima-
tives can be row vectors of a matrix, column vectors of a
matrix, index of a vector, etc. An element of tensor A 1s
denotedasA, , , ora,  orwhere 1=1, =1, . Scalars
are denoted by lower case letters (a, b, . . . ), vectors by bold
lower case letters (a, b . . . ), matrices by bold upper-case
letters (A, B . . . ), and higher-order tensors by italicized
bolded upper-case letters (A, B .. .).

R R

I

In tensor terminology, column vectors are referred to as
mode-1 vectors, and row vectors are referred to as mode-2
vectors. Mode-n vectors of an N?” order tensor
AelR/> - W are the I -dimensional vectors obtained from
the tensor A by varying index 1, while maintaining the other

indices as tixed. The mode-n vectors are the column vectors
of matrix A, eIR"/¥2 - - - frtlmi - - 10 that can result from

flattening the tensor A, as shown i FIGS. 12A-12F. The
flattening procedure shall be described 1n further detail below.
The n-rank of tensor AeIR™2% - - - *¥ denoted R, is defined
as the dimension of the vector space generated by the mode-n
vectors:

R, =rank, (4)=rank(4 ).

FIGS. 12A-12C show third order tensors 1200, 1210,
1220, respectively, each having dimensions I, xI,xI;. FIG.
12D shows the third order tensor 1200 after having been
mode-1 flattened to obtain a matrix 1250 containing mode-1
vectors of the third order tensor 1200. The third order tensor
1200 of FIG. 12A 1s a cube type structure, while the matrix
1250 1s a two dimensional type structure having one index,
1.e., I, imbedded (to a certain degree) within the matrix 1250.
FIG. 12E shows a matrix 1260 containing mode-2 vectors of
the third order tensor 1210 after 1t has been mode-2 flattened.
This third order tensor 1210 1s a cube type structure, while the
matrix 1260 is a two dimensional type structure having one
index, e.g., I;, imbedded (to a certain degree) with the data.

FIG. 12F shows the third order tensor 1220 after having been

mode-3 flattened to obtain a matrix 1270 containing mode-3
vectors of the third order tensor 1220. Such third order tensor
1220 1s a cube type structure, while the matrix 1270 organizes
1s a two dimensional type structure having one index, e.g., I,
imbedded (to a certain degree) with the data.

A generalization of the product of two matrices can be the

product of the tensor and matrix. The mode-n product of
tensor Ae[R1*/2% - - - *fn< - - *IN by a matrix MeIR”*", denoted

by Ax, M, is a tensor BeIR/™ - - - */n-/wmix .- IV yhose
entries are
By iplinine1 . N =Zﬂfl“' bttt «or Iy i
in
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The entries of the tensor B are computed by

(A Xn M)z

| e ip_ldninel - IN T E iy

in

The mode-n product can be expressed as B=Ax M, or 1n
terms of tlattened matrices as B, ,=MA_, ,. The mode-n prod-
uct of a tensor and a matrix 1s a special case of the inner
product 1n multilinear algebra and tensor analysis. The
mode-n product 1s often denoted using Finstein summation

notation, but for purposes of clarity, the mode-n product
symbol will be used. The mode-n product has the following

properties:
1. Given a tensor AeIR""™ - - - “and two matrices,
UeIR7»*' and VeIR” the following property holds true:

wly .. oxdl, ..

AX,UX, V=(AX, U)X,V

=(AX, VIx, U

=AX,VX,U

<l ... %y

2. Given a tensor AelR™™ - - and two matrices,
UelR77*» and VelR**’» the following property holds true:

(Ax, U)x, V=Ax (VU)

An N7 order tensor AeIR1*/2% - - - *IN hag a rank-1 when it is

able to be expressed as the outer product of N vectors:
A=u,0u,0 . . . ou,. The tensor element 1s expressed as
a;; U Usi... Uy, Whereu,, 1s the i”” component eful,,ete
The rank of a Nﬁ"' order tensor A, denoted R—rank(A) 1s the
mimmal number of rank-1 tensors that yield A 1n a linear
combination:

R
A= Z ol ).
r=1

A singular value decomposition (SVD) can be expressed as
a rank decomposition as 1s shown 1n the following simple
example:

T
c d 0 (Fan _h !

al [ f b
=01 ' + 022 '
C g - d
= U, ZU)
T
11 0
1 (2 DN 2
T A
0 (Fan
R=2 R=2 | |
= oy )

i=1 j=1

It should be noted that an SVD 1s a combinatorial orthogonal
rank decomposition, but that the reverse 1s not true; 1n general,
rank decomposition 1s not necessarily singular value decom-
position. Also, the N-mode SVD can be expressed as an
expansion of mutually orthogonal rank-1 tensors, as follows:
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where U, " is the i, column vector of the matrix U, . This is

analogous to the equation

R=2 k=2

(')
2, 2, itk u

=1 j=1

A client interface application can be stored in the data
storage units 118, 128 of the first and second client servers
114, 124, respectively. The client interface application prei-
erably allows the user to control the multilinear data analysis
application described previously. For example, the client
interface application can instruct the multilinear data analysis
application to generate new data describing a particular char-
acteristic of a known object that may be different from those
characteristics of the known object which were already
observed. In addition, the client interface application can
instruct the multilinear data analysis application to generate
new data describing a particular characteristic of the remain-
der of the population of observed objects that are different
from those characteristics of the remainder of the population
already observed. Also, the client interface application can
instruct the multilinear data analysis application to recognize
an unknown object from the population of observed objects,
recognize a characteristic ol a known object from the charac-
teristics of the known object already observed, dimensionally
reduce the amount of data stored to describe a characteristic
of a known object, etc. In one exemplary embodiment of the
present invention, the object can be a person and the charac-
teristic may be an action. In another embodiment of the
present invention, the object could be a person’s face, and the
characteristic can be a facial expression. In response to the
client interface application’s instructions, the multilinear data
analysis application may transmit to the client interface appli-
cation certain information describing the requested charac-
teristic or object.

A. Motion Signature Using a Tensor Representation of a
Corpus of Data

FIG. 2 illustrates flow diagram of an exemplary embodi-
ment of a process 200 which 1s indicative of the multilinear
data analysis application. As described above for the multi-
linear data analysis application, the process 200 1s eenﬁgured
to recognize the unknown subject or individual, reco gmze the
unknown action being performed by the known subject, gen-
crate a known action never before recorded as being per-
formed by the subject, etc. In particular the multilinear data
analysis application utilizes the corpus of motion data, which
1s collected using the data capturing system 112 from differ-
ent subjects. This corpus of motion information 1s stored 1n
the database 108 of the server 102, and describes angles of the

60 jointsinthe legs of at least one subject performing at least one

65

action. The corpus of motion information can be organized as
a tensor D. It should be understood that the corpus of motion
information can also be organized as a matrix D or a vector d.
For example, 11 the information 1s organized as a matrix D, the
process 200 preferably remains the same, but the underlying
tensor procedures could be converted to matrix procedure
equivalents. It should also be noted that representing the data
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contained 1n the tensor D may integrate multiple indices into
a singular matrix index. Likewise, 11 the information 1s orga-
nized as a vector d, the process 200 preferably remains the
same, but the underlying tensor procedures could be con-
verted to vector procedure equivalents. It should also be noted
that representing the data contained in the tensor D may
integrate multiple indices 1nto a singular vector mndex.

The corpus of motion data 1s preferably collected from
different subjects that perform at least one action which forms
the tensor D. Each action can be repeated multiple times, and
a motion cycle can be segmented from each motion sequence.
For example, 1n order to suppress noise, the collected motion
data can be passed through a low-pass fourth-order Butter-
worth filter at a cut off frequency of 6 Hz, and missing data
may be interpolated with a cubic spline. Joint angles can be
computed to represent the motion information of the limbs of
various subjects (e.g., people). To compute the joint angles,
the frame coordinate transformation for each limb may be
calculated with respect to an area 1n which the motion 1nfor-
mation 1s collected, the relative orientation of each limb 1n the
kinematic chain can then be determined, and the inverse
kinematic equations are thus obtained. The joint angles are
thereatfter stored 1n the tensor D. Such tensor D can have the
form of a IR“****, where G is the number of subjects, M is
the number of action classes, and T 1s the number of joint
angle time samples.

In an exemplary implementation of a preferred embodi-
ment according to the present invention, three motions are
collected for each person: e.g., walk, ascend-stairs, and
descend stairs. In another exemplary implementation, each
action can be repeated ten (10) times. In yet another exem-
plary implementation, human limb motion can be recorded
using the VICON system that employs four infra-red video
cameras. These cameras generally detect infra-red light
which 1s reflected from 18 markers, 9 placed on each leg of a
human subject. The system 112 then computes a three-dimen-
sional position of the markers relative to a fixed coordinate
frame. The video cameras can be positioned on one side of a
12 meter long walkway such that each marker can be
observed by at least two cameras during the subject’s motion.
To extract the three angles spanned by a joint of the subject, a
plane can be defined for each limb whose motion can be
measured relative to the sagittal, frontal and transverse planes
through the body of the subject. It should be noted that the
joint angle time samples reflect the joint angles of various
joints as they move over time.

Turning to further particulars of FIG. 2, 1n step 202, the
process 200 collects motion information or data on various
subjects (e.g., people) performing different actions, €.g., new
motion data. The motion 1s collected as a group of vectors.
Each of the group of vectors represents a subject performing
an action. If each of the possible the actions and the individual
are known, the data can be integrated into the tensor D. If the
action or individual are not known, such data would likely not
be integrated into the tensor D until those pieces of informa-
tion are determined. The data describing an unknown action
or individual 1s organized as a new data tensor D, , of a new
subject or a new data vector d of a new subject. The new data
tensor D, , includes more than one new data vector d. Each
new data vector d of the new data tensor D, , describes the
motion of subject p performing action a.

At step 204, the process 200 solves for a core tensor 7
which can be generally used for defining the inter-relation-
ships between the orthonormal mode matrices. This step rep-
resents an N-mode singular value decomposition (“SVD™)
process 204, shown 1n FIG. 3, and described 1n further detail
herein. It should be noted that the N-mode SVD procedure of
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step 204 1s an orthonormal decomposition procedure. The
N-mode SVD procedure of step 204 solves for the core tensor
Z.. When this procedure of step 204 determines the core tensor
7., the process 200 advances to step 205.

In an alternate embodiment of the present invention, an
alternate n-mode orthonormal decomposition procedure 1s
used 1n place of the n-mode SVD procedure.

In step 205, the process 200 analyzes the data collected 1n
the step 202. With the knowledge of motion sequences of
several subjects, the tensor D can take the form of a IR“*****
tensor, where G 1s the number of subjects or people, M 1s the
number of action classes, and T 1s the number of joint angle
time samples. The N-mode SVD procedure of step 204
decomposes the tensor D into the product of a core tensor Z,
and three orthogonal matrices as follows:

D=2x Px>A%3J,

The subject matrix P=[p, . .. p, . . . p=]’, whose subject-
specific row vectors p, * span the space of person parameters,
encodes the per-subject invariance across actions. Thus, the
matrix P contains the subject or human motion signatures.
The action matrix A=[a, a_ a, ]’, whose action specific row
vectors a,’ span the space of action parameters, encodes the
invariance for each action across different subjects. The joint
angle matrix J whose row vectors which span the space of
joint angles are preferably the eigenmotions, the motion
variation.

The product Zx,J transforms the eigenmotions into tensor-
motions, a tensor representation of the variation and co-varia-
tion of modes (subjects and action classes). The product Z.x,J
also characterizes how the subject’s parameters and action

parameters interact with one another. The tensor

b=IxA%]

1s an action specific tensormotion, which contains a set of
basis matrices for all the motions associated with particular
actions. The tensor

C=2x Px3J

1s a subject/signature specific tensormotion, which preferably
contains a set of basis matrices for all the motions associated
with particular subjects (with particular subject motion sig-
natures). The core tensor Z, the matrix A, and the matrix J
generated by the N-mode SVD procedure of step 204 of the
tensor D define a generative model.

In step 206, the process 200 determines whether 1t has been
instructed by the client interface application to synthesize
new data describing at least one known action that was never
betfore recorded as being performed by a new subject. If the
process 200 has received such istruction, step 208 1s
executed to perform advances to an individual generation
procedure, as shown 1n further detail 1n FIG. 4 and described
herein. When the individual generation procedure of step 208
1s complete, the process 200 advances to step 226.

In step 210, the process 200 determines 11 1t was 1nstructed
by the client interface application to synthesize new data
describing anew action that was never belfore recorded as
being performed by the remainder of the population of
observed subjects. If the process 200 has received such
instruction, the process 200 continues to an action generation
procedure of step 212, as shown 1n further detail in FIG. 5 and
described herein. When the action generation procedure of
step 212 1s completed, the process 200 1s forwarded to step
226.

In step 214, the process 200 determines 11 1t was 1nstructed
by the client interface application to recognize an unknown
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subject who has been observed to perform a known action as
one of the population of observed known subjects. If the
process 200 has recerved such instruction, the process 200 1s
directed to an individual recognition procedure of step 216, as
shown 1n greater detail in FI1G. 6 and described infra. Once the
individual recognition process 216 1s completed, the process
200 advances to step 226.

In a preferred embodiment, the process 200 1s capable of
recognizing an unknown subject who has been observed per-
forming an unknown action as one of the population of
observed known subjects.

In step 218, the process 200 determines 11 1t was nstructed
by client interface application to recognize an unknown
action being performed by a known subject as one of the
actions already observed as being performed by the known
subject. If the process 200 has recetved such an instruction,
the process 200 continues to an action recognition procedure
of step 220, as shown 1n FIG. 7 and described infra. When the
individual recognition procedure of step 220 1s completed,
the process 200 1s forwarded to step 226. Then 1n step 226, the
process 200 determines whether a data set for a new subject
should be integrated 1nto the tensor D or if the client interface
application has transmitted a new instruction. In particular, if
a data set for a new subject 1s available, the process 200
advances to step 202. Otherwise, the process 200 received the
new instruction from the client interface application, so the
process 200 continues to step 206.

FIG. 3 illustrates the exemplary details N-mode SVD pro-
cedure of step 204 for performing an N-mode SVD algorithm
to decompose the tensor D and compute the core tensor Z. The
N-mode SVD procedure of step 204 1s related to and grows
out of a natural generalization of the SVD procedure for a
matrix. For example, a matrix DelR/** is a two-mode math-
ematical object that has two associated vector spaces, €.g., a
row space and a column space. The SVD procedure for a
matrix orthogonalizes these two spaces, and decomposes the
matrix as D=U,2U.,*, with the product of an orthogonal col-
umn-space represented by the left matrix U, eIR"™”!, a diago-
nal singular value matrix 2eIR’>2, and an orthogonal row
space represented by the right matrix U.eIR">*”, In terms of
the mode-n products defined above, this matrix product can
be rewritten as D=2x,U, x,U,. If the data contained within
the tensor D 1s represented as a matrix D, the SVD procedure
for a matrix can be used.

By extension, the tensor D can be an order-N tensor com-
prising N spaces, where N 1s preferably greater than 2.
N-mode SVD 1s anatural generalization of SVD that orthogo-
nalizes these N spaces, and decomposes the tensor as the
mode-n product of N-orthonormal spaces.

D=Zx,Uix;U,5 ... x, U, ...x%xxUn,

A matrix representation of the N-mode SVD can be obtained
by:

D(H)ZUHZ(H)(UH+1 ®Un+2 ® LR @UN®U1 ® = -
®UH—I)T

where @ 1s the matrix Kronecker product. The core tensor Z,
can be analogous to the diagonal singular value matrix in
conventional matrix SVD. It 1s important to realize, however,
that the core tensor does not have a diagonal structure; rather,
7. 1s 1 general a full tensor. The core tensor 7Z governs the
interaction between mode matrices U, forn=1, ..., N. Mode
matrix U contains the orthonormal vectors spanning the col-
umn space ot the matrix D, that results from the mode-n
flattening of the tensor D, as 1llustrated 1n FIGS. 12A-12F.
Asshownin FIG. 3, the procedure of step 204 begins at step
302 by setting an index n to one (1). This allows the process
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204 to begin computing an initial matrix from the tensor D.
When the index n 1s set to one, the procedure of step 204
advances to step 304. In step 304, the procedure of step 204
computes the matrix U as defined by D=/x,U,X,
U,...x U ...x U, by computing the SVD of the flattened
matrix D,,,. Once the matrix U, 1s computed, the procedure of
step 204 continues to step 306. In step 306 the procedure of
step 204 sets the matrix U to be a left matrix of the SVD.
Once the matrix U 1s set appropriately, the procedure of step
204 goes on to step 308, in which 1t 1s determined whether the
index n 1s equal to the order of the tensor, 1.e. N. If the index
n 1s equal to the order of the tensor, the procedure of step 204
advances to step 312. Otherwise, the process 204 1s forwarded
to step 310. In step 310, the index n1s incremented by one, and
then the procedure of step 204 1s directed to step 304. In step
312, the core tensor Z 1s solved for as follows:

Z=Dx Ulx, U1 ... x UL .. xxUy’.

I

When the core tensor Z 1s selected, the procedure of step 204
1s completed.

It should be noted that when D, , 1s a non-square matrix, the
computation of U, 1n the singular value decomposition D,,,=
U 3V 7 canbe performed, depending on which dimension of
D, 1s smaller, by decomposing either D(H)D(H)T =U >*U *
and then computing VHT =Z+UHT Dy, or by decomposing
D, 'D,,=v,2%v," and then computing U,=D,,,V, 2"

FIG. 4 1illustrates the details of the individual generation
procedure of step 208, which synthesizes the remaining
actions, which were never before seen, for a new subject. The
remaining actions are generated given the new motion data
tensor D, , of the new subject performing action a, which
includes at least one action. The individual generation proce-
dure of step 208 solves for the signature p of the new 1ndi-
vidual in the equation D, =B x p’,whereB =7x.a “x,J . It
should be noted that new datatensor D, ,1s a 1x1xT tensor. In
particular, step 402 of this procedure flattens the new data
tensor D, , 1n the people (or subject) mode, yielding a row

7 : : : :
vector d_*. By flattening this new data tensor in the subject
mode, the matrix D, , .,.;..r 18 generated, and in particular a
row vector which we can denote as d_’ is produced. There-
fore, n terms of the flattened tensors, the equation D, =
B,x,p" described above can be writtenas d,"=p” B, ,.55e0r OF
da:Ba(pEDPZE)Tp. Once the tensor is flattened, the process
advances to step 404, in which it 1s determined 11 the subject
1s observed performing a single action. If the subject is
observed performing a single action, the procedure of step
208 1s forwarded to step 406. If the individual 1s observed
performing at least two actions, the procedure of step 208
advances to step 408. In step 406, the motion signature for the
individual given a single observed action 1s computed. The
motion signature for the individual can be defined as
p'=d * Ba@eﬂpge)'l. When the motion signature for the 1ndi-
vidual 1s computed, the procedure of step 208 1s completed.
Also 1n step 408, the motion signature for the individual given
at least two observed actions 1s determined. If several ditfer-
ent actions d,, are observed, the motion signature can be
computed as follows:

—1
" - ] Bak(peop!e) y
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In step 410, the procedure of step 208 synthesizes a complete
set of motions for the subject or individual. The complete set
of motions for the new subject can be synthesized as follows:

_ T
D, =bxp-,

where B 1s defined as B=7x,Ax, ], as described above. When

the motion signature for the individual 1s computed, the pro-
cess 208 exits.

FI1G. 5 1llustrates details of the action generation procedure
of step 212, which synthesizes an observed new action that
has never before been seen for the remainder of the subjects
represented 1n the subject matrix P. The observed action for
the remainder of the subjects represented in the subject matrix
P 1s generated given the new motion datatensor D, , ot atleast
one subject performing the new action a.

In particular, step 501 of this procedure flattens the new
datatensor D, , inthe action mode, yielding a row vectord, z
By flattening this new data tensor in the action mode, the
matrix D, ..oy 18 generated, and in particular a row vector
which we can denote as de 1s produced. Therefore, 1n terms
of the flattened tensors, the equation Dp:a:CpxzaT described
above can be written as d,"=a"C, s OF 4,=C o’
Once the tensor 1s flattened, this procedure determines as to
whether the new motion data tensor D, , represents one sub-
ject performing the new action 1n step 302. If the new motion
data tensor D, , represents one subject performing the new
action, the procedure of step 212 advances to step 504. If the
new motion data tensor D, , represents more than one indi-
vidual performing the new action, the procedure of step 212 1s
forwarded to step 506. In step 504, the associated action
parameters are determined based on the new motion data
tensor D, ,, which represents one subject performing the new
action. If a known subject, e.g., a person who 1s already
recorded in the motion database, performs a new type of
action d,, 1t 1s possible to compute the associated action
parameters a'=d,“C™' . . When the associated action
parameters are computed, the procedure of step 212 1s
directed to step 508.

In step 506, the associated action parameters are computed
based on the new motion data tensor D, . which represents
more than one subject performing the new action. It several
different subjects are observed performing the same new

action d ;, the action parameters are computed as follows:

C,E'l

k(actions) |

When the associated action parameters are computed, the
process 212 advances to step 508, in which the new action are
obtained for the remainder of the subjects represented in the
subject matrix P. The new action for all the subjects 1n the
database can be synthesized as follows: D =Cx.a’, where C
1s given as C=7x,Px,J, supra. When the new action 1s syn-
thesized, the procedure of step 212 1s completed.

FIG. 6 1llustrates an individual recognition procedure of
step 216 for recognizing an unidentified subject performing a
known action. Multilinear analysis, can provide basis tensors
that map certain observed motions into the space of subject
parameters (thereby enabling the recognition of people from
motion data) or the space action parameters (thereby enabling,
the recognition of action from motion data). The individual
recognition process 216 begins at step 602, in which the
signature p of an unknown subject performing a known action
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1s computed. The new motion vector d of aknown action a can
be mapped 1nto the subject signature space, by computing the
signature p:Ba@eﬂsz)"T d. Once the signature 1s computed,
the process 216 advances to step 604, in which an index
variable n and a variable match are mitialized. For example,
the index variable n can be initialized to one (1) and the
variable match may be imitialized to negative one (-1). Once
these variables are imtialized, step 606 1s performed 1n which,
the signature p 1s compared to a subject signature p,. This
signature 1s compared against each of the person signatures p,,
in P. Then the magnitude of the difference between the sig-
nature p and the signature p,, 1.€. |[p—-p, || is determined.

Thereatter, 1n step 608, 1t 1s determined whether a process-
computed magnitude of the difference between the signature
p and the signature p, 1s smaller than any magnmitude com-
puted up to this point. If the magnitude of the difference
between the signature p and the signature p, 1s smaller than
any difference computed up to this point, the process 216
advances to step 610. Otherwise, the process 216 1s forwarded
to step 612. In step 610, the variable match is set to be equal
to the index n. The variable match generally signifies the
index of the recognized subject, such that the signature p most
closely matches the signaturep_ . ..

Then, 1n step 612, 1t 1s determined if the index n 1s equal to
G. If that 1s the case, the procedure of step 216 advances to
step 616, otherwise the procedure of step 216 1s forwarded to
step 614. In step 614, the index n 1s incremented by one (1),
and the procedure 1s returned to step 606, such that each ofthe
subjects 1n the subject matrix P from 1 to G 1s subjected to the
comparison. Finally, 1n step 616, the signature p, ., 1s 1den-
tified as the signature that most closely approximates the
signature p. In a preferred embodiment of the present inven-
tion, the variable match 1s an indexed array, which records the
indices of multiple signatures that most closely match the
signature p. Once the signature p,_ . . 1s 1dentified, the pro-
cedure of step 216 1s completed.

FIG. 7 1llustrates the details of an action recognition pro-
cedure of step 220 for recognizing an unknown action being
performed by a known subject. Generally, a multilinear
analysis yields basis tensors that map the observed motions
into the space of action parameters, thus enabling the recog-
nition of actions from the motion data. In particular, step 702
computes the vector a of a known individual performing an
unknown action. The new motion data vector d of a known
person p can be mapped into the action parameter space by
computing the vector a=C~* pactionsyd - When the vector a 1s
determined, the procedure of step 220 advances to step 704, 1n
which an 1index variable m and a variable match are 1nitial-
ized. The index variable m can be 1mitialized to one (1), and
the variable match may be mnitialized to negative one (-1).
Once these variables are 1mitialized, the process 220 1s for-
warded to step 706, in which the vector a 1s compared to an
action parameter vector a,_. In particular, the vector a 1s com-
pared against each of the action parameter vectors a_ in A, in
turn, as the index m 1s mcremented. The magnitude of the
difference between the vector a and the action parameter
vector a_, 1.e. |la-a, ||, 1s also determined.

In step 708, the procedure of step 220 determines whether
process computed magnitude of the difference between the
vector a and the action parameter vector a,_ 1s smaller than any
difference computed up to this point. If the magnitude of the
difference between the vector a and the action parameter
vector a_ 1s smaller than any difference computed up to this
point, the procedure of step 220 advances to step 710. Other-
wise, the procedure of step 220 1s forwarded to step 712. In
step 710, the procedure of step 220 sets the variable match 1s
set to be equal to the index m. The variable match generally
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signifies the index of the recognized action, such that the
vector a most closely matches the action parameter vector
a

miatch®

Then, 1 step 712, 1t 1s determined 1f the index 1n 1s equal to
M. If that 1s the case, the procedure of step 220 advances to
step 716, otherwise the procedure 1s forwarded to step 714.
Step 714, indicates that the index m 1s incremented by one (1),
and the procedure advances to step 706, such that the index m
increments through each of the actions 1n the action matrix A
from 1 to M. In step 714, the action parameter vectora,_ ., 1S
identified as the signature that most closely approximates the
vector a. In a preferred embodiment of the present invention,
the variable match can be an indexed array, which records the
indices of multiple actions that most closely match the vector
a. Once the action parameter vector a 1s 1dentified, the
procedure of step 220 1s completed.

ok

B. Facial Signatures Using a Tensor Representation of a Cor-
pus of Data

FI1G. 8 1llustrates a tlow diagram of an exemplary embodi-
ment of a process implementing a multilinear data analysis
application 800 according to the present invention. As
described above, the multilinear data analysis application 800
may be configured to recognize the unknown subject,
unknown expression, unknown viewpoint and unknown, and
synthesize a known 1llumination never before recorded for
the subject, dimensionally reduce the amount of data describ-
ing 1lluminations, etc. The multilinear data analysis applica-
tion 800 utilizes a corpus of facial data, which 1s collected
using the data capturing system 112 from different subjects.
The corpus of facial information can be stored in the database
108 of the server 102. This corpus of facial information may
describe the illuminations, the views, the expressions, and the
subjects captured 1n 1mages made of pixels. The corpus of
facial information 1s organized as a tensor D. The tensor D
takes the form of a IR“*"**** tensor, where G is the number
of subjects, V 1s the number of viewpoints, I 1s the number of
illuminations, E 1s the number of expressions, and P 1s the
number of pixels. It should be understood that the corpus of
motion information can also be organized as a matrix D or a
vector d. For example, 1f the information 1s organized as a
matrix D, the process 800 preferably remains the same, but
the underlying tensor procedures could be converted to
matrix procedure equivalents. It should also be noted that
representing the data contained in the tensor D may integrate
multiple indices 1nto a singular matrix index. Likewise, 11 the
information 1s organized as a vector d, the process 800 pret-
erably remains the same, but the underlying tensor proce-
dures could be converted to vector procedure equivalents. It
should also be noted that representing the data contained 1n
the tensor D may integrate multiple indices mto a singular
vector index.

In a preferred embodiment of the present invention, three
expressions can be collected for each person: e.g., smile,
neutral, and yawn. Each expression may be captured 1n four
different 1lluminations, 1.e. light positions, and three different
viewpoints. The four different 1lluminations may be one light
from the center, one light from the right, one light from the
left, and two lights one from the right and one from the leit.
The three different viewpoints may be center, 34 degrees to
the right, and 34 degrees to the left. In another preferred
embodiment of the present invention, further similar expres-
s1ons are collected for each person such that each expression
1s captured 1n four different illuminations and two different
viewpoints. For example, the four different illuminations are
one light from the center, one light from the right, one light
from the left, and two lights one from the right and one from
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the left. The two different viewpoints are 17 degrees to the
right, and 17 degrees to the left. In still another exemplary
embodiment of the present invention, each expression 1s cap-
tured 1n three different 1lluminations and five different view-
points. For example, the three different 1lluminations are one
light from the center, one light from the right, and one light
from the lett. Also, the five different viewpoints are center, 17
degrees to the right, 17 degrees to the left, 34 degrees to the
right, and 34 degrees to the left.

As shown 1n FIG. 8 step 802 provides that the multilinear
data analysis application 800 collects facial information
describing the 1llumination, viewpoint, expression, and sub-
ject. New facial data 1s collected describing the 1llumination
of individual pixels of views of expressions of subjects. If
each of the illuminations, each of the views, each of the
expressions and individual are known, the data 1s integrated to
the tensor D. Otherwise, the data cannot be integrated into the
tensor D until those pieces of information are determined.
The data describing an unknown illumination, view, expres-
s1on or individual 1s organized as a new data vector d. The new
data vector d describes an 1image having certain 1llumination,
view, and expression data. Then 1n step 804, the multilinear
data analysis application 800 solves for the core tensor Z. For
example, this step can be an N-mode SVD procedure 304 as
shown 1n FIG. 3 and described below 1n relation to FIG. 3. The
N-mode SVD procedure 304 solves for the core tensor Z with
N being equal to 5. When the procedure 804 or 304 computes
the core tensor Z, the multilinear data analysis application
800 advances to step 806. Given the tensor D takes the form
of a IR“*"****# tensor, where G is the number of subjects, V
1s the number of viewpoints, I 1s the number of 1lluminations,
E 1s the number of expressions, and P 1s the number of pixels.
The N-mode SVD process 804 decomposed the tensor D as
follows:

D=7x,U

subjects

x-U.

VIEeWs

XU

iffeon

X, U

EXFVESS

XsU ivels
where the GxVxIxXExP core tensor Z governs the interaction
between the factors represented 1n the 5 mode matrices: The
GxG mode matrix U, ... spans the space of subject param-
eters, the VxV mode matnix U . spans the space of view-
point . parameters, the IxI mode matrix U, spans the space
of illumination parameters and the ExE mode matrix U,
spans the space of expression parameters. The PxP mode

matrix U, .. orthonormally spans the space of images.

ixals

The multilinear data analysis incorporates aspects of a
linear principal component analysis (“PCA”) analysis. Each
column of U, .. 18 an “eigenmimage”. These eigenimages
are preferably 1dentical to the conventional eigenfaces, since
the eigenimages are computed by performing the SVD on the
mode-5 flattened data tensor D so as to yield the matrix
D, 1jecss- One of the advantages ot multilinear analysis 1s that
the coretensor Z can transform the eigenimages n U, into
a set of eigenmodes, which represent the principal axes of
variation across the various modes (subject, viewpoints, 1llu-
minations, expressions), and represent how the various fac-
tors iteract with each other to create the facial images. This
can be accomplished by generating the product ZxsU ;.. In

contrast, the PCA basis vectors or e1genimages represent only
the principal axes of variation across 1mages.

The facial image database can include V-I-E images for
cach subject which vary with viewpoint, 1llumination and
expression. The PCA output represents each subject as a set of
V- I'E vector-valued co-efficients, one from each image in
which the subject appears.

Multilinear analysis allows each subject to be represented,
regardless of viewpoint, 1llumination, and expression, with
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the same coefficient vector of dimension G relative to the
bases comprising the GxVxIxExP tensor

D=7xU

VIews

X3UinanXaU

EXPressxD

Upixels-
Each column 1n the tensor D 1s a basis matrix that comprises
N eigenvectors. In any column, the first eigenvector depicts
the average subject, and the remaiming eigenvectors capture
the variability across subjects for the particular combination
of viewpoint, illumination and expression associated with
that column. Fach image is represented with a set of coetli-
cient vectors representing the subject, view point, 1llumina-
tion and expression factors that generated the image. Multi-
linear decomposition allows the multilinear data analysis
application 800 to construct different types of basis depend-
ing on the istruction received from the client mnterface appli-
cation.

In particular step 814 of FIG. 8 provides that the multilin-
car data analysis application 800 determines whether the
client interface application has instructed the multilinear data
analysis application 800 to recognize an unknown subject
who has been observed displaying a known expression as one
of the population of observed known subjects. If the multi-
linear data analysis application 800 has recerved such mstruc-
tion, the multilinear data analysis application 800 advances to
an individual recognition procedure of step 816, shown 1n
greater detail 1n FIG. 9 and described infra. When the indi-
vidual recognition procedure of step 816 1s completed as the
multilinear data analysis application 800 advances to step
826. In step 818, the multilinear data analysis application 800
determines whether the client interface application has
instructed the multilinear data analysis application 800 to
recognize an unknown expression being displayed by a
known subject as one of the expressions already observed as
being performed by such known subject. If the multilinear
data analysis application 800 has recerved such instruction,
the multilinear data analysis application 800 advances to an
expression recognition procedure of step 820, as shown 1n
greater detaill 1n FIG. 10 and described inira. When the
expression recognition procedure of step 820 1s completed,
the multilinear data analysis application 800 1s forwarded to

step 826.

Thereafter, 1n step 822, the multilinear data analysis appli-
cation 800 determines whether the client interface application
has mstructed the multilinear data analysis application 800 to
dimensionally reduce the amount of data describing 1llumi-
nations. If the multilinear data analysis application 800 has
received such mstruction, the multilinear data analysis appli-
cation 800 advances to a data reduction procedure of step 824,
as shown 1n greater detail in FIG. 11 and described inira.
Once the data reduction procedure of step 824 1s complete,
the multilinear data analysis application 800 advances to step
826. Finally, 1n step 826, the multilinear data analysis appli-
cation 800 determines whether a data set for a new subject
should be collected or 11 the client interface application trans-
mitted new instruction. If a data set for a new subject display-
Ing an expression (e.g., a facial expression) 1s available, the
multilinear data analysis application 800 advances to step
802. If the multilinear data analysis application 800 has
received a new instruction from the client interface applica-

tion, the multilinear data analysis application 800 advances to
step 814.

FI1G. 9 illustrates a tlow diagram of the details of the 1ndi-
vidual recognition procedure of step 816 for recognizing an
unidentified subject given an unknown facial image: the new
data vector d. The multilinear data analysis preferably yields
a basis tensor (as defined below) that maps all images of a
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subject to the same point in the subject parameter space, thus
creating a many-to-one mapping. The individual recognition
procedure of step 816 begins at step 902, 1n which the matrix
U 1s extracted. The N-mode SVD procedure of step 804

sithjects

(or step 304) decomposes the tensor D resulting 1n the expres-
sion D=/x,U x,U . x U, x,U XU and

sihjects views illum express pixelss
the matrix U, , .. 1s extracted from this expression. In par-

. . . T
ticular, the matrix U, ,, ... contains row vectors ¢,” of coet-
1S

ficients for each person p. Once the matrix U, .
extracted, the procedure of step 816 advances to step 904, 1n
which the basis tensor B 1s generated. The basis tensor B 1s

constructed according to B=
ZXEUW'EWSXBUI'HH?HX4Uexpressx5Upixefs‘ UpOIl the Completion

ol the construction of the basis tensor B the procedure of step
816 advances to step 906 where this procedure initializes
indexes v, 1 and ¢ to one (1). At step 908, the individual
recognition procedure of step 816 indexes 1nto the basis ten-
sor B to obtain a sub-tensor B, ; .. This 1s performed for a
particular viewpoint v, illumination 1, and expression ¢ to
obtain the subtensor B, ; , having dimensions Gx1x1x1xP.

Then, 1n step 910, the subtensor B, ; _ 1s flattened along the
subject mode. The subtensor B, , 1s tlattened along the sub-
ject mode to obtain the GxP matrix B, ; ., .4/ecs- It should be
noted that a specific training 1image d ; of subject p 1n view-
point v, 1llumination 1, and expression € can be written as
d,,.;.=B * Cp; hence, ¢, =B d, e

Then, 1 step 912, an index variable p and a variable match
are mitialized. For example, the index variable p 1s initialized
to one (1), and the variable match 1s mnitialized to negative one
(—1). Once these variables are mitialized, the procedure of
step 816 advances to step 914, in which. the projection opera-
torB,, o jm)'T 1s used to project the new data vector d into
a set of candidate coefficient vectors. Given the new data
vector d, the projection operator BV!I.:E,(M&]M)'T 1s used to
project the new data vector d into a set of candidate coelficient
vectors ¢, ; =B, ; cis bjecf)":r d for every v, 1, € combination. In
step 916, each of the set of candidate coetficient vectors ¢, ,
1s compared against the person-specitic coetlicient vectors ¢,
The comparison can be made according to the following
equation:

v.i.e(subject) v,i.e(subject)

Hcv?fﬁe_CpH'

In step 918, it 1s determined whether the set of candidate
coetlicient vectors ¢, , 1s the closest match to the subject-
specific coetlicient vectors ¢, up to this point. The best match-
ing vector ¢, can be the one that yields the smallest value ot
[c,..—¢,|| among all viewpoints, illuminations, and expres-
sions. If the magnitude of the difference between the set of
candidate coetlicient vectors ¢, ;. and the subject-specific
coetlicient vectors ¢, 1s smaller than any difference computed
up to this point, the procedure of step 816 advances to step
920. Otherwise, the magnitude of the difference between the
set of candidate coefficient vectors ¢, , , and the procedure of
step 816 15 forwarded to step 922. Step 920 provides that the
variable match 1s set to be equal to the index p. The variable
match signifies the index of the most closely matched subject,
such that the set of candidate coetficient vectors ¢, , , most
closely matches the subject-specific coelflicient vectors
C

match

Thereatter, 1n step 922, 1t 1s determined if the index p 1s
equal to G. IT that 1s the case, the procedure of step 816 sets the
index p 1s set equal to one (1) and advances to step 928;
otherwise, the procedure of step 816 advances to step 924. In
step 924, the index p 1s incremented by one (1), and the
procedure of step 816 advances to step 914, such that the
procedure tests each of the subjects 1n the subject matrix

U from 1 to G.

subject
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In step 928, 1t 1s determined 11 the index e 1s equal to E. IT
that 1s the case, the procedure of step 816 sets the index e
equal to one (1) and advances to step 930; otherwise, the
procedure of step 816 advances to step 934. In step 934, the
index e 1s incremented by one (1), and the procedure of step
816 advances to step 908, such that the procedure tests each of
the subjects in the subject matrix U from 1 to E.

express

In step 930, 1t 1s determined 1f the index 11s equal to I. If that
1s the case, the procedure of step 816 sets the index 1 equal to
one (1) and advances to step 932; otherwise, the procedure of
step 816 advances to step 936. In step 936, the index 1 1s
incremented by one (1), and the procedure of step 816
advances to step 908, such that the procedure tests each of the
subjects 1n the subject matrix U from 1 to I.

i1l
In step 932, 1t 1s determined i1 the index v 1s equal to V. IT
that 1s the case, the procedure of step 816 advances to step
926; otherwise, the procedure of step 816 advances to step
938. Instep 938, the index v 1s incremented by one (1), and the
procedure of step 816 advances to step 908, such that the
procedure tests each of the subjects 1n the subject matrix
U, . 1rom 1toV. Finally, in step 926, the subject match can
be 1dentified as the subject portrayed 1n the new data vector d.
In a preferred embodiment of the present invention, the vari-
able match can be an indexed array, that records the indices of
multiple subjects most closely matching the subjects por-
trayed 1n the new data vector d. Once the subject match 1s
identified, the procedure of step 816 1s completed.

FIG. 10 illustrates a flow diagram of the details of the
expression recognition procedure of step 820 for recognizing
an unidentified expression given an unknown facial image:
the new data vector d. The expression recognition procedure
of step 820 1s largely the same as the subject recognition
procedure of step 816. The expression recognition procedure
of step 820 begins in step 1002, in which the matrix U, 18
extracted, in a manner similar to that used to extractU_, ., .
in step 902. In particular, the matrix U_,_ ... contains row
vectors ¢’ of coefficients for each expression e. Once the
matrix U, , .. 18 extracted, the procedure of step 820
advances to step 1004, 1n which the basis tensor B 1s gener-
ated. The basis tensor B i1s constructed according to B=
£%5U onsX3Usinm>* 1 Usupjecss®sU pixerss Upon the completion
of the construction of the basis tensor B the procedure of step
820 advances to step 1006 where this procedure nitializes
indexes v, 1 and p to one (1). At step 1008, the expression
recognition procedure of step 820 indexes 1nto the basis ten-
sor B to obtain a sub-tensor B, .. This 1s performed for a
particular subject p, viewpoint v and i1llumination 1 to obtain

the subtensor B, | ; having dimensions 1x1x1xEXP.

Then, 1 step 1010, the subtensor B, | ; 1s

the expression mode. The subtensor B, | ; 1s

flattened along,

flattened along,
the expression mode to obtain the ExP matrix B, | ;. press)- It
should be noted that a specific training image d , of subject p
in viewpoint v, 1llumination 1, and expression € can be written

as d = hence, ¢,=B, ~d

DV Le P.VEet

Then, 1n step 1012, an index variable e and a variable match
are mitialized. For example, the index variable e 1s 1nitialized
to one (1), and the variable match 1s initialized to negative one
(—1). Once these vanables are mnitialized, the procedure of
step 820 advances to step 1014, in which. the projection
operator B, , .., bjm)‘T 1s used to project the new data vector
d mto a set of candidate coellicient vectors. Given the new
data vector d, the projection operator B, , .., bjecr)‘T 1s used to
project the new data vector d into a set of candidate coelficient
vectorsc, , =B, .., bjeﬂ)_T d fO]i’ every p, v, i'combination. In
step 1016, each ot the set of candidate coetlicient vectors ¢, |, ;

1s compared against the person-specific coetficient vectorsc,.

i ..
p.v.i (subject) Ces ME(subject)
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The comparison can be made according to the following
equation:

Hcp,v,i_ce‘ ‘ .

In step 1018, 1t 1s determined whether the set of candidate
coetlicient vectors ¢,  ; 1s the closest match to the expression
coetlficient vectors ¢_ up to this point. The best matching
vector ¢, can be the one that yields the smallest value of

c,.,..—¢C.|| among all viewpoints, illuminations, and expres-
sions. IT the magnitude of the difference between the set of
candidate coetlicient vectors ¢, |, ; and the expression coetli-
cient vectors ¢ _ 1s smaller than any difference computed up to
this point, the procedure of step 820 advances to step 1020.
Otherwise, the magmitude of the difference between the set of
candidate coetlicient vectors ¢, ,,; and the procedure of step

820 1s forwarded to step 1022. Step 1020 provides that the
variable match 1s set to be equal to the index p. The variable

match signifies the index of the most closely matched expres-
sion, such that the set of candidate coefficient vectors ¢, |,
most closely matches the expression coellicient vectors

C

match’

Thereatter, 1n step 1022, 1t 1s determined if the index e 1s
equal to E. If that 1s the case, the procedure of step 820 sets the
index p 1s set equal to one (1) and advances to step 1028;
otherwise, the procedure of step 820 advances to step 1024. In
step 1024, the index p 1s incremented by one (1), and the
procedure of step 820 advances to step 1014, such that the
procedure tests each of the expressions in the expression
matrix U =

from 1 to E.

EXPFESS

In step 1028, it 1s determined if the index p 1s equal to G. It
that 1s the case, the procedure of step 820 sets the mdex ¢
equal to one (1) and advances to step 1030; otherwise, the
procedure of step 820 advances to step 1034. In step 1034, the
index p 1s incremented by one (1), and the procedure of step
820 advances to step 1008, such that the procedure tests each
of the subjects in the subject matrix U, ..., from 1 to G.

In step 1030, 1t 1s determined 11 the index 1 1s equal to 1. It
that 1s the case, the procedure of step 820 sets the index 1 equal
to one (1) and advances to step 1032; otherwise, the procedure
of step 820 advances to step 1036. In step 1036, the index 11s
incremented by one (1), and the procedure of step 820
advances to step 1008, such that the procedure tests each of
the 1lluminations 1in the illumination matrix U ,,  from 1 to .

i1l
In step 1032, 1t 1s determined if the index v 1s equal to V. I
that 1s the case, the procedure of step 820 advances to step
1026; otherwise, the procedure of step 820 advances to step
1038. In step 1038, the index v 1s incremented by one (1), and
the procedure of step 820 advances to step 1008, such that the
procedure tests each of the views 1n the view matnx U
from 1 to V. Finally, 1n step 1026, the subject match can be
identified as the subject portrayed in the new data vector d. In
a preferred embodiment of the present invention, the variable
match can be an indexed array, that records the indices of
multiple subjects most closely matching the subjects por-
trayed 1n the new data vector d. Once the subject match 1s
identified, the procedure of step 820 1s completed.

FIG. 11 1llustrates a flow diagram of the details for the data
reduction procedure step 824 for dimensionally reduce the
amount of data describing illuminations. This data reduction
procedure step 824 reduces the amount of data by truncating
the mode matrices resulting from the N-mode SVD procedure
304 or 804, where N=5. The truncation of the mode matrices
yields an exemplary reduced-dimensionality approximation
D'. The truncation of the mode matrices results 1n the approxi-
mation of the tensor D with reduced ranks R,=I,,R,=
I, ..., Ry=I, that has a bounded error
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where the smallest mode-n singular values that were dis-
carded are defined as O; _ ,1,0; g 42, - - - . The
R, ” mode-n e1genvalue is the Frobenius norm cf the subten-
sor 7, . ...y Ihesubtensor 7, S
extracted frcm the teuscr Z.by holding the n™ dimension fixed
to 1 =R and varying all other dimensions. Once the index n 1s
initialized, the procedure step 824 advances to step 1104.

In another exemplary dimensionality reduction procedure
for use on the tensors i1s to compute for a tensor D a best

rank—(R,, R,, . . . , R, approximation D'=
'x<, U x,Ux, . .. xU.. with orthonormal I xR mode
matrices U' , for n=1, 2, . . . , N, which can minimize the

least-squares error function ||[D-D'||*. For example, N can

equal to five (5). The data reduction procedure step 824
begins 1n step 1102, where an index n 1s 1nitialized to one (1).
In step 1104, the mode matrix U  1s truncated to R col-
umns. All data 1n the mode matrix U, beyond the R, column
can be removed from the matrix U . After the matrix U 1s
truncated, the procedure step 824 advances to step 1106, in
which 1t 1s determined whether the index n 1s equal to N. IT
that 1s the case, the procedure step 824 advances to step 1110;
otherwise, the procedure step 824 1s forwarded to step 1108.
In step 1108, the index n 1s incremented by one (1), and the
procedure step 824 proceeds to step 1104. Then, 1n step 1110,
the index n 1s mitialized to one (1), and the procedure step 824
advances to step 1112, in thch the tensor 1s calculated
U, *'=Dx,U, K x,U K XU o7 ¥ When the tensor U
calculated the prccedure step 824 advances to step 1114 n
which the tensor U **! is mode-n flattened to obtain the
matrix U',,,“**. Then in step 1116, the matrix U',“*" is com-

puted as the I, xR, matrix whose columns are the first R,

columns of the left matrix of the SVD of U'l(l)‘*"‘r+l

In step 1118, 1t 1s determined whether the index n 1s equal
to N. IT that 1s the case, the procedure step 824 advances to
step 1122; otherwise the procedure step 824 advances to step
1120, 1n which the index n 1s incremented by one (1) and the
procedure step 824 advances to step 1112. Then 1n step 1122,
it 1s determined whether the mode matrices have converged.

The mode matrices have converged 11

|0 UK > (1 - )Ry, for 1 <n < N.

I1 the mode matrices have converged, the procedure step 824
advances to step 1124; otherwise the procedure step 824
advances to step 1110. In step 1124, the core tensor 7' 1s
computed. The converged mode matrices U',, U', ..., U', 15
used to compute the core tensor Z'=U'\,x U'\/ and D'=
Z'x U x, U, ... x, U as the rank-reduced approximation of
the tensor D. Once the core tensor Z' 1s computed, the proce-
dure step 824 1s completed.

C. Motion Signature Using a Matrix Representation of a
Corpus of Data

FI1G. 13 1llustrates a flow diagram of an exemplary embodi-
ment of a process implementing a multilinear data analysis
application 1300 which 1s indicative of the multilinear data
analysis application. As described above for the multilinear
data analysis application, the process 1300 1s configured to
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synthesize a known action never before recorded as being
performed by the subject. In particular the multilinear data
analysis application utilizes the corpus of motion data, which
1s collected using the data capturing system 112 from differ-
ent subjects as described above 1n relation to FIG. 2. This
corpus of motion information 1s stored 1n the database 108 of
the server 102, and describes angles of the joints 1n the legs of
at least one subject performing at least one action. The corpus
of motion information can be organized as a matrix D and 1s
preferably collected from different subjects as described
above 1n relation to FIG. 2. It should be understood that the
corpus of motion mformation can also be organized as a
tensor D or a vector d. The multilinear data analysis applica-
tion 1300 1s similar to the multilinear data analysis applica-
tion 200 of FIG. 2, except that the data utilized by the multi-
linear data analysis application 1300 takes 1s organized as the
matrix D, not as the tensor D.

Turming to further particulars of FI1G. 13, 1 step 1302, the
process 1300 collects motion information or data on various
subjects (e.g., people) performing different actions, €.g., new
motion data. If the action and individual are known, the data
can be integrated into the matrix D. If the action or individual
are not known, such data would likely not be integrated into
the matrix D until those pieces of information are determined.
The data describing an unknown action or individual 1s orga-
nized as a new data matrix D, or a new data vector d. The new
data matrix D, can include more than one new data vector d.
Each new data vectord, , of the new data matrix D, describes
the motion of subject p performing action a. With the knowl-
edge of motion sequences of several subjects, the matrix D
can take the form of a ntxm matrix, where n 1s the number of
subjects, t 1s the number of joint angle time samples, and m 1s
the number of motion classes. The first column of the matrix
D stacks the mean walk of every subject, the second column
stacks the mean ascending motion and the third stacks the
mean stair descent, as follows:

"D
D=\ D
Dy, |
— - -
D; =

walk; ascend; descend;

The columns of the matrix D, are the average walk, ascend
and descend of stairs of the i”” subject. Each motion is defined
as the angles by every joint over time.

At step 1304, the process 1300 decomposes the matrix D
into a core matrix Z, a subject matrix P, and an action matrix
A. The core matrix Z can be used for defining the inter-
relationships between a subjects matrix P and an action

matrix A. This step represents a singular value decomposition
(“SVD”) process 1304, shown 1n FIG. 14, and described 1n

turther detail herein. The SVD procedure of step 1304 1s an
orthonormal procedure that solves for the core matrix Z, the
subject matrix P, and the action matrix A, which minimizes

E=|D-(Z""P")" A"+ [P P-T|+1s]|4 41,

where I 1s the 1dentity matrix. When this procedure of step
1304 determines the core matrix 7, the process 1300
advances to step 1303.



US 7,822,693 B2

23

In step 1303, the process 1300 analyzes the data collected
in the step 1302. The SVD procedure of step 1304 decom-
poses the matrix D into the product of a core matrix Z, and two
orthogonal matrices as follows:

D=(Z""P Y AT

= SAT,

where the VT-operator 1s a matrix transpose T followed by a
“vec” operator that creates a vector by stacking the columns
of the matrix. The subject matrix P=[p,...p, ...ps]’, whose
row vectors p, are person specific, encodes the invariancies
across actions for each person. Thus, the subject matrix P
contains the subject or human motion signatures p,. The
action matrix

[ 5 17
A= —

o o
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whose row vectors a_, contain the coetficients for the different
action classes ¢, encodes the mvariancies across subjects for
each action. The core matrix Z=[Z, ... Z,...Z ]’ represents
the basis motions which are independent of people and of
actions. It governs the relationship between the orthonormal
matrices P and A. A matrix

S=Z"*pHt=rs,...8,... 51"
1s composed of person-specific signature matrices S.

In step 1306, the process 1300 determines whether 1t has
been instructed by the client interface application to synthe-
s1ze new data describing at least one known action that was
never before recorded as being performed by a subject. If the
process 1300 has recerved such instruction, step 1308 1s
executed to perform advances to an individual generation
procedure, as shown in further detail in FIG. 15 and described
herein. When the individual generation procedure of step
1308 1s complete, the process 1300 advances to step 1326.
Then i step 1326, the process 1300 determines whether a
data set for a new subject should be integrated into the matrix
D or 11 the client interface application has transmitted a new
istruction. In particular, if the data set for a new subject
performing the action 1s available, the process 1300 advances
to step 1302. Otherwise, the process 1300 received the new
instruction from the client interface application, so the pro-
cess 1300 continues to step 1306.

As shown 1n FIG. 14, the procedure of step 1304 begins 1n
step 1402 by computing the matrix P by solving D=(Z"*
PHYY* A”. The process then calculates (DA)"*=Z"*P?. The
procedure performs an SVD procedure on the left hand side
resulting in USV?=Z"*P*. The matrix V is then truncated to
the first r-columns of the matrix V. The procedure of step 1304

then solves for the action matrix A in step 1404 by calculating
DY *=(ZA")"*P*. Once this is calculated, the procedure cal-

culates (D' P)"*=ZA’. The procedure performs SVD on the
left hand side resulting in USV'=ZA’. The matrix A is then
truncated to the first r-columns of the matrix V. In step 1406,
the procedure of step 1304 obtains the core matrix 7Z by
7Z=(D""P)"*A, where the matrix P and the matrix A are
orthonormal. It should be understood that by setting the
matrix A and the matrix P to the first r-columns of the matrix
V, elfectively accomplishing dimensional reduction.
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FIG. 15 1llustrates the details of the individual generation
procedure of step 1308, which synthesizes the remaining
actions, which were never before seen, for an new individual.
The remaining actions are generated given new motion data
D__  of the new subject performing an action. The new sig-

Fiew/s

nature model of the new subject 1s the matrix

Dy [?I11[71 A7

Snew

Only a portion of the action classes ¢ are represented the
matrix D, _ . The lincar combination of known signatures 1s:

Snew = [ Wi ..

SRS

" — — gy

where W 1s a weight matrix. The individual generation pro-
cedure of step 1308 solves for the weight matrix W of the new
subject using iterative gradient descent of the error function

E=|D,. —WSA,

o

‘Il

~* has only columns corresponding to the motion
examples available in the matrix D, _ . Inparticular, step 1502
of this procedure 1nitializes an index t to one (1). In step 1504,
the procedure of step 1308 obtains the matrix Q by calculating
Q=SA_ ’. Once this procedure obtains the matrix Q, step

¥

1506 of the procedure of step 1308 calculates the matrix
W(t+1) inthe following manner: W({t+1 =W (t)+y(D,__ -WQ)
Q”. The step 1508 then calculates S (t+1) by calculating
S (t+1)=W(t+1)S, then this procedure advances to step
1510.

In step 1510, 1t 1s determined whether the error function E
has converged. If the error function E has not converged, the
procedure of step 1308 continues to step 1512, where the
index t1s incremented by one (1) and this procedure advances
to step 1504. If the error function E has converged, this
procedure advances to step 1514. In step 1514 the procedure
of step 1308 synthesizes new data from one of the action
parameters ¢. For example, 1f the action parameter ¢ repre-
sents the action of walking. The new data for walking 1s
synthesized by multiplying the newly extracted signature
matrix S, and the action parameters for walking, a .., as
follows:

where A.

walk . =S :

new & walk:
Once the new data 1s synthesized, the procedure of step 1308
1s complete and 1t exits.

While the invention has been described 1n connecting with
preferred embodiments, 1t will be understood by those of
ordinary skill in the art that other variations and modifications
of the preferred embodiments described above may be made
without departing from the scope of the invention. Other
embodiments will be apparent to those of ordinary skill in the
art from a consideration of the specification or practice of the
invention disclosed herein. It 1s intended that the specification
and the described examples are considered as exemplary only,
with the true scope and spirit of the invention indicated by the
tollowing claims.
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What 1s claimed:

1. A computer-accessible medium which includes a com-
puter program thereon for image-based recognition wherein,
when the computer program 1s executed by a processing
arrangement, the processing arrangement 1s configured to:

receive 1mage data;

generate an orthonormal decomposition of the image data

related to an invariance of motions associated with the
image data; and

recognize at least one of at least one subject, an action, an

expression, an 1llumination or a viewpoint based on the
orthonormal decomposition.

2. The computer-accessible medium of claim 1, wherein
the motions are associated with a plurality of subjects.

3. The computer-accessible medium of claim 1, wherein
the orthonormal decomposition comprises an n-mode singu-
lar value decomposition (“SVD”).

4. A computer-accessible medium which mcludes a com-
puter program thereon for image generation wherein, when
the computer program 1s executed by a processing arrange-
ment, the processing arrangement 1s configured to:

receive first image data;

generate motion signature data using an orthonormal

decomposition of the first image data relating to an
invariance of motions associated with the first image
data; and

generate second 1mage data related to at least one of an

action, an expression, an illumination or a viewpoint
based on the motion signature data.

5. The computer-accessible medium of claim 4, wherein
the at least one of the action, the expression, the 1llumination
or the viewpoint 1s automatically synthesized.

6. The computer-accessible medium of claim 4, wherein
the orthonormal decomposition of the 1image datarelates to an
invariance ol motions across a plurality of subjects.

7. The computer-accessible medium of claim 4, wherein
the orthonormal decomposition 1s an n-mode singular value
decomposition (“SVD”).

8. A system for image-based recognition, comprising:

a processing arrangement which, when executed, 1s con-

figured to:

receive 1mage data;

generate an orthonormal decomposition of the image
data related to an invariance of motions associated
with the image data; and

recognize at least one of at least one subject, an action,
an expression, an 1llumination or a viewpoint based
on the orthonormal decomposition.

9. The system of claim 8, wherein the motions are associ-
ated with a plurality of subjects.

10. The system of claim 8, wherein the orthonormal
decomposition comprises an n-mode singular value decom-

position (“SVD”).
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11. A system for image generation, comprising:
a processing arrangement which, when executed, 1s con-
figured to:

receive lirst image data;

generate motion signature data using an orthonormal

decomposition of the first image data relating to an
invariance ol motions associated with the first image

data; and

generate second 1mage data related to at least one of an
action, an expression, an illumination or a viewpoint
based on the motion signature data.

12. The system of claim 11, wherein the at least one of the
action, the expression, the i1llumination or the viewpoint 1s
automatically synthesized.

13. The system of claim 11, wherein the motions are asso-
ciated with a plurality of subjects.

14. The system of claim 11, wherein the orthonormal
decomposition comprises an n-mode singular value decom-
position (“SVD”).

15. A method for image-based recognition, comprising:

receving image data;

generating an orthonormal decomposition of the image

data related to an invariance of motions associated with
the 1mage data; and

using a processing arrangement, recognizing at least one of

at least one subject, an action, an expression, an 1llumi-
nation or a viewpoint based on the orthonormal decom-
position.

16. The method of claim 15, wherein the motions are
associated with a plurality of subjects.

17. The method of claim 15, wherein the orthonormal
decomposition comprises an n-mode singular value decom-
position (“SVD”).

18. A method for image generation, comprising:

recerving first image data;

generating motion signature data using an orthonormal

decomposition of the first image data relating to an
invariance of motions associated with the first image
data; and

using a processing arrangement, generating second 1image

data related to at least one of an action, an expression, an

illumination or a viewpoint based on the motion signa-
ture data, wherein the at least one of the action, the

expression, the 1llumination or the viewpoint 1s synthe-
s1zed.
19. The method of claim 18, wherein the motions are
associated with a plurality of subjects.
20. The method of claim 18, wherein the orthonormal

decomposition comprises an n-mode singular value decom-
position (“SVD”).
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