12 United States Patent

Otsuki et al.

US007822591B2

US 7.822,591 B2
Oct. 26, 2010

(10) Patent No.:
45) Date of Patent:

(54) LOGIC CIRCUIT MODEL CONVERSION
APPARATUS AND METHOD THEREOF:; AND
LOGIC CIRCUIT MODEL CONVERSION

PROGRAM
(75) Inventors: Tomoshi Otsuki, Yokohama (JP);
Nobuhiro Nonogaki, Kawasaki (JP)
(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo (IP)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1034 days.
(21) Appl. No.: 11/534,390
(22) Filed: Sep. 22, 2006
(65) Prior Publication Data
US 2007/0129925 Al Jun. 7, 2007
(30) Foreign Application Priority Data
Dec. 1, 2005 (JP) e 20035-348144
(51) Int.CL
GO6F 17/50 (2006.01)
(52) US.CL . 703/14; 716/1
(58) Field of Classification Search 703/14;
716/1
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,577,233 A
5,802,301 A
5,995,736 A

0,263,495 Bl
0,295,627 Bl

0,438,730 Bl

* 11/1996 Goettelmann et al. 703/26
1/1999 Jain

* 11/1999 Aleksic etal. 716/18

* o 7/2001 Kataokaoeeveneennnnn. 717/131

* 0 9/2001 Gownietal. ..ol 716/1

* o 8/2002 Atmakurietal. 716/1

7,024,652 B1* 4/2006 McGaughyetal. 716/12
2002/0032894 Al* 3/2002 Miyazaki etal. 716/2
2005/0044438 Al 2/2005 Nonogaki et al.

2005/0268268 Al* 12/2005 Wangetal. 716/9
FOREIGN PATENT DOCUMENTS
JP 2005-62106 3/2005
OTHER PUBLICATIONS

Andy Zaidman, Serge Demeyer, “Managing Trace Data Volume
through a Heuristical Clustering Process Based on Event Execution
Frequency,” Software Maintenance and Reengineering, FEuropean

Conference on, pp. 329, Eighth Euromicro Working Conference on
Software Maintenance and Reengineering (CSMR’04), 2004 .*

* cited by examiner

Primary Examiner—David Silver

Assistant Examiner—Kamini S Shah

(74) Attorney, Agent, or Firm—QOblon, Spivak, McClelland,
Maier & Neustadt, L..L.P.

(57) ABSTRACT

A logic circuit model conversion apparatus icludes a first
analysis unit which analyzes a model in which a logic circuit
of a register transier level has been coded and outputs simul-
taneous blocks and an analysis result, a creating unit which
creates a common execution frequency group that 1s a set of
codes whose execution frequency becomes common, based
on the simultaneous blocks and analysis result, a second
analysis unit which analyzes the common execution fre-
quency group and creates a formula of a general termto derve
a predetermined value of each register, a third analysis unit
which analyzes a mutual relationship between the common
execution frequency groups and derives an execution Ire-
quency of each common execution frequency group up to a
predetermined time, and a deriving unit which derives a value
of each of the registers at the predetermined time from the
formula of the general term and execution frequency.

13 Claims, 20 Drawing Sheets

(St)

ﬁ

No

Create simultaneous block candidate |~5121

simultanaous block candidate have

5122

3123
o,

Create simultaneous block candidates by the number of branches,
and create simultanesus block candidates including any one branch

Mo

simultaneous hlock candidate have
‘posedge” ?

5124

5125
-

Create 2 new simuftaneous block candidates from the one having "posedge™
One of them is created by replacing "posedge WAIT' of the original one
by "WAIT" and the other is created as the empty WAIT block

— Does input logic circuit
description inclide any portion at which no simultaneous
plock is obtained ?

Define simultanepus block candidate as simultaneous block |~S126

5127

US 7,822,591 B2

Jun mmsgm 8pOW 1NaJIa 21607

Oby

ek

0ct -

05}~ ~ Jun Buinuep anpen Jajsibe
% _ . (7N oBelols Wia) [eious
° - fJun ebeiojs Aousnbeyy uognoex3 ez~ "= [e18U8)
7 — . — jun siskieue dnolb
Ovh~| _ hun sisheue [euogeisy _ el \G%zcmx UOG0IBE UOLILIO)
- 8l¢ _ ydesb Q7 - —
= 017 _— ydeib g o > N mmm_om dnosb
M, b1z - ydeib moy 04u0n ﬁw“m mcw,a% 022 écm:g UORNIBX® UOUILI0Y
3 212 _mw_é_g_wgg%e_m_ 012 'U i -
&
O .
ol 7 _ T mémeo dno.b
Jun sisAjeue 18po %
smesedd uoiSIeAL03 | jeue [opojy Uanbay co_wsomxa LOWW0Y
_%oe cgﬁ_oao u.so._a o_mﬁ _ I
001 “_csmmsom uoyduoSep JUBASUO)

U.S. Patent

U.S. Patent Oct. 26, 2010 Sheet 2 of 20 US 7.822.591 B2

TR TR TR M T WM RTRTTRTTMTRITE T LT TTT T AT ATRMETE TRT M

Analyze logic circuit model and constraint description at stafj onary
state, delete unnecessary codes, thereafter, create simultaneous |~ S
control graph, WS graph, and LS graph sequentially

Analyze simultaneous block, control graph, WS graph and

_LS graph to creafe common execution frequency group Y.

Create formula of general term of each register with respect | o
~fo common execution frequency group

54

- Has new general term ~—
~_peen created ? __—

NG

Derive execution frequency up to time T of each common | o
- execution frequency group

Obtain value of each register from general term of register

| and execution frequency up to time T of common execution b S6
| frequency group

Generate description of ioglc circuit operation for obta;mng | o
f 1me T of each regzster !

F1G. 2

US 7,822,591 B2

Sheet 3 of 20

Oct. 26, 2010

U.S. Patent

pUS
DUS

~ Ctk
0=>)9
Nm_w
| =>)
uibeq sheme
jojelausb %9 // G 8|npow

pUD

pUd ”

PO => IXaU ™ gpIo
(3p110) @ Shemye

PN m_%of

pUS
pUS
pU3
JX8U 910 => Y10
NE
OPI0 O => 910
(1==0I)}
(W19 abpasod) @ sheme

O\ 9INpOoU

__: ucm .

pUo
DU
‘0 =>1ndino
85]9
'L =>ndino
(0 == 910% Jud)
([HUD => 1X8UjuD
(1u0) @ sheme
ZIN 8inpow

oUs |

puS
pud
AXOUTIUD => JUD
830
0=> U9
(0==13534)
(13S3Y abpasod Jo Y17 abpasod) @) sheme

HA 9jnpou

vm.@_.._

U.S. Patent Oct. 26, 2010 Sheet 4 of 20 US 7.822.591 B2

Constraint description at
steady state

RESET=0(constant)
|0=0(constant)
10_cilke(invariable)

-1

| Delete unnecessary code |

Create simultaneous block }~—S12

513

i Create control flow graph

514

_ ate graph j 515

F1G.5

US 7,822,591 B2

Sheet 5 of 20

Oct. 26, 2010

U.S. Patent

DUS
DUS

co#
0=>)0
R
1 =>)00
uIbaq sheme

j01eJausb ™o J/ SN 8inpow

oo

DU
IO => XU 8o
(8p110) ® shemje

YN 8jnpow

pUS
pUD
pUS

XU 30 => g0

N,
S ™
=0
(W19 abpasod) @) sheme

G\ S|npow

pus
pug |
pUD
‘0 =>Indino
93|9
'L =>Indino
(0 == 8|410% Jud) |
| HUD => IX8U Ju9
(1u0) ® shempe
¢\ sjnpow

pUD
pUd
pUS
IXOUTIUD => JUD
3sJ

-m!......i B L=y

W10 96pasod) @ shempe

9914

U.S. Patent

Oct. 26, 2010 Sheet 6 of 20

Create simultaneous block candidate

US 7,822,591 B2

S121

5122

No

Sim u ita neous block candidat e | =

7 Yes
Create simultaneous block candidates by the number of branches,

5123

and create simultaneous block candidates including any one branch

5124

NO

it

5125

Ys

-

Create 2 new simultaneous block candidates from the one having "posedge” : ||
One of them is created by replacing "posedge WAIT" of the original one
Dy "WAIT" and the other is created as the empty WAIT block

- Y""“‘“‘" o -
- Define simultaneous block candidate as simultaneous block

— S127
~ Does input logic circuit

..... ~——__0 ock S obtain ed ? -
<

------------------- _de SCf ptx on include any portion at which no simu htan eo us__—

-95126

US 7,822,591 B2

Sheet 7 of 20

Oct. 26, 2010

U.S. Patent

pus |
L8

A%
44— o=y

p-64—"

jolelauab

pus
. s

v 31y => HaU a0
(9M19) @ Shempe

aaaa o

DUB

(1) @ sheme

JIE

PP sl el ————

DUS

IXOU B0 => 910

(M10) @ Shempe|

g SReme |
x_u _ G\ 8jnpow |

WIE
pud
0 => Inding
35|19
'L =>ndino
(0 == 8J419% Jud) |
LU => IXeU U9

() @ shempe

7l 9iNPOLL

”

DU
IX8U U => JUD

(M10) ® shempe

LAl 9|NPDOWS

o

pUS |

(1) ® sheme

¢d

¢ djnpou

0-19

1

US 7,822,591 B2

Sheet 8 of 20

Oct. 26, 2010

U.S. Patent

do 9|4

)19 8bpssod, ou
104

10 8bpssod, Jo4

0-E4

M0 8bpasod, ou
104

El

10 @bpssod,
10

)19 ebpasod, ou

104 M1 9bpssod, Jo4

)19 9bpasod, ou

M0 8bpasod,
104

US 7,822,591 B2

Sheet 9 of 20

Oct. 26, 2010

U.S. Patent

< i

19151681 0} elRp ,$810iS, ¥00|a

SNOSUBYNWIS Yoiym ul diysuoljejsy

[Y00)9 snoaueynwig

ia)siBal ,SIM, %00[0

SNOBUEBYNWIS YOIYM Ul diysuoie|eH

TS

i3

¢-9Q

US 7,822,591 B2

Sheet 10 of 20

Oct. 26, 2010

U.S. Patent

" = m

J9)sibai 0} elep ,$8i01S, %000

SNOBUBYNWIS YaIym Ul diysuonejey

[%00|q snosueynwIg

10ysiBos woJy eep ,Speo, %o

SNOBUBYNWIS Yaym ul diysuoieay

< Jaisiboy

¢-94

1-G0

U.S. Patent Oct. 26, 2010 Sheet 11 of 20 US 7.822.591 B2

Y

Determine base nodes ~— 521

; Determine candidate for common execution 309

B fquency group

_ 523
l s "Load" edge input
Yes _ from external register in common

~~~_erecuton frequency group candidate_——
T~0n an LS graph ?7_—"

NG

Define candidate for common execution frequency 304
group as common execution frequency group |




US 7,822,591 B2

Sheet 12 of 20

Oct. 26, 2010

U.S. Patent

SnosUBYNWIS Yoiym Ul diysuonejey

SNOBUBINWIS Yoiym Ul diysuolerey |

< oot ~

13151681 0] Bl ,S8I01S, ¥00[a

(00)q snosteynug

,_Em_@m -

M
i
t
,
}
|
]
i
i
I
i
}
i
!
m
j
i
!
|
_ {
1911081 WO} elep SpeoT, ¥0|a w
i
]
i
|
|
|
i
;
|
i
}
]
;
I
}
i
i
i
i

dnoib Aousnbaij uonnosxs uowwod <= ydesd
| S pue ydesb gy Buisn Aq apou aseq ayp se ___
UBAID S| €0 8jlum payoeal aq Ued ey} SepoN | 2-S0

-G




U.S. Patent Oct. 26, 2010 Sheet 13 of 20 US 7.822.591 B2

' Judge consecution of register | 3

Create recurrence formula |~ 532

| Create general term |

F1G. 14 —

module M3 | | module M4
| always @ (CLK) é§ always @ (cile)
Cikle <= cikle_next; cikle_next <= cikle:
end end
end ﬁ end

Rence fora '
| cikle[k+1] =Cikle_next[k]
| Clkle_nextlk+1] =Clkle[k+1]

~_ _—

General term
cikle[K] = Cikle[0]

FIG. 15C | cike_next - cikle[0




US 7,822,591 B2

Sheet 14 of 20

Oct. 26, 2010

U.S. Patent

SNOBUBYNWIS Yaium Ul diysuonelex

A

| Jaisibal 0} elep ,S$8I01S, %00|d
SnosuBnWIS yaiym Ul diysuoneey

(300/q snosueynuig )

18)S108) WO ﬂ% Speo, %o0[0

0-£4

Wi} [eseush snoinaid yim 9ouBpI0dE
| Ul BN[BA 8jqRLBAUL 8 0} pUNO) UBBQ Sy
\OP1I0, Jeisibel asneosq ebps ,peo, elejaC

IXaU a0

¢S4

yxmc_Euf. A ndino >

M“mmwmmmu““#mﬂ“hmmm“mm“##m“mmmmmwmm-ﬂu##ﬁﬁhmm

dnoJb Aouanbalj uoinosxs uowwod <= ydeib
| §7 pue ydeib gp buisn Ag epou eseq sy se
c@,_mmmEmEgnEomﬁmﬁcmﬁgmwnoz

R

1-4Q




U.S. Patent

- module M1

always @ (CLK)
ent <= ¢nt_next;
ena

end '

S

Oct. 26, 2010

D1

FIG.17A

Recurrence formula
cntik+1]

| ent_next[k+1]
outputlk+1]

&

General term
entlk|
cnt_nextK]
output(k]

N

Sheet 15 of 20

US 7,822,591 B2

module M2

end

end

always @ (cnt)
cnt_next <= cnt+1:
it (cnt %cikle == 0)
output <= 1;
else
output <= 0; !

end

02

_

C
C
1
O

if cnt[k]%cikle[k] == 0)

otherwise)

nti0]+k

nt_next[0]+k
f ((cnt{0]+k)%cikle[0] ==

(i
|

)

otherWtse)



U.S. Patent Oct. 26, 2010 Sheet 16 of 20 US 7.822.591 B2

”‘ | Determine simultaneous block for deriving | 351
: __oxecution frequency __

Derive relational formula of execution frequency |~ S52

Create general term of relational formula |~ S53

554

Yes Does unset
-~~~ Simultaneous block exist ? _—




US 7,822,591 B2

Sheet 17 of 20

Oct. 26, 2010

U.S. Patent

1D ebpesod, ou Y10 8bpasod, ou

104 )10 ebpasod, 104 104 )10 abpesod, 04

Sawi $9/1 Solll} ¥9/1

W19 abpasod, ou W19 abpasod, ou

sown y9/11 €9

(1G9 J0 880U} Se BLES 21E JeU) oWl $9/L POINoDXD.
| are fay) 1eyy punoy iy ‘snuy pue ¢ yo ebpasod,
J0 Salouanbaly Se papinoid a8 £ pue |

._J._

Aww_Ems.._.OvO ¢-4q pue |-49q |

((1 == 2% + [obto) 1) 1 B[
0, JO Wisy [eiduay)

10 N, mm_umwoam 104 A 10 mmb@woam _

0 @m\:mcm \
awn Aejep Aq sswn #9/| paIndaXe

\ O/B 2-Gq PuB |-Gq Jey} punoj si §|

Sl ¥9/1

-5

sauwy p9/L | 160

6l DIl




U.S. Patent Oct. 26, 2010 Sheet 18 of 20 US 7.822.591 B2

' Create required register |

562

No Is there any register
general term cannot be obtained 2_—

- Create n-time executing machine L S63

 Define general term of relational formula]

Delete unnecessary code -~ 565




(8SIMIBY10) 0
(0==[0]opo%(¥9/L + [0hu)) 1) |
L+ $9/] + [QJix8u"uo [ Jxeuuo

p9/L +[0huo 1o

[olxau™apyi0 = |1 ixau™apj10

[0Jopi0 [1]epiio

(9s1MIBY10) 0

(1 ==2% (e/L + [oM1o) 1) 1 |= [LIyo
Jo)sibas yoea jo | awi Jo onfeA

—

[ Jindino

3

4

US 7,822,591 B2

i

Sheet 19 of 20

fosmiayio) o
(0 == [0]eM10%(@x+[0fuo)) ) |

- ",

[@{indino
|+ 20U [@lxeu™uo
| (ca pue (q jo seusnbal) uonnoaXa) bvo/l= 2| | (NIRRT | 1[xeuapyo
| (vq pue gq jo seiouanbaly UOGNIBXe) b= || _ [0lepio Dijepio

(M0, JeisiBas 0} Aousnbeyy uognysgns) o= y| | (esimiayo) o]
L owy je dnoib | | (1 ==2% Or+obio)) 1) 1[= [0
| Ausnbalj uoinosxs uowwod yoes jo Aousnbay uonnoexy | | 1981681 10 Wi [BIOUAY)

Oct. 26, 2010

il

U.S. Patent



U.S. Patent Oct. 26, 2010 Sheet 20 of 20 US 7.822.591 B2

| | module Mfinal
L1 F((clkO + (T/32))%2 == 1)
Clk <=1
Blse
Input - | | eng ot
Simulation time T cikle <= cikle0
Register for storing value of each | ckle next  <=cikle next0
register at time 0 cnt <; cnt0 + (T/64) i
ClkO, cikle0, cikle_next0. | | cnt_next<=cnt0 + (T/64) + 1
Cnt0, ent_next0, output0 If (cnt%cikle == 0)
oulput <=1
else
output <=0
end
ena




US 7,822,591 B2

1

LOGIC CIRCUIT MODEL CONVERSION
APPARATUS AND METHOD THEREOF; AND
LOGIC CIRCUIT MODEL CONVERSION
PROGRAM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s based upon and claims the benefit of

priority from prior Japanese Patent Application No. 2005-
348144, filed Dec. 1, 2005, the entire contents of which are
incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present mnvention relates to a logic circuit model con-

version apparatus and a method thereof; and a logic circuit
model conversion program.

2. Description of the Related Art

The design/manufacture of a large scale logic circuit such
as an LSI 1s often carried out as follows. Hardware 1is
described 1 a language called Hardware Description Lan-
guage (hereinafter, referred to as “HDL”). The described
HDL 1s converted into data indicating connection relationship
between circuit elements called “net list”. Then, hardware
such as an actual LSI 1s manufactured from this net list.

Converting the HDL into a net list 1s called “logical syn-
thesis”, and the HDL can be converted into the net list by
using a predetermined logic synthesis tool. The net list1s data
representing a mutual connectivity with a circuit element
such as an AND circuit, an OR circuit, a register, or a counter,
for example. By using the net list, a so called circuit diagram
that exists conventionally can be printed out.

There are a variety of HDLs, and, for example, the HDLs

such as Verilog-HDL, VHDL, and System C are often used
today. In addition, 1n the HDLs, some description levels exist,

and typically, there are a Behavior Level and a Register Trans-
ter Level (hereinafter, referred to as “RTL”).

The Behavior Level 1s alevel at which an operation (includ-
ing a software operation 1n addition to a hardware operation)
1s represented without “concept of clock”. This level 1s used
for description of a circuit block 1n which detailed design
specificationis not defined or description of a model provided
for the purpose of simulation, for example, description of a
modeled CPU operation.

In contrast, the RTL 1s a level of expressing a register, a
counter and the like that are constituent circuit elements and
a transier state (connection state) of data between them. At
this level, “concept of clock™ for operating these constituent
clements exists.

In order to “logically synthesize” an HDL and generate a
net list, 1t 1s necessary to describe the HDL 1nthe RTL. A logic
circuit described in the HDL at the RTL level 1s referred to as
a “logic circuit RTL model”.

On the other hand, 1n a large-scale circuit today, 1n addition
to a design of the circuit itsell, verification and evaluation of
the designed circuit becomes very important. Suilicient veri-
fication and evaluation are carried out at a design stage (be-
fore producing a material). As a result, a development period
1s shortened, and a development cost can be reduced.

Further, 1n many of the systems today, hardware/software
integrated systems including microprocessors or the like
becomes common. Thus, there 1s a growing need for verifi-
cation and evaluating soitware operated by microprocessors
or the like as well as verification and evaluating hardware.

10

15

20

25

30

35

40

45

50

55

60

65

2

In the meantime, a logic circuit widely used today 1s a
synchronous logic circuit. In a “logic circuit RTL model”, a
description 1s given so as to carry out writing 1nto a defined
register group by using a sync signal such as clock and reset.
Therefore, time-based accuracy that can be evaluated in the
“logic circuit RTL model™ 1s accuracy that can be guaranteed
to enable verification as to whether or not a register value 1s
correct every time a sync signal such as a cyclic clock 1s
inputted (hereinatter, referred to as “clock cycle accuracy”).
In this manner, the verification using the “logic circuit RTL
model” enables very strict verification for every clock cycle.

However, 1n a large-scale logic circuit including micropro-
cessors or the like, when individual logic circuits or software
components communicating with these circuits and operating
on microprocessors are verified with clock cycle accuracy by
using a simulation environment in which the “logic circuit
RTL model” and the simulator of the microprocessors are
connected to each other, a simulation time becomes very
long.

On the other hand, 1n the case of software verification such
as microprocessors communicating with the “logic circuit
RTL model™, it 1s not always necessary to verily with fine
accuracy such as clock cycle accuracy. In addition, 1t 1s not
necessary to fully monitor and verily the states of internal
registers 1n the “logic circuit RTL model”.

Therefore, there have been developed a vanety of tech-
niques of lowering the time accuracy of simulation (time-
based monitoring and veritying roughness) or spatial accu-
racy (type or quantity of register or signal to be monitored or
verified) 1n a range for achieving a verification purpose,
thereby shortening a simulation time.

For example, 1n the U.S. Pat. No. 5,862,361, there 1s dis-
closed a technique of creating a table with respect to times of
clock cycles by utilizing features of a synchronous circuit,
and then, carrying out event scheduling before carrying out
simulation.

As described above, a model for carrying out simulation
(heremaftter, this model 1s referred to as a “logic circuit opera-
tion model”) 1s often generated 1n accordance with a method
of newly generating models each having a high degree of
abstraction other than the “logic circuit RTL model”, and
then, sequentially detailing these models to generate the
“logic circuit operation model” or 1n accordance with a
method of using the existing “logic circuit RTL model (model
having a low degree of abstraction and having fineness) to
summarize the model, thereby converting the summarized
model into a “logic circuit operation model™.

It 1s necessary to judge whether or not the “logic circuit
operation model™ 1s proper from the three points of view: the
accuracy of the “logic circuit operation model” (first condi-
tion); what it takes to create the “logic circuit operation
model” (second condition); and speed of implementing the
logic circuit operation model (third condition).

The accuracy of the “logic circuit operation model” (first
condition) 1s to allocate simulation accuracy (time-based
accuracy and spatial accuracy) suilicient to achieve a verifi-
cation purpose.

What it takes to create the “logic circuit operation model”
(second condition) 1s that the “logic circuit operation model”
1s provided 1n a state in which the “logic circuit operation
model” coincides with the “logic circuit RTL model” by the
time verification of a logic circuit or a soltware program
starts.

The speed of implementing the “logic circuit operation
model” (third condition) 1s to imnclude a speed of executing
simulation for the purpose of verification within a sufficiently



US 7,822,591 B2

3

short time with respect to a period from the beginning to a
period of starting verification of the logic circuit or software
program.

For example, 1n the above described method of summariz-
ing a model having fine simulation accuracy (low degree of
abstraction) (Refer to U.S. Pat. No. 5,862,361), there 1s a
comparatively high possibility of meeting the first and second
condition (development inconvenience) because the “logic
circuit operation model” 1s created while automatic summa-
rization 1s carried out with the designed “logic circuit RTL
model” being a start point. However, this method 1s not sui-
ficiently fast on an aspect of the implementation speed, and
does not meet the third condition.

Therelore, 1n a conventional technique, 1t 1s thought diifi-
cult to obtain a “logic circuit operation model” that meets the
third condition in which, 1n a development period to an extent
such that while the accuracy of meeting the first condition 1s
maintained, the second condition 1s met, a simulation 1mple-
menting time 1s included 1n a practically endurable range even
in a large-scale system.

BRIEF SUMMARY OF THE INVENTION

According to one aspect of the present invention, there 1s
provided A logic circuit model conversion apparatus com-
prising: a first analysis unit which analyzes a model in which
a logic circuit of a register transfer level has been coded and
outputs simultaneous blocks and an analysis result executed
at an 1dentical time; a creating unit which creates a common
execution frequency group that 1s a set of codes whose execus-
tion frequency becomes common, based on the simultaneous
blocks and the analysis result; a second analysis unit which
analyzes the common execution frequency group and creates
a formula of a general term to derive a predetermined value of
cach register; a third analysis unit which analyzes a mutual
relationship between the common execution frequency
groups and derives an execution frequency of each common
execution frequency group up to a predetermined time; and a
deriving unit which derives a value of each of the registers at
the predetermined time from the formula of the general term
and the execution frequency. The present mnvention 1s estab-
lished as a method or program mvention for achieving func-
tions of the above described apparatus.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a schematic block diagram depicting a basic
configuration of a logic circuit model conversion apparatus;

FIG. 2 1s a tlow chart showing a flow of a basic operation of
the logic circuit model conversion apparatus shown 1n FIG. 1;

FIG. 3 1s a view for illustrating an RTL logic model that 1s
an iput of the logic circuit model conversion apparatus;

FI1G. 4 1s a view showing an example of constraint descrip-
tion at the time of a stationary state;

FIG. 5 1s a flow chart showing a specific operation of a
model analysis unit;

FIG. 6 1s a view showing an example of a deleting process
ol an unnecessary code i the case where the logic circuit
model shown in FIG. 3 and the constraint description at the
time of a stationary state shown 1n FIG. 4 have been given;

FI1G. 7 1s a flow chart showing a detailed tlow of creating a
simultaneous block process;

FIG. 8 1s a view showing an example of creating a simul-
taneous block 1n the case where the logic circuit model shown
in FIG. 3 and the constraint description at the time of a
stationary state shown 1n FIG. 4 have been given;

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 9A to 9C are views showing an example of creating,
a control tlow graph in the case where there have been pro-
vided the logic circuit model shown 1 FIG. 3 and the con-
straint description at the time of a stationary state shown 1n
FIG. 4;

FIG. 10 1s a view showing an example of creating a WS
graph;

FIG. 11 1s a view showing an example of creating an LS
graph;

FIG. 12 1s a flow chart showing a specific operation of a
common execution frequency group creating umt 120;

FIG. 13 15 a view showing an example of creating a com-
mon execution frequency group in the case where there have
been provided: the logic circuit model shown 1n FIG. 3; the
constraint description at the time of a stationary state shown
in FIG. 4; the simultaneous block shown 1n FI1G. 8; the control
flow graph shown 1n FIGS. 9A to 9C; the WS graph shown 1n
FIG. 10; and the LS graph shown 1n FIG. 11;

FIG. 14 1s a flow chart showing a specific operation of a
common execution frequency group analysis umt 130;

FIGS. 15A to 15C are views each showing an example of
creating a recurrence formula and a formula of general terms
using the common execution frequency group analysis unit;

FIG. 16 1s a view showing an example in which, in the case
where there have been provided the logic circuit model shown
in FIG. 3 and the constraint description at the time of a
stationary state shown i FIG. 4, the general terms shown 1n
FIGS. 15A to 15C 1s obtained, thereby making 1t possible to
create a new common execution frequency group;

FIGS. 17A to 17C each show an example of applying step
S3 relevant to the common execution frequency group can-
didates made of simultaneous blocks b1l and b2 shown in FIG.
16;

FIG. 18 1s a flow chart showing a specific operation of a
relational analysis unit 140;

FIG. 19 1s a view showing a deriving result of an execution
frequency up to time T of a stmultaneous block by the rela-
tional analysis unit 140 1n the case where there have been
provided: the logic circuit model shown 1n FIG. 3; the con-
straint description at the time of a stationary state shown 1n
FI1G. 4; the simultaneous block shown 1n FIG. 8; the control
flow graph shown 1n FIGS. 9A to 9C; the WS graph shown 1n
FIG. 10; and the LS graph shown 1n FIG. 11;

FIG. 20 1s a flow chart showing a specific operation of a
register value dertving unit 150;

FIGS. 21A and 21B are views each showing an example of
a value 1n simulation time T of each register; and

FIG. 22 1s a view showing an example of an output of a
logic circuit model at the time of a stationary state in the case
where the model 1s outputted in the format of module of
Verilog-HDL, for example.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present mnvention will be described
with reference to the accompanying drawings.

A hardware behavior often converges into a wasteful
behavior such as a periodic behavior after the value of some
external inputs has fixed. However, 1t 1s difficult to judge this
convergence state dynamically at runtime, and thus, a waste-
tul stmulation time 1s currently consumed. Here, 1n the hard-
ware RTL model, 1n a stationary state in which an external
input from a bus or the like does not occur, an eliminable
serial periodic process can be converted 1nto a single process
as long guaranteed that a periodic behavior 1s actually made
with respect to a code that i1s presumed to be a periodic
behavior.



US 7,822,591 B2

S

In the embodiment, wasteful serial process 1s replaced with
a single process, thereby speeding up production of an RTL
logic circuit model.

In FIG. 1, a logic circuit model conversion apparatus 100
has: a model analysis unit 110; a common execution Ire-
quency group creating unit 120; a common execution fre-
quency group analysis unit 130; arelational analysis unit 140;
a register value deriving unit 150; and a logic circuit model
creating unit 160. In addition, the logic circuit model conver-
sion apparatus 100 has storage units for temporarily storing
the data created by each of the units described above. Spe-
cifically, the logic circuit model conversion apparatus 100
has: a block and graph storage unit 210 which stores a simul-
taneous block 212 or the like; a common execution frequency
group storage unit 220 which stores a common execution
frequency group; a general term storage unit 230 which stores
the general term of each register; an execution frequency
storage unit 240 which stores the execution frequency up to
time T of each common execution frequency group; and a
register value storage unit 250 which stores a value of time T
of each register. The block and graph storage unit 210 spe-
cifically temporarnly stores: the simultaneous block 212; a
control tlow graph 214; a WS graph 216; and an LS graph 218.

The logic circuit model conversion apparatus 100 inputs an
RTL logic circuit model and a constraint description at the
time of a stationary state, respectively, from an RTL (Register
Transter Level) logic circuit model storage unit 310 and a
constraint description storage unit 320, and outputs a logic
circuit model at the time of a stationary state to a logic circuit
model storage unit 410.

An RTL logic circuit model stored 1n the RTL logic circuit
model storage unit 310 1s a hardware model described in
Verilog-HDL or the like, as shown 1n FIG. 3, for example,
described later 1n detail. However, the accuracy equal to or
greater than RTL that can be logically synthesized 1s pre-
sumed as an mput of the logic circuit model conversion appa-
ratus.

In addition, the constraint description at the time of a
stationary state stored in the constraint description storage
unit 320 1s obtained by describing a limited state targeted for
analysis, as shown 1n FIG. 4, for example, described later 1in
detail, from the viewpoints of a register value, an invariable
value property and the like. It 1s preferable that the logic
circuit model conversion apparatus 100 includes the con-
straint description storage umt 320 because it 1s a primary
object to make efficient a logic circuit model 1n a stationary
state such as a case 1n which a partial external input does not
OCCUL.

Referring to FIG. 2, adescription will be given with respect
to a flow of a basic operation of the logic circuit model
conversion apparatus configured as described above.

The model analysis unit 110 deletes an unnecessary code
by analyzing the RTL logic circuit model and the constraint
description at the time of a stationary state, which are stored
in the RTL logic circuit model storage unit 310 and the con-
straint description storage unit 320, respectively. Then, the
model analysis unit 110 creates: the simultaneous block 212;
the control flow graph 214; the WS graph 217; and the LS
graph 218 (step S1). The simultaneous block 212, the control
flow graph 214, the WS graph 216, and the LS graph 218 are
stored 1n the block and graph storage unit 210. The simulta-
neous block 212 1s a set of codes reliably executed at the
identical time, created from a code after deleted. The control
flow graph 214 1s a graph representing a control relationship
between the created simultaneous blocks, 1.e., a control flow
caused by branch or call. The WS graph 216 1s a graph
representing a synchronizing relationship established via a

10

15

20

25

30

35

40

45

50

55

60

65

6

register between the simultaneous blocks 212. The LS graph
218 1s a graph representing a LOAD or STORE relationship
of the register.

The common execution frequency group creating unit 120
creates a common execution frequency group that 1s a set of
codes as executed by 1dentical count up to a certain time T
(described later 1n detail) by using the simultaneous block
212, the control tlow graph 214 representing a mutual rela-
tionship, the WS graph 216, and the LS graph 218, created in
step S1. The common execution frequency group storage unit
220 stores the common execution frequency group (step S2).

The common execution frequency group can be expressed
by a recurrence formula. Thus, the common execution ire-
quency group analysis unit 130 creates the recurrence for-
mula from the common execution frequency group obtained
in step S2, and then, derives a general term of each register by
solving the recurrence formula. The general term storage unit
230 stores the general term of each register (step S3). While
the dertving of the general term from the recurrence formula
can be achieved by referring to a database of a recurrence
formula pattern, a generally known other method may be
utilized. In the case where a formula of anew general term has
been obtained in step S3, there 1s a possibility that the
obtained formula can be utilized to derive another general
term. Thus, turning to step S1, the process from the step S1 to
step S3 are repeated (Yes 1n step S4).

In the case where a formula of a new general term cannot be
obtained 1n step S3 (No in step S4), the relational analysis unit
140 dertves an execution frequency up to time T of each
common execution frequency group by utilizing the general
terms ol the simultaneous block 212, the control flow graph
214, the WS graph 216, the LS graph 218, and each register.
The execution frequency storage unit 240 stores an execution
frequency (step S5).

Next, the register value deriving unit 150 integrates the
information stored 1n the general term storage unit 230 and
the execution frequency storage unit 240, and then, derives a
value of time T of each register that 1s a value of each register
after a simulation time T has elapsed. The register value
storage unit 250 stores the register value (step S6).

Lastly, the logic circuit model creating unit 160 creates a
logic circuit model obtained as a high speed model at the time
ol a stationary state by using a value of each register in time
T stored 1n the register value storage unit 250. The logic
circuit model storage unit 410 stores the logic circuit model
(step S7).

In the same manner as that described above, the logic
circuit model at the time of a stationary state 1s created as a
high speed model. Now, an operation of each unit will be
specifically described here.

First, referring to an example of “Verilog-HDL” shown 1n
FIG. 3, a description will be given with respect to an RTL
logic circuit model that 1s an input of the logic circuit model
conversion apparatus 100. The logic circuit model 1s often
made of modules that correspond to some circuits. For
example, 1n the example shown in FIG. 3, this circuit model 1s
made of 5 modules M1 to M5.

The logic circuit model has some storage areas. For
example, while “Verilog-HDL” has some data types such as a
register type and a net type as a data type of storage area, all
of such storage areas targeted for STORE, LOAD, and WAIT

operations defined below are referred to as registers. For
example, in module M1 shown in FIG. 3, “CLK”, “RESET”,
“cnt”, and “cnt_next” are registers. Write and readout opera-
tions relevant to these storage areas (registers) in the logic

circuit model are hereinafter reterred to as STORE and
LOAD operations. For example, in “Verilog-HDL”, a




US 7,822,591 B2

7

STORE operation such as “cnt<=0", 1s expressed. Expression
ol “cnt<=0"" denotes that O 1s written into the register “cnt™. In
addition, expression of “cnt<=cnt_next” 1s expressed at the
same time when a value loaded from the register “cnt_next™1s
stored 1n the register “cnt”.

In the logic circuit model, 1n the present specification, a
synchronizing operation synchronized with a change 1n value
of a register such as “CLK” 1s referred to as WAIT. For
example, 1n “Verilog-HDL”, this synchronizing operation 1s
achieved by an always statement. For example, the “always@
(cnt)” 1n module M2, represents that a node up to a corre-
sponding end 1s executed from “always” 1n the case where the
value of the register “cnt” 1s changed. Namely, i this
example, when a different value 1s substituted into the register
“cnt’” 1n another module, module M2 1s executed after module
that carries out STORE operation to the register “cnt”. An
operation 1n such a case 1s referred to as “WAIT cnt”.

WAIT operations 1n the logic circuit model has variations
such as synchronization with any of a plurality of registers
and synchronization with a positive or negative edge of a
register. For example, the “posedge CLK OR negedge
RESET” 1n module M1 1s WAIT synchronized with any of
posedge CLK and negedge RESET events, and module M1 1s
started up 1n accordance with either one of the events. The
“posedge CLK” 1n module M3 1s WAI'T synchronized with a
positive edge of the register CLK, and module M3 1s started
up only when a value of the register “CLK” has changed from
0 to 1. Similarly, “negedge RESET™ 1s started up 1n the case
where a value of a RESET register has changed from 1 to O.
The “always begin” in module MS represents that the inside
of the “always” statement 1s repeatedly executed.

An operation for advancing a simulation time 1n a logic
circuit model 1s heremnafter referred to as DELAY. For
example, 1n “Verilog-HDL”, as 1n module M3, thus DELAY
operation 1s represented by #. The meaning of this #32 1s that
a simulation time 1s advanced by 32 (time units).

Next, an operation for representing branch 1s present 1n the
logic circuit model. In the example shown in FI1G. 3, there 1s
an “1f” statement. If a conditional formula 1s true, the interior
of an “1f”” condition 1s executed. Otherwise, the interior of an
“else” condition 1s executed.

Now, an operation of the circuit shown 1n the example of
FIG. 3 will be brietly described here. First, module M5 (clock
generator) supplies a clock “CLK”, and module M1 and
module M3 for this CLK to execute WAIT 1s started up.
Module M3 and module M4 are modules for externally input-
ting a timer cycle “cikle”. When 10==1, a value written 1nto
the register “10_cikle” 1s employed as “cikle”. Module M1 1s
a circuit for counting up a counter register “cnt” and clearing
the register “cnt” to 0 1n the case where RESET==0. Module
M2 1s a circuit for, when the value of the register “cnt” 1s
obtained as a multiple of the value of the register “cikle”,
outputting 1 to a register “output”. As a whole, this register 1s
a circuit for outputting 1 to the register “output™ every clock
cycle mputted to “I0O_cikle”. Although expression i each
module includes some failures because 1t 1s simplified, this
expression 1s not shown because there 1s no relationship with
the features of the present imnvention.

Although a description has been given here by way of
example of “Verilog-HDL”, it 1s essential that the logic circuit
model can be composed of STORE, LOAD, WAIT, and
DELAY operations and a BRANCH operation; other math-
ematical calculation, between numeric values such as Bit
operation and the like. Therefore, an mput HDL may be an
HDL other than “Verilog” or may be another graph expres-
s10on or the like that can reconfigure information equivalent to
HDL.

10

15

20

25

30

35

40

45

50

55

60

65

8

In addition, the constraint description at the time of a
stationary state stored in the constraint description storage
unit 320 denotes a description that can restrict a state targeted
for analysis by a register value, invariable value property and
the like. For example, information indicating to which exter-
nal register an external write operation 1s not carried out or
information indicating what value 1s set at the time point at
which no write occurs 1s described here. The logic circuit
model conversion apparatus 100 operates even if this con-
straint description storage unit 320 does not exist, whereas
there 1s a higher possibility that high speed HDL description
can be outputted as the state restriction by this constraint
description storage unmt 320 is large 1n amount.

The example shown in FIG. 4 indicates that a constant
value of a register RESET 1s 1, and a constant value of a
register 10 1s 0, and a value of a register “10O_cikle” 1s invari-
able. Here, “constant” means known and unchanged and
“invariable” means unknown but unchanged.

In an example of this timer, the value of the register
“10_cikle” 1s a timer cycle, and can be set by a user. However,
this value becomes invariable after no input has occurred.

Now, a function and an operation of each unit will be
specifically described here. First, with reference to FIG. 5, an
operation of a model analysis unit 110 will be described here.

First, an unnecessary code 1s deleted (step S11).

An example of such an unnecessary code includes a group
of “x<=x_next” and “x_next<=x”, for example. In the case
where no STORE operation to the register “x” or “X_next”
exists, the mutually 1dentical values are merely substituted,
thus these two substituting formula can be eliminated.

Alternatively, in the case where there 1s no substituting
operation to the register “x” despite the presence of “WAIT
x”, no other code succeeding “WAIT x” 1s executed, the code
succeeding “WAIT X can be eliminated.

When the value of a register can be determined at the time
ol a stationary state, the relevant register can be replaced to
the value. Moreover, when a value of a register R 1s constant
or invariable, 1if a WAIT operation of the register R exists, the
code succeeding “WAIT X can be eliminated.

A code newly made unnecessary 1s also deleted.

In FIG. 6, RESET=1 (constant) can be identified by the
constraint description at the stationary state shown 1n FIG. 4,
thus evaluating an “if”” statement of module M1 and deleting
an “1I” condition. Similarly, “IO=0 (constant)” can be 1den-
tified, thus evaluating an “if” statement of module M3 and
deleting an “11” condition. The value of the register “RESET”™
1s constant, and thus, “WAIT” 1s not started up due to a change
in value of the register RESET. Thus, the register “RESET™ 1s
deleted from a WAI'T statement of module M1.

Next, a simultaneous block 1s created (step S12). The
simultaneous block 1s a set of codes surely executed at a same
simulation time. In the logic circuit model, DELAY 1s an
operation for advancing a simulation time, and the simulation
time 1s different depending on a time preceding or succeeding
the execution of the operation. In addition, a WAIT operation
1s started up by a STORE operation (for a register targeted for
WAIT) placed 1n another location, and thus, there 1s a possi-
bility that the simulation time 1s different depending on a time
preceding or succeeding the execution of the operation.
Theretfore, the stmultaneous block is created by segmenting
codes every time a WAI'T operation and a DELAY operation
appear with respect to a source logic circuit model.

The simultaneous block creating process includes some
exceptional process. For example, 1f an “1I” statement or
“posedge (negedge) WAIT” and the like 1s included, the
simultaneous block 1s duplicated. However, an “11” statement
indicating that all the contents of BRANCH 1s targeted for a




US 7,822,591 B2

9

STORE operation relevant to the same register 1s an excep-
tion, and then, no duplication 1s carried out.

A logic circuit model 1s segmented with respect to a source
logic circuit model every time a WAIT operation and a
DELAY operation appear, thereby creating a candidate for a
simultaneous block (step S121). In the case where BRANCH
caused by an “1f”” statement or the like 1s included 1n a simul-
taneous block candidate (Yes 1n step S122), the simultaneous
block candidates are duplicated by the number of branches,
and a plurality of stmultaneous blocks corresponding to each
branches are created (step S123). However, 1n the case where
the content of each BRANCH 1s an operation of substitution
into the identical register, 1t 1s handled as an exception, and no
duplication 1s carried out. In step S122, in the case where
BRANCH caused by an “if” statement or the like does not
occur, a current step goes to step S124.

Further, in the case where a “posedge WAIT” condition
occurs 1n WAIT (Yes in step S124), two simultaneous blocks
candidates are created. One of them 1s created by replacing
“posedge WAI'T” of an original simultaneous block candidate

by “WAI'T”, and the other 1s created as the empty WAIT block
(step S1235), and a current step returns to step S122.

In step S124, in the case where a “posedge” condition does
not occur 1n WAIT, 1.e., 1n the case where there does not occur
an operation equivalent to Branch 1n a simultaneous block
candidate, the simultaneous block candidate 1s handled as a
simultaneous block (step S126).

Then, the process above 1s repeated until the whole logic

circuit model 1s classified into any simultaneous block (step
S127).

In FIG. 8, module M4 1s a simultaneous block b4. Next,
with respect to module M2, an “if”” statement 1s included 1n a
WAIT block. However, the contents of the ““1f” branch and the
“else” branch are a substituting statement relevant to the same
register (output). Therefore, duplication 1s not carried out as
an exception of “11”” statement, and a simultaneous block b2 1s
obtained. Next, module M1 includes a “WAIT posedge
CLK”™, and thus, 1s targeted for duplication. Then, a simulta-
neous block bl obtained by replacing “WAIT posedge CLK”
with “WAIT CLK” and a simultaneous block b1-0 obtained
by replacing “WAIT posedge CLK” with “WAIT CLK?”, the
content of which 1s empty, are reproduced. Similarly, module
M3 creates a simultaneous block b3 and a simultaneous block
b3-0. Lastly, module M3 includes a DELAY operation, and
thus, creates a simultaneous block b5-1 and a simultaneous
block b5-2, respectively, while 2 DELAY operations are
defined as a boundary.

As long as a hardware process 1s executable, even 1n the
case where a more complicated logic circuit model has been
inputted, a simultaneous block 1s obtained as a description
with a finite length starting from WAIT or DELAY 1n accor-
dance with the above procedures.

In addition, 1f a duplication of a simultaneous block includ-
ing all the BRANCH operation and “posedge WAIT” 1s car-
ried out, BRANCH operation and “posedge WAI'T” are elimi-

nated in the simultaneous block.

Next, after a process of a simultaneous block above, a
control tlow graph representing a control flow 1 which a
simultaneous block is defined as anode 1s created with respect
to a simultaneous block 1n which there i1s a possibility that
another simultaneous block (not synchronous block) 1s made
(step S13). The control flow graph denotes a directed graph
while a simultaneous block 1s defined as a node. The edge
denotes a state transition possibility other than synchroniza-
tion from a simultaneous block to another simultaneous

block.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 9A 15 a view showing a state transition of a simulta-
neous block b1 and a simultaneous block b1-0. In FIG. 9A,
the following two events are expressed. That 1s, after termi-
nation of the simultaneous block bl, in the case where
“posedge CLK™ occurs, a current block moves to the simul-
taneous block b1. Otherwise, the current block moves to the
simultaneous block b1-0. In addition, after termination of the
simultaneous block b1-0, 1n the case where “posedge CLK”
occurs, a current block moves to the simultaneous block b1.
Otherwise, the current block moves to the simultaneous block
b1-0. As 1n FIG. 9A, FIG. 9B expresses a state transition
relationship between a simultaneous block b3 and a stmulta-
neous block b3-0. FIG. 9C expresses that the states of a
simultaneous block b3-1 and a simultaneous block b5-2
appear alternately.

Next, a “WaitStore” graph (WS graph) 1s created (step
S14). In the WS graph, while a simultaneous block and a
register are defined as nodes, 1if a STORE operation to a
register X occurs in a simultaneous block A, A=>X edge 1s
added. If a WAI'T operation of aregister Y occurs, Y=>A edge
1s added and 1s created. The WS graph 1s a directed graph 1n
which a simultaneous block and a register are defined as
nodes. The edge from the simultaneous block X to a register
R represents that the STORE operation to the register R
occurs 1n the simultaneous block X. The edge from the reg-
ister R to the simultaneous block represents that a WAIT
operation of the register R occurs in the simultaneous block
X. The WS graph represents a synchronizing control relation-
ship of each module. The WS graph can be created by check-
ing a register targeted for a WAIT operation and a STORE
operation 1n each simultaneous block.

In the simultaneous block shown 1n FIG. 8, a description
will be given with respect to a simultaneous block bl. In order
to carry out a WAIT operation of a register “CLK”, an edge 1s
added between the register “CLK” and the block bl. The
simultaneous block b1 includes the STORE operation to the
register “cnt”, and thus, an edge 1s added between the block
b1 and the register “cnt”. A relationship between such WAIT
and STORE operations 1s shown 1n FIG. 10.

Next, a “LoadStore” graph (LS graph) 1s created (step
S15). In the LS graph, while a simultaneous block and a
register are defined as nodes, as long as the STORE operation
to the register X occurs in the simultaneous block A, an A=>X
edge 1s added. It LOAD from a register Y occurs, Y=>A edge
1s added, and 1s created. The LS graph denotes a directed
graph 1n while a simultaneous block and a register are nodes.
An edge from the simultaneous block A to the register X
represents that a STORE operation to the register X occurs in
the stmultaneous block A. An edge from the register Y to the
simultaneous block A represents that LOAD from the register
Y occurs 1n the simultaneous block A.

The LS graph can be created by checking a register targeted
for a LOAD operation and a STORE operation 1n a simulta-
neous block. A LOAD operation from a register determined to
be unchanged or constant 1s no use, the LOAD edge corre-
sponding to that register can be eliminated from LS graph.

In the simultaneous block shown 1n FIG. 8, a description
will be given with respect to a simultaneous block bl. In the
simultaneous block bl, LOAD of a value of a register “cnt_
next” occurs, an edge 1s added between the register “cnt_
next” and the block bl. A STORE operation to the register
“cnt” occurs 1n the simultaneous block bl, and thus, an edge
1s added between the block b1 and the register “cnt”. FIG. 11
shows a relationship between such LOAD and STORE opera-
tions.




US 7,822,591 B2

11

Referring to FIG. 12, a description will be given with
respect to an operation of the common execution frequency
group creating unit 120.

From among nodes of a control flow graph (simultaneous
block), the common execution frequency group creating unit
120 determines base nodes while unset nodes are defined as
the base nodes (step S21). In addition, a WS graph and an LS
graph are traced, respectively, from the base nodes, acommon
register set of a reachable nodes of WS graph and LS graph
respectively are defined as candidates for the common execu-
tion frequency group (step S22). In this manner, the candi-
dates for the common execute count group are determined.

If obtained candidates for common execution frequency
group include an external input from a LOAD edge of the
common execution Irequency group (Yes in step S23), a
current step reverts to step S21. In step S23, 1f no mput from
the LOAD edge occurs with the candidates for the common
execution frequency group, candidates for the common
execution frequency group are determined for the common
execution frequency group (step S24), and then, a process
terminates.

In FIG. 13, a common execution {frequency group 1s cre-
ated, the group being made of a sitmultaneous block b3 and a
simultaneous block b4, base nodes being the simultaneous
block b3. This common execution frequency group 1s
executed sequentially 1n order of the simultaneous block b3
and the simultaneous block b4. In this case, the startup count
ol the simultaneous block b3 coincides with that of the simul-
taneous block b4.

Here, the branch operation 1n step S23 1s carried out in
order to limit a common execution frequency group 1n which
no external LOAD occurs. In the case where this condition 1s
met, the thus obtained common execution frequency group
has a property that the execution frequencies of all the internal
simultaneous blocks coincide with each other.

This property does not depend on whether or not there
exists a synchronizing operation (WAIT operation) started up
by external STORE operation of the common execution ire-
quency group. This 1s because, an operation of a simultaneous
block caused by an external synchronizing operation 1s 1den-
tical to an operation made at the time of internal operation of
the common execution frequency group. In this manner, 1t 1s
one of the advantageous ettects of the present invention that a
common execution frequency group 1n which this execution
frequency can be regarded to be equal to another can be found
out.

With reference to FIG. 14, an operation of a common
execution frequency group analysis unit 130 will be described
here.

First, a WS graph 1s traced from the base node of the
common execution frequency group, thereby making a judg-
ment before and after the register serving as each of the
LOAD and STORE destinations (step S31). That 1s, a regis-
tered targeted for STORE 1s always obtained as a value of a
next time. In the case where LOAD 1s carried out, a value of
a current time 1s obtained 1f a value subjected to LOAD 1s
obtained as a value before STORE operation If the above
value 1s obtained as a value after STORE operation, a value of
a next time 1s obtained as a value of a next time.

Here, 1n the common execution frequency group, after a
simultaneous block serving as a base point of the common
execution frequency group has been executed once, in the
case where a change (STORE) operation of a value of a
register 1n the common execution frequency group 1s made
once until a next block 1s executed, a register serving as a
LOAD destination 1s either of pre-change or post-change. In
many executable cases, a judgment of pre-change or post-

10

15

20

25

30

35

40

45

50

55

12

change can be made by analysis of a WS graph and an LS
graph. IT a simultaneous block of executing a STORE opera-
tion to the register loaded 1s “under” a sitmultaneous block of
executing LOAD operation on a WS graph, the value loaded
to the register 1s a pre-changed value. On the contrary, 1f a
simultaneous block of executing a STORE operation to the
register loaded 1s “over” a simultaneous block of executing
LOAD operation on a WS graph, the value loaded to the
register 1s a post-changed value.

The term “A over B” used here denotes that we can trace
from node A to node B by the arrow, and the term “A under B”
denotes that we can trace from node B to node A by the arrow.

For example, 1n the case where there occurs LOAD of a
register “cikle _next” in a simultaneous block b3, a stmulta-
neous block b4 of carrying out a STORE operation to the
register “cikle_next” 1s on a WS graph and below the simul-
taneous block b3, and thus, i1t 1s found that a value before
changed 1s obtained. In the case where there occurs LOAD of
the register “cikle” 1 the simultaneous block b4, the simul-
taneous block b3 of carrying out a STORE operation to the
register “cikle” 1s ona WS graph and above the simultaneous
block b4, and thus, it 1s found that a value after changed 1s
obtained.

With respectto a description such that two or more STORE
counts exist or a description such that the top and bottom of a
simultaneous block to which LOAD and STORE belong can-
not be judged, there 1s a high possibility that an improper code
1s generated from a design point of view. In the case where
such a judgment cannot be made, nothing 1s carried out 1n step
S32, and the current process moves to step S33.

Next, a recurrence formula of a register 1s created (step
S32). Here, based on information of judgment as to whether
a register belfore or after changed 1s obtained 1n step S31, 1n
response to each substituting calculation in a common execu-
tion frequency group, a recurrence formula 1s obtained by
replacing a value before substituting a register X (1.e., value of
current time) with X [Kk] and a value after substituting X (i.e.,
value of next time) with X [k+1] with respect to LOAD
operation, and a value of a substituting destination with X
[k+1] with respect to STORE operation. Here, BRANCH
caused by an “1f” statement remains unchanged. FIG. 15B 1s
a view showing an example in which a recurrence formula has
been created with respect to stmultaneous blocks b3 and b4
(FIG. 15A) judged to be a common execution frequency
group 1n step S2.

Next, production of a general term of a register 1s carried
out (step S33). When the recurrence formula obtained in step
S32 1s regarded as a recurrence formula of a numeric
sequence, the general term 1s obtained 1n the case where 1t can
be analytically solved. This conversion rule may utilize a
conversion table created 1n advance or may be determined by
a user. In addition, any other existing method may be used. In
the case where no general term can be created, “n” executing
modules (a code for outputting the value of each register after
executing a recurrence formula “n” times with respect to
arbitrary “n”’) are created, and this term may be regarded as a
general term.

For example, FIG. 15C shows an example 1 which a
general term 1s created with respect to simultaneous blocks

60 judged to be a common execution frequency group in step S2.

65

In the following discussion, it 1s assumed that “cikle[0]=
cikle next[0], cnt[0]=cnt_next[0], cnt[0]=1"" for the sake of
simplification. In this case, 1n the case where recurrence for-
mulas “cikle [k+1]=cikle_next [k]” and *“cikle_next [k+1]=
cikle [K+1]” shown 1n FIG. 15B are obtained, 11 these recur-
rence formulas are established when k=0, 1t 1s well known
that “cikle [k]=cikle [0]” or the like 1s obtained as a general




US 7,822,591 B2

13

term 1n a general solution of a numeric sequence. While this
general term can be obtained by creating 1n advance a table of
a group ol a pattern of a corresponding recurrence formula
and a pattern of a general term, the existing other method can
also be used without being limited thereto 1n particular.

In response to a recurrence formula 1n which a general term
ol a register cannot be created, an n-time executing machine
capable of creating the value of each register relevant to an
arbitrary execution frequency “n” 1s created. This n-time
executing machine 1s also regarded as a general term of a
register 1n the following description. The production of the
n-time executing machine can be achieved by a variety of
methods without being limited thereto 1n particular.

The above described steps S2 and S3 are repeatedly
executed 1n the case where a new general term has been
generated, as shown in FIG. 2. This 1s because a new common
execution frequency group may be reproduced in accordance
with this new general term.

As shown 1n the LS graph of FIG. 16, 1t has been deter-
mined that the value of a register “cikle’ 1s an invarniable value
from the general terms shown 1n FIGS. 15A to 15C. Thus, an
edge from “cikle” to a simultaneous block b2 can be deleted.
Due to an advantageous effect of a change 1n this LS graph, an
external LOAD edge input 1s eliminated, a common execu-
tion frequency group candidate made of the simultaneous
blocks bl an b2 obtained 1n step S22 1s obtained as a common
execution frequency group.

In FIGS. 17A to 17C, the recurrence formula and general
terms are an example including conditional branch.

Among them, for example, with respect to the recurrence
formulas “cnt [k+1]=cnt_next [k]” and “cnt_next [k+1]=cnt
[k]+1”, the general terms “cnt [t]=cnt [0]+t, cnt_next [t]=cnt
[0]+t+1" can be obtained in accordance with a well known
solution.

Now, an operation of a relational analysis unit 140 will be
described with reference to FIG. 18.

A simultaneous block for deriving an execution frequency
1s determined (step S51). Specifically, an unset simultaneous
block 1s sampled from among a simultaneous block serving as
a base point of a common execution frequency group or a
simultaneous block that 1s not included 1n the common execu-
tion frequency group. Next, a relational formula relevant to an
execution frequency of the unset simultaneous block 1is
derived by means of analysis of a control flow graph (step
S52). Then, a general term 1s created with respect to a simu-
lation time 1n a relational formula of the execution frequency
of the unset simultaneous block (step S33).

The process from step S51 to step S53 are repeated until the
unset simultaneous block 1s eliminated (step S54).

In FI1G. 19, 32 (time unit) DELAY occur inside of each one
of the simultaneous blocks b5-1 and b3-2 executed alter-
nately, and thus, 1t 1s found that b5-1 and b5-2 are executed by
1/64 times (strictly, T/64+1 times) after time T has elapsed. In
addition, an operation of substituting 1 for “clk™ of b3-1 and
an operation of substituting 0 for “clk” of b5-2 are alternately
carried out, and thus, a change of 0=>1 of *“clk” occurs T1/64
times until time T 1s reached. From this fact, it 1s found that
“posedge WAIT clk” started up due to a change of 0=>1
occurs by T/64 times until time T 1s reached. Therefore, it 1s
found the execution frequency of each one of the simulta-
neous blocks bl and b3 (and b1-0 and b3-0) 1s T/64 times.

Now, an operation of a register value dertving unit 150 waill
be described with reference to FIG. 20.

First, production of a necessary register 1s carried out (step
S61). Specifically, a register for inputting a simulation time
and a register for storing the 1mitial value of each register are
created. In addition, a register for storing the value of each

10

15

20

25

30

35

40

45

50

55

60

65

14

register after elapse of a simulation time T that 1s an output
result 1s created. In addition, a register for storing an execu-
tion frequency 1s provided with respect to each of the com-
mon execution frequency groups.

Next, in the case where there exists a register whose gen-
eral term cannot be obtained (Yes 1n step S62), a recurrence
formula of a register X 1s executed by a required number (for
example, n times), a module (n-time executing machine) for
outputting a result to the register X is created, and the created
module 1s regarded as a general term (step S63).

In the case where there does not exist a register whose
general term cannot be obtained, a general term of a register
for storing the execution frequency of each common execus-
tion frequency group and a general term of each register
created 1n step S61 are combined with each other, and a
relational formula for obtaining a value of time T of each
register (1.e., at the time when a simulation time T has
clapsed) 1s created (step S64). Then, an unnecessary code 1s
deleted by deletion of wastelul operation (step S65).

FIG. 21A shows a general term of each register obtained 1n
the case where there have been provided: the logic circuit
model shown 1n FI1G. 3; the constraint description at the time
of a stationary state shown in FIG. 4; the simultaneous block
shown 1n FIG. 8; the control flow graph shown 1n FIGS. 9A to
9C; the WS graph shown 1n FIG. 10; and the LS graph shown
in FIG. 11 (a result of step S61). The execution frequency of
the general term of each register differs depending on a com-
mon execution frequency group to which such each register
belongs to. Therefore, a subscript of the general term of each
register 1s adjusted to that for adjusting the right side execu-
tion frequency.

For example, 1n the case of the register “cnt” exemplified
above, although the general term ““cant [k2]=cnt [0]+k2” 15
obtained, the execution frequency of the common execution
frequency group to which the register “cnt” up to time T
belongs 1s 1/64. Therefore, the general term 1n simulation
time T 1s found to be “cant [t]=cnt [O]+T/64.

Similarly, the general term (value) 1n stmulation time T of
cachregister is obtained as shown in FIG. 21B (aresult of step
S63).

An operation of a logic circuit model creating unit 160 will
be described below. A process of the logic circuit model
creating unit 160 cannot be generally described because it 1s
different depending on an output mode. In FIG. 22, all of the
register values 1n simulation time T are obtained merely by
executing the created module only once.

The logic circuit model created in the present embodiment
1s a logic circuit model for making an operation of obtaining
the value of each register after time T has elapsed from the
initial value of each register relevant to a first time 1n a
stationary state and an elapsed time T from the first time.

In FIG. 22, registers having stored the initial value of each
register at the first time 1n the stationary state are CLKO,
cikleO, cikle nextO, cntO, cnt_next0, and outputO, and a reg-
1ster for storing an elapsed time 1s register T. Based on the
values ol these registers, the value of each register after time
T has elapsed 1s outputted to each of the corresponding reg-
1sters “CLK”, “cikle”, “cikle next”, “cnt”, “cnt_next”, and
“output”.

In the above described embodiment, although a “Verilog-
HDL” description 1s outputted the output of the present inven-
tion 1s not limited to HDL as long an expression capable of
reconfiguring HDL of RTL. For example, graph expression or
the like of abstracting HDL while maintaiming information
equivalent to HDL may be used as an output.

Now, a description will be given with respect to an advan-
tageous effect of the achievement of a high speed operation in



US 7,822,591 B2

15

the case of the logic circuit model shown 1n FIG. 3 and 1n the
case of the constraint description at the time of a stationary
state shown 1n FIG. 4.

In order to obtain the value of each register after simulation
time T has elapsed, there 1s a need for executing a circuit that
includes 3 “i1f” statements and 6 “substitute” statements for
every clock (a total of T/64 times) 1n the original logic circuit
model (FIG. 3).

On the other hand, 1n the logic circuit model serving as an
output shown in FI1G. 22, the value of each register 1s obtained
by executing the circuit that includes 2 “if”” statements and 6
substitute statements only once. Thus, 1n this example, all
codes behaving 1n a periodic manner can be stopped 1n sta-
tionary state. And 1t 1s possible to say that the longer simula-
tion time 1s, the more efficient code 1s obtained.

As mentioned above, the high speed simulation of RTL
accuracy can be achieved. Specifically, it become possible to
make accurate “Logic circuit operation model” that achieves
the accuracy of RTL to achieve the venfication purpose and
put the simulation execution time 1n permissible time even 11
it 1s a large-scale system.

Additional advantages and modifications will readily
occur to those skilled 1n the art. Therefore, the present mnven-
tion 1n 1ts broader aspects 1s not limited to the specific details,
representative devices, and illustrated examples shown and
described herein. Accordingly, various modifications may be
made without departing from the spirit or scope of the general
inventive concept as defined by the appended claims and their
equivalents.

What 1s claimed 1s:

1. A logic circuit model implemented by a computer as a
logic circuit model conversion apparatus comprising:

a first analysis unit which analyzes the logic circuit model
in which a logic circuit of a register transier level has
been coded and outputs simultaneous blocks executed at
the same time and an analysis result;

a creating unit which creates a common execution ire-
quency group that 1s a set of codes whose execution
frequency becomes common, based on the sitmultaneous
blocks and the analysis result;

a second analysis unit which analyzes the common execu-
tion frequency group and creates a formula of a general
term ol a numeric sequence, to dertve a predetermined
value of each register, wherein values of the register at a
plurality of times are regarded as the numeric sequence;

a third analysis unit which analyzes a mutual relationship
between the common execution frequency groups and
derives an execution frequency of each common execu-
tion frequency group up to a predetermined time; and

a dertving unit which derives a value of each of the registers
at the predetermined time from the formula of the gen-
eral term and the execution frequency, wherein

the simultaneous blocks are created by sequentially seg-
menting all codes for every code equivalentto WAIT and
DELAY.

2. The apparatus according to claim 1, wherein the first
analysis unit analyzes a logic circuit model of a register
transier level and a constraint description at the time of a
stationary state and outputs the simultaneous blocks and the
analysis result.

3. The apparatus according to claim 2, wherein the first
analysis unit deletes an unnecessary code described in the
logic circuit model, based on the constraint description at the
time of the stationary state.

4. The apparatus according to claim 1, wherein the analysis
result includes a control flow graph, a WS (WaitStore) graph,
and an LS (LoadStore) graph.

10

15

20

25

30

35

40

45

50

55

60

65

16

5. The apparatus according to claim 4, wherein the control
flow graph i1s provided as a graph indicating sequences for
process 1n a plurality of simultaneous blocks while the simul-
taneous block 1s defined as a node.

6. The apparatus according to claim 35, wherein the WS
graph 1s provided as a graph representing a synchronous
relationship via a register interposed between simultaneous

blocks.

7. The apparatus according to claim 6, wherein the LS
graph 1s provided as a graph representing a relationship
between LOAD and STORE operations of a register.

8. The apparatus according to claim 1, wherein the second
analysis unit creates a formula of a general term of each
register by creating a recurrence formula from the common
execution frequency group.

9. The apparatus according to claim 8, wherein the second
analysis unit creates the recurrence formula by replacing a
value of a current time with a value of a next time of one of the
registers.

10. The apparatus according to claim 1, wherein, in the case
where a new formula of a general term 1s created by means of
the second analysis unit, model analysis by the first analysis
unit, production of a common execution frequency group by
the creating umt, and production of a formula of a general
term by the second analysis unit are carried out.

11. The apparatus according to claim 1, further compris-
ng:

a logic circuit model creating unit which inputs a value of
the predetermined time of each register and outputs a
description of a logic circuit operation at the time of a
stationary state.

12. A logic circuit model converting method implemented
by a computer as a logic circuit model conversion apparatus
for outputting a description of a logic circuit operation at the
time of a stationary state based on a model 1n which a logic
circuit of a register transier level has been coded and a con-
straint description at the time of a stationary state, the method
comprising:

analyzing a model in which a logic circuit of a register
transier level has been coded, to output simultaneous
blocks executed at the same time and an analysis result;

creating a common execution frequency group that is a set
of codes whose execution frequency becomes common,
based on the simultaneous blocks and the analysis result;

analyzing the common execution frequency group to create
a formula of a general term of a numeric sequence, to
derive a predetermined value of each register, wherein
values of the register at a plurality of times are regarded
as the numeric sequence;

analyzing a mutual relationship between the common
execution frequency groups to dertve an execution fre-
quency ol each common execution frequency group up
to a predetermined time; and

deriving a value of each of the registers at the predeter-
mined time from the formula of the general term and the
execution frequency, wherein

the simultaneous blocks are created by sequentially seg-

menting all codes for every code equivalent to WAIT and
DELAY.

13. A logic circuit model conversion program stored on a
computer-readable storage medium which, when executed by
a computer, causes the computer to output a description of a
logic circuit operation at the time of a stationary state based
on a model 1n which a logic circuit of a register transter level
has been coded and a constraint description at the time of a
stationary state, the program comprising:




US 7,822,591 B2

17

means for analyzing a model 1n which a logic circuit of a
register transier level has been coded, to output simul-
taneous blocks executed at the same time and an analysis
result;

means for creating a common execution frequency group
that 1s a set of codes whose execution frequency
becomes common, based on the simultaneous blocks
and the analysis result;

means for analyzing the common execution frequency
group to create a formula of a general term of a numeric
sequence, to derive a predetermined value of each reg-
1ster, wherein values of the register at a plurality of times
are regarded as the numeric sequence;

10

18

means for analyzing a mutual relationship between the
common execution frequency groups to derive an execu-
tion frequency of each common execution frequency
group up to a predetermined time; and

means for dertving a value of each of the registers at the
predetermined time from the formula of the general term
and the execution frequency, wherein

the simultaneous blocks are created by sequentially seg-

menting all codes for every code equivalent to WAIT and
DELAY.



	Front Page
	Drawings
	Specification
	Claims

