US007818797B1
a2 United States Patent (10) Patent No.: US 7.818.797 B1
Fan et al. 45) Date of Patent: Oct. 19, 2010
(54) METHODS FOR COST-SENSITIVE 6,928,549 B2* 82005 Brocketal. 713/194
MODELING FOR INTRUSION DETECTION 6,978,274 Bl 12/2005 Gallivan et al.
AND RESPONSE 7,032,031 B2* 4/2006 Jungcketal. 709/246
7,035,876 B2 4/2006 Kawai et al.
(75) Inventors: Wel Fallj New YOI'k,, NY (IJS); Wen%(e 7,080,076 Bl 7/2006 Williamson et al.
Lee, Atlanta, GA (US); Matthew Miller, 2003/0188189 Al* 10/2003 Desai et al. oovevee........ 713/201
New York, NY (US); Salvatore J. Stolfo. 2004/0172557 Al* 9/2004 Nakae et al. wooovvevn..... 713/201
Ridgewood, NJ (US) 2005/0015624 Al* 1/2005 Ginteretal. ..ooo.o......... 713/201
(73) Assignee: The Trustees of Columbia University 2005/0182969 A% % 8/2005 Ginter et al. oo, 713/201
ill the Ciw Of NEW YOI‘k, New YOI'k, NY 2006/0080656 Al ¥ 4/2006 Caln et Ell. 717/174
(US) 2007/0006303 Al* 1/2007 Donnelly etal. 726/22
2008/0010251 Al* 1/2008 Fontouraetal. 707/3
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 968 days.
OTHER PUBLICATIONS

(21) Appl. No.: 10/269,718
U.S. Appl. No. 10/208,402, filed Jul. 30, 2002, Stolfo et al.

22) Filed: Oct. 11, 2002 ,
(22) file ¢ (Continued)

Related U.S. Application Data Primary Examiner—Pramila Parthasarathy

(60) Provisional application No. 60/340,198, filed on Dec. (74) Attorney, Agent, or Firm—Byrne Poh LLP
14, 2001, provisional application No. 60/328,682,

filed on Oct. 11, 2001. (57) ABSTRACT
(51) Int.Cl.

GO6F 12/16 (2006.01) A method of detecting an intrusion in the operation of a
(52) U.SeCle oo, 726/22; 726/23; 726/25 ~ computer system based on a plurality ot events. A rule set 1s
(58) Field of Classification Search 709/246 determined for a training set of data comprising a set of

700/209: 713/182. 189 features having associated costs. For each of a plurality of

events, the set of features 1s computed and a class 1s predicted
for the features with a rule of the rule set. For each event

(56) References Cited predicted as an intrusion, a response cost and a damage cost
are determined, wherein the damage cost 1s determined based
U5 PALENTDOCUMEBENTS on such factors as the technique of the intrusion, the criticality

See application file for complete search history.

6,161,130 A 12/2000 Horovitz et al. of the component of the computer system subject to the intru-
6.778.995 Bl 2/2004 Gallivan s10n, and a measure of progress of the intrusion. If the damage
6,820,081 Bl 11/2004 Kawai et al. cost 1s greater than or equal to the response cost, a response to
6,826,694 Bl * 11/2004 Duttaetal.oooen........ 726/13 theevent.

6,856,694 B2* 2/2005 Farmeretal. 382/107

6,888.548 Bl 5/2005 G@Gallivan 35 Claims, 3 Drawing Sheets

Ca)
o

- -

260 Use first ordered
f— Rule set

Next Event lq
7'y

220 Predicticn | mads by 270
N Ruleset \

MNext Rule set

.]

YES

320 ~ l

Initiate Response

230

precision > threshold ?

310

DCost > RCost

330
—

Log Report

250

Another avant?
YES

End

US 7,818,797 Bl
Page 2

OTHER PUBLICATIONS

U.S. Appl. No. 10/208.,432, filed Jul. 30, 2002, Stolfo et al.

U.S. Appl. No. 10/222,632, filed Aug. 16, 2002, Stolfo et al.

U.S. Appl. No. 10/269,694, filed Oct. 11, 2002, Stolfo et al.

U.S. Appl. No. 10/320,259, filed Dec. 16, 2002, Stolfo et al.

U.S. Appl. No. 10/327,811, filed Dec. 19, 2002, Stolfo et al.

U.S. Appl. No. 10/352,342, filed Jan. 27, 2003, Stolfo et al.

U.S. Appl. No. 10/352,343, filed Jan. 27, 2003, Stolfo et al.

A. Ghosh and A. Schwartzbard, “A Study in Using Neural Networks
for Anomaly and Misuse Detection,” Proceedings of the Sth USENIX
Security Symposium, 1999).

A. McCallum, Kamal Nigam, and Lyle H. Ungar, “Efficient Cluster-
ing of High-Dimensional Data Sets with Application to Reference
Matching,” Knowledge Discovery and Data Mining, pp. 169-178,
2000.

B. Scholkopt, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Wil-
liamson, “Estimating the Support of a High-Dimensional Distribu-
tion,” Technical Report 99-87, Microsoft Research, 1999, to appear
in Neural Computation, 2001.

Bhattacharyya M et al., 2002, “MET: An Experimental System for
Malicious Email Tracking” Proceedings 2002 New Security Para-
digms Workshop.

C. Marceau. “Characterizing the Behavior of a Program Using Mul-
tiple-Length N-Grams.” Proceedings of the New Security Paradigms
Workshop 2000, 2000, pp. 101-110.

C. Warrender, Stephanie Forrest, and Barak Pearlmutter, “Detecting
Intrusions Using System Calls: Alternative Data Models,” /999 IEEE

Symposium on Security and Privacy, pp. 133-145. IEEE Computer
Society, 1999,

C. Watkins, “Dynamic Alignment Kernels,” mn A.J. Smola, P.L.
Bartlett, B. Scholkoptf, and D. Schuurmans, editors, Advances in

Large Margin Classifiers, pp. 39-50, Cambridge, MA, 2000. MIT
Press.

Clark DD, 1988, “The Design Philosophy of the DARPA Internet
Protocols” Communication Architecture and Protocols, pp. 106-114.

D. Ron, Y Singer, and N. Tishby. “The Power of Amnesia: Learning
Probabilistic Automata With Variable Memory Length.” Machine
Learning, 1996, 25: pp. 117-150.

D. Schuurmans, editors, Advances in Large Margin Classifiers, pp.
39-50, Cambridge, MA, 2000. MIT Press.

D. Haussler, “Convolution Kernels on Discrete Structures,” Techni-
cal Report UCS-CRL-99-10, UC Santa Cruz, 1999.

D.E. Denning, An Intrusion Detection Model, Technical Report,
Computer Science Laboratory, SRI Infernational, 1993).

E. Eskin, “Anomaly Detection Over Noisy Data Using Learned Prob-
ability Distributions,” Proceedings of the International Conference
on Machine Learning, 2000.

E. Eskin, Christina Leslie and William Stafford Noble, “The Spec-
trum Kernel: A String Kernel for SVM Protein Classification,” Pro-
ceedings of the Pacific Symposium on Biocomputing (PSB-2002).

Kaua’i, Hawai, 2002.

E. Eskin, Wenke Lee, and Salvatore J. Stolfo, “Modeling System
Calls for Intrusion Detection With Dynamic Window Sizes,” Pro-
ceedings of DARPA Information Survivability Conference and Expo-
sition II (DISCEX II), Anaheim, CA, 2001.

E. Knorr and Raymond T. Ng, “Algorithms for Mining Distance-
Based Outliers 1n Large Datasets,” Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, pp. 392-403, 24-27, 1998.

E. Knorr and Raymond T. Ng, “Finding Intensional Knowledge of
Distance-Based Outliers,” The YLDB Journal, pp. 211-222, 1999.

Eleazar Eskin et al. “System and Method for Intrusion Detection with
Dynamic Window Sizes,” filed Jul. 30, 2000, U.S. Appl. No.
10/208,402.

Eleazar Eskin, William Noble Grundy, Yoram Singer, “Protein Fam-
1ly Classification using Sparse Markov Transducers,” Proceedings of

the Eighth International Conference on Intelligent Systems for
Molecular Biology, AAAI Press, Menlo Park, CA, 2000.

F. Pereira and Y Singer. “An Eflicient Extension to Mixture Tech-
niques for Prediction and Decision Trees.”—Machine Learning,
1999, 36(3): pp. 183-199.

F. Provost, T. Fawcett, and R Kohavi. “The Case Against Accuracy
Estimation for Comparing Induction Algorithms.” Proceedings of the
Fifteenth International Conference on Machine Learning, Jul. 1998,
pp. 1-9.

F. Provost, Tom Fawcett, and Ron Kohavi, The Case Against Accu-
racy Estimation for Comparing Induction Algorithms, Proceedings
of the Fifteenth International Conference on Machine Learning, Jul.
1998.

Feng C etal., 1994, “Machine Learning of Rules and Trees” Machine
Learning, Neutral and Statistical Classification, pp. 50-83.
Ferguson P etal., 1998, “Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing”
Internet Society pp. 1-10.

Friedman N et al., (1999) “Efficient bayesian parameter estimation in
large discrete domains.”

Gibson S, 2001, “The Strange Tale of Denial of Service— Attacks
Against GRC.COM™ http://grc.com/dos/grcdos.htm, pp. 1-29.

H.S. Javitz and A. Valdes, “The NIDES Statistical Component:
Description and Justification,” Technical Report, Computer Science
Laboratory, SRI International, 1993.

Honig A et al., (2002) “Adaptive model generation: An Architecture
for the deployment of data mining-based intrusion detection sys-
tems.” In Data Mining for Security Applications. Kiuwer.

Houle KJ, Oct. 2001, “Trends in Denial of Service Attack Technol-
ogy”’ CERT® Coordination Center. 1.0:1-20.

J. Platt, “Fast Training of Support Vector Machines Using Sequential
Minimal Optimization,” In B. Scholkopt, C. I. C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods—Support Vector Learn-
ing, pp. 185-208, Cambridge, MA, 1999, MIT Press.

Kephart JO, 1994, “A biologically inspired immune system for com-
puters” Artificial Life IV, R. Brooks and P. Maes, eds., pp. 1-10.
Kephart, Chess, and White. “Computers and Epidemiology,” IBM
Watson Research Center, 1993, pp. 1-20 (as available on-line).

Kin C. Bron and J. Kerbosch. “Algorithm457: Finding All Cliques of
an Undirected Graph,” Communications of ACM, 16:575-577, 1973.
Kohavi R, 1995, “A study of cross-validation and bootstrap for accu-
racy estimation and model selection” International Joint Conference
on Artificial Intelligence (1JCAI).

Kymie M. C. Tan, Roy A. Maxion: “ ‘“‘Why 6?7’ Defining the Opera-
tional Limits of stide, an Anomaly-Based Intrusion Detector.”” IEEE
Symposium on Security and Privacy 2002, May 12-15, 2002, pp.
188-201.

Lippmann RP et al., 1999, “Results of the DARPA 1998 Offline
Intrusion Detection Evaluation” MIT Lincoln Laboratory, pp. 1-29.
M. Breunig, H-P Kriegel, R. Ng, and J. Sander, “LOF: Identifying
Density-Based Local Outliers,” ACM SICMQOD Int. Conf. on Man-
agement of Data, pp. 93-104, 2000.

Matthew Schulz et al. “System and Method for Detection of New
Malicious Executables,” filed Jul. 30, 2000, U.S. Appl. No.
10/208,432.

Mohiuddin S et al., Jun. 2002, “Defending Against a large scale
Denial-of-Service Attack™ Proceedings of the 2002 IEEE Workshop
on Information Assurance and Security, pp. 30-37.

Moore D et al., 2001, “Inferring Internet Denial-of-Service Activity”
Usenix, pp. 1-14.

Moskowitz IS et al., Mar. 2001, “*Randomly Roving Agents for Intru-
sion Detection™ Information Technology Division, Naval Research
Laboratory, CHACS, pp. 1-16.

N. Ye. “A Markov Chain Model of Temporal Behavior for Anomaly
Detection,” Proceedings of the 2000 IEEE Systems, Man, and Cyber-
netics Information Assurance and Security Workshop, Jun. 6-7, 2000,
pp. 171-174.

N. Cristianini and J. Shawe-Taylor, Ar Introduction to Support Vector
Machines, Cambridge University Press, Cambridge, UK, 2000, pp.
9-51.

Perkins C, 1996 “Ric 2002: IP Mobility Support” http://www.fags.
org/rics/rftc2002 html, pp. 1-74.

R. P. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R.
Kendall, S. W. Webster, and M. Zissman, Results of the 1999 DARPA
Off-Line Intrusion Detection Ewvaluation, Second International
Workshop on Recent Advances in Intrusion Detection (RAID 1999),
West Lafayette, IN, 1999.

US 7,818,797 Bl
Page 3

Razmov 'V, May 2000, “Denial of Service Attacks and How to Defend
Against Them” Computer Science and Engineering Department,
University of Washington, pp. 1-7.

Rivest RL, 1992, “The MD5 message digest algorithm™ MIT Labo-
ratory for Computer Science and RSA Data Security, Inc., http://
www.letf.organization/rfc/rfc1321.txt, pp. 1-20.

Roesch M, 1999, “Snort—Lightweight Intrusion Detection for Net-
works” LISA XIII Systems Conferences, Seattle, WA, pp. 229-238.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “’A Sense
of Self for UNIX Processes,” 1996 [EEFE Symposium on Security and

Privacy, pp. 120-128. IEEE Computer Society, 1996.

Schultz MG et al., Jun. 2001, “Met: Malicious email filter—a unix
mail filter that detects malicious windows executables™ http://www.
cs.columbia.edu/ids/met/rel_papers.html, USENIX Annual Techni-
cal Conference.

Schultz MG et al., May 2001, “Data mining methods for detection of
new maliclous executables” Proceedings of the IEEE Symposium on
Security and Privacy.

Spatscheck O et al., 1999, “Defending Against Denial of Service
Attacks 1n Scout” Proceedings of 3rd USENIX/ACM, pp. 59-72.
Taylor C et al., Sep. 2001, “Nate—Network Analysis of Anomalous
Tratlic Events, a low-cost approach™ New Security Paradigms Work-
shop, pp. 89-96.

V. Paxson. “Bro: A System for Detecting Network Intruders 1in Real-
Time,” Proceedings of the 7th USENIX Security Symposium, San
Antonio, TX, 1998.

W Lee and D. Xiang. “Information-Theoretic Measures for Anomaly
Detection.” Proceedings of the 2001 IEEE Symposium on Security
and Privacy, May 2001, pp. 1-17.

W. Fan and S. Stolfo, “Ensemble-Based Adaptive Intrusion Detec-
tion,” Proceedings of 2002 SIAM International Conference on Darta
Mining, Arlington, VA, 2002.

W. Lee and S. J. Stolfo, “Data Mining Approaches for Intrusion
Detection,” Proceedings of the 1998 USENIX Security Symposium,
1998.

W. Lee, S. J. Stolfo, and K. Mok, “Mining in a Data-flow Environ-
ment: Experience in Intrusion Detection,” Proceedings of the 1999
Conference on Knowledge Discovery and Data Mining (KDD-99),
1999.

W. Lee, S. J. Stolfo, and P. K. Chan, “Learning Patterns From UNIX

Processes Execution Traces for Intrusion Detection,” A4AI Workshop
on Al Approaches to Fraud Detection and Risk Management, pp.

50-56. AAAI Press, 1997.

W.O. International, 1993-2003, “PC Viruses in the Wild” http://www.
bocklabs.wisc.edu/ janda/wildlist. html, pp. 1-15.

Wang C et al., 2000, “On computer viral infection and the effect of
immunization” Proceedings of the 16th ACM Annual Computer
Applications Conference.

White SR et al., 1999, “Anatomy of a Commercial-Grade Immune
System” IBM Research White paper, http://www.av.ibm.com/
ScientificPapers/White/ Anatomy/anatomy.html, pp. 1-28.

White SR, Oct. 1998, “Open problems in computer virus research”
Online publication, http://www.research.ibm.com/antivirus/
SciPapers/White/Problems, Virus Bulletin Cornference, pp. 1-11.

Y Singer. “Adaptive Mixtures of Probabilistic Transducers.” Neural
Computation, 1997, 9(8).pp. 1711-1734.

R.P. Campbell et al., “A Modular Approach to Computer Security
Risk Management,” AFIPS Conference Proceedings, AFIPS Press,
1979.

U. Lindgvist et al., “How to Systematically Classity Computer Secu-
rity Intrusions,” Proceedings of the 1997 IEEE Symposium on
Research in Security and Privacy, Oakland, CA, May 1997, pp.
154-163.

S. Glaseman et al., “Problem Areas in Computer Security Assess-
ment,” Proceedings of the National Computer Conference, 1977.

S. Northcutt, Intrusion Detection.: An Analyst’'s Handbook, New Rid-
ers, 1999, pp. 39-40.

D. Denning, Information Warfare and Security, Addison Wesley,
1999, pp. 23-25, and 385-388.

R. Bace, Intrusion Detection, Macmillan Technical Publishing, 2000,
pp. 156, 237-238.

E. Amoroso, Intrusion Detection: An Introduction to Internet Sur-
veillance, Correlation, Traps, Trace Back, and Response, Intrusion.
Net Books, 1999. pp. 145-167.

W.W. Cohen. “Fast Effective Rule Induction,” Machine Learning:
the 12th International Conference, Lake Taho, CA, 1995.

Quinlan, J.R. C4.5: Programs for Machine Learning. San Mateo:
Morgan Kaufmann, 1993.

T. Mitchell. Machine Learning. McGraw-Hill, 1997 pp. 171-174.
P. Domingos, “Metacost: A General Method for Making Classifiers
Cost-Sensitive,” Proceedings of the Sth ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD-99),
Aug. 1999,

T. Ptacek et al., “Insertion, Evasion and Denial of Service: Eluding
Network Intrusion Detection,” Secure Networks, Inc., Jan. 1998.

* cited by examiner

U.S. Patent Oct. 19, 2010 Sheet 1 of 3 US 7.818.797 B1

100

Generating an
Ordered Sequence
of Training Data

110

120 Determining an
Ordered Sequence of Rule sets
from each Training Set in the
Ordered Sequence of Training Data

130 Determining a
Precision Measurement
for every
rule in a Ruleset

v

Determining a Threshold
value for every class

140

U.S. Patent Oct. 19, 2010 Sheet 2 of 3 US 7.818.797 B1

200
f 210
260 Use first ordered l
f Rule set

N

I Next Event l l ;
IA 220 Prediction | made by l 270

Ruleset

| 230

Next Rule set '

5

NO

precision > threshold ?

Another event?

|
End I

FIG. 2

U.S. Patent Oct. 19, 2010 Sheet 3 of 3 US 7.818.797 B1

300

210

|]
260 Use first ordered
/f Rule set ‘

Next Event b -

A
220 Prediction i made by 270 \
Ruleset
I Next Rule set “
230 "
NO
precision > threshold 7
519 \ YES
YES
DCost > RCost
320
Vv
330 NGO Initiate Response}
Log Report I |

Another event?

NO

End

US 7,818,797 Bl

1

METHODS FOR COST-SENSITIVE
MODELING FOR INTRUSION DETECTION
AND RESPONSE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. Nos. 60/340,198, filed on Dec. 14,

2001, entitled “Method of Detecting and Responding to Com-

puter System Intrusions Using Cost-Based Models” and
60/328,682, filed on Oct. 11, 2001, entitled “Method and

Apparatus for Combining Multiple Models for Intrusion
Detection System,” which are hereby incorporated by refer-
ence in their entirety herein.

STATEMENT OF GOVERNMENT RIGHT

This invention was made with government support under

grant nos. F 30602-00-1-0603 and NCSU 00-0341-02
awarded by the United States Defense Advanced Research
Projects Agency (DARPA). The government has certain
rights to 1n this mvention.

COMPUTER PROGRAM LISTING

A computer program listing 1s submitted 1n duplicate on
CD. Each CD contains several routines which are listed 1n the

Appendix. The CD was created on Oct. 11, 2002. The files on
this CD are imncorporated by reference 1n their entirety herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to methods of intrusion detection in
a computer system, and more particularly, to cost-sensitive
machine learning techniques that can construct detection
models optimized for cost considerations.

2. Background Information

(Given the increasing reliance by businesses, governmental
bodies, educational institutions, and individuals upon net-
work-based computer systems, 1t has become critical to pro-
tect these systems from “intrusions” or “attacks™ (such terms
used interchangeably herein), which are typically unautho-
rized and/or malicious activity. These intrusions may have the
elfect of compromising security, corrupting data or erroneous
output, or causing complete or partial shutdowns of such
computer systems. Consequently, intrusion detection, the
process of 1dentifying and responding to malicious activity
targeted at computing and networking resources, has become
a critical component of computer system infrastructure pro-
tection mechanisms.

A primary focus of existing intrusion detection develop-
ment to date 1s an attempt to maximize the detection accuracy
and bandwidth capabilities of an Intrusion Detection System
(“IDS”). Consequently, many existing IDS developers have
used “brute force” techniques to attempt to correctly detect a
larger spectrum of intrusions than their competitors, e.g., a
higher percentage of “true positive” detections, while having
lower percentages of “lfalse negative” (e.g., mtrusions mis-
classified as normal activity) and “false positives™ or false
alarms (e.g., normal activity misclassified as an intrusion).
However, the goal of catching all intrusions has proven to be
a major technical challenge. After more than two decades of
research and development efforts, many known IDS’s have
marginal detection rates and high false alarm rates, especially
when detecting stealthy or novel intrusions.

10

15

20

25

30

35

40

45

50

55

60

65

2

Exemplary, novel techniques for intrusion detection are
described in co-pending U.S. application Ser. No. 10/208,402
filed Jul. 30, 2002, entitled “System and Methods For Intru-
sion Detection With Dynamic Window Sizes,” U.S. applica-
tion Ser. No. 10/208,432 filed Jul. 30, 2002, entitled “System
and Methods For Detection of New Malicious Executables,”
and U.S. application Ser. No. 10/222,632 filed Aug. 16, 2002,
entitled “System and Methods For Detecting Malicious
Email Transmission,” each of which 1s incorporated by ret-
erence 1n 1ts entirety herein.

The above-stated goal of attempting to catch all intrusions
encounters several impracticalities in IDS deployment, such
as constraints on time (e.g., processing speed) and availability
of resources (both human and computer). These constraints
may become overwhelmingly restrictive to the operation of
an IDS. An IDS usually perform passive monitoring of a
network or system activities, e.g., observing the traffic on a
network or system without any attempt to control access to or
from that network or system, rather than active filtering, e.g.,
“in-line monitoring,” which typically occurs on a host that
spans multiple networks and can filter traffic to and/or from
any of those networks (as 1s the case with Firewalls). It 1s
desirable for an IDS to keep up with the throughput of the data
stream that 1t monitors, 1.¢., handle the high bandwidths of the
data stream being monitored in real time, so that intrusions
can be detected 1n a timely manner. A real-time IDS can thus
become vulnerable to overload intrusions, such as those
described 1n T. Ptacek and T. Newsham, “Insertion, Evasion
and Denial of Service: Eluding Network Intrusion Detec-
tion,” Secure Networks, Inc., January 1998, online publica-
tion http:/www.merit.edu/merit/resources/idspaper.html,
which 1s incorporated by reference 1n 1ts entirety herein. In an
overload intrusion, the mtruder first directs a huge amount of
malicious traffic at the IDS (or some machine being moni-
tored by the IDS) and devotes resources to this malicious
traffic to the point that 1t can no longer track all data necessary
to detect every intrusion. With the diversion of the IDS
resources, the mtruder can then successtully execute a sub-
sequent, intended intrusion, which the IDS will be unable to
detect. Similarly, an incident response team may be over-
loaded by intrusion reports and may decide to raise detection
and response thresholds, as described 1n R. P. Campbell and
G. A. Sands, “A Modular Approach to Computer Security
Risk Management,” AFIPS Conference Proceedings, AFIPS
Press, 1979. As a consequence of raising the detection and
response thresholds, real intrusions may be 1gnored.

Some study has been performed to categorize intrusions
from different perspectives, although there 1s no established
taxonomy in general use. For example, Lindgvist and Jonsson
introduced the concept of the classitying an intrusion by
“dimension.” (Further details are provided in Ulf Lindgvist et
al., “How to Systematically Classity Computer Security
Intrusions,” Proceedings of the 1997 IEEE Symposium on
Researchin Security and Privacy, Oakland, Calif., May 1997,
pp. 154-163, which 1s incorporated by reference 1n 1ts entirety
herein.) The “intrusion results” dimension categorizes ntru-
sions according to their etffects (e.g., whether or not demal-
of-service 1s accomplished). The “intrusion techniques”
dimension categorizes intrusions based on their methods
(e.g., resource or bandwidth consumption). The “intrusion
target” dimension categorizes intrusions according to the
resource being targeted.

Credit card fraud detection and cellular phone fraud detec-
tion also deal with detecting abnormal behavior. Both of these
applications are motivated by cost-saving and therefore use
cost-sensitive modeling techniques. In credit card fraud
detection, for example, the cost factors include operation

US 7,818,797 Bl

3

cost, the personnel cost of investigating a potentially fraudu-
lent transaction (referred to as challenge cost), and loss (re-
terred to as damage cost). If the Dollar amount of a suspected
transaction 1s lower than the challenge cost, the transaction 1s
authorized and the credit card company will take the potential
loss. Since the cost factors in fraud detection can be folded

into dollar amounts, the cost-sensitive analysis and modeling
tasks are much more simple than 1n intrusion detection.

A disadvantage of current IDS’s 1s that no organized analy-
s1s o1 the costs attributable to intrusion detection and the costs
attributable to the mtrusion 1tself 1s performed to determine
how or whether to respond to each intrusion. Currently these
cost factors are, for the most part, 1gnored as unwanted com-
plexities in the development process of an IDS. Some current
IDSs try to minimize operational cost, as merely one cost
factor among many relevant cost factors. For example, the
Bro scripting language for specilying intrusion detection
rules does not support for-loops because 1teration through a
large number of connections 1s considered time consuming.
(See, Paxson, “Bro: A System for Detecting Network Intrud-

ers in Real-Time,” Proceedings of the 77 USENIX Security
Symposium, San Antonio, Tex., 1998.)

Glaseman et al. discussed a model for evaluating the total
expected cost 1n using a security system s as C(s)=0(s)+D(s),
where O(s) 1s the operational cost of's and D(s) 1s the expected
loss. (As discussed in S. Glaseman, R. Turn, and R. S. Gaines.
“Problem Areas 1in Computer Security Assessment,” Pro-
ceedings of the National Computer Conference, 1977.) D(s)
1s calculated by summing the products of exposed value and
the probabaility of safeguard failure over all possible threats.

However, such existing art do not evaluate the cost-effec-
tiveness of the intrusion detection or perform a cost-benefit
tradeoll, which may include development cost, the cost of
damage caused by an intrusion, the cost of manual or auto-
matic response to an intrusion, and the operational cost,
which measures constraints on time and computing
resources. Glaseman et al. do not define consequential cost to
include the response cost and model 1ts relationship with
damage cost, and does not allow cost-based optimization
strategies to be explored. For example, Glasemen et al. does
not teach that an 1ntrusion which has a higher response cost
than damage cost should usually not be acted upon beyond
simple logging.

Accordingly, there 1s a need in the art to provide a tech-
nique to evaluating the cost-efiectiveness, or to perform a
cost-benefit trade-oil 1n the detection and response to ndi-
vidual intrusions, and to construct detection models opti-
mized for overall cost metrics mstead of only statistical accu-
racy.

SUMMARY OF THE INVENTION

An object of the present invention 1s to provide protection
to the information assets of a computer system that are at risk
and have value to an organization.

Another object of the present mvention 1s to provide a
cost-effective detection technique which considers the
expected level of loss from intrusions, and which considers
the response cost 1n detecting and responding to such intru-
S101S.

10

15

20

25

30

35

40

45

50

55

60

65

4

A Turther object of the mvention 1s to use data mining
algorithms to compute activity patterns and extract predictive
teatures, and then apply machine learning algorithms to gen-
erate detection rules.

These and other objects of the invention, which waill
become apparent with reference to the disclosure herein, are
accomplished by a method of detecting an intrusion 1n the
operation of a computer system based on a plurality of events.
A rule set 1s determined for a traiming set of data comprising
a set of features having associated costs. For each of a plural-
ity of events, the set of features 1s computed and a class 1s
predicted for the features with a rule of the rule set. For each
event predicted as an intrusion, a response cost and a damage
cost are determined, wherein the damage cost 1s determined
based on such factors as the technique of the intrusion, the
criticality of the component of the computer system subjectto
the intrusion, and a measure o progress of the mtrusion. If the
damage cost 1s greater than or equal to the response cost, a
response to the event. An attack report may be logged it the
damage cost 1s less than the response cost.

In one embodiment, a sequence of training sets of data 1s
generated, in which each training set comprises a set of fea-
tures having associated costs. The training sets are ordered
such that a first set of features of a first training set 1s a subset
of a next subsequent set of features of a next subsequent
training set, and wherein an associated cost of the first set of
features 1s less than an associated cost the next subsequent set
of features.

A sequence of rule sets may be determined for each respec-
tive training set in the sequence of training sets, in which each
rule set comprises a plurality of rules and a class predicted by
each the rule, and wherein the rule sets are ordered corre-
sponding to the order of the respective training sets.

For each rule, a next step 1s to determine a precision mea-
surement indicative of the accuracy of the rule in predicting a
class. For each class, a threshold value 1s determined 1ndica-
tive of a minimum precision for each class.

For each of a plurality of events, beginning with the first
rule set, the set of features 1s computed and a class 1s predicted
for the features with a rule of the rule set. If the precision
measurement corresponding to the rule 1s less than the thresh-
old corresponding to the class, the steps of computing fea-
tures and predicting the class 1s repeated with the next rule set
in the sequence of rule sets.

In one embodiment, a set of features comprises features
computed using information available at the beginning of an
event. In another embodiment, a set of features comprises
features computed at any time during an event, and main-
tamned throughout the event’s duration. In yet another
embodiment, a set of features comprises features computed
using information from several events within a given time
window.

The step of determining a sequence of rule sets may com-
prise learning the rule set using the RIPPER algorithm. The
step of determiming a sequence of rule sets may comprise
learning an ordered rule set.

The step of determining a precision measurement may
comprise determining a ratio of positive counts of the rule to
the total counts of the rule. The threshold value 1s determined
as the precision value for the rule 1n the rule set corresponding
to the feature set with the highest cost.

US 7,818,797 Bl

S

In accordance with the invention, the objects described
above have been met, and the need 1s the art for a technique of
modeling a cost-sensitive intrusion detection model has been
satisiied.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention
will become apparent from the following detailed description
taken 1n conjunction with the accompanying figures showing,
illustrative embodiments of the invention, 1n which:

FIG. 1 1s a tlow chart representing a portion of the process
in accordance with the present invention.

FIG. 2 1s a tlow chart representing another portion of the
process 1n accordance with the present invention.

FIG. 3 1s a flow chart representing another embodiment of
the process 1n accordance with the present invention.

Throughout the figures, the same reference numerals and
characters, unless otherwise stated, are used to denote like
teatures, elements, components or portions of the i1llustrated
embodiments. Moreover, while the subject invention will
now be described 1n detail with reference to the figures, 1t 1s
done so 1n connection with the i1llustrative embodiments. It 1s
intended that changes and modifications can be made to the
described embodiments without departing from the true
scope and spirit of the subject invention as defined by the
appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

This invention will be further understood 1n view of the
detailed description.

10

15

20

25

30

6

In order to build an intrusion detection system, the relevant
cost factors, cost models, and cost metrics related to IDSs, are
analyzed. The following are major cost factors related to
intrusion detection: damage cost, response cost, and opera-
tional cost. Damage cost (DCost) characterizes the amount of
damage to a target resource by an intrusion when intrusion

detection 1s unavailable or ineffective. Response cost (RCost)
1s the cost of acting upon an alarm or log entry that indicates
a potential intrusion. Operational cost (OpCost) 1s the cost of
processing the stream of evens being monitored by an IDS
and analyzing the activities using intrusion detection models.
It 1s recommended that qualitative analysis be used to mea-
sure the relative magnitudes of cost factors. It should also be

noted that cost metrics are often site-specific because each
organization has its own security policies, information assets,
and risk factors.

An 1ntrusion taxonomy 1s used to produce cost metrics. The
taxonomy groups intrusions into different types so that cost
measurement can be performed for categories of similar
intrusions. Intrusions can be categorized and analyzed from
different perspectives. Lindgvist and Jonsson, as discussed
above, used the concept of the dimension of an intrusion to
classily intrusions. The intrusion results dimension catego-
rizes intrusions according to their effects, and can therefore
be used to assess the damage cost and the response cost. The
intrusion techniques dimension categorizes itrusions based

on their methods, and therefore atfects the operational cost

and the response cost. The intrusion target dimension catego-
rizes itrusions according to the resource being targeted and
aifects both the damage costs and the response costs.

TABLE 1

Main Category Sub-Category (by

(by results) Description techniques) Description Cost

1. ROOT illegal root access i1s 1.1 local by first logging 1n as a DCost =100
obtained legitimate user on a local RCost = 40

system, e.g., buffer overflow
on local system programs such
as eject.

1.2 remote from a remote host, e.g., DCost = 100
buffer overtlow of some RCost = 60
daemon running suid root.

2. R2L illegal user access 1s 2.1 single a single event, e.g., guessing DCost =50
obtained from passwords. RCost = 20
outside.

2.2 multiple multiple events, hosts, or days, @ DCost = 50
e.g., the multihop intrusion. RCost = 40

3. DOS Denial-of-Service of 3.1 crashing using a single malicious event DCost = 30
target 1s (or a few packets) to crash a RCost = 10
accomplished. system, e.g., the teardrop

intrusion.

3.2 consumption using a large number of events DCost =30
to exhaust network bandwidth RCost =15
or system resources, e.g.,
syntlood.

4. PROBE information about the 4.1 simple many of probes within a short DCost=2

target 1s gathered. period of time, e.g., fast port RCost=5
scai.

4.2 stealth probe events are distributed DCost=2

sparsely across along tune RCost =7

windows, e.g. slow port scan.

US 7,818,797 Bl

7

The mtrusion taxonomy used 1n the mvention 1s 1llustrated
in Table 1, and categorizes intrusions that occur in the

DARPA Intrusion Detection Evaluation dataset, which was
collected 1n a simulated military environment by MIT Lin-
coln Lab. (Further details are provide in R. Lippmann et al.,
“Evaluating Intrusion Detection Systems: The 1998 DARPA
Ofif-Line Intrusion Detection Evaluation,” Proceedings of the
2000 DARPA Information Survivability Conference and
Exposition, January 2000.) In this dataset, each event to be
monitored 1s a network connection, and the resources subject
to an intrusion are mainly the network services (e.g., http,
smtp, etc.) and system programs on a particular host in the
network. The taxonomy described 1n Table 1 1s used to first
categorize the attacks occurring in the dataset based on their
attack results: (1) i1llegal root access “ROOT,” (2) illegal user
access 1s obtained from outside “R2L.,” (2) denial-of-service
1s accomplished “DOS,” and (4) information about the target
1s obtained “PROBE.” Then within each of these categories,
the attacks may be further partitioned by the techniques used
to execute the attack. The ordering of sub-categories 1s of
increasing complexity of the attack method. Attacks of each
sub-category may be further partitioned according to the
attack targets.

When measuring cost factors, only individual attacks are
detectable by IDS. For example, a coordinated attack that
involves port-scanming a network, gaiming user-level access
to the network illegally, and finally acquiring root access,
would normally be detected and responded to by an IDS as
three separate attacks because most IDSs are designed to
respond quickly to events occurring in real-time. Therefore,
the attacks are measured 1individually.

A first cost factor 1s damage cost (DCost). There are several
factors that determine the damage cost of an attack. Criticality
and lethality are used to quantily the damage that may be
incurred by some intrusive behavior (further details are
described 1n S. Northeutt, Intrusion Detection: An Analyst’s
Handbook, New Riders, 1999, pp. 39-40. “Criticality” mea-
sures the importance, or value, of the target of an attack. This
measure can be evaluated according to aresource’s functional
role 1n an organization or its relative cost of replacement,
unavailability, and disclosure (further details are described in
D. Denming, Information Warfare and Security, Addison
Wesley, 1999, pp. 23-25, and 385-388, which are incorpo-
rated by reference in their entirety herein). According to the
classification taxonomy, 5 points are assigned for firewalls,
routers, or DNS servers; 4 points for mail or Web servers; 2
points for UNIX workstations; and 1 point for Windows or
MS-DOS workstations. “Lethality” measures the degree of
damage that could potentially be caused by some attack. For
example, a more lethal attack that helped an intruder gain root
access would have a higher damage cost than 11 the attack
gave the intruder local user access. Other damage may
include the discovery of knowledge about network infrastruc-
ture or preventing the offering of some critical service. For
cach main attack category in Table 1, a relative lethality scale
1s defined, which 1s used as the base damage cost, or base,.
The attack target dimension is also used to assign damage cost
according to the criticality of the target, or criticality. (The
term DCost 1s used 1n Table 1 for criticality as used 1n equa-
tion [1] and [2], below.) Using these metrics, the damage cost
ol an attack targeted at some resource 1s expressed 1n equation

[1]:

DCost=criticalityxbase,.

[1]

For example, a Denial-of-Service attack targeted at a firewall
has DCost=1350, where criticality=30 (3.1 and 3.2 of Table 1)

5

10

15

20

25

30

35

40

45

50

55

60

65

8

and base,=5 (for a firewall). The same attack targeted at a
Unix workstation has DCost=60, where criticality=30 (3.1
and 3.2 of Table 1) and base,,=2 (for a UNIX workstation).

In another embodiment, the “progress” of an attack 1s
considered 1n addition to criticality and lethality. Progress 1s
defined to be a measure of how successtul an attack 1s 1n
achieving 1ts goals. For example, a Denmial-of-Service attack
via resource or bandwidth consumption (e.g., SYN flooding,
¢.g., when an attacker attempts to 1nitiate an excessive num-
ber of connections to a listening TCP port, but does not
completely initiate those connections. This attack effectively
exhausts the resources of the server, creating a Denial-of-
Service) may not incur damage cost until 1t has progressed to
the point where the performance of the resource under attack
1s starting to sufler. The progress measure can be used as an
estimate of the percentage of the maximum damage cost that
should be accounted for. That 1s, the actual damage cost 1s
alternatively expressed in equation [2]:

DCost=progressxcriticalityxbase.. [2]
In deciding whether or not to respond to an attack, it 1s
necessary to compare the maximum possible damage cost
with the response cost. This requires a worst-case scenario in
which progress=1.0.

A second cost factor 1s response cost (RCost), which
depends primarily on the type of response mechanisms being
used. This 1s usually determined by an IDS’s capabilities,
site-specific policies, attack type, and the target resource (fur-
ther details are described 1n R. Bace, Intrusion Detection,
Macmillan Technical Publishing, 2000, pp. 237-238, which
are 1ncorporated by reference in their entirety herein).
Responses may be either automated or manual, and manual
responses will clearly have a higher response cost.

Responses to attacks that may be automated include the
following: termination of the offending connection or session
(e.g., halting a process or resetting a network connection),
implementation of a packet-filtering rule, rebooting the tar-
geted system, or recording the session for evidence gathering
purposes and further investigation. In addition to these
responses, a notification may be sent to the administrator of
the offending machine via e-mail 1n case that machine was
itsell compromised.

Additional manual responses to an attack may involve
turther imvestigation (perhaps to eliminate action against false
positives), 1dentification, containment, eradication, and
recovery. The cost of manual response includes the labor cost
of the response team, the user of the target, and any other
personnel that participate in response. It also includes any
downtime needed for repairing and patching the targeted
system to prevent future damage.

The relative complexities of typical responses to each
attack are estimated 1n Table 1 in order to define the relative
base response cost, or base,. (Table 1 uses the term RCost to
describe base cost, basey.) Attacks with simpler techniques
(1.e., sub-categories X.1 1n the taxonomy of Table 1) generally
have lower response costs than more complex attacks (1.e.,
sub-categories x.2 1n Table 1), which require more complex
mechanisms for effective response.

A third cost factor 1s operational cost (OpCost). A signifi-
cant cost inherent 1n the operation of an IDS 1s the amount of
time and computing resources needed to extract and test
features from the raw data stream that 1s being monitored.
(For stmplicity, the discussion of personnel cost mvolved 1n
administering and maintaining an IDS 1s omitted from this
discussion.) Operational cost 1s associated with time because
a real-time IDS must detect an attack while 1t 1s 1n progress

US 7,818,797 Bl

9

and generate an alarm as quickly as possible so that damage
can be minimized. A slower IDS which use features with
higher computational costs would therefore be penalized.
Even if a computing resource has a “sunken cost” (e.g., a
dedicated IDS box has been purchased 1n a single payment),
some cost 1s assigned to the expenditure of its resources as
they are used. IT a resource 1s used by one task, it may not be

used by another task at the same time. The cost of computing,
resources 1s therefore an important factor 1n prioritization and
decision making.

Some features cost more to gather than others. However,
costlier features are often more informative for detecting
attacks. For example, features that examine events across a
larger time window have more information available and are
often used for “correlation analysis” (Further details of cor-
relation analysis are provided in E. Amoroso, [ntrusion
Detection: An Introduction to Internet Surveillance, Corre-
lation, Traps, Trace Back, and Response, Intrusion.Net
Books, 1999. pp 145-167, which are incorporated by refer-
ence 1n their entirety herein) 1n order to detect extended or
coordinated attacks such as slow host or network scans (Fur-
ther details of slow host and network scans are described in R.
Bace, Intrusion Detection, Macmillan Technical Publishing,
2000, p. 156, which 1s incorporated by reference 1n 1ts entirety
herein.) Computation of these features 1s costly because of
their need to store and analyze larger amounts data.

Predictive features useful for classilying attacks may be
grouped 1nto several relative levels, based on their computa-
tional costs. In the exemplary embodiment, predictive fea-
tures are grouped into three levels:

Level 1 features are computed using a small amount of
information available at the beginning of an event. For
example, the “destination service™ can be determined using
the first packet of a connection.

Level 2 features are computed at any point during an event,
and are maintained throughout the event’s duration. For
example, the “number of data bytes from the source to the
destination” 1s such a feature.

Level 3 features are computed using information from
several events within a given time window. For example, the
feature measuring “the percentage of connections in the past
five seconds that are to the same destination host as the
current connection and are half-open™ can be computed by
examining all the connections of the past five seconds and
may help detect SYN-flooding.

Relative magnitudes are assigned to these features accord-
ing to their computational costs. For example, Level 1 fea-
tures may be assigned Opcost=1 or 3, Level 2 features may be
assigned Opcost=10, and Level 3 features may be assigned
Opcost=100. These estimations have been verified empiri-
cally using a prototype system for evaluating the intrusion

detection models 1n real-time that has been built 1n coordina-
tion with Network Flight Recorder (Network Flight Recorder
Inc., “Network Flight Recorder,” http://www.nir.com, 1997.

A cost model formulates the total expected cost of intrusion
detection. It considers the trade-off among all relevant cost
factors and provides the basis for making appropriate cost-
sensitive detection decisions. The cost trade-oil 1s examined
regarding each possible outcome of observing some event ¢,
which may represent, €.g., a network connection, a user’s

Outcome

Miss (False Negative, FN)
False Alarm (False Positive, FP)

10

15

20

25

30

35

40

45

50

55

10

session on a system, or some logical grouping of activities
being monitored, etc. The event e 1s denoted by e=(a, p, r)
having an attack type a (which can be normal for a truly
normal event), the progress p of the attack, and the target
resource r. (Progress p may be determined by the duration of
the attack, and target resourcer 1s the destination of the attack,
or the service that 1s being exploited.) The detection outcome
of e 1s one of the following: false negative (FN), false positive
(FP), true positive ('TP), true negative (TN), or misclassified
hit. (Such values may be determined 1n offline analysis after
an attack has completed.) The costs associated with these
outcomes are known as consequential costs (“CCost™), as
they are incurred as a consequence of a prediction of outcome,
and are outlined in Table 2.

FN CCost 1s the cost of not detecting an attack by an IDS,
and may also be incurred by systems that do not install IDSs.
In the former case, the IDS incorrectly determines that a
connection 1s not an attack and does not respond to the attack.
Therefore, the response cost associated with event e, RCost
(e)=0. By failing to detect the attack, the attack may succeed
and the target resource may be damaged. The FN CCost(e) 1s
therefore defined as the damage cost associated with event e,
or DCost(e). (DCost may be chosen from Table 1 or computed
from equations [1] or [2] above, depending upon the infor-
mation that 1s available.)

TP CCost 1s incurred in the event of a correctly classified
attack. To determine whether a response will be taken, both
response cost associated with event e, RCost(e) and damage
cost DCost(e) must be considered. If the damage done by the
attack to resource r, 1s less than the resources expended
detecting the attack and possibly responding to 1t, then 1gnor-
ing the attack actually produces a lower overall cost. There-
tore, 1t RCoste(e)>DCost(e), the attack 1s not responded to
beyond simply logging 1ts occurrence, and the loss 1s DCoste
(). However, if RCost(e)=DCoste(e), then the attack 1s acted
upon, and the loss may be limited to RCost(e). In reality,
however, by the time an attack 1s detected and a response
ensues, some damage may have incurred. To account for this,
TP CCost(e) may be defined as RCost(e)+e€, DCost(e), where
e,€[0, 1] as a function of the progress p of the attack, where an
early stage of the attach defines €,=0, and a substantially
complete attack defines €,=1.

FP CCost 1s mcurred when a normal event 1s incorrectly
classified as an attack, a false alarm. For example, a FP
outcome may occur when e=(normal, p, r) 1s misidentified as
e'=(a, p', r) for some attack a. If RCost(e")=S DCost(e), a
response will ensue and the response cost, RCost(e'), must be
accounted for as well. Also, since normal activities may be
disrupted due to unnecessary response, false alarms should be
penalized. The term PCost(e) represents the penalty cost of
treating a legitimate event ¢ as an attack. For example, 1f € 1s
aborted, PCost(e) can be the damage cost of a Denial-oi-
Service attack on resource r, because a legitimate user may be
denied access to .

TN CCost 1s zero, as 1t 1s incurred when an IDS correctly
decides that an event 1s normal. Therefore, no cost 1s depen-
dent on the outcome of the decision.

TABL

(L]

2

Consequential Cost CCost(e) Condition

DCost(e)
RCost(e) + PCost(e) if DCost(e) = RCost(e) or
0 if DCost(e) < RCost(e)

US 7,818,797 Bl

11

TABLE 2-continued

Outcome Consequential Cost CCost(e)

Hit (True Positive, TP) RCost(e) + €; DCost(e),0 =€, =1

DCost(e)

Normmal (True Negative, TN) 0

Misclassified Hit RCost(e) + €5,DCost(e), 0 = e, = 1
DCost(e)

Maisclassified Hit CCost 1s incurred when the wrong type of
attack 1s identified, e.g., an event e=(a, p, r) 1s misidentified as
e'(a', p',r). If RCost(e')=DCost(¢"), a response will ensue and
RCost(e') needs to be accounted for. Since the response taken
is effective against attack type a rather than a, some damage
cost ol e, DCost(e) will be incurred due to the true attack. Here
€.€[0, 1] 1s a function of the progress p and the effect of the
response intended for a on a.

The cost model for an IDS 1s defined herein. When evalu-
ating an IDS over some labeled test set E, where each event,
eek, has a label of normal or one of the intrusions, the cumu-
lative cost of the IDS 1s defined by equation [3]:

CumulativeCost(E) = Z (CCostie) + OpCosi(e))

e—F

where CCost(e), the consequential cost of the prediction by
the IDS on e, 1s defined 1n Table 2.

It may not always be possible to fold damage cost DCost
and response costs RCost into the same measurement unait.
Instead, each should be analyzed in its own relative scale.
However, to compute CCost(e) for use in the calculation of
CumulativeCost 1n equation [3], such costs must be compared
and then combined. One approach i1s to decide first under
which conditions not to respond to particular attacks. For
example, assuming that probing attacks should not be
responded to and that the damage cost for probing 1s 2, then
the response cost for probing must be greater, say, 20. Simi-
larly, 1f the attack type with the lowest damage cost should not
be 1gnored, then the corresponding lowest response cost
should be a smaller value. Once a starting value 1s defined,
remaining values can be computed according to the relative
scales as discussed above.

OpCost(e) 1n equation [3] can be computed as the sum of
the computational costs of all the features used during rule
checking. Since OpCost(e) and CCost(e) use two different
measurement units, equation [3] may be used at a conceptual
level. That 1s, when evaluating IDSs, both the cumulative
OpCost and cumulative CCost are both considered, but actual
comparisons are performed separately using the two costs.
This inconvenience cannot be overcome easily unless all cost
factors can be represented using a common measurement
unit, or there 1s a reference or comparison relation for all the
factors. Site-specific policies can be used to determine how to
uniformly measure these factors.

Cost-sensitive modeling for intrusion detection 1s per-
formed periodically because cost metrics must take into
account changes 1n information assets and security policies.
The mvention described herein automatically produces cost-
sensitive models for given cost metrics.

In order to reduce OpCost, intrusion detection models need
to use low cost features as oiten as possible while maintaining,
a desired level of accuracy. The approach in accordance with
the mvention 1s to build multiple intrusion detection models,

15

20

25

30

35

40

45

50

55

60

65

12

Condition

if DCost(e) < RCost(e) or
if DCost{e) < RCost(e)

if DCost(e) = RCost(e) or
if DCost(e) < RCost(e)

cach of which uses different sets of features at different cost
levels. Low cost models are always evaluated first by the IDS,
and higher cost models are used only when the low cost
models are not able to make a prediction with suificient accu-
racy. This multiple-model approach may implemented using
RIPPER, a rule induction algorithm described n W. W.
Cohen. “Fast Effective Rule Induction,” Machine Learning:
the 12”7 International Conference, Lake Taho, Calif., 1995.
Morgan Kauifmann, which 1s incorporated by reference in 1ts
entirety herein. However, other machine learning algorithms
or knowledge-engineering methods are also useful. Another
example of amachine learning algorithm suitable for this task
1s C4.5, described in Quinlan, J. R. 1993.“C4.5: Programs for
Machine Learning”. San Mateo: Morgan Kaufmann, which 1s
incorporated by reference 1n 1ts entirety herein. Neural net-
works or Baysean Networks are also suitable for this purpose.
The term rule 1s used herein. It 1s understood that “rule” can
also refer to a signature, or a decision process that tests
conditions and causes an action or an alert.

(iven a training set 1n which each event 1s labeled as either
normal or as an attack, RIPPER builds an “ordered” or “un-
ordered” rule set. Each rule 1n the rule set uses the most
discriminating feature values for classiiying a data 1item into
one of the classes. A “rule” consists of conjunctions of feature
comparisons, and 1f the rule evaluates to “true,” then a pre-
diction 1s made. An exemplary rule for predicting teardrop, a

Demal-of-Service intrusion that exploits a vulnerability 1n
carly versions of Microsoit Windows OS (described in CERT,

“CERT® Advisory CA-1997-28 IP Demal-of-Service
Attacks,” on-line publication http://www.cert.org/advisories/
CA-1997-28 html), 1s “if number_bad_fragments=2 and
protocol=udp then teardrop Some advantages and disadvan-
tages of ordered and un-ordered rule sets 1s discussed below.

An “ordered” rule set has the form

if r{ then 1, elseif r, then 1, . . . , else default

[4]
where r,, 1s a rule and 1,, 1s the class label predicted by that
rule. Before learning, RIPPER first orders the classes by one
of the following heuristics: +ireq, which orders classes by
increasing ifrequency in the training data; —ireq, which orders
classes by decreasing frequency; given, which 1s a user-de-
fined ordering of classes; and mdl, which uses the minimal
description length to guess an optimal ordering of classes (as
described in T. Mitchell. Machine Learning. McGraw-Hill,
1997 pp. 171-174, which 1s incorporated by reference 1n 1ts
entirety herein.) After arranging the classes, RIPPER finds
rules to separate class; 1rom the remaining classes
class,, . . ., class, , then rules to separate class, from the
remaining classes class;, . . ., class, , and so on. The final
class, class , becomes the default class. The end result 1s that
rules for a single class will always be grouped together, but
rules for class, are possibly simplified, because they can
assume that the class of the example 1s one of class,, . . .,
class, . If an example 1s covered by rules from two or more
classes, this conflict 1s resolved in favor of the class that
comes {irst 1n the ordering.

US 7,818,797 Bl

13

An ordered rule set 1s usually succinct and efficient. Evalu-
ation of an entire ordered rule set does not require each rule to
be tested, but proceeds from the top of the rule set to the
bottom until any rule evaluates to true. The features used by
cach rule can be computed one by one as evaluation proceeds.
The operational cost to evaluate an ordered rule set for a given
event 1s the total cost of computing unique features until a
predicting 1s made. For intrusion detection, a —ireq rule set 1s
usually lowest 1n operational cost and accurately classifies
normal events. This 1s because the first rules of the rule set
identily normal operation, which 1s typically the most fre-
quently occurring class. On the other hand, a +ireq rule set
would most likely be higher 1n operational cost but more
accurate 1n classifying attacks because the rule set partitions
attacks from normal events early 1n 1ts evaluation, and normal
1s the final default classification. Depending on the class
ordering, the performances of given and mdl will lie between
those of —freq and +1req.

An “un-ordered” rule set has at least one rule for each class
and there are usually many rules for frequently occurring
classes. There 1s also a default class which 1s used for predic-
tion when none of these rules are satisfied. The following 1s an
example:

if A" B then 1; (0.99); 1f C then 1, (0.98); ... ; default
Iy [5]

Unlike ordered rule sets, all rules are evaluated during pre-
diction and conflicts are broken by using the most accurate
rule. It 1s possible to convert any un-ordered rule set into a
logically equivalent ordered one by ordering all rules by
decreasing precision and then altering into ordered form by
removing the precisions. This process will not atfect the logic
since 11 an early rule (with high precision) 1s satisfied, there 1s
no utility 1n checking later rules with lower precision. Con-
sidering the above mentioned rule set, 1t can be changed 1t into
an equivalent ordered form if A B elseif C then i, elseif
Un-ordered rule sets, 1n general, contain more rules and are
less efficient 1n execution than —ireq and +ireq ordered rule
sets, but there are usually several rules of high precision for
the most frequent class, normal, resulting 1n accurate classi-
fication of normal events.

In order to reduce both operational cost and response cost,
the detection model needs to use low cost features as often as
possible while maintaining a desired accuracy level. The
method 1ncludes steps to build an operational cost-sensitive
n-step sequential ensemble. This ensemble 1s made ol n clas-
sifiers; each one uses features of different cost levels. Low
cost classifiers are always evaluated first at prediction time;
and high cost classifiers are used only when the low cost
classifiers cannot predict with suificient accuracy.

First n feature subsets are generated, where I, = ... <1 |
cost (1,)<...<cost (1),andf 1s the tull feature set. The cost
ol a feature set, cost (1,), 1s the total cost to calculate or acquire
every feature in that feature set. The choice of these feature
subsets 1s based on the following guidelines: (1) Features that
can be acquired 1n the same time should be grouped 1nto the
same subset; otherwise, additional time 1s spent computing
more features. (2) Features with similar costs should be
grouped 1nto the same subset, thus making the operational
costs of different feature subsets significantly difierent. This
will help reduce the expected operational cost 11 the earlier
hypotheses have good accuracy on some 1nstances.

Once the features are distributed into nested feature sub-
sets, the rules, or hypotheses, r,, . . ., r, are computed from
t,,...,1 . During prediction, all the features in 1, are evalu-
ated and predicted with r,. If the prediction does not meet the
desired level of accuracy, the additional features 1n 1,-1, are
tested and r, 1s evaluated. Such a procedure 1s iterated until

10

15

20

25

30

35

40

45

50

55

60

65

14

either a desired accuracy 1s reached or the classifier that uses
all available features, r,, 1s evaluated.

As 1llustrated 1n FIG. 1, a first stage 100 of the technique 1n
accordance with the mvention 1s the training of data, which
typically does not occur in real-time.

As an early stage of the procedure, multiple training sets
T,, ..., T are generated using feature subsets 1, ..., 1
respectively, wheret, © ... =1 andcost (1,)<...<cost(l),
at step 110. In the exemplary embodiment, training sets T,
T,, T4, T, are generated. (Four training sets are used 1n the
exemplary embodiment as there are four levels of OpCost for
the features used by each event in the training sets. Each
clement may represent a connection record and contains fea-
ture values describing that connection. A greater or fewer
number of training sets may be used 1n accordance with the
invention described herein.) Training sets are ordered by
increasing operational costs. In the exemplary embodiment,
training set T, uses only Level 1, OpCost=1 features; Training
set T, uses Level 1 features of OpCosts 1 and 5; T; uses Level
1 and 2 features of OpCosts 1, 5 and 10; and T, uses Level 1,
2 and 3 features of OpCosts 1, 5, 10 and 100. The OpCost of
cach feature was chosen by analyzing the complexity of the
computing of each feature.

Subsequently, rule sets R, ..., R are learned using their
respective tramning sets T, . .., T, . In the exemplary embodi-
ment, rule sets R, R,, R, R, are learned using their respec-
tive traming sets T,, T,, T,, T, at step 120, by use of the
RIPPER algorithm, as described above; other alternative
machine learning algorithms may also be used, also described
above. The Rule set R, 1s learned as either +1req or —ireq rule
set Tor efliciency, as 1t may contain the most costly features.
R,, R,, R, are learned as e1ther —ireq or un-ordered rule sets,
as they will contain accurate rules for classitying normal
events. Thus, a —ireq ruleset will contain rules for classitying
“normal” as early as possible to reduce operational cost. The
ordering schemes given and mdl may alternatively be used 1n
the mvention.

Next, at step 130, a precision measurement p, 1s computed
for every prediction by the rules mn rule sets R, . . . , R,
except for the predictions 1n rule set R. (No precision mea-
surement 1s taken for R,, because a prediction 1s always
emitted after R, 1s evaluated.) Precision measurement p
describes the accuracy of a prediction. If P 1s the set of
predictions with class label 1 and W 1s the set ol instances with

class label 1 1n the data set, by definition,

L IPOw
P

The precision of a rule can also be obtained easily from the
positive p and negative n counts of a rule:

For decisions trees, the positive and negative counts of the
leat can be used. For rule learning, the covered positive and
negative examples for a rule can be calculated. For probabi-
listic methods, the posterior probability can be used.

A threshold value T, 1s determined for every class 1 at step
140, which represents the minimum tolerable precision for a
prediction or classification to be made by any hypothesis or
rule 1n each rule set, except for rule set R,. Threshold values
are set to the precisions of the rules 1n a single rule set using
all features (R) for each class 1n the chosen dataset, as 1t 1s
undesirable to make less precise classifications m R, . . .,

US 7,818,797 Bl

15

R, _; than would bemadeusing R . The threshold value T, will,
on average, ensure that the predictions emitted by the previ-
ous hypothesis are at least as accurate as using R alone. The
motivation for using the precision of the final ruleset R to
define the threshold T, 1s that this final ruleset R, uses all s
available features and the precision of each rule 1s equivalent
to that of a single model. Thus, by using 1ts precision values to
set the threshold T, , we are ensuring that predictions by
R,, ..., R __, will only be made if they will be at least as
accurate as R . Since 1t 1s often the case that R,, ..., R 0
(which use less costly features) can predict as accurately as
R : this 1s the main reason for the savings 1n overall opera-

tional cost.

As 1llustrated 1n FI1G. 2, a second stage 200 of the process
of feature computation and rule evaluation 1s a real-time, or
near real-time execution, which proceeds as follows:

Atstep 210, the first ordered rule set R |, which includes the
subset of features 1, having the lowest operational costs 1s
selected. At step 220, all features 1, are computed, the rules 1n
rule set R, are evaluated and a prediction or class 1 1s deter-
mined by one or more rule r in R,. Rulesets are evaluated 20
against each 1tem 1n the data. Each item in the data set 1s a
vector ol feature values (feature values are described in
greater detail mn U.S. Provisional Application 60/328,682,
filed Oct. 11, 2001, entitled “Method and Apparatus for Com-
bining Multiple Models for Intrusion Detection System,” 15
which 1s mncorporated by reference in 1ts entirety herein). A
prediction 1 1s erther “normal” or a specific attack type
describing the connection.

A next stage, step 230, 1s to determine whether the preci-
sion measurement 1s greater than or equal to the tolerance
level, p,Z<.. I p,=7,, the prediction 1 1s considered final. In
this case, no more features are computed and the system
determines whether there 1s another event, step 250, and, 11 so,
examines the next event, step 260. Otherwise, the next rule
set, e.g., R, 1s selected at step 270, and any additional fea-
tures (I,—1,) required by R, are computed and R, 1s to be
evaluated to the same event e, at step 220. This process con-
tinues with R;, etc., until a final prediction 1s made. The
evaluation of R, always produces a final prediction because
R, uses all features.

The precision and threshold values used by the multiple 40
model approach can be obtained during model training from
the training set, or can be computed using a separate hold-out
validation set.

A traditional IDS that does not consider the trade-off
between RCost and DCost will attempt to respond to every 45
attack that it detects. As a result, the consequential cost for FP,
TP, and misclassified hits will always include some response
cost. A cost-sensitive decision module 1s used to determine
whether response should ensue based on whether DCost 1s
greater than RCost. 50

The detection module takes as mput the data items
described above and outputs an attack report, which contains
all data items that were determined by the model to be not
“normal”, along with a prediction for each data item. The
report contains the name of the predicted attack and the name
of the target, which are then used to look up the pre-deter-
mined DCost and RCost. The decision module takes as input
an attack report generated by the detection module. If
DCost=RCost, the decision module invokes a separate mod-
ule to 1mtiate a response; otherwise, it simply logs the attack
report. 60

The functionality of the decision module can be 1mple-
mented before training using some data re-labeling mecha-
nism such as MetaCost (as described in P. Domingos, “Meta-
cost: A General Method for Makin% Classifiers Cost-
Sensitive,” Proceedings of the 57 ACM SIGKDD 65

International Conference on Knowledge Discovery & Data

Mining (KDD-99), August 1999) which will re-label attacks

15

30

35

55

16

with DCost<RCost to normal so that the generated model will
not contain rules for predicting these attacks at all. In the
exemplary embodiment 300, this functionality 1s imple-
mented 1n a post-detection decision module 310 to eliminate
the necessity of re-traiming a model when cost factors change,
despite the savings 1n operational cost due to the generation of
a smaller model. (FIG. 3.) DCost as discussed above, may be
determined based on the technique used for the attack (see,
¢.g., Table 1), the criticality of the system being attacked, and
the progress of the attack. RCost as discussed above, may be
determined based on the technique used for the attack (see,
¢.g., Table 1) and the operation used to respond to the attack.
Thus, 1f DCost=RCost, then a separate module 1s invoked to
initiate a response 320. Otherwise, an attack report 1s logged
at step 330.

Experiments which were performed to evaluate the method
use data that were distributed by the 1998 DARPA Intrusion
Detection Evaluation Program. The data were gathered from
a military network with a wide variety of attacks injected into
the network over a period of seven weeks. The details of the
data mining framework for data pre-processing and feature
extraction 1s described in W. Lee, S. J. Stolfo and K. W. Mok,
“A Data Mining Framework for Building Intrusion Detection
Models,” Proceedings of the 1999 IEEL Symposium on Secu-
rity and Privacy, May 1999, which 1s incorporated by refer-
ence 1n its entirety herein.) Fighty percent of the data were
used for traimning the detection models. The remaining 20%
were used as a test set for evaluation of the cost-sensitive
models. The training set was also used to calculate the preci-
sion of each rule and the threshold value for each class label.

Expected operational and consequential costs were mea-
sured 1n the experiments. The expected average operational
cost per event ¢ over the entire test set S 1s defined as:

Z OpCost(e) [6]

e=5

OpCost(e) =

51

In all of the reported results, OpCost(e) 1s computed as the
sum of the feature computation costs of all unique features
used by all rules evaluated until a prediction 1s made for event
¢. If any Level 3 features (of cost 100) are used at all, the cost
1s counted only once. This 1s done because a natural optimi-
zation of rule evaluation 1s to compute all statistical and
temporal features in one 1teration through the event database.

For each event in the test set, its CCost 1s computed as
tollows: the outcome of the prediction (1.e., FP, TP, FN, TN, or
misclassified hit) 1s used to determine the corresponding con-
ditional cost expressionin Table 2; the relevant RCost, DCost,
and PCost are then used to compute the appropriate CCost.
The CCost for all events 1n the test set are then summed to
measure total CCost. In all experiments, both €,=0 and e,=1
were evaluated 1n the cost model of Table 2. Setting €,=0
corresponds to the optimaistic belief that the correct response
will be successiul 1n preventing damage. Setting €,=1 corre-
sponds to the pessimistic belietf that an 1ncorrect response
does not prevent the intended damage at all.

TABLE 3

Averace OpCost Per Connection

— ++— ———— + ++++ ———t

OpCost 128.70 4%.43 42.29 22273 4842 47.37
% rdc N/A 360.68% 67.14% N/A 78.26% 78.73%

US 7,818,797 Bl

TABLE 4
CCost Comparison
Model Format — o ——— + ++++ ———+

Cost Sensitive CCost 25776 25146 25226 24746 24646 24786

% rdc 87.8% 92.3% 91.7% 95.1% 95.8% 94.8%
Cost Insensitive CCost 28255 27584 27704 27226 27105 27258

% rdc 71.4% 75.1% 74.3% 77.6% 78.5% 77.4%

% err 0.193% 0.165% 0.151% 0.085% 0.122% 0.104%

In all discussion of the results, the terminology +, — and +
are used to represent +ireq, —ireq and un-ordered rule sets,
respectively. A multiple model approach 1s denoted as a
sequence of these symbols. For example, — — — — represents a
multiple model where all rule sets are —{req.

Table 3 shows the average operational cost per event for a
single classifier approach (R, learned as — or +) and the
respective multiple model approaches (r ++—, ————or+ +
+ +, — — — +). The first row below each method 1s the average
OpCost per event and the second row 1s the reduction (% rdc)
by the multiple model over the respective single model,

Single — Multipl
ingle ultip EXIDO%.

Single

As clearly shown 1n the table, there i1s always a significant
reduction by the multiple model approach. In all four con-
figurations, the reduction 1s more than 57% and — — — + has a
reduction 1n operational cost by as much as 79%. This sig-
nificant reduction 1s due to the fact that R, . . . R, are very
accurate 1n filtering normal events and a majority of events 1n
real network environments (and consequently the test set) are
normal. The multiple model approach computes more costly
features only when they are needed.

CCost measurements are shown in Table 4. The Maximal
loss 1s the cost mcurred when always predicting normal, or
2DCost,. This value 1s 38256 for the test set. The Minimal
loss 1s the cost of correctly predicting all connections and
responding to an attack only when DCost(1)ZRCost(1). This
value 1s 24046 and 1t 1s calculated as 2 5, ;i <r coss yPCOSE

(D+2 posin=rcosnRCOSI(]). Areasonable method will have
a CCost measurement between Maximal and Minimal losses.

Reduction 1s defined as

Name

ConvertToNoise.awk

ConvertToNoiseAccordingToPrecision.awk

ConvertToNormal.awk
DuplicatePN.awk
FeatureSummary.awk
FeatureValue.awk
GenNormalNoise.awk
HypothesisCost.awk
ReplaceDefault.awk
ReplaceDefaultToNormal.awk
ReplaceWithNoise.awk
SegmentlDS.awk
SegmentNormal.awk
SegmentNormalNew.awk

15

20

25

30

35

40

45

Maximal — CCost

orde = S Mimmal <!

00%

to compare different models. As a comparison, the results of
both “cost sensitive” and “‘cost insensitive” methods are
shown. A cost sensitive method only 1nitiates a response 11
DCost=RCost, and corresponds to the cost model 1n Table 2.
A cost msensitive method, on the other hand, responds to
every predicted attack and 1s representative of current brute-
force approaches to intrusion detection. The last row of the
table shows the error rate (% err) of each model.

As shown 1n Table 4, the cost sensitive methods have sig-
nificantly lower CCost than the respective cost insensitive
methods for both single and multiple models. The reason 1s
that a cost sensitive model will only respond to an attack if its
response cost1s lower than 1ts damage cost. The error rates for
all s1ix models are very low (<0.2%) and very similar, indi-
cating that all models are very accurate. however, there 1s no
strong correlation between error rate and CCost, as a more
accurate model may not necessarily have detected more
costly attacks. There 1s little vanation in the total CCost of
single and multiple models 1n both cost-sensitive and cost-
insensitive settings, showing that the multiple model
approach, while decreasing OpCost, has little effect on
CCost. Taking both OpCost and CCost into account (Tables 3
and 4), the highest performing model 1s — — — +.

It will be understood that the foregoing 1s only illustrative
of the principles of the mvention, and that various modifica-
tions can be made by those skilled 1n the art without departing
from the scope and spirit of the invention.

APPENDIX

The following files are included 1n the accompanying CD
and are incorporated by reference 1n their entirety herein.

Modified Size Ratio Packed Path
Jul. 18, 2000 3:06 P.M. 99 0% 99
Jul. 6, 2000 10:56 A. M. 322 0% 322
Jul. 20, 2000 1:51 P.M. 100 0% 100
May 1, 2000 6:25 P.M. 729 0% 729
Feb. 4, 2000 2:39 P.M. 171 0% 171
Feb. 3, 2000 10:55 A.M. 158 0% 158
Feb. 3, 2000 1:28 P.M. 81 0% 81
May 1, 2000 6:05 P.M. 831 0% 831
Jul. 21, 2000 11:17 A.M. 158 0% 158
Jul. 20, 2000 12:48 P.M. 160 0% 160
Feb. 14, 2000 6:53 P.M. 201 0% 201
Feb. 2, 2000 11:27 P.M. 142 0% 142
Feb. 9, 2000 10:37 P.M. 309 0% 309
Feb. 10, 2000 11:32 A. M. 122 0% 122

19

-continued
Name Modified
analyzenormal.awk Feb. 9, 2000 11:29 A.M.
anomaly_ matrix.awk Feb. 16, 2000 12:12 P.M.
anomaly_matrx_new.awk Feb. 21, 2000 4:15 P.M.
anomaly_summary.awk Feb. 12, 2000 11:50 P.M.
anomaly_summary_no_title.awk Feb. 12, 2000 10:49 P.M.
anomaly_table.awk Feb. 23, 2000 11:03 P.M.
anomaly_table anomly_only.awk Feb. 27, 2000 12:20 A.M.
anomaly table normal.awk Feb. 26, 2000 1:40 P.M.

avg.awk

avg_comb.awk
avg_comb_meta.awk

avg comb_nometa.awk
cost_matrix_analysis.awk
data_stats.awk
each_rule_feature.awk
featureCumulative.awk
filter_noise.awk
fired_at_which_classifier.awk
gen_boost_init_data_11.awk
gen_boost_init_data_awk.awk
gen_boost_init_data_uniform.awk
gen_normal_ids.awk
hyoCostNew.awk

hypCost.awk

hypCostCumulative.awk

label.awk

make names.awk
nullservice.awk
oneline.awk
orderunordered.awk
rule_accuracy.awk
rule feature.awk

rule feature cost.awk

US 7,818,797 Bl

Jan. 27, 2000 4:42 P.M.
Jan. 5, 2000 3:58 P.M.
Jan. 5, 2000 4:07 P.M.
Jan. 5, 2000 4:08 P.M.
Dec. 12,1999 1:20 P.M.
Dec. 8, 1999 1:17 P.M.
Jan. 27, 2000 3:02 P.M.
Jan. 27, 2000 4:32 P.M.
Feb. 17, 2000 7:02 P.M.

Mar.]

16, 2000 9:38 P.M.

Dec. 12, 1999 4:57 P.M.
Dec. 12, 1999 4:577 P.M.

Dec. 23,
Dec. 26,

1999 3:45 P.M.
1999 11:47A.M.

Jan. 5, 2000 3:02 P.M.
Dec. 27, 1999 9:31 P.M.
5, 2000 6:53 P.M.

Jan.

hypCostCumulative4dColumn.awk Jan. 5, 2000 5:13 P.M.
hypCostCumulativeDecrease.awk Jan. 1 2000 2:30 P.M.
hypCostCumulativeDecrease4Column.awk Jan. 1 1, 2000 2:32 P.M.
hypCostUnordered.awk Jan. 1, 2000 4:52 P.M.
hypUnorderedSegmentation.awk Jan. 1, 2000 5:08 P.M.

Feb. 14 2000 10:50 P.M.
Dec. 24, 1999 2:26 P.M.
Feb. 13, 2000 5:29 P.M.

Feb. 14, 2000 10:54 P.M.
Jan. 27,2000 10:47 A.M.

Dec. 31, 1999 10:51 A.M.

Jan. 5, 2000 9:15 P.M.
Jan .5, 2000 4:01 P.M.

tmp.awk Feb .12, 2000 11:48 P.M.
total.awk Jun .25, 2000 5:22 A.M.
total incremental.awk Jul .4, 2000 1:42 P.M.
total incremental 4C.awk Jul .21, 2000 12:39 P.M.
total_incremental debug.awk Jul .4, 2000 1:51 P.M.
intrusion_precision.script Jul .20, 2000 3:50 P.M.

intrusion_precision_4C.script
normal_precision.script
test_incremental.script

61 file(s)

What 1s claimed 1s:

1. A method of modeling a cost-sensitive intrusion detec-

tion model, comprising:

Jul.
Jul.

21,2000 12:38 P.M.
4, 2000 1:37 P.M.
Feb. 13, 2000 8:16 P.M.

20

Size Ratio Packed Path

04 0% 04
1,422 0% 1,422
5490 0% 5,490
2440 0% 2,440

738 0% 738
6,736 0% 6,736
8230 0% 8,230
6,736 0% 6,736

614 0% 614

649 0% 649

649 0% 649

651 0% 651

264 0% 264

223 0% 223

197 0% 197

671 0% 671

433 0% 433

602 0% 602
1,213 0% 1,213

260 0% 260
1,180 0% 1,189

164 0% 164

882 0% 882

882 0% 882

898 0% 898

806 0% 896

881 0% 381

879 0% 879

880 0% 880
1,211 0% 1,211

76 0% 76
658 0% 658
104 0% 104
35 0% 35
1,234 0% 1,234

186 0% 186

118 0% 118
1,459 0% 1,459

817 0% 817
6,736 0% 6,736
6,741 0% 6,741
6,741 0% 6,741
6,865 0% 6,865
1,236 0% 1,236
1,236 0% 1,236

741 0% 741

64 0% 64
85,704 0% 85,704

s10n, a criticality of a component of the computer system
subject to the 1ntrusion, and a progress of the intrusion;
and

(a) generating a training set of data suitable as input for
machine learning, said training set of data comprising a
set of features having associated costs;

(b) automatically determining, using a computer pro-
grammed to do so, at least one model based on said
training set of data using machine learning;

(c) for each of a plurality of events, computing, using a
computer programmed to do so, said set of features and
predicting a class of said event using said at least one
model;

(d) determining a response cost to be incurred by a com-
puter system 1n responding to an event predicted as an
intrusion in (¢), wherein said response cost 1s estimated
based upon the resources of the computer system to be
expended 1n responding to the event, and determining a
damage cost for an event predicted as an intrusion 1n (c),
wherein said damage cost 1s determined based on at least
one of the group consisting of a technique of the 1ntru-

50

55

60

65

(¢) mitiating a response to the event if the damage cost 1s

greater than or equal to the response cost.

2. The method as recited 1n claim 1, wherein said generat-
ing a training set ol data comprises training a sequence of
training sets of data, wherein the tramning sets are ordered
such that a first set of features of a first training set 1s a subset
of a next subsequent set of features of a next subsequent
training set, and wherein an associated cost of the first set of
features 1s less than an associated cost of the next subsequent
set of features.

3. The method as recited in claim 2, wherein said deter-
mining at least one model comprises determining an ordered
sequence of rule sets for each respective training set 1n said
ordered sequence of training sets, wherein the rule sets are
ordered corresponding to the order of the respective training
Sets.

4. The method as recited 1n claim 3, further comprising,
after said determiming at least one model, for each rule 1n the

US 7,818,797 Bl

21

ordered sequence of rule sets, determining a precision mea-
surement indicative of the accuracy of the rule 1n predicting a
class.

5. The method as recited 1n claim 4, wherein said deter-
minng a precision measurement comprises determining a
rat1o of positive counts of the rule to the total counts of the
rule.

6. The method as recited in claim 4, further comprising,
alter said determining a precision measurement, for each said
class, determining a threshold value indicative of a minimum
precision for each class.

7. The method as recited in claim 6, wherein said comput-
ing said set of features comprises, beginning with a first rule
set of said ordered sequence of rule sets, computing said set of
teatures and predicting a class of said event with a rule of said
rule set; and i1 the precision measurement corresponding to
said rule 1s less than the threshold corresponding to the class,
repeating said computing said features with the next rule set
in said ordered sequence of rule sets.

8. The method as recited in claim 6, wherein the threshold
value 1s determined as the precision value for the rule 1n the

rule set corresponding to said feature set having a greatest
COst.

9. The method as recited 1n claim 1, wherein a set of
features comprises features computed using data available at
the beginning of an event.

10. The method as recited 1n claim 1, wherein a set of
features comprises features computed at any time during a
duration of an event, and 1s maintained throughout the dura-
tion of the event.

11. The method as recited 1n claim 1, wherein a set of

features comprises features computed using data from a plu-
rality of events within a predetermined duration of time.

12. The method as recited in claim 1, wherein said deter-

mimng at least one model comprises learning a rule set using,
a RIPPER algorithm.

13. The method as recited 1n claim 12, wherein said deter-
mimng at least one model comprises learning an unordered
rule set.

14. The method as recited 1n claim 1, further comprising
logging an attack report 1t the damage cost 1s less than the
response cost.

15. The method as recited in claim 1, wherein determining
a response cost comprises estimating a cost associated with
providing an automated response.

16. The method as recited 1n claim 1, wherein determining
a response cost comprises estimating a cost associated with
terminating a session.

17. The method as recited in claim 1, wherein determining
a response cost comprises estimating a cost associated with
implementing an operational rule.

18. The method as recited 1n claim 1, wherein determining
a response cost comprises estimating a cost associated with
rebooting the system.

19. The method as recited in claim 1, wherein determining
a response cost comprises estimating a cost associated with
recording a session.

20. The method as recited 1n claim 1, wherein determining,
a response cost comprises estimating a cost associated with
providing a notification.

21. The method as recited 1n claim 1, wherein determining,
a response cost comprises estimating a cost associated with
providing a manual response.

22. A method of modeling a cost-sensitive intrusion detec-
tion model, using at least one model, comprising;:

5

10

15

20

30

35

40

45

50

55

60

65

22

(a) for each of a plurality of events, computing, using a
computer programmed to do so, said set of features and
predicting a class of said event using said at least one
model;

(b) determining a response cost to be mcurred by a com-
puter system 1n responding to an event predicted as an
intrusion 1n (a), wherein said response cost 1s estimated
based upon the resources of the computer system to be
expended 1n responding to the event; and determining a
damage cost for an event predicted as an intrusion in (a),
wherein said damage cost1s determined based on at least
one of the group consisting of a technique of the intru-
s10n, a criticality of a component of the computer system
subject to the intrusion, and a progress of the intrusion;
and

(c) mitiating a response to the event 1f the damage cost 1s
greater than or equal to the response cost.

23. The method as recited 1n claim 22, wherein the at least
one model comprises a plurality of rule sets that are 1n an
ordered sequence such that a first set of features evaluated by
a first rule set 1s a subset of a next subsequent set of features
evaluated by a next subsequent rule set, and wherein an asso-
ciated cost of the first set of features 1s less than an associated
cost the next subsequent set of features, and wherein said
computing said set of features comprises, for each of a plu-
rality of events, beginning with said first rule set, computing,
said set of features and predicting a class of said event with a
rule of said rule set.

24. The method as recited 1n claim 23, wherein said com-
puting said set of features and predicting a class of said event
with a rule of said rule set comprises repeating said comput-
ing said set of features and predicting a class of said event
with the next rule set 1n said ordered sequence of rule sets it a
precision measurement indicative of the accuracy of said rule
in predicting a class 1s less than a threshold value indicative of
a minimum precision for said class.

25. The method as recited 1in claim 22, wherein said at least
one model comprises a rule set learned using a RIPPER
algorithm.

26. The method as recited 1n claim 25, further comprising,
learning an unordered rule set.

277. The method as recited 1n claim 22, further comprising,
logging an attack report 1f the damage cost 1s less than the
response cost.

28. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
providing an automated response.

29. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
terminating a session.

30. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
implementing an operational rule.

31. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
rebooting the system.

32. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
recording a session.

33. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
providing a notification.

34. The method as recited in claim 22, wherein determining,
a response cost comprises estimating a cost associated with
providing a manual response.

35. A method of modeling a cost-sensitive intrusion detec-
tion model, comprising:

US 7,818,797 Bl

23

(a) generating a training set of data suitable as mput for
machine learning, said training set of data comprising a
set of features having associated costs;

(b) automatically determining, using a computer pro-
grammed to do so, at least one model based on said
training set of data using machine learning;

(c) for each of a plurality of events, computing, using a
computer programmed to do so, said set of features and
predicting a class of said event using said at least one
model;

(d) determining a response cost to be mcurred by a com-
puter system in responding to an event predicted as an
intrusion 1n (¢), wherein said response cost 1s estimated

10

24

based upon the resources of the computer system to be
expended 1n responding to the event,

(¢) determining a damage cost for an event predicted as an
intrusion in (¢), wherein said damage cost 1s determined
based on at least one of the group consisting of a tech-
nique of the intrusion, a criticality of a component of the
computer system subject to the intrusion, and a progress
of the intrusion;

(1) determining a metric for comparing the response cost
and the damage costs; and

(g) itiating a response to the event 1f the damage cost 1s
greater than or equal to the response cost.

¥ ¥ * ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

