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VERIFICATION OF MEMORY
CONSISTENCY AND TRANSACTIONAL
MEMORY

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of computer systems, and
more particularly to verification of compliance with memory
consistency models for multiprocessor systems.

2. Description of the Related Art

Shared memory multiprocessor computer system architec-
tures have become a common solution for complex comput-
ing needs, such as are oiten encountered in computer network
servers and telecommunications applications. A typical
shared memory multiprocessor computing system includes
two or more processors that access shared memory. The same
physical address on different processors typically refers to the
same location 1n the shared memory. In shared memory archi-
tectures, a memory consistency model typically specifies the
semantics of memory operations to coordinate accesses by
multiple processors to the shared memory. A memory model
clifectively establishes a contract between the programmer
and the hardware. Thus, both programs and hardware 1n a
shared memory multiprocessor system must be correct with
respect to the memory model definition for proper operation.
Memory models can have a significant impact on ease of
programming and optimizations performable by the hard-
ware or the compiler.

One example of a memory consistency model 1s the Total
Store Order (“TSO”) memory model developed by Sun
Microsystems, Inc. The TSO memory model specification
defines the semantics of load, store and atomic memory
operations (such as swap operations) 1n uniprocessor or mul-
tiprocessor systems from the point of view of program results.
TSO defines two types of orders over the set of memory
operations: a per processor program order denoting the
sequence 1n which the processor logically executes instruc-
tions, and a global memory order conforming to the order in
which operations are performed at the memory.

Memory operations are ordered by six TSO axioms: the
Order, Atomicity, Termination, LoadOp, StoreStore and
Value axioms. The Order axiom requires that there 1s a total
order over all stores. The Atomicity axiom requires that there
be no intervening stores between a load component and a
store component ol an atomic memory operation such as a
swap. The Termination axiom requires that all stores and
swaps eventually terminate. That 1s, 11 one processor of a
multiprocessor does a store to a particular memory location
and another processor repeatedly does loads to read the par-
ticular memory location, there will eventually be a load that
reads the value stored by the first processor. The LoadOp
axiom requires that if an operation follows a load 1n per
processor program order, then the operation must also follow
the load 1n global memory order. The StoreStore axiom
requires that 1f two stores appear 1n a particular order 1n per
processor program order, then they must also appear 1n the
same order in global memory order. Informally, the LoadOp
and StoreStore axioms together imply that under TSO, the
only kind of reordering allowed between operations on the
same processor 1s for loads to overtake stores, 1.e., a load
which succeeds a store 1 program order may precede 1t in
global order. The Value axiom requires that the value returned
by a load from a particular memory location 1s the value
written to that memory location by the last store 1n global
memory order, among the set of stores preceding the load in
either global memory order or program order. The Value
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axiom allows a load to read the value written by an earlier
store on the same processor, before that store has completed
in global order. This permits processor implementations with
store butlers, for example, to locally bypass data from a store
to a load, before the store 1s globally visible. In a multipro-
cessor supporting the TSO memory consistency model, a
violation of a TSO axiom by a sequence ol memory opera-
tions may indicate a design problem or bug.

One difficulty with advanced shared memory multiproces-
sor architectures 1s that design problems or bugs are difficult
to find, 1solate and correct. The memory subsystem 1s among
the most complex parts of modern multiprocessor architec-
tures, especially of architectures employing chip multipro-
cessing (CMP) or simultaneous multithreading (SMT), and
therefore among the most bug-prone. Undetected bugs result
in 1improper operations that often lead to system failures and
that delay new design releases or, worse, require post-release
patches. It 1s often difficult to determine the validity of pro-
gram execution results 1n the presence of race conditions.
Since the results of the program may be timing-dependent,
multiple legal outcomes may exist, and a simple architectural
model of the multiprocessor may not be sufficient to verify
that the results comply with the memory consistency model.
Existing techniques to verily program execution results may
sometimes require analysis steps with relatively high levels of
computational complexity. As a result, cost and time con-
straints associated with typical processor design cycles may
tend to limit the use of the existing techmques to relatively
small programs and/or relatively small multiprocessors.

SUMMARY

Various embodiments of a system and method for effi-
ciently verifying compliance with a memory consistency
model are disclosed.

In one embodiment, a system 1ncludes a test module and an
analysis module. The test module may be operable to coor-
dinate an execution of a multithreaded test program on a test
platform that includes multiple processing elements (e.g.,
multiple processors or multiple processor cores). The test
platform may include multiprocessor computer system hard-
ware, or a simulation or emulation of a multiprocessor com-
puter system or a memory subsystem in other embodiments.
The results of the program execution, which may include
per-processing element memory operation sequences, may
be provided to the analysis module. If the test platform pro-
vides visibility into the order in which writes from multiple
processing elements are performed at shared memory loca-
tions, the analysis module may use a first set of rules to verily
that the results of the execution correspond to a valid ordering
ol events according to a memory consistency model. For
example, 11 the test platform 1s a simulation model, a total
write order may be provided for each shared memory location
written to during the test as part of the simulation results. If,
however, the test 1s run on a test platform that does not provide
an 1ndication of write ordering, as may be the case 11 the test
platform 1s an actual multiprocessor system, the analysis
module may use a second set of rules to verity compliance
with the memory consistency model. There may be a tradeoif
between the level of detail available from the test platform
and the efficiency and completeness with which memory
consistency model verification can be accomplished.

In one embodiment, the analysis module may be operable
to represent memory operations (e.g., loads and stores) per-
formed during the execution as nodes of a directed graph.
Edges between the nodes may be added by the analysis mod-
ule to represent ordering relationships between the memory
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operations. A number of different types of edges may be
added, corresponding to the axioms of the memory consis-
tency model and the amount of detail (e.g., total write order-
ing information) provided by the test platiorm. Some of the
edges may be added 1n 1terations, where additional edges may
be inferred within each new iteration, based on a traversal of
existing edges 1n a current version of the graph. Additionally,
a backtracking procedure may be utilized to return to a pre-
vious choice point and make a different choice. In this man-
ner, further edges may be added and considered. A cycle in the
directed graph may represent a violation of the memory con-
sistency model, as it may represent an order of memory opera-
tions that violates the axioms of the model.

In a further embodiment, a transactional memory 1s con-
templated wherein axioms regarding transactions are utilized
to establish a framework and aid in memory consistency
verification. Using this framework, a pseudo-random testing
methodology 1s implemented for TM systems and efficient
analysis algorithms based on this framework.

These and other embodiments will be further appreciated
upon reference the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system, according to one
embodiment.

FI1G. 2 1s a tlow diagram 1illustrating aspects of the opera-
tion of a test module and an analysis module, according to one
embodiment.

FIG. 3 1s a flow diagram 1llustrating turther aspects of the
operation of analysis module, according to one embodiment.

FIG. 4 1llustrates an example of a directed graph represen-
tation of memory operations generated by an analysis mod-
ule, according to one embodiment.

FIG. 5a illustrates another example of a directed graph
representation of memory operations generated by an analy-
s1s module, according to one embodiment.

FIG. 3b illustrates an example of an application of a heu-
ristic by an analysis module to the directed graph representa-
tion shown 1 FIG. 34, according to one embodiment.

FI1G. 6a 1s a tlow diagram illustrating further aspects of the
operation ol an analysis module according to one embodi-
ment, where the analysis module may be configured to apply
a heuristic based on a possible write order.

FIG. 6b 1llustrates one embodiment of a method for per-
forming a backtracking procedure.

FIG. 7 1s a flow diagram 1illustrating aspects of the opera-
tion of an analysis module according to one embodiment
where vector clocks are employed.

FIG. 8 illustrates analysis 1 a transactional memory
model.

FI1G. 91s a block diagram of one embodiment of a computer
readable medium.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments are shown by
way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not mntended to limit the
invention to the particular form disclosed, but on the contrary,
the mvention 1s to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1 1s a block diagram of one embodiment of a system
100. System 100 includes a test module 110, an analysis
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4

module 120 and a test platform 130. Test module 110 and
analysis module 120 may be operable to use test platiorm 130
to test whether a sequence ol memory operations performed
in a shared memory multiprocessor computer system violate
a memory consistency model (e.g., the Total Store Order or
TSO memory consistency model from Sun Microsystems
Inc.). In the illustrated embodiment, for example, test plat-
form 130 may include a plurality of processing elements
140A-140N (collectively, processing elements 140) and a
shared memory 150. In some embodiments, test platform 130
may comprise the actual hardware of a shared memory mul-
tiprocessor computer system, where, for example, each pro-
cessing element 140 1s a processor or a processing core on a
multi-core processor chip. In other embodiments, test plat-
form 130 may comprise a simulation model, e.g., a sitmulation
model of a memory subsystem, or a simulation model of a
shared memory multiprocessor computer system. Test mod-
ule 110 may be operable to coordinate an execution of a
multithreaded test program on test platform 130. Analysis
module 120 may be operable to use one or more sets of rules
to verily that the results of the execution of the multithreaded
test program correspond to a valid order of events according
to the memory consistency model. Further details on the
design and generation of the multithreaded test program, and
the components and functionality of the test module, 1n vari-
ous embodiments are provided below.

In some embodiments analysis module 120 may use the
rules to develop a graphical representation of the execution of
memory operations of the multithreaded test program, and to
search for patterns (e.g., cycles 1n a directed graph) that may
indicate a violation of the memory consistency model. In one
embodiment, the specific rules used by analysis module 120
to verily compliance with the memory consistency model
may vary as a function of the level of detail provided by test
plattorm 130 about the relative sequence of memory opera-
tions performed during the test program execution. For
example, 1n some cases, such as when a simulation model 1s
used as the test platform 130, a total ordering of write opera-
tions to each memory location written to during the test pro-
gram may be provided as part of the simulation results. In
some embodiments, analysis module 120 may use a first set of
rules where such a total ordering 1s provided, and may use a
different set of rules 11 the total ordering 1s not provided (e.g.,
if the test 1s run on an actual implementation of a multipro-
cessor system where 1t may not be possible to capture write
order for each memory location modified during the test, or
where the test execution may be perturbed to an unacceptable
degree 11 write ordering information 1s gathered for each
memory location). The rules used for analysis when a total
ordering of writes 1s available may result in a more efficient
and/or a more complete verification of compliance with the
memory consistency model than the rules used when total
write ordering information for each memory location 1s not
available. In addition, 1n some embodiments, analysis module
120 may also be operable to use one or more optimizations,
such as a vector clock technique or a heuristic based on
possible write ordering sequences, to reduce the time taken to
complete memory consistency model verification. Further
details of the different types of rules that may be used by
analysis module 120, as well as the optimizations performed
in different embodiments, are provided below.

As noted above, 1n some embodiments test platform 130
may 1include an actual multiprocessor computer system,
which may for example run an operating system in addition to
the multithreaded test program. The execution of operating
system operations (and/or the presence of other external per-
turbations) in conjunction with the test program may atfect
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the results of the test program i1n some embodiments—ior
example, memory-related operating system activities may
alfect the timing of memory operations performed during the
test. As a result, 1n such embodiments the results of the
memory model compliance analysis performed by analysis
module 120 may be applied only to specific test runs (1.e., the
analysis results may change 11 the test 1s repeated). Multiple
test and analysis runs or repetitions may therefore be per-
formed in such embodiments. In other embodiments, test
platform 130 may include simulation models at any desired
level of abstraction, such as architectural models, RTL (Reg-
ister Transfer Level) models, or gate-level models. The simu-
lation may encompass only the units ol a memory subsystem
in some embodiments, e.g., the model may include only
shared memory 150 and 1ts interactions with processing ele-
ments 140, or may include additional elements of the multi-
processor computer system. Any desired combination of soft-
ware simulators, hardware accelerators or FPGA (Field
Programmable Gate Array) based emulators may be used 1n
test platform 130 1n different embodiments.

FI1G. 2 1s a tlow diagram 1illustrating aspects of the opera-
tion of test module 110 and analysis module 120, according to
one embodiment. As shown 1n blocks 201 and 206 of FIG. 2,
test module 110 may be configured to generate the multi-
threaded test program and to coordinate the execution of the
test program on the test platform 130. In one embodiment, as
illustrated 1n FIG. 1, test module 110 may comprise a test
generator 112 and an execution coordinator 114. Test genera-
tor 112 may be configured to generate the multithreaded test
program to be executed on test platform 130, while execution
coordinator 114 may be responsible for managing the execu-
tion 1tseli—e.g., for starting and stopping the execution,
obtaining intermediate and final results, etc. Further details
about the functionality of test generator 112 and execution
coordinator 114 are provided below.

The results of the execution of the test program may be
provided to analysis module 120. In one embodiment, 11 write
ordering information (e.g., a total ordering of writes at each
memory location written to during the test program) 1s avail-
able (as detected 1n decision block 211 of FIG. 2), analysis
module 120 may use a first set of rules to verity whether the
execution results correspond to a valid ordering of events
according to a specified memory consistency model (block
216). If the write ordering information 1s not available, analy-
s1s module may use a second set of rules to verily whether the
execution results conform to the memory consistency model
(block 221). The techniques 1llustrated in FIG. 2 may be used
to verily compliance with a number of different memory
consistency models 1n different embodiments. As described
below 1n further detail, 1f the memory consistency model 1s
the TSO model, the rules used by analysis module may be
derived from a problem termed verifying total store order
contlict, or “VTSO-contlict”, 1f write ordering information 1s
available, and may be derived from a problem termed
“VTSO-read” if write ordering information 1s not available.
As noted above, 1n some embodiments analysis module 120
may use graphical techniques to verily memory consistency
model compliance, e.g., by attempting to detect cycles 1n a
directed graph representing the ordering of memory opera-
tions.

The multithreaded test program used by test module 110
may be generated 1n accordance with a set of user-specified
preferences 1 some embodiments. Test generator 112 may
provide an interface (e.g., input parameter files or a graphical
user mterface) allowing a user to specily parameters such as
relative frequency of instruction types, memory layout details
and loop characteristics. Based on such parameters, the test
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program may include a pseudo-random or random sequence
of mstructions likely to result 1n data races, for example
including frequent memory accesses to shared memory loca-
tions from different processing elements 140. In one embodi-
ment test generator 112 may first generate an internal repre-
sentation of the multithreaded test program, each thread
represented by a sequence of nodes corresponding to opera-
tions performed in that thread. The internal representation
may then be mapped by test generator 112 into a set of
assembler istructions or to a set of instructions 1n some other
language suitable for the test platform 130 (e.g., stmulation
control instructions).

In one embodiment, test generator 112 may be configured
to implement “unique store values” (USV)—i.e., to ensure
that every write or store operation in the test program writes
a distinctly 1dentifiable value. Such unique store values may
allow the analysis module 120 to map each load operation
back to the store operation that generated the loaded data. To
ensure that store values are unique, test generator 112 may,
for example, maintain one or more running counters (€.g., an
integer counter and a tloating point counter for integer and
floating point operations respectively) whose values may
used for the store values and incremented after each use. In
some embodiments, where for example test platform 130
does not automatically save the results of reads or load opera-
tions, the test program generated by test generator 112 may
also include code to observe and save the results of load
operations. The load results may be buffered (e.g., in proces-
sor registers) and flushed to memory when the bullers
become full, thus reducing perturbation during testing.

In addition to loads and stores with standard operand sizes
(e.g.,32, 64 or 128 bits, depending on the processor architec-
ture), 1n some embodiments test generator 112 may include a
variety of other operations 1n the test program. For example,
in one embodiment, memory barrier instructions which may
require all previous instructions on the 1ssuing processor or
processing element 140 be globally visible before the next
istruction 1s 1ssued may be included. In addition, in other
embodiments, 1nstructions to access address space 1dentifi-
ers, various types of prefetch operations, block loads or stores
(which may, for example, read or write 64 bytes at a time),
cache flush or pipeline flush 1nstructions, compare and swap
(CAS) mstructions, non-faulting loads, unpredictable condi-
tional branches, inter-processor interrupts or sequences of
operations that may cause cache line replacements and/or
writebacks may be included. As noted earlier, in some
embodiments, users may specily the desired mix of different
types of instructions to be included 1n the test program, e.g.,
by specilying the total number of operations and the percent-
age of each type of operation. In one embodiment, users may
also specily desired sequences of particular instructions for
inclusion 1n the test program, for example to exercise known
or expected “corner cases” 1n the design, or lead to situations
that are more likely to stress the memory subsystem’s ability
to conform to the memory consistency model.

In one embodiment, execution coordinator 114 may be
configured to initialize the test platform 130 (1.e., detect the
number of processing elements 140 and/or bring the test
platform to a desired 1nitial state), to initiate the execution of
the multithreaded test program, and to gather the results of the
execution. The results may include, for example, values read
and written for different load/store operations executed by the
processing elements 140, and the per-processing element pro-
gram order (1.¢., the sequence of operations at each process-
ing element). For certain test platforms, execution coordina-
tor 114 may also be configured to disable or enable optional
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features supported by the test platiorm, e.g., 1n order to
improve test execution performance.

In an embodiment employing a stmulation model as the test
platform, for example, execution coordinator 114 may dis-
able optional runtime detection of failures 1n order to increase
simulation throughput. In some embodiments, execution
coordinator 114 may be operable to store the results of the
execution of the multithreaded test program 1n a variety of
different formats, including a format suitable for consump-
tion of the results by analysis module 120 (e.g., 1n a persistent
file or via a pointer to a shared area of volatile memory) and
a human-readable format. Input parameters may be used to
specily a desired output format for the results 1 some
embodiments. Execution coordinator 114 may also be con-
figured to save a representation of the results 1n a results
database 1n some 1implementation, so that, for example, dii-
terences 1n results for different test runs may be obtained
casily during post-processing.

Analysis module 120 may be operable to verily whether
results of the test program execution, obtained for example
from execution coordinator 114, correspond to a valid order-
ing of events according to the memory consistency model. It
1s noted that while 1n the following description, the TSO
memory consistency model 1s used as an example, analysis
module 120 may be capable of verifying more than one
memory consistency model 1n some embodiments. In such
embodiments where multiple memory consistency models
may be verified, an identification of the specific memory
consistency model to be verified (and/or an i1dentification of
the rules corresponding to the specific memory consistency
model to be verified) may be provided to analysis module
120, e.g., via an 1input parameter.

In one embodiment, analysis module 120 may be operable
to represent memory operations performed during the execu-
tion of the test program as the nodes of a directed graph, and
to add edges to the directed graph representing ordering rela-
tionships between the memory operations. In such an
embodiment, analysis module 120 may be configured to
detect that the results of the execution violate the memory
consistency model 1f a cycle 1s found 1n the directed graph—
that 1s, the presence of a cycle may indicate a violation of the
memory consistency model.

As described below 1n further detail, 1n some embodi-
ments, analysis module 120 may add edges to the directed
graph 120 1n a number of steps, some of which may include
iterative traversals of the directed graph. Analysis module 120
may use different sets of rules to generate the edges, depend-
ing on the specific memory consistency model being verified
and on the type of additional information (e.g., total ordering
of writes and/or mappings from each load to a store that
generated the value read by the load) provided by the test
plattorm 130. It 1s noted that while a detection of a cycle in the
graph may indicate a violation of the memory consistency
model, in some embodiments and for certain kinds of test
platiorms (e.g., platforms that do not provide total write
ordering information), the fact that the analysis does not
detect a cycle in the graph may not imply that the results of the
execution necessarily comply with the memory consistency
model. That 1s, as explained in further detail below with the
help of the example of FIG. 5a, the basic technique of adding,
edges and detecting cycles described above may not be com-
plete in such embodiments, 1n that certain types of ordering,
relationships and/or violations may sometimes be missed.
Analysis module 120 may utilize one or more heuristics to
improve the confidence level 1n the result of the analysis,
and/or the efficiency of the analysis, 1n such embodiments.
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In order for a test execution result to comply with a memory
consistency model, the sequence of memory operations as
represented by the results must satisty the axioms of the
memory consistency model. The rules used by analysis mod-
ule 120 to perform the graphical analysis as described above
may therefore be derived, at least 1n part, from the axioms of
the memory consistency model being verified mm some
embodiments. As noted above, the functionality of analysis
module 120 1s described herein using TSO as an exemplary
memory consistency model according to one embodiment,
although analysis module 120 may also be operable to verity
compliance with a variety of other memory consistency mod-

els (e.g., Sequential Consistency (SC) or Relaxed Memory
Order (RMO)) 1n other embodiments.

As described earlier, the TSO memory consistency model
includes six axioms: the Order, Atomicity, Termination, Loa-
dOp, StoreStore and Value axioms. The Order axiom requires
that there 1s a total order over all stores. The Atomicity axiom
requires that there be no intervening stores between a load
component and a store component of an atomic memory
operation such as a swap. The Termination axiom requires
that all stores and swaps eventually terminate. That 1s, 1f one
processor of a multiprocessor does a store to a particular
memory location and another processor repeatedly does loads
to read the particular memory location, there will eventually
be a load that reads the value stored by the first processor. The
LoadOp axiom requires that 11 an operation follows a load 1n
per processor program order, then the operation must also
follow the load in global memory order. The StoreStore
axiom requires that if two stores appear 1n a particular order 1n
per processor program order, then they must also appear in the
same order 1n global memory order. Informally, the LoadOp
and StoreStore axioms together imply that under TSO, the
only kind of reordering allowed between operations on the
same processor 1s for loads to overtake stores, 1.e., a load
which succeeds a store 1n program order may precede it in
global order. The Value axiom requires that the value returned
by a load from a particular memory location 1s the value
written to that memory location by the last store 1n global
memory order, among the set of stores preceding the load in
either global memory order or program order. The Value
axiom allows a load to read the value written by an earlier
store on the same processor, before that store has completed
in global order. This permits processor implementations with
store butifers, for example, to locally bypass data from a store
to a load, before the store 1s globally visible. In addition, for
multiprocessor systems that implement memory barrier
operations, a MemBar axiom may be included in TSO, which
requires that if, in program order, a load or store “A” precedes
a load or store “B” and 1 a memory barrier operation occurs
between “A” and “B”, then “A” must precede “B” 1n global
memory order.

In general, the problem of veritying compliance with TSO
(which may be termed the VISO or “Veritying TSO” prob-
lem) may be stated as follows. If the memory operation
sequences for each thread of a multithreaded program (such
as a test program generated by test generator 112) are known,
along with the memory location and the written value for each
operation with store semantics, and the memory location and
the read value for each operation with load semantics, are all
the TSO axioms satisfied? (It 1s noted that since the Termina-
tion axiom does not specily a bound on how long it takes for
a written value to be seen by other processors, and thus cannot
be completely checked using finite test cases, the Termination
axiom may be omitted from consideration in the design of
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practical testing methods for V'I'SO. Further discussion of the
Termination axiom 1s therefore omitted from the following
description.)

In one embodiment, analysis module 120 may be operable
to use at least one of two sets of rules, dertved respectively
from two sub-problems oI VISO known as “VTSO-read” and
“VTSO-contlict”, i performing the graphical analysis
described above. The VT SO-read problem 1s the VT SO prob-
lem with additional information mapping each read operation
to the corresponding write operation that generated the read
value. A VTSO problem where all written values are unique
(e.g., as aresult of the Unique Store Values technique used by
test generator 112 1n generating the multi-threaded test pro-
gram described above) becomes, 1 effect, a VISO-read
problem. The VTSO-contlict problem i1s the VTSO-read
problem with additional information specifying the total
order ol write operations to each memory location. The
VTSO-read and VTSO-contlict problems may each be con-
sidered to represent scenarios or test execution results where
the test platform provides specific details about memory
operations that may be used to simplily the verification of
compliance with TSO axioms. Since VTSO-conflict provides
an additional level of detail (total write ordering) beyond the
level of detail provided in VI'SO-read, VTSO-contlict in turn
represents a problem that in general may have a lower com-
putational complexity than V1 SO-read.

In embodiments where the Unique Store Values technique
1s used 1n generating the multithreaded test program, each test
run may represent an istance of the VI'SO-read problem. In
embodiments where total write ordering information for each
memory location 1s additionally available, a test run may also
represent an istance of the VI'SO-contlict problem. In add-
ing edges to the directed graph representation of the memory
operations, analysis module 120 may be configured to use a
first set of rules 1f the test run represents an instance of the
VTSO-contlict problem, and a second set of rules for 11 the
test run represents an instance of the VI'SO-read problem, but
does not also represent the VISO-contlict problem. The
edges added by analysis module 120 may represent global
ordering imnformation derived from the operation sequences
for each processing element and the additional information
(e.g., mapping from loads to corresponding stores and/or total
write ordering) provided in the test results.

In one embodiment, the rules for adding edges for VISO-
conflict may include rules for adding static edges, observed
edges and value ordering edges. Static edges may be gener-
ated independent of the values that may be read or written 1n
load and store operations. Observed edges may be generated

based on load results, and value ordering edges may be added
based on total write ordering. In such an embodiment, the
rules may be summarized as described below. In the summa-
rization of the rules, “L” represents a load, “S” represents a
store, “Op” represents either a load or store, “M” represents a
memory barrier operation, “.pro.” represents per processing,
clement program order, and “.glo.” represents global memory
order. Each implication of an ordering relationship dertved
from the rules may result 1n the addition of a corresponding
edge to the graph. Other memory operations may be mapped
to loads and stores 1n a preliminary step betfore the rules are
applied—Ilor example, a swap operation may be represented
as a load and a store. In addition, a single synthetic node,
logically equivalent to a set of stores, may be added at the root
of the graph to 1mitialize memory locations accessed during
the test.
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10
Static Edges:

Rule Al: L.pro.Op implies L.glo.Op (derived from the Loa-
dOp Axiom)

Rule A2: S.pro.S' implies S.glo.S' (dertved from the Store-
Store Axiom )

Rule A3: S.pro.M.pro.LL implies S.glo.LL (derived from the
Membar Axiom)

For the remaining rules, S, S" and L represent accesses to the
same memory location, where S writes the value read by L,
and S' writes a different value.

Observed Edges:

Rule A4: IT' S does not precede L 1n per processing element
program order, this implies S.glo.LL (denived from Value
axiom, which requires that the load must read the value last
written 1n global memory order, so 11 S does not precede L
on the local processor, it must precede L 1in global memory
order)

Rule AS: S'.pro.LL imphies S'.glo.S (also derived from the
Value axiom. IT S' precedes L on the local processor, but L
reads the value written by S, then S' must precede S 1n
global memory order.)

Value Ordering Edges:

Rule A6: S.glo.S' (according to the total write order for the
memory location written by S and S')

Rule A7: S.glo.S"implies L.glo.S' for all L reading the value
written by S (dernived from the Value axiom. This rule
enforces the Value axiom by ensuring that S must be the
most recent store 1n global order for L because every store
ordered after S will also be ordered after L. Only the S' that
immediately follows S 1n the total write ordering for that
location need be considered in applying this rule)

The rules used for VI'SO-read may also include the rules
for adding static edges and observed edges, as described 1n
Rules A1-A5 above, 1n one embodiment. However, as total
write ordering information may not be available 1n VISO-
read, rules A6 and A7 may be replaced by rules B6 and B7 for
adding inferred edges 1n some embodiments.

Inferred Edges:

Rule B6: S'.glo.LL implies S'.glo.S (dernived from the Value
axiom. Assuming the opposite implication, S.glo.S', leads
to a contradiction because L cannot read the value written
by S, since that value would have been overwritten by S')

Rule B7: S.glo.S" implies L.glo.S' (also derived from the
Value axiom. This rule 1s similar to rule A7, except that,
since total write ordering information 1s not available in
VTSO-read, the S' that immediately follows S 1n the per-
location total order may not be known, and so rule B7 must
be applied for every applicable S'.)

The miterred edges corresponding to rules B6 and B7 may be
added 1n multiple 1terations 1n some embodiments, as 1ndi-
cated 1n the following high-level description and pseudo-
code. The function w(L) 1n the pseudo-code identifies the
store operation that wrote the value read by the load L.

Baseline Algorithm

// Input: A per-processing element memory operation sequence and a
// function w that maps a load to the store which created its value

// First, add static and observed edges (Rules A1-AS5)

// Then, add inferred edges 1teratively (Rules B6-B7)

do
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-continued

for each load L
S =w(L); // find the store that wrote the value read by L
recursively trace all store predecessors 8' of L:
if (8'!1=8) and (S and S' write to the same address)
then add edge from S' to §;
end 1f;
end for;
for each store S
recursively trace all store successors S' of S:
if (8" and S write to the same address)
then add edge from L to §' for all loads L reading value
written by S;
end 1f;
end for;
until no more edges can be added

The first for loop 1n the pseudo-code corresponds to an
application of rule B6, while the second corresponds to an
application of rule B7. To apply rule B6, the directed graph
may be traversed backwards from L to find all its currently-
known store predecessors 1 global order. To apply rule B7,
the directed graph may be traversed forwards from S to find
currently-known successors of S 1 global order. Since the
global order may still be in the process of being derived when
the traversals occur, rules B6 and B7 may be applied 1tera-
tively to the directed graph until a fixed point 1s reached and
no additional edges are added in a complete 1teration. It 1s
noted that the complexity of the graphical analysis algorithm
for VISO-read may be shown to be polynomial in terms of
the number of nodes 1n the directed graph, while the algo-
rithm described earlier for VI SO-contlict may be shown to be
linear 1n terms of the number of nodes. An example of the
application of the rules for VI SO-read 1s provided below, 1n
conjunction with the description of FIG. 4.

FIG. 3 1s a flow diagram 1llustrating turther aspects of the
operation of analysis module 120 according to one embodi-
ment. As described above, analysis module 120 may be con-
figured to represent memory operations performed during the
test execution as nodes of a directed graph (block 301), and
add edges representing ordering relationships between the
memory operations to the graph (block 306). For example, in
one embodiment, edges corresponding to the application of
rules A1-AS5 and to a first 1iteration of an application of rules
B6-B7 may be added 1n operations corresponding to block
306 during an initial pass through block 306. If a cycle 1s
detected 1n the graph at this point (decision block 311), analy-
s1s module 120 may indicate that the test results violate the
memory consistency model (block 316) and terminate the
analysis. If no cycle 1s detected, and additional edges for the
graph can be inferred (as detected in decision block 321),
such additional edges may be added 1n a repeat pass through
block 306. In one embodiment, iterations through blocks 306,
311 and 321 of FIG. 3 may correspond to the pseudo-code
provided above that represents iterations of application of
rules B6 and B7/. Finally, 11 in block 321 no additional edges

can be inferred, the analysis may be completed with no vio-
lation being found (block 326).

FI1G. 4 1llustrates an example of a directed graph represen-
tation of memory operations generated by analysis module
120 for an execution of a multi-threaded test program repre-
senting a V1 SO-read problem, according to one embodiment.
In FIG. 4, the notation “S[A]#M” refers to a store which
writes the value M to memory location A, and the notation
“L|B]=N"refers to aload thatreads the value N from memory
location B. The per-processing element program order is
shown 1n four columns 1n FIG. 4, each column corresponding
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to one of four precessmg clements PE,;, 0, PE_1, PE_2, and
PE_3. The events in each column are sequenced frem the top
of the column to the bottom of the column 1n program order.
For example, the program order for processing element PE_1
1s “S[B]#91”, followed by “S[A]#1”, followed by “L][A]=2".

In generating the graph 1llustrated 1n FI1G. 4, analysis mod-
ule 120 may first add edges E1, E2 and E3, eerrespending to
rules A1 and A2 described above, 1n accordance with the
LoadOp and StoreStore axioms. Next, observed edges E4,
ES, E6 and E7 may be added by applying rule A4. The
application of rule A5 to “L[A]=2" on PE_0 may then result
in the addition of observed edge E8. During the application of
rule B6 for the load “L[B]=92" on PE_2, “S[B#91” on PE_0
may be detected as a predecessor, leadmg to the addition of
inferred edge E9. Finally, tracing the predecessors of “L|B]=
917 on PE_3 according to rule B6, analysis module 120 may
detect “S[B]#92”, leading to the addition of inferred edge
E10. At this point, analysis module 120 may detect the cycle
formed by edges E9 and E10, indicating a TSO violation: 1.e.,
a conilicting order between “S[B]#91” and “S[B]#92”. As
described 1n conjunction with the description of F1G. 3 above,
analysis module 120 may then indicate that TSO has been
violated and terminate analysis.

It 1s noted that, in embodiments where the test results
represent a VISO-read problem (and not a VISO-contlict
problem because total write ordering information 1s not avail-
able), while the analysis performed by analysis module 120
may detect violations of the TSO axioms 11 cycles are found,
the basic graphical technique as described above may be
incomplete. That 1s, 1n the absence of cycles, while a global
order that 1s consistent with the LoadOp, StoreStore, Mem-
bar, Value and Atomicity axioms may be obtained from the
graph at the end of the analysis, the analysis does not ensure
that Order axiom 1s satisfied. F1G. Sa illustrates an example of
a directed graph representation of memory operations gener-
ated by analysis module 120 for an execution ol another
multi-threaded test program representing a VI'SO-read prob-
lem, according to one embodiment. Memory operations for
s1x processing elements, PE_0 through PE_5, are shown 1n
FIG. Sa, using the same notation as used i FIG. 4. In the
example shown 1in FIG. Sa, analysis module 120 has reached
a fixed point at which no new edges can be inferred (1.e., no
turther iterations of application of rules B6 and B’/ are per-

formed). The analysis module 120 has not detected any
cycles, and “S[A}M1” and “S[AJ#2” have been left unor-

dered. However, “S[A]#1” must precede “S[A]#2” in the
illustrated memory operations. Otherwise, “S[A]#2” must
precede “S[A]#1” by the Order axiom, but given this order,
only one of the two values “3” or “4” may be read by the two
loads to location B that are ordered after “S[A]#2”. While the
example 1llustrated 1 FIG. Sa does not represent a TSO
violation missed by analysis module 120, adding a similar,
mirrored set of nodes to a different location C (e.g., two stores
to C ordered before “S[A]#1” and two loads to C ordered after
“S[A]#2”) may create an instance of a TSO violation that may
be missed by the algorithm for VISO-read as described
above.

In order to satisiy the Order axiom, the analysis module
would have to i1dentily unordered writes at the end of the
algorithm and search for a combination of relations between
the unordered writes that 1s compatible with the results. Such
a search may make the analysis runtime exponential with
respect to the number of nodes 1n the graph 1n the worst case,
which may make the analysis impractical. By not explicitly
enforcing the Order axiom, the analysis module 120 may thus
trade ofl accuracy for reasonable analysis time. As described
below, 1n some embodiments a heuristic based on possible
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write orders may be employed by analysis module 120 to
increase the probability of determining compliance with the
Order axiom, and to potentially reduce the number of itera-
tions of applications of rules B6 and B7.

In one embodiment, 1n order to completely venily TSO
compliance, an attempt 1s made to determine 11 there exists a
Total Operation Order (TOO), which completely orders all
operations (loads and stores) 1n the program, that also satisfies
the rest of the TSO axioms. This TOO corresponds to a
stronger version of the Order axiom (which 1s equivalent to
the requirement that only stores be ordered). To increase the
probability of finding a total valid order and thereby removing,
the source of incompleteness, 1n one embodiment analysis
module 120 may be configured to adopt the following heu-
ristic. After each complete iteration of applying rules B6 and
B’/ to all the nodes 1n the directed graph, analysis module 120
may perform a topological sort on the graph nodes and extract
the resulting write order per location. Since the topological
sort provides a possible total write order, the algorithm for
VTSO-contlict (1.e., the application of rules A1-A’7) may then
be applied. If no cycles are found after the VTSO-contlict
analysis based on the possible total write order, a total opera-
tion order (TOO) valid under TSO may be dertved from the
graph (e.g., by another topological sort). The analysis module
120 may therefore indicate that the program execution results
are valid under the TSO axioms and terminate analysis. In
addition to potentially providing such a positive determina-
tion of compliance with respect to TSO for some execution
results, the application of such a heuristic may thus also
reduce the number of 1terations for rules B6 and B7 that may
otherwise be applied. In contrast to the possible positive
determination of compliance with TSO that may be provided
using the heuristic, the more basic analysis described above
(1.e., the application of rules A1-AS and B6-B7 without the
heuristic) may only indicate whether a violation of TSO was
found or not (e.g., as 1n block 326 of FIG. 3), and may miss
some violations of TSO for some executions. I the heuristic
does not succeed 1n providing a valid total operating order
(e.g., 1T a cycle 1s detected using the VI SO-contlict rules),
however, analysis module 120 may not be able to detect that
a TSO violation has occurred (since the heuristic was based
on a hypothetical write order speculated by the topological
sort, rather than on a known, actual write order). If no valid
total operating order 1s found, therefore, 1n one embodiment
analysis module may continue further iterations of applying
rules B6 and B7, which may in turn result in further applica-
tions of the heuristic.

FIG. 5b 1llustrates an example of an application of the
heuristic described above to the directed graph representation
shown 1n FI1G. 34, according to one embodiment. In the 1llus-

trated example, the topological sort performed by analysis
module 120 has resulted 1 ordering “S[B]#3” belfore “S[B]

#4”, as indicated by edge ES. That 1s, edge ES has been added
to the graph by analysis module 120 to represent a possible
write order 1n which “S[B]#3” precedes “S[B]#4”. After
analysis module 120 has added edge ES, the application of
rule A7 may result in the further addition of edge E6. At this
point, the order between “S[A]#1” and “S[A]#2” 1s also
established, no cycle has been detected, and analysis module
120 may determine a valid total ordering that complies with
the TSO axioms and terminate analysis. For example, as
shown 1n FIG. 5b, a valid total operation ordering such as
(“S[B]#3”, “S[A]#17, “L[B]#3”, “S[B]#4”, “S[A]#2”, “L|B]
#4”) may be determined by analysis module 120, e.g., using
a topological sort.

FI1G. 6a 1s a tlow diagram 1illustrating further aspects of the
operation of analysis module 120 according to one embodi-
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ment, where analysis module 120 may be configured to apply
the heuristic based on a possible write order as described
above. As described earlier, after representing the memory
operations performed during the test program execution as
the nodes of a directed graph, analysis module 120 may add
static edges and observed edges to the graph (block 601 of
FIG. 6a). The static and observed edges may be added by
applying rules A1-A3. If the test platform 130 provides write
ordering information, as detected 1n decision block 606 of
FIG. 6a, analysis module 120 may perform VTSO-contlict
analysis, e.g., by adding value ordering edges 1n accordance
with rules A6 and A7 (block 641). If a cycle 1s found 1n the
graph after the VISO-conflict rules have been applied (as
detected in block 646), analysis module 120 may indicate that
the test results violate TSO and end analysis (block 656). It no
cycle 1s found under the VTSO-confilict rules, analysis mod-
ule 120 may extract a valid total operation order that con-
forms to TSO, e.g., via a topological sort of the graph (block
651). Analysis module 120 may then indicate that the execu-
tion results are valid under TSO (block 661) and terminate
analysis.

If test platform 130 does not provide write ordering infor-
mation, analysis module 120 may proceed to iteratively apply
rules B6 and B7 for the VI'SO-read problem. In the embodi-

ment depicted in FIG. 6, after every full iteration of adding
inferred edges according to rules B6 and B7 (block 611),
analysis module 120 may check the graph for cycles (decision
block 616). If a cycle 1s found, analysis module 120 may
indicate that the test results violate TSO and terminate analy-
s1s (block 656). However, 11 no cycle 1s found, analysis mod-
ule 120 may apply the heuristic described above (block 621).
That 1s, analysis module 120 may extract a possible write
order from the graph, e.g., via a topological sort, and add
value ordering edges according to the VISO-conflict rules A6
and A7. If, after adding the value ordering edges based on a
possible write order, a valid total operating order 1s found (as
detected 1n decision block 626), analysis module 120 may
indicate that the results conform to TSO and terminate analy-
s1s (block 661). If a valid total operating order 1s not found,
analysis module 120 may revert to the graph as 1t existed prior
to the application of the heuristic and continue with VT SO-
read analysis. For example, 11 additional edges can be inferred
using rules B6 and B7 (as detected in decision block 631),
analysis module 120 may iterate over the operations starting
at block 611.

In one embodiment, 1f no additional edges can be inferred
(decision block 631), a search with backtracking procedure
(block 632) may be utilized wherein an arbitrary “tie-break”
decision 1s made by adding an edge between operations left
unordered and reapply the baseline algorithm which may add
additional edges. This procedure 1s repeated until no opera-
tions are longer left unordered, that 1s, a valid TOO has been
achieved (block 633) and we can conclude that the results
conform to TSO and terminate analysis (block 661). During
this process, 1f a cycle 1s found or the topological sort gets
stuck (no 1nstruction can be picked without violating any TSO
axioms ), instead of giving up, a backtrack 1s made to the last
arbitrary tie-break decision made and a different operation 1s
chosen to order first. Given that a valid TSO will also result in
a valid TOO, we can unwind the order directly to the most
recent store. We maintain data structures such that we can
checkpoint and undo these updates when we need to back-
track and cancel the decision. Edges that are derived after a
store 1s picked by the topological sort will be associated with
the store. When we backtrack and undo the picking of a store,
we remove all the derived edges associated with 1t and recom-
pute vector clocks (defined and explained in the following
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paragraphs) for all the atffected nodes. If we backtrack to the
first tie-break decision and find that we have already
exhausted all the possible decisions, we conclude that a valid
TOO does not exist (not that 1t may exist but we could not find
it) and the results do not conform to TSO (specifically, the
Order axiom 1s violated) (block 656). As noted above, similar
techniques and heuristics may be applied to verily compli-
ance with memory consistency models other than TSO 1n
some embodiments.

FIG. 66 1llustrates one embodiment of the backtracking
procedure shown as block 632 of FIG. 6a. As shown, if a
tie-break decision 1s possible (block 671), an edge 1s selected
and added (block 672). Otherwise, a valid TOO 1s not found
(block 673) and the method proceeds to block 633 of FIG. 6a.
Having added a tie-break edge, an iteration of performing
additional edges 1s performed (block 681). If additional edges
can be inferred (block 682), the method proceeds to block
681). If no additional edges can be inferred (block 682), the a
determination 1s made as to whether a cycle 1s found (block
683). I a cycle 1s found, the last tie-break decision (and
possibly additional recent decisions) 1s undone (block 676)
and the method returns to block 671. On the other hand, 11 no
cycle 1s found (block 683 ), then a determination 1s made as to
whether any unordered nodes exist (block 684). If unordered

nodes exist, the method proceeds to block 671. However, 11 no
unordered nodes exist, then a valid TOO 1s found (block 675)

and the method proceeds to block 633 of FIG. 6a.

As described earlier, the addition of inferred edges in
accordance with rules B6 and B7 may require several itera-
tions of backward and forward traversals of the directed graph
from multiple starting points (i.e., multiple load and store
nodes) 1 some embodiments. During each iteration, new
predecessor nodes for each load and new successors for each
store may need to be found using the current set of edges 1n the
graph. In one embodiment, analysis module 120 may be
configured to use a technique based on vector clocks to reduce
or limit the total number of graph edges traversed when
applying rules B6 and B7. Pseudo-code including further
details of how the number of traversed edges 1s limited, as
well as an example of using the vector clock technique, 1s
provided below. In analyzing the results of a multithreaded
test execution, an array or vector of elements, which may be
termed a vector clock, may be maintained by analysis module
120 for each node of the graph. Each element of the vector
clock for a particular node M representing a memory opera-
tion at a processing element PE_k may 1dentily a particular
node R at one of the other processing elements, such that R
occurs after node M 1n global order. In particular, 1n one
embodiment, the first node at the other processing element
(1.e., the earliest node 1n program order for the other process-
ing element) that occurs after node M 1n global order (as
known 1n the current analysis step) may be 1dentified as node
R. The vector clock at one or more nodes may be modified as
the analysis progresses, miterred edges are added, and analy-
s1s module 120 modifies 1ts knowledge of global order.

The vector clock based scheme used by analysis module
120 may rely on a property of the Sequential Consistency
(SC) memory consistency model 1n some embodiments. In
SC, program order implies global memory order. Thus, 1 a
memory operation M1 at processing element PE_p precedes
a memory operation M2 at processing element PE_q, all
memory operations from PE_ g after M2 1in program order are
also ordered after M1 1n global memory order. Therefore, 1n
adding inferred edges for a node representing M1 while veri-
tying compliance with SC, analysis module 120 may only
need to keep track of the earliest memory operation M2 in
program order at each other processing element such that M1
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precedes M2 1n global memory order. For example, 1n apply-
ing rule B/, instead of traversing the whole graph to find all §'
which succeed S 1n memory order, only the earliest such S' for
cach processing element may need to be considered. A vector
clock for a given store node may identily such earliest &'
nodes for each other node.

In applying a vector clock technique to TSO, however,
differences between SC and TSO may need to be taken into
account. In TSO, program order does not imply global
memory order, as a load may bypass preceding stores. Nev-
ertheless, program order among stores implies global
memory order, and program order among loads also implies
global memory order. Therefore, the stream of memory
operations for a processing element may be split into a load
stream and a store stream 1n one embodiment. Each stream
may be considered to represent operations at a “virtual SC
processing element” and may be termed a “virtual SC opera-
tion stream” herein. Virtual clocks may be maintained for
cach node 1n the two streams to limit the edges traversed
during each iteration of applying rules B6 and B7. It 1s noted
that edges between loads and succeeding stores (1n program
order) may also be added when using the split streams; 1.e.,
some edges may lead from one stream to the other.

FIG. 7 1s a flow diagram illustrating aspects of the opera-
tion of analysis module 120 according to one embodiment
where vector clocks are employed. Analysis module 120 may
divide the memory operation sequence for each processing
clement 1nto two virtual SC operation streams, a load stream
and a store stream, as indicated 1n block 701. A reverse time
vector clock may be maintained for each node 1n the two
streams 1n one embodiment, where each reverse time vector
clock includes an entry for each of the virtual SC processing
clement streams (block 706). (The phrase “reverse time” may
be used because entries of the vector clock identily earliest
nodes that a node precedes in global memory order at other
processing elements, rather than latest nodes that precede the
node; and a reverse topological sort of the graph may be used
to populate the vector clock entries.) Thus, for example, in
one embodiment, 1f the multithreaded test were executed on P
processing elements, each node’s reverse time vector clock
contains (2*P) entries, one entry each for loads and stores for
cach processing element. Static and observed edges may be
added by analysis module 120 in accordance with rules
A1-AS as described above (block 711). Analysis module 120
may add inferred or backtrack edges iteratively and check for
cycles, where the number of edge traversals may be limited or
reduced using the reverse time vector clock entries (block
716), ¢.g., 1n accordance with the pseudo-code provided
below. In addition, the values for the reverse time vector
clocks may be updated for one or more nodes during each
iteration. The use of vector clocks 1n this fashion may repre-
sent a tradeoil that may improve total analysis runtime at the
cost of additional memory to store the vector clock values for
cach node.

The following high-level description and pseudo-code
describes how the application of rules B6 and B7 may be
modified in embodiments employing vector clocks. The nota-
tion X. RTVC] | represents a reverse time vector clock struc-
ture for anode x, and entry Xx.RTV (][] represents the entry for
processing element 1”7 within x. RTVC]| ].

// Input: Two virtual SC operation streams for each processing element,
// one consisting of only loads and one consisting of only stores; and a
// function w that maps a load to the store which created its value

// Data Structure: A reverse time vector clock (RTVC] ]) at each node x
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-continued

// of the virtual SC operation streams; Xx.RTV ][] points to the first node
// 1n the virtual SC operation stream | such that
// x precedes Xx.RTVCJ] in global memory order. RTVC] ] for each
// node 1s computed using reverse topological sort.
// Add inferred edges iteratively (rules B6 and B7)
do
for each store S
for each virtual SC operation stream |
x = S.RTVC[j];
if (x 1s a load) then
find L, the first load that accesses same location as S,
where x.pro.L and w(L) differs from S;
// Apply rule B6
add edge from S to w(L) if S.glo.(w(L)) 1s not already
true;
update S.RTVC[ |;
else // X 1s a store
find §°, the first store that accesses same location as S,

where X.pro.S’;
/ Apply rule B7

for all loads L such that w(LL) = S
add edge from L to S8’ 1f L.glo.S’ i1s not already

true;
update L.RTVC][ |;
end for
end 1f
end for

end for
until no more edges can be added.

Veritying Implementations of Transactional Memory

Transactional memory 1s a design concept for scalable
multiprocessors which offers efficient lock-free synchroniza-
tion and simplifies parallel software. However, given the
1ssues 1nvolved with concurrency and atomicity, 1t 1s 1mpor-
tant that transactional memory systems be caretully designed
and aggressively tested to ensure their correctness. In one
embodiment, an axiomatic framework to model the formal
specification of a transactional memory system which may
contain a mix of transactional and non-transactional opera-
tions 1s described. Using this framework and extensions to the
above described analysis algorithms for veritying memory
consistency, pseudo-random testing methodology may be
elfectively applied to transactional memory systems.

The shared memory programming model 1s very popular
tor parallel architectures in part because it 1s relatively easy to
use compared to message passing models. However proper
synchronization between processes must be employed to
ensure correct behavior; such synchronization 1s normally
used to provide mutual exclusion between different execution
streams via acquisition and release of locks. Unfortunately,
lock-based synchronization has a number of disadvantages.
To solve these problems, an implementation called transac-
tional memory has been proposed which can be used to pro-
vide atomicity 1in the context of a multiprocessor. In transac-
tional memory systems, programmers may define a
customized block of code called a transaction whose opera-
tions appear as if they have either executed atomically or
never executed.

While transactional memory (1M) may provide for a sim-
pler programming model, 1t also may generally impose a
greater burden on the system designer. TM implementations
may require several complexities like transaction caches,
speculative writes, atomic reads and writes to hardware state,
commit broadcasts, and so on. Given the difficulties involved
with preserving ordering and atomicity guarantees to the
programmer, while still allowing a high degree of parallelism
for good performance, aggressive verification 1s desired to
ensure that such systems work reliably. The pseudo-random
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testing methodology used extensively by commercial micro-
processor and system design teams cannot be extended easily
to tests with unordered transactions or instructions which
access shared memory locations. Such tests may produce
multiple outcomes which are legal under the system specifi-
cation, and 1t 1s not obvious how legal and 1llegal results can
be distinguished from each other.

In one embodiment, a transactional memory program may
have both transactional and non-transactional memory opera-
tions. Further, non-transactional operations are governed by
traditional memory consistency rules, except that they may
not intervene operations within a transaction in the global
order. This may model a realistic multiprocessor system since
it 15 likely that a system with support for transactions will still
need to support existing non-transactional code for that
instruction set architecture, as long as the memory locations
accessed by transactional and non-transactional instructions
are nonintersecting. Transactional memory systems which
require that all instructions be part of a transaction represent
a special case. Reordering of instructions within a transaction
may be possible but may not be visible to programmers.
Whether consecutive transactions on the same processors
may be reordered 1s an optional constraint. Only commutted
transactions are important for the purposes of verification of
architectural results, since aborted transactions are assumed
to have no programmer-visible effect on memory. Similarly a
nested transaction may be treated as a single transaction since
that 1s how they appear to a programmer. While the Total Store
Order (TSO) memory model 1s used for purposes of discus-
s10n, other models like SC (Sequential Consistency) and PSO
(Partial Store Order) can be incorporated using a similar
framework.

In addition to the above described notation, the following
are added: [ Op] represents a transactional load or store on any
processor to any memory, and [Op,; Op;| represents a trans-
action consisting of the (not necessarily consecutive) opera-
tions Op, and Op,, where Op, precedes Op,. The following are
the additional axioms for a TM system employing the TSO
memory model for non-transactional operations:
TransOpOp: Program order within a transaction implies glo-

bal order.

TransMembar: Memory barriers are implicit around each
transaction. (This 1s optional.)

TransAtomicity: No other memory operations can intervene
between two consecutive operations 1n a transaction.

Value: The value returned by a load 1s the value written to 1t by
the last store in global order, amongst the set of stores
preceding 1t 1n either global order or program order. This
version of the Value axiom allows optimizations allowed

by the TSO memory model (a load can see the result of a

store on the same processor before that store has completed

in global order); however, 1t 1s also correct for a system
using only transactions or for a system with sequentially
consistent semantics for non-transactional operations.

All of the above axioms together specity the behavior of a
TM system using TSO semantics for non-transactional opera-
tions. The TransAtomicity, TransOpOp, TransAtomicity,
Order, Termination and Value axioms completely specily a
transactions-only system (without explicit memory barriers
and 1nbuilt atomic swap operations) like TCC, while the
Order, Atomicity, Termination, Membar, LoadOp, StoreStore
and Value axioms specily a traditional multiprocessor system
based on the TSO memory model.

In the following described embodiments, a method for ver-
tying a transactional memory is described which generally
includes three steps.
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Step 1: Generate Test Program. A pseudo-random multi-
processor test program with both transactional and non-trans-
actional operations 1s generated. In one embodiment, the test
program access a relatively small number of shared memory
addresses. Transactional and non-transactional operations
may be controlled to access non-intersecting set of addresses
if desired. The test case 1s mstrumented to observe the archi-
tectural results of running the test, such as the value read by
cach non-transactional load instruction or each load instruc-
tion 1n a committed transaction. On a real system, or in a
hardware emulation environment, these results can be buil-
ered 1n processor registers in order to minimize test perturba-
tion, and only flushed to memory when the register butfer gets
tull. In some simulated systems, the simulation environment
has a means to obtain these architectural results without any
imstrumentation overhead. To minimize overhead, value writ-
ten by every generated store instruction may be statically
determinable so that they do not have to be explicitly stored as
part of the results. Various properties of the generated pro-
gram such as instruction mix, statistical distribution of trans-
action length, number of shared memory addresses,
sequences of 1struction patterns, etc. may be controlled by
the user.

In addition, the test generator needs to be aware of the
specific types of instructions of the TM system, e.g. the
mechanism to begin, commit or abort a transaction, but may
otherwise be fairly portable. For a transaction which aborts,
the test case may retry the transaction. In one embodiment, a
test which fails to complete before a timeout may indicate
failure to make forward progress and 1s considered an error.
The test can include all operations (including non-transac-
tional operations) supported by the instruction set. For
example, for a typical mnstruction set architecture, 1t would
include different-sized loads and stores, compare and swap,
prefetches, tlushes, conditional branches, non-faulting loads,
inter-processor mterrupts, non-cacheable operations, etc. In
order to map each read value observed 1n the program back to
the store which created 1t, each store value used 1n the pro-
gram 1s unique.

Step 2: Run Test. The test program from step 1 1s run on a
test environment such as an actual multiprocessor system or a
simulation model at, for example, the architectural, RTL
(Register Transfer Level) or gate-level.

Step 3: Perform Analysis. The architectural results of the
test program are fed into an analysis algorithm. In one
embodiment, the analysis algorithm may be oblivious to the
specifics of the TM system, as long as it has a description of
the dynamic order of all operations (including transaction
boundaries) that were committed and the values read/written
by all loads and stores. No other visibility into the test execu-
tion 1s assumed, nor any specifics about how the TM system
1s 1implemented. However, additional ordering information
may be used 11 1t 1s available. At the end of analysis, a pass or
fail 1s signaled. Since 1t 1s possible that different runs of the
same test program may obtain different results in the presence
of external perturbation, the analysis result refers to the cor-
rectness of only that particular run of the test program.

To prepare for analysis, the dynamic sequence of program
instructions on each processor 1s converted to a sequence of
nodes 1n a graph. In one embodiment, transactions which
aborted do not appear 1n the graph since they should have no
programmer-visible effect. Nodes representing instructions
which do not have programmer visible effect on memory such
as prefetches and flushes may be converted to no-ops. Com-
pare and swap instructions are resolved 1nto either a swap or
an ordinary load. Nodes representing instructions which
cover multiple shared words of interest are expanded, so that
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all loads, stores and swaps 1n the analysis graph are of a
umiform size. Finally, edges are added 1n this graph to repre-
sent constraints on the global memory order according to the
analysis algorithm described 1n the next section. Note that
global memory order 1s a perceived memory order rather than
order 1n terms of actual time.

In one embodiment, the analysis algorithms try to infer as
many orders as possible between memory operations that
must hold to satisty program order, and to justify the observed
behavior. A directed graph may be used as the data structure
for the analysis. Nodes 1n the graph represent operations and
edges represent ordering relations in the global memory
order. Since global memory order 1s transitive, any path in the
graph 1implies the existence of the global memory order rela-
tion between the source and destination of the path. A viola-
tion of any axioms 1n Section 2 (excluding the Termination
axiom) will cause a contlict 1n the ordering of two or more
operations and manifest as a cycle 1n the graph.

A global source node at the root of the graph acts like a set
ol stores writing initial values to all shared addresses. It 1s
ordered before all other nodes 1n the graph. TransAtomicity
Enforcement 1s one aspect of the analysis algorithm with
respect to transaction atomicity: mcoming edges incident to
any node 1n a transaction must point to 1ts first node; outgoing
edges from any node 1n a transaction must similarly leave
from 1its last node. This guarantees that the TransAtomicity
axiom 1s satisfied by the relations embodied in the graph at all
times.

In one embodiment, the analysis algorithm begins by map-
ping every load value to the store which wrote that value. This
mapping 1s well-defined because, as noted above, every store
in the test writes a unique value. A load reading a value never
written to that address causes an obvious failure at the outset.
After this step, the algorithm adds any edges implied by
knowledge of global ordering obtained through additional
observability available 1n the system, 1f any. For example in a
hybrid hardware-software TM system, software may be able
to record some global ordering information. Next, the analy-
s1s algorithm adds edges by applying the following rules.

Baseline Algorithm

Static Edges: In the first step, program order edges are
added to the graph according to the following 6 rules, which
depend only on the test program and are independent of run
results. The first three rules are related to transactions. The
next three capture TSO ordering requirements for non-trans-
actional operations.

Rule T1: [Opl; Op2] implies Opl.glo.Op2 (derived from
TransOpOp axiom)
Rule T2: Opl; [Op2] implies Opl.glo.Op2 (dertved Trans-

Membar axiom)

Rule T3: [Op2]; Op3 mmplies Op2.glo.Op3 (TransMembar
ax1om )

Rules A1-A’7 are as above.

Rule Al: L.pro.Op implies L.glo.Op (dertved from the Loa-
dOp Axiom)
Rule A2: S.pro.S" implies S.glo.S' (derived from the Store-

Store Axiom)

Rule A3: S.pro.M.pro.LL implies S.glo.LL (derived from the

Membar Axiom)

For the remaiing rules, let S, S', and L be accesses to the
same address.

Observed Edges: For all loads, the edges specified by the
following two rules are added based on the load results. These
edges can be added once load values are known.

Rule A4: IT' S does not precede L 1n per processing element

program order, this implies S.glo.LL (dertved from Value
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axiom, which requires that the load must read the value last
written 1n global memory order, so 1f S does not precede L
on the local processor, it must precede L 1n global memory
order)

Rule A5: S'.pro.LL implies S'.glo.S (also dertved from the
Value axiom. If S' precedes L on the local processor, but L
reads the value written by S, then S' must precede S 1n
global memory order.)

Inferred edges: Inthe last step, we add more edges based on
two rules which follow from the Value axiom:

We define VI M-read and VIM-conflict 1n a similar way to

VT1S0-read and VTSO-contlict. And similarly, we use

rules A6 and A7 for VIM-conflict and B6 and B7 for

V1TM-read.

Rule A6: S.glo.S' (according to the total write order for the
memory location written by S and S')

Rule A7: S.glo.S" implies L.glo.S' for all L reading the value
written by S (derived from the Value axiom. This rule
enforces the Value axiom by ensuring that S must be the
most recent store 1n global order for L because every store
ordered after S will also be ordered after L. Only the S' that
immediately follows S in the total write ordering for that
location need be considered in applying this rule).
Turning now to FIG. 8, an illustration 1s provided of a

producer-consumer synchronization with a single producer

(P0) and a single consumer (P1). This synchronization can be

achieved without locks: the producer checks the flag (L[1]=0),

produces data (S[d]#10), and sets the tlag (S[1]#1); the con-

sumer checks the flag (L[1]#1), consumes the data (L[d]#10)

and reset the flag (S[1]#2). However, this lock-free mecha-

nism relies on the premise that accesses to data and flag shall
not be reordered, either by hardware or software (e.g. due to

a programmer mistake). With transactional memory, the

ordering constraint 1n software can be overlooked by embed-

ding the critical sections in transactions. This makes pro-
gramming 1M systems less error-prone. The notation for this
and the rest of examples 1s as follows:

S[al#1 reters to a store which writes value 1 to location.

L[b]=2 refers to a load from location b which returns value 2.
Block 810 1n FIG. 8 shows code where data (locationd) and

flag (location 1) are accessed 1n the correct order. An example

ol possible outcomes 1s annotated with the code sequence. In

block 820, code 1s shown where the consumer accesses the

data and tlag 1n the opposite order. Under the TSO model, this
code may produce undesirable yet valid results, such as that
exhibited 1n the annotation 840. Embedding this same code 1n
transactions, however, precludes such undesirable results.

Block 830 shows why the result shown in block 820 are not

valid under the TM model. As seen 1n block 830, a cycle

(marked as 890 and 892) is created by TransAtomicity

Enforcement on dashed edges 880, 882, 884 derived via rule

A4. Generally speaking, the method depicted in FIG. 6a may

also apply to VI M-read & VIM-contlict problems. In such a

case, block 601 additionally includes adding static edges by

rules T1-T3.
In the absence of cycles 1n the graph, our algorithm creates

a global order relation which 1s consistent with all the axioms

except the Order axiom. As a result, some operations may be

left unordered potentially hiding some unresolvable ordering
conflicts which should have been flagged as a violation of the

Order axiom. This incomplete algorithm therefore runs the

risk of letting erroneous results go undetected. To address this

incompleteness, the final graph attained by the baseline algo-
rithm 1s post-processed 1n order to discover a valid Total

Operation Order (TOO) which satisfies all axioms. A topo-

logical sort1s performed and an order 1s arbitrarily assigned to

operations that are left unordered by the baseline algorithm.
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Each time an arbitrary ordering choice 1s made, a repeat
inference of further constraints due to rules B6 and B7 1s
determined until a new fixed point 1s reached. It 1s possible
that the topological sort may get stuck due to an incorrect
choice made earlier. When this happens, a backtrack to the
last choice point 1s performed and a different choice made. As
described above, data structures are carefully maintained
such that the effect of the choice can be undone as well as
further constraints which were inferred based upon that
choice. Note that TransAtomicity Enforcement always
applies during this post processing phase and the algorithms
view a whole transaction as a single node. A transaction can
be selected for retirement 1n global order only 1f all operations
within it are ready for retirement. Similarly, when undoing the
eifect of an arbitranly picked transaction, the effect of all
operations 1n that transaction may be undone.

FIG. 91s ablock diagram of one embodiment of a computer
readable medium 900, comprising memory model consis-
tency verification software 910 including istructions which,
when executed, implement the functionality of test module
110 and analysis module 120 described above. Various com-
ponents of the test module 110 (e.g., test generator 112 and
execution coordinator 114) and/or analysis module 120 may
be packaged together as a single software program, or pack-
aged 1n any combination in different embodiments. Generally
speaking, a computer accessible medium may include any
media accessible by a computer during use to provide instruc-
tions and/or data to the computer. For example, a computer
accessible medium may include storage media such as mag-
netic or optical media, e.g., disk (fixed or removable), CD-
ROM, or DVD-ROM, CD-R, CD-RW, DVD-R, DVD-RW,
volatile or non-volatile memory media such as RAM (e.g.
synchronous dynamic RAM (SDRAM), Rambus DRAM
(RDRAM), static RAM (SRAM), etc.), ROM, Flash memory,
non-volatile memory (e.g. Flash memory) accessible via a
peripheral interface such as the Universal Serial Bus (USB)
interface, etc,. In addition to storage media, other embodi-
ments may include non-storage media such as media acces-
sible via transmission media or signals such as electrical,
clectromagnetic, or digital signals, conveyed via a communi-
cation medium such as a network and/or a wireless link. It 1s
noted that portions or all of test module 110 and/or analysis
module 120 may be implemented in hardware and/or firm-
ware 1n some embodiments.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. It 1s intended that the follow-
ing claims be interpreted to embrace all such varnations and
modifications.

What 1s claimed 1s:

1. A system, comprising:

a test module operable to coordinate execution of a test

program on a test platform; and

an analysis module, wherein the analysis module 1s con-

figured to:

represent memory operations performed during the
execution as nodes of a directed graph;

add edges to the directed graph representing ordering
relationships between the memory operations;

traverse one or more existing edges of a directed graph,
starting from a first node of the directed graph, to infer
whether an additional edge i1s to be added to the
directed graph;

perform a backtracking procedure to return to a prior
choice point and make an alternate choice, 11 addi-
tional edges are not inferred; and
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detect that a memory consistency model 1s violated 1f a
cycle 1s found 1n the directed graph.

2. The system as recited in claim 1, wherein the analysis
module 1s further configured to:

utilize a first set of rules to verity that results of the execu-

tion correspond to a valid ordering of events, i1 the test
platform provides an indication of an order 1n which
writes from multiple processing elements of a plurality
of processing elements are performed at a shared
memory location during the execution; and

utilize a second set of rules to verity that the results corre-

spond to a valid ordering of events, 1f the test platform
does not provide an indication of the order.

3. The system as recited 1n claim 2, wherein the analysis
module 1s further operable to utilize transactional memory
axioms to verily the memory consistency model.

4. The system as recited 1n claim 3, wherein said transac-
tional memory axioms are selected from a group consisting,
olf: a program order within a transaction implies global order;
memory barriers are implicit around each transaction; and no
other memory operations can intervene between two con-
secutive operations 1n a transaction.

5. The system as recited 1n claim 2, wherein, 1f the test
plattorm does not provide an indication of the order, the
analysis module 1s further configured to:

use a heuristic based on a possible write order at each

shared memory location of a plurality of shared memory
locations to determine whether the results correspond to
a valid ordering of events according to the memory
consistency model.

6. The system as recited in claim 1, wherein the test plat-
form includes a simulation model of amultiprocessor system.

7. The system as recited 1n claim 1, wherein the test plat-
form 1ncludes a multiprocessor system.

8. The system as recited 1in claim 1, wherein the test module
1s further configured to generate a multithreaded test pro-
gram.

9. The system as recited 1n claim 8, wherein the test module
1s further configured to include a mix of instructions 1n the
multithreaded test programs 1n accordance with user-speci-
fied mput parameters.

10. The system as recited in claim 8, wherein each write
operation included 1n the multithreaded test program writes a
distinctly identifiable value.

11. A method, comprising:

coordinating an execution of a multithreaded test program

on a test platform including a plurality of processing
elements;

representing memory operations performed during the

execution as nodes of a directed graph;
adding edges to the directed graph representing ordering
relationships between the memory operations;

traversing one or more existing edges of a directed graph,
staffing from a first node of the directed graph, to infer
whether an additional edge 1s to be added to the directed
graph;

performing a backtracking procedure to return to a prior

choice point and make an alternate choice, 11 additional
edges are not inferred; and

detecting that a memory consistency model 1s violated if a

cycle 1s found 1n the directed graph.

12. The method as recited 1n claim 11, further comprising:

if the test platform provides an indication of an order in

which writes from multiple processing elements of the
plurality of processing elements are performed at a
shared memory location during the execution, using a
first set of rules to verity that results of the execution
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correspond to a valid ordering of events according to a
memory consistency model; and

11 the test platform does not provide an indication of the

order, using a second set of rules to verily that the results
correspond to a valid ordering of events according to the
memory consistency model.

13. The method as recited 1n claim 12, further comprising
utilizing transactional memory axioms to verily the memory
consistency model.

14. The method as recited in claim 13, wherein said trans-
actional memory axioms are selected from a group consisting
ol: a program order within a transaction implies global order;
memory barriers are implicit around each transaction; and no
other memory operations can intervene between two con-
secutive operations 1n a transaction.

15. The method as recited 1n claim 11, further comprising;:

11 the test platform does not provide an indication of the

order, using a heuristic based on a possible write order at
cach shared memory location of a plurality of shared
memory locations to determine whether the results cor-
respond to a valid ordering of events according to the
memory consistency model.

16. A computer readable storage medium comprising soit-
ware 1nstructions, wherein the software instructions are
executable by a processor to:

coordinate an execution of a multithreaded test program on

a test platform including a plurality of processing ele-
ments;

represent memory operations performed during the execus-

tion as nodes of a directed graph;

add edges to the directed graph representing ordering rela-

tionships between the memory operations;

traverse one or more existing edges of a directed graph,

starting from a first node of the directed graph, to infer
whether an additional edge 1s to be added to the directed
graph;

perform a backtracking procedure to return to a prior

choice point and make an alternate choice, if additional
edges are not inferred; and

detect that a memory consistency model 1s violated 11 a

cycle 1s found 1n the directed graph.

17. The computer readable storage medium as recited in
claim 16, wherein the instructions are further executable to:

11 the test platform provides an indication of an order 1n

which writes from multiple processing elements of the
plurality of processing elements are performed at a
shared memory location during the execution, use a first
set of rules to verily that results of the execution corre-
spond to a valid ordering of events according to a
memory consistency model; and

11 the test platform does not provide an indication of the

order, use a second set of rules to verity that the results
correspond to a valid ordering of events according to the
memory consistency model.

18. The computer readable storage medium as recited in
claim 17, wherein the instructions are further executable to
utilize transactional memory axioms to verily the memory
consistency model.

19. The computer readable storage medium as recited in
claam 18, wherein said transactional memory axioms are
selected from a group consisting of: a program order within a
transaction implies global order; memory baillers are implicit
around each transaction; and no other memory operations can
intervene between two consecutive operations 1n a transac-
tion.

20. The computer readable storage medium as recited in
claim 16, wherein the instructions are further executable to:
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i the test platform does not provide an indication of an result of execution corresponds to a valid ordering of
ordering of events, use a heuristic based on a possible events according to the memory consistency model.

write order at each shared memory location of a plurality
of shared memory locations to determine whether a k% ok k%
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