US007809955B2
(12) United States Patent (10) Patent No.: US 7.809,955 B2
Comlekoglu 45) Date of Patent: Oct. 5, 2010
(54) TRUSTABLE COMMUNITIES FOR A 2004/0111639 Al 6/2004 Schwartzetal. 713/201
COMPUTER SYSTEM 2006/0031672 Al 2/2006 Soltisetal. ..oovvvivvninnnn, 713/164
2006/0101399 Al 52006 Murayama et al. 717/120
(75) Inventor: Fatih Comlekoglu, Great Falls, VA (US) 2006/0136705 A 6/2006 Kammaletal. 713/2
2006/0218635 AL* 9/2006 Kramer et al. 726/22
. - - 2007/0143269 AL* 6/2007 Ando et al. eoooooooon. 707/3
(73) Assignee: f;gle RSldge Networks, Inc., Chantilly, 2007/0204078 Al 82007 Boccon-Gibod etal. 710/54
(US) 2008/0072287 AL* 3/2008 Movva et al. woooeoooonn.. 726/2
2008/0077801 AL* 3/2008 EKDEIE wvvoveoveoveoeeo 713/187

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 FORFEIGN PATENT DOCUMENTS
U.S.C. 154(b) by 1023 days.

JP 2005129066 3/2005
(21) Appl. No.: 11/581,861 IP 2006043687 2/2006
OTHER PUBLICATIONS

(22) Filed: Oct. 17, 2006
Suryanarayana et al.; “Architectural Support for Trust Models In

(65) Prior Publication Data Decentralized Applications”, May 20-28, 2006, ICSE, pp. 52-61.%
US 2008/0092235 Al Apr. 17, 2008 * cited by examiner

(51) Imt. Cl. Primary Examiner—Matthew B Smithers
GO6F 11/30 (2006.01) (74) Attorney, Agent, or Firm—Scot A. Reader

(52) US.ClL .., T13/187; 726/26

(58) Field of Classification Search 713/187 7 ABSTRACT

See application file for complete search history.
PP P V A trustable community for a computer system includes mul-

(56) References Cited tiple software components that have security interdepen-
U.S PATENT DOCUMENTS dence. A t;'qstable community attempts to stop malware from
compromising one software component within the commu-

5,276,735 A 1/1994 Boebert et al. 713/167 nity by conditioning operation of the software component
6,826,684 Bl 11/2004 Finketal. ..cccevueenn.n.... 713/160 upon a determination of present trustworthiness of itself and
7,043,633 Bl 5/2006 Fmketal. 713/162 other software components within the Communi‘[y_ Present
7,133,845 B1 11/2006 Gi_nter etal. ..ooooenninnne.nL. 705/51 trustworthiness may be determined through hash checks and
7,269,702 B2* 9/2007 Willman et al. 711/163

application of community rules defining conditions under

7353.531 B2* 4/2008 Brown etal. wo.oovvovvovn... 726/1 ek software combonets are trustworth
7457951 B1* 11/2008 Proudleretal. 713/164 P Y
7.634.807 B2* 12/2009 Yan et al. woovoveevevonn.. 726/22
2003/0126468 Al 7/2003 Markham ...ooeeoeevonn... 713/201 25 Claims, 5 Drawing Sheets
MANAGEMENT LOG
CONSOLE NODE
110 30
MN 10
h 4
| ~i2r0
:| TRUSTABLE HIE
‘| COMMUNITY 4—-15124&4 HF R
" - T
L AGENT 210 =3 | 9513 le—{ Ul 260
E i I om ['|&d
E oG | BIF | PoL E]
‘ ﬂ‘f TLLM . 0S 240
| PLATFORM T~ TRUSTABLE
: MODULE 220 E COMMUNITY
T : g_g_g
CN 20

U.S. Patent Oct. 5, 2010 Sheet 1 of 5 US 7.809,955 B2

Figure 1

MANAGEMENT LOG
CONSOLE NODE

30

TRUSTABLE
COMMUNITY
AGENT 210

218

250

FOREIGN
RESOURCES

Ul 260

COMMUNITY
RESOURCES

0S 240
YRUSTED \ TRUSTABLE
PLATFORM : Mg
MODULE 220 : U
: 230

CN 20

U.S. Patent Oct. 5, 2010 Sheet 2 of 5 US 7.809,955 B2

Figure 2

RECEIVE SIGNED
SOFTWARE
PACKAGE

STORE PACKAGE
HASH VALUE
IN BIF

205

239

VALIDATE SOFTWARE g%(:lu::;HT\F;gﬂLL(é
PACKAGE

10 IN BIF 240

INSTALL SOFTWARE
PACKAGE

21>

ADOPT TPM PUBLIC KEY
AS IDENTITY

220

VALIDATE AGENT
AND POLICY SCHEMA
225

GENERATE SOFTWARE
PACKAGE HASH VALUE

230

U.S. Patent

Figure 3

RECEIVE NEW

POLICY SCHEMA
305

VALIDATE NEW
POLICY SCHEMA
10

GENERATE NEW
SOFTWARE PACKAGE
HASH VALUE 315

STORE NEW
PACKAGE HASH VALUE
IN BIF 290

REQUEST TPM TO
SIGN HASH VALUE
IN BIF 325

Oct. 5, 2010

Sheet 3 of 5 US 7.809,955 B2

Figure 4

RECEIVE
UNINSTALL PACKAGE
405

VALIDATE UNINSTALL
PACKAGE
41

UNINSTALL TRUSTABLE
COMMUNITY S/W
PACKAGE 15

U.S. Patent Oct. 5, 2010 Sheet 4 of 5 US 7.809,955 B2

Figure 5

AWAIT
LOAD EVENT

205

LOAD EVENT
DETECTED

FOREIGN
RESOURCE

DETERMINE OBJECT
OF LOAD EVENT
10

COMMUNITY
RESOURCE

CONSULT LOAD-TIME
DEPENDENCIES
51

CONFORMANCE

NONCONFORMANCE

LOG LAUNCH
PREVENTION
EVENT

U.S. Patent Oct. 5, 2010 Sheet 5 of 5 US 7.809,955 B2

Figure 6

AWAIT

TERMINATION EVENT
605

TERM. EVENT
DETECTED

FOREIGN
RESOURCE

DETERMINE OBJECT

OF TERM. EVENT
10

COMMUNITY
RESOURCE

CONSULT RUNTIME
DEPENDENCIES
15

CONFORMANCE

NONCONFORMANCE

TERMINATE
DEPENDENT S/W
COMPONENT(S) g0

LOG DEPENDENT
TERMINATION
EVENT

625

US 7,809,955 B2

1

TRUSTABLE COMMUNITIES FOR A
COMPUTER SYSTEM

BACKGROUND OF THE INVENTION

The present mmvention relates to computer security, and
more particularly to enhancing security of computer systems
through consideration of the security interdependence of soft-
ware components.

Soltware components that run on computer systems, such
as applications, operating systems, sharable libraries and sys-
tem drivers, often have undetected tlaws that can be exploited
by malicious computer programs that are recerved over the
Internet or other communication network. Such malicious
programs, sometimes called malware, include Trojans,
viruses, worms, spyware and the like. Known security sys-
tems for computer systems attempt to combat malware by
trying to prevent it from compromising any part of the com-
puter system. Such security systems include anti-virus detec-
tion and removal systems, system behavior analysis systems
and packet inspection systems. Additionally, some computer
operating systems require integrity verification of individual
software components before allowing them to execute on the
computer system. Such integrity verification schemes usually
involve a hash check of individual software components.

While these security features can sigmificantly improve
computer system security, they generally neglect the security
interdependence of soitware components. It 1s often the case
that when one software component 1s non-operational or its
integrity has been violated, another software component that
has security dependency on the inactive or compromised
component 1s rendered more vulnerable. For example, an
application on a computer node may become more vulnerable
il a firewall application that protects the software system of
the computer node 1s mactive. Or an application on a com-
puter node may become more vulnerable 11 a shared library
utilized by the application has been compromised. In these
situations and others, computer system security could be
significantly enhanced by taking into account security depen-
dencies of software components when determining opera-
tional privileges.

SUMMARY OF THE INVENTION

The present mmvention, 1n a basic feature, provides trustable
communities for computer systems. A trustable community
comprises multiple software components that have security
interdependence. Such a community attempts to stop mal-
ware from compromising one software component within the
community by conditioning operation of the software com-
ponent upon a determination of present trustworthiness of
itsell and other software components within the community.
Present trustworthiness may be determined by performing
hash checks or applying communaity rules defimng conditions
of trustworthiness, for example. Software components within
a trustable community may reside on a single computer node
or may be distributed across multiple computer nodes.

In one aspect of the invention, therefore, a trustable com-
munity for a computer system comprises a lirst software
component and a second soltware component wherein opera-
tion of the first software component 1s conditioned at least in
part on a determination ol present trustworthiness of the
second software component.

In another aspect of the mvention, a trustable community
for a computer system comprises a first soltware component,
a second software component and a software agent, wherein
the software agent monitors the second software component

10

15

20

25

30

35

40

45

50

55

60

65

2

and conditions operation of the first software component at
least 1n part on a determination of present trustworthiness of
the second soitware component.

In some embodiments, the determination comprises per-
forming a hash check.

In some embodiments, the determination comprises apply-
ing community rules defining conditions of trustworthiness
for the second software component.

In some embodiments, the determination 1s made 1n
response to loading of the first software component 1n prepa-
ration for launch.

In some embodiments, the determination 1s made 1n
response to termination of execution of the second software
component.

In some embodiments, operation of the first software com-
ponent 1s further conditioned on a determination of present
trustworthiness of the first software component.

In some embodiments, information respecting prevention
of launch of the first software component 1s logged.

In some embodiments, the community further comprises a
hardware component adapted to cryptographically sign the
logged information.

In some embodiments, the logged information 1s transmit-
ted to a centralized log facility.

These and other features of the present invention will be
better understood by reference to the detailed description of
the preferred embodiment read in conjunction with the draw-
ings briefly described below. Of course, the scope of the
invention 1s defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a computer network including a computer
node having a trustable community in one embodiment of the
invention.

FIG. 2 1s a flow diagram 1llustrating a secure method for
installing a trustable community software package on a com-
puter node 1n one embodiment of the invention.

FIG. 3 1s a tlow diagram 1llustrating a secure method for
installing a new policy schema for a trustable community on
a computer node 1 one embodiment of the ivention.

FIG. 4 15 a tlow diagram 1llustrating a secure method for
uninstalling a trustable community soiftware package on a
computer node in one embodiment of the mnvention.

FIG. 5 1s a flow diagram 1llustrating a method for perform-
ing a load-time trustworthiness determination in one embodi-
ment of the mvention.

FIG. 6 1s a low diagram 1illustrating a method for perform-
ing a runtime trustworthiness determination 1n one embodi-
ment of the mvention.

L1
vy

ERRED

DETAILED DESCRIPTION OF A PR
EMBODIMENT

In FIG. 1, a computer network including a computer node
20 having a trustable community 230 1s shown 1n one embodi-
ment of the invention. In the illustrated embodiment, com-
puter node 20 1s a personal computer, although 1n other
embodiments a computer node having a trustable community
may be a personal data assistant, an Internet Protocol (IP) or
cellular phone, a server computer, a router or a switch, for
example. Moreover, a trustable community, 1n some embodi-
ments, may include soitware components distributed across
multiple computer nodes.

In the 1llustrated embodiment, computer node 20 1s com-
municatively coupled via network interface 270 with other
computer nodes, including a management node 10 and a log

US 7,809,955 B2

3

consolidation node 30. In other embodiments the manage-
ment services provided by management node 10 and the log
consolidation services provided by log consolidation node 30
may be co-located on a single network node. Communication
between nodes 10, 30, on the one hand, and node 20, on the
other, may be achieved using various data communication
protocols, such as TCP/IP, and may be conducted via zero or
more 1ntermediate network nodes, such as routers and
switches.

Management node 10 has a management console 110
thereon. Management console 110 i1s a software system
adopted to communicate securely with a trustable communaity
agent 210 on computer node 20 as will be explained 1n more
detaul.

Computer node 20 includes an operating system 240 com-
municatively coupled between a user interface 260 and net-
work interface 270. Operating system 240 1s a soltware sys-
tem that executes and manages software components as well
as networking and user interfacing for computer node 20.
Operating system 240 executes and manages soltware coms-
ponents within and outside community 230 as well as inter-
actions between such components. Software components
executed and managed by operating system 240 are depicted
in FIG. 1 as part of operating system 240 for the sake of
clanity, although it will be appreciated that some of these
clements may be merely executed and managed by operating
system 240. In some embodiments, operating system 240 1s a
Microsoit Windows-based operating system, such as Win-
dows 2000, Windows XP or Windows Vista, and runs on an
Intel-based general purpose microprocessor such as Intel
Pentium 11, Pentium III, Pentium 4 or Celeron.

Community 230 includes a logical group of software com-
ponents executed and managed by operating system 240 as
well as at least one hardware component. The software com-
ponents within community 230 include management compo-
nents that manage community 230 and managed components
that are managed by the management components. The man-
agement components include trustable community agent 210,
log file 212, binding information file 214 and policy schema
216. The managed components include community resources
218. The hardware elements within community 230 include
trusted platform module (TPM) 220. Naturally, in some
embodiments, a computer node 20 may have multiple trust-
able communities operating under control of a single trust-
able community agent. Moreover, 1n some embodiments, a
soltware component may belong to multiple trustable com-
munities.

Community resources 218 are 1dentified 1n policy schema
216. Commumnity resources 218 may include, for example,
application code; sharable libraries, such as dynamically
linkable libraries (DLL) in Windows environments or shared
libraries 1n UNIX and Linux environments; and system driv-
ers. Community resources 218, generally speaking, have
strong security interdependence. That 1s, when one of com-
munity resources 218 1s non-operational or its integrity has
been breached other community resources 218 are, generally
speaking, rendered substantially more vulnerable to being
compromised by malware.

TPM 220 1s a microcontroller within community 230 that
interfaces with community agent 210 but 1s neither managed
nor executed by operating system 240. TPM 220 uses a TPM
private key to facilitate management of community resources
218 and detect violations of the mtegrity of community 230.
In some embodiments, TPM 220 1s an application specific
integrated circuit (ASIC) compliant with Trusted Computing
Group Trusted Platform Module Specification Version 1.2
and istalled on computer node 20 by the manufacturer of

10

15

20

25

30

35

40

45

50

55

60

65

4

computer node 20. It will be appreciated that hardware-based
management and execution of TPM 220 limaits the vulnerabil-
ity of TPM 220 to malware attacks and improves overall
security of community 230.

Foreign resources 250 include software components out-
side community 230. Foreign resources 2350 include, for
example, applications that run on operating system 240 and
that are not managed by community agent 210. Community
resources 218, generally speaking, do not have a strong secu-
rity dependence on foreign resources 250.

Secure operation of community 230 1s dependent upon
secure 1nstallation on computer node 20 of a trustable com-
munity software package. Management console 110, under
direction of an admimistrator, prepares the community sofit-
ware package for secure installation. In some embodiments,
the community software package includes community agent
210 and policy schema 216. In embodiments where there 1s
more than one trustable community the software package
may include a policy schema for each community. Manage-
ment console 110 maintains a master copy of agent 210. The
administrator uses management console 110 to generate a
policy schema 216 appropriate for community 230. Manage-
ment console 110 generates a hash value of agent 210 and
cryptographically signs the agent hash value using the man-
agement console private key. Management console 110 also
generates a hash value of policy schema 216 and crypto-
graphically signs the schema hash value using the manage-
ment console private key. Management console 110 further
generates a hash value of the entire software package and
cryptographically signs the package hash value using the
management console private key. In some embodiments,
policy schema 216 1s also cryptographically signed by the
administrator who defined the policy schema 216 using the
administrator private key. Once all of the signatures have been
applied, management console 110 downloads the s1igned soft-
ware package to computer node 20. It will be appreciated that
the signed hash values may be used to detect alteration or
corruption of the community software package or elements
thereol prior to installation on computer node 20, whether by
malware or otherwise.

Turning to FIG. 2, a secure method for installing the down-
loaded community software package on computer node 20 1s
shown 1n one embodiment of the invention. Operating system
240 receives the signed software package (2035) and validates
the entire software package using the public key of manage-
ment console 110 (210). If validation 1s successtul, operating
system 240 completes installation of the software package
(215) and the installed agent 210 retrieves and adopts the
TPM public key as the identity of agent 210 (220). Agent 210
then validates agent 210 and policy schema 216 using the
public key of management console 110 (225). IT all of the
validations are successiul, agent 210 1s installed as an unstop-
pable element of operating system 240. If any of the valida-
tions 1s unsuccessiul, agent 210 seli-terminates.

Once mstalled as an unstoppable element of operating
system 240, agent 210 generates a new hash value of the
entire software package (230). Agent 210 stores the new hash
value 1n binding information file 214 (235) and requests TPM
220 to cryptographically sign the new hash value using the
TPM private key (240). TPM 220 signs the new hash value as
requested. It will be appreciated that the TPM-signed new
hash value may be used to detect subsequent alteration or
corruption of agent 210 or policy schema 216, whether by
malware or otherwise.

As circumstances warrant, 1t may be desirable to replace
installed policy schema 216 with a new policy schema. In that
event, an administrator uses management console 110 to gen-

US 7,809,955 B2

S

erate a new policy schema appropnate for community 230.
Management console 110 generates a hash value of the new
policy schema and cryptographically signs the schema hash
value using the management console private key. In some
embodiments, the new policy schema 1s also cryptographi-
cally signed by the administrator who defined the new policy
schema using the administrator private key. Once all of the
signatures have been applied, management console 110
downloads the new policy schema to computer node 20.

Turning now to FIG. 3, a tlow diagram illustrates a secure
method for installing a new policy schema on computer node
20 1n one embodiment of the invention. Agent 210 receives
the signed new policy schema (3035) and validates the new
policy schema source using the public key of the management
console 110 (310). If validation 1s successtul, agent 210 com-
pletes 1nstallation of the new policy schema and generates a
new hash value of the entire software package, for example,
agent 210 and the new policy schema (3135). Agent 210 stores
the new hash value 1n binding information file 214 (320) and
requests TPM 220 to cryptographically sign the new hash
value using the TPM private key (325). TPM 220 signs the

new hash value as requested.

As circumstances warrant, 1t may be desirable to uninstall
the installed commumity software package. In that event,
management console 110, under direction of the administra-
tor, prepares a community uninstall software package. Man-
agement console 110 maintains a master copy of the uninstall
soltware package. Management console 110 generates a hash
value of the uninstall software package and cryptographically
signs the hash value using the management console private
key. In some embodiments, the uninstall software package 1s
also cryptographically signed by the administrator using the
administrator private key. Once all of the signatures have been
applied, management console 110 downloads the signed
uninstall software package to computer node 20.

Turning now to FIG. 4, a tlow diagram 1llustrates a secure
method for deinstallation of a trusted enclave software pack-
age on computer node 20 1n one embodiment of the invention.
Agent 210 recerves the signed uninstall software package
(405) and validates the uninstall software package using the
public key of management console 110 (410). I validation 1s
successiul, agent 210 permits deinstallation of the commu-
nity software package including, for example, agent 210 and
policy schema 216 (415). Any software components spawned
by agent 210 during installation or operation, such as log file
212 and binding information file 214, may also be unin-
stalled. In some embodiments, community software package
and spawned software components are removed from com-
puter node 20 attendant to deinstallation. No action other than
receipt of a valid uminstall software package will prompt
agent 210 to permit deinstallation.

During 1ts tenure as an unstoppable element of operating
system 240, trustable community agent 210 performs two
primary roles: (1) attempting to stop malware from compro-
mising community 230 by conditioning operation of software
components within community resources 218 upon a deter-
mination of present trustworthiness of software components
within community resources 218 and (2) reporting breaches
of the integrity of community 230 and actions relating to
preventing execution and terminating of soltware compo-
nents within community resources 218. To perform these dual
roles, trusted community agent 210 cooperatively interfaces
with other management components within community 230
including binding information file 214, policy schema 216
and TPM 220. Agent 210 also interfaces with log consolida-
tion node 30.

10

15

20

25

30

35

40

45

50

55

60

65

6

One way in which agent 210 fulfills 1ts first primary role 1s
by conditioning operation of a software component within
community resources 218 upon a determination of present
trustworthiness of another software component within com-
munity resources 218. In some embodiments, a present trust-
worthiness determination mnvolves finding a match between a
present hash value and an earlier hash value of the other
soltware component that has been cryptographically signed,
and further involves applying community rules from policy
schema 216 that define conditions under which the other
soltware component 1s trustworthy or untrustworthy.

Turming now to FIG. 3§, a flow diagram 1llustrates a method
for performing a trustworthiness determination at load-time
in one embodiment of the invention. Initially, agent 210 lis-
tens for a software component load event (505). When a
soltware component 1s loaded by operating system 240 1n
preparation for execution, agent 210 intercepts the load
operation. Agent 210 learns the complete file or directory path
to the loaded software component and consults policy schema
216 to determine whether the path elements match a commu-
nity resource definition (510). If the path elements do not
match a community resource definition, the loaded software
component 1s within foreign resources 250 and 1s allowed to
launch. If the path elements match a community resource
definition, the loaded software component 1s within commu-
nity resources 218 and agent 210 consults policy schema 216
to determine the load-time security dependencies for the
loaded software component and whether there 1s conform-
ance with such dependencies (513). It there 1s conformance
with all load-time security dependencies, the loaded software
component 1s allowed to launch. If there 1s nonconformance
with any load-time security dependency, agent 210 prevents
the software component from launching (520) and stores
information about the launch prevention 1n log file 212 (525).

In some embodiments, load-time security dependencies
include one or more of a hash check of the loaded software
component; a hash check of one or more other software
components within community 230; and application of com-
munity rules defining conditions under which one or more
other software components within community 230 are trust-
worthy or not. The hash checks employ earlier calculated
hash values of software components that have been crypto-
graphically signed by TPM 220 and stored in binding infor-
mation file 214 or policy schema 216. Agent 210 validates the
stored hash values using the TPM public key and compares
the stored hash values with respective hash values presently
calculated from the software components to determine
whether the integrity of any of the software components has
been violated. If the integrity of any of the soitware compo-
nents has been violated, agent 210 blocks the loaded software
component from launching and logs information respecting
the launch prevention 1n log file 212. If the integrity of the
soltware components has not been violated, agent 210 pro-
ceeds to apply community rules to determine whether any of
the one or more other software components 1s untrustworthy.
If all of these software components are determined to be
trustworthy, the loaded software component 1s allowed to
launch. If any of these software components 1s determined to
be untrustworthy, agent 210 blocks the loaded software com-
ponent from launching and logs information respecting the
denial 1n log file 212.

In some embodiments, community rules specily trustwor-
thy or untrustworthy states for software components with
which the loaded software component has security interde-
pendence. Untrustworthy states may include, for example, a
state where the software component does not presently exist,
a state where the software component 1s not presently loaded

US 7,809,955 B2

7

or a state where the software component 1s not presently
running. Agent 210 detects the states of software components
within community resources 218 and applies the community
rules to the detected states to make trustworthiness determi-
nations.

By way of example, community 230 may have a spread-
sheet application, a script file run by the spreadsheet applica-
tion, a communication application and a firewall application
within community resources 218. A community rule in policy
schema 216 may specity that the communication application
may only launch 1f the firewall application i1s running. The
spreadsheet application loads and runs the script file to per-
form financial calculations. The script file then loads the
communication application in preparation for making a con-
nection to a virtual private network. Agent 210 intercepts the
loading of the communication application and applies the
community rule that the communication application may
only launch if the firewall application 1s running. Agent 210
detects whether the firewall application 1s running by refer-
ence to the firewall application’s runtime announcements of a
unique 1dentifier assigned by operating system 240. IT the
firewall application 1s running, the communication applica-
tion 1s allowed to launch. If the firewall application i1s not
running, agent 210 prevents the communication application
from launching and logs information respecting the launch
prevention 1n log file 212.

Turning now to FIG. 6, a flow diagram 1llustrates a method
for performing a trustworthiness determination at runtime 1n
one embodiment of the mvention. Initially, agent 210 listens
for a software component termination event (605). When a
soltware component terminates, agent 210 1ntercepts the ter-
mination operation. Agent 210 learns the complete file or
directory path to the terminated software component and
consults policy schema 216 to determine whether the path
clements match a community resource definition (610). If the
path elements do not match a community resource definition,
the terminated component 1s within foreign resources 2350 and
no further action 1s required. If the path elements match a
community resource definition, the terminated component 1s
within community resources 218 and agent 210 consults
policy schema 216 to determine the runtime security depen-
dencies and whether there 1s conformance with such depen-
dencies (6135). It there 1s conformance with all runtime secu-
rity dependencies, no further action 1s required. If there 1s
nonconformance with any runtime security dependency,
agent 210 terminates one or more dependent soltware com-
ponents (620) and stores imformation about the dependent
termination in log file 212 (625).

In some embodiments, runtime security dependencies
include application of community rules defining conditions
under which running software components within commu-
nity resources 218 must be terminated as a result of termina-
tion ol another software component within community
resources 218. In these embodiments, the terminated soft-
ware component 1s rendered untrustworthy by virtue of its
termination. For example, acommunity rule in policy schema
216 may specily that a communication application must ter-
minate 1f a firewall application terminates due to a security
dependency of the communication application on the firewall
application. If a running software component must be termi-
nated, agent 210 forces termination of the software compo-
nent and logs information respecting the termination 1n log
file 212.

In some embodiments, a trustable community may be dis-
tributed across multiple computer nodes 1n a network. In
these embodiments, a trustable community agent may proac-
tively monitor a remote software component within the com-

10

15

20

25

30

35

40

45

50

55

60

65

8

munity and resident on a remote node and condition operation
of a local software component within the community and
resident on a local node on a determination of present trust-
worthiness of the remote software component. For example,
a Web services client on a local node may subscribe to a Web
service on a remote node. A community agent on the local
node may proactively monitor the Web service and prevent
launch of or terminate the Web services client upon detecting

that the Web service has been rendered inoperative or com-
promised.

In other embodiments, intercommunity security dependen-
cies may be established between multiple trustable commu-
nities. In these intercommunity embodiments, a trustable
community agent may proactively monitor a first trustable
community and a second trustable community and condition
operation of the first trustable community on a determination
of present trustworthiness of the second trustable community.
In some embodiments, mtercommunity security dependen-
cies include hash checks of all or substantially all software
components within the second community or application of
intercommunity rules defining conditions under which the
second community 1s trustworthy, for example. 11 the second
community 1s deemed presently untrustworthy, launch of any
soltware component within the first community may be pre-
vented or termination of all software components within the
second community may be forced, for example.

Trustable community agent 210 fulfills 1ts second primary
role by logging signature validation failures, hash check fail-
ures, launch preventions and soiftware component termina-
tions; and by regularly veriiying the integrity of the commu-
nity software package.

With regard to logging of failures, preventions and termi-
nations, whenever agent 210 1s unable to validate any signa-
ture or hash value during installation or operation, or prevents
a software component launch, or forces termination of a sofit-
ware component, agent 210 logs information respecting the
failure, prevention or termination in log file 212. Additionally,
in some embodiments, agent 210 logs detected changes 1n
operational status of community resources 218, such as
changes between loaded, running and terminated status. After
updating log file 212, agent 210 generates a new hash value of
log file 212 and requests TPM 220 to cryptographically sign
the new hash value using the TPM private key, after which
TPM 220 signs the new hash value as requested. It will be
appreciated that the TPM-signed hash value may be used to
detect any subsequent alteration or corruption of log file 212,
whether by malware or otherwise.

With regard to regularly veritying the integrity of the com-
munity software package, agent 210 invokes TPM 220 to sign
the software package hash value stored in binding informa-
tion file 214 in response to community software package
installation and policy schema updates. In some embodi-
ments, agent 210 thereatter periodically checks the signed
soltware package hash value stored in binding 1information
file 214 using the TPM public key to verily the integrity of the
installed software package. Moreover, 1n some embodiments,
the contents of log file 212 and binding information file 214
are periodically uploaded to log consolidation node 30 for
auditing. Agent 210 retrieves the log information and the
signed hash value stored 1n log file 212, and the signed soft-
ware package hash value stored in binding information file
214, appends the TPM public key that agent 210 has adopted
as 1ts 1dentity and uploads the log package and software
package hash value to log consolidation node 30. Log con-
solidation node 30 validates the log package and the software
package hash value using the TPM public key.

US 7,809,955 B2

9

In some embodiments, the contents of log file 212 and
binding information file 214 are extracted by log consolida-
tion node 30 without intervention of agent 210 under certain
circumstances, such as when agent 210 has been rendered
moperative due to alteration, corruption or deinstallation.
Moreover, 1n some embodiments, the contents of binding
information file 214 are periodically uploaded to manage-
ment node 10 1nstead of log consolidation node 30 for audit-
ing.

In some embodiments, Secure Hashing Algorithm (SHA-
1) 1s invoked as the hash algorithm in the generation and
validation of hash values described herein whereas RSA-
1024 with PKCS#1.5 padding 1s mnvoked as the encryption
algorithm 1n the generation and validation of signatures
described herein.

In some embodiments, validation 1s performed as follows.
A signed hash value of a software component 1s decrypted
using the public key of the source of the signature to regen-
crate a plain text hash value. A hash value 1s separately gen-
crated from the software component. I1 the regenerated hash
value matches the generated hash value then the software
component 1s considered validated. Otherwise, validation 1s
considered to have failed.

In some embodiments, downloads and uploads described
herein are accomplished using one of email, network file
transier or direct network connectivity. In some embodi-
ments, policy schema 216 1s represented 1n signed eXtensible
Markup Language (XML).

It will be appreciated by those of ordinary skill in the art
that the invention can be embodied 1n other specific forms
without departing from the spirit or essential character hereof.
The present description 1s therefore considered 1n all respects
to be i1llustrative and not restrictive. The scope of the invention
1s indicated by the appended claims, and all changes that
come with in the meaning and range of equivalents thereof are
intended to be embraced therein.

What 1s claimed 1s:

1. A computer node, comprising:

a network interface;

a processor commumnicatively coupled with the network
interface and having an operating system executing
thereon; and

a hardware element communicatively coupled with the
processor, wherein the hardware element 1s not managed
by the operating system, wherein the computer node
receives one or more managing software elements and
one or more security dependencies for managed sofit-
ware elements via the network interface and installs the
managing software elements on the computer node
under management of the operating system, and wherein
the computer node executes the managing software ele-
ments under management of the operating system
whereby operation of managed software elements 1s
conditioned on determinations of trustworthiness of
other managed solftware elements made using the secu-
rity dependencies, findings of untrustworthiness are
logged 1n a log file maintained on the computer node,
and integrity of the managing software elements, the
security dependencies and the log file are verified at least
in part by validating one or more hash values crypto-
graphically signed by the hardware element.

2. The computer node of claim 1, wherein launch of a first
managed software element 1s prevented on finding noncon-
formance of a second managed soitware element with a load-
time security dependency for the first managed software ele-
ment.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The computer node of claim 1, wherein operation of a
first managed software element 1s terminated on finding non-
conformance of a second managed soitware element with a
runtime security dependency for the first managed software
clement.

4. The computer node of claim 1, wherein operation of a
first managed software element 1s conditioned on validation
of a hash value of a second managed software element.

5. The computer node of claim 1, wherein operation of a
first managed software element 1s conditioned on an opera-
tional state of a second managed software element.

6. The computer node of claim 1, wherein operation of a
first managed soitware element on the computer node 1s con-
ditioned on a determination of trustworthiness of a second
managed software element on a second computer node made
using one or more security dependencies.

7. The computer node of claim 1, wherein operation of a
first managed software element 1s conditioned on a determi-
nation of trustworthiness of a second managed software ¢le-
ment made using one or more security dependencies, and
wherein operation of a first community of software elements
including the first managed software element and the second
managed software element 1s conditioned on a determination
of trustworthiness of a second community of software ele-
ments made using one or more security dependencies.

8. The computer node of claim 1, wherein upon updating
the log file a hash value of the updated log file 1s cryptographi-
cally signed by the hardware element.

9. The computer node of claim 1, wherein upon updating a
managing software element a hash value of the managing
software element 1s cryptographically signed by the hardware
clement.

10. A method for maintaining trustable communities, com-
prising the steps of:
receving on a computer node one or more managing soit-

ware elements and security dependencies for managed
software elements;

installing on the computer node, under management of an
operating system executing on the computer node, the
managing soltware elements;

conditioning by the computer node, under management of
the operating system, operation of managed software
clements on determinations of trustworthiness of other
managed software elements made using the security
dependencies;

logging by the computer node 1n a log file maintained on
the computer node, under management of the operating
system, findings of untrustworthiness; and

veritying by the computer node, under management of the
operating system, 1ntegrity of the managing software
clements, the security dependencies and the log file at
least 1n part by validating one or more hash values cryp-
tographically signed by a hardware element on the com-
puter node, wherein the hardware element 1s not man-
aged by the operating system.

11. The method of claim 10, wherein launch of a first
managed software element 1s prevented on finding noncon-
formance of a second managed software element with a load-
time security dependency for the first managed software ele-
ment.

12. The method of claim 10, wherein operation of a first
managed soltware element 1s terminated on finding noncon-
formance of a second managed software element with a runt-
ime security dependency for the first managed software ele-
ment.

US 7,809,955 B2

11

13. The method of claim 10, wherein operation of a first
managed software element 1s conditioned on validation of a
hash value of a second managed software element.

14. The method of claim 10, wherein operation of a first
managed software element 1s conditioned on operational state
of a second managed software element.

15. The method of claim 10, wherein operation of a {first
managed soltware element on the computer node 1s condi-
tioned on a determination of trustworthiness of a second
managed software element on a second computer node made
using one or more security dependencies.

16. The method of claim 10, wherein operation of a first
managed software element 1s conditioned on a determination
ol trustworthiness of a second managed software element
made using one or more security dependencies, and wherein
operation of a first community of software elements including
the first managed software element and the second managed
software element 1s conditioned on a determination of trust-
worthiness of a second community of software elements
made using one or more security dependencies.

17. The method of claim 10, further comprising the steps of
updating by the computer node, under management of the
operating system, the log file and cryptographically signing
by the hardware element a hash value of the updated log file.

18. The method of claim 10, further comprising the steps of
receiving on the computer node updated managing software
clements and cryptographically signing by the hardware ele-
ment a hash value of the updated managing software ele-
ments.

19. A management node, comprising;

a management console; and

a network interface, wherein under control of the manage-

ment console the management node downloads via the
network interface one or more managing soltware ele-
ments and one or more security dependencies for man-
aged software elements to a computer node whereon the
managing soltware elements are installed and executed
under management of an operating system executing on
the computer node whereby operation of managed soft-
ware elements 1s conditioned on determinations of trust-

10

15

20

25

30

35

12

worthiness of other managed software elements made
using the security dependencies, findings of untrustwor-
thiness are logged 1n a log file maintained on the com-
puter node and integrity of the managing software ele-
ments, the security dependencies and the log file are
verified by validating one or more hash values crypto-
graphically signed by a hardware element on the com-
puter node that 1s not managed by the operating system.

20. The management node of claim 19, wherein launch of
a first managed software element 1s prevented on finding
nonconformance of a second managed software element with
a load-time security dependency for the first managed soft-
ware element.

21. The management node of claim 19, wherein operation
of a first managed software element 1s terminated on finding
nonconformance of a second managed software element with
a runtime security dependency for the first managed software
clement.

22. The management node claim 19, wherein operation of
a first managed software element 1s conditioned on validation
of a hash value of a second managed software element.

23. The management node of claim 19, wherein operation
of a first managed software element 1s conditioned on opera-
tional state of a second managed software element.

24. The management node of claim 19, wherein operation
of a first managed soiftware element on the computer node 1s
conditioned on a determination of trustworthiness of a second
managed software element on a second computer node made
using one or more security dependencies.

25. The management node of claim 19, wherein operation
of a first managed soitware element 1s conditioned on a deter-
mination of trustworthiness of a second managed software
clement made using one or more security dependencies, and
wherein operation of a first community of software elements
including the first managed software element and the second
managed software element 1s conditioned on a determination
of trustworthiness of a second community of solftware ele-
ments made using one or more security dependencies.

	Front Page
	Drawings
	Specification
	Claims

