12 United States Patent

US007809130B1

(10) Patent No.: US 7.809,130 B1

Kalyadin et al. 45) Date of Patent: Oct. 5, 2010
(54) PASSWORD RECOVERY SYSTEM AND 2007/0014416 Al1* 1/2007 Riveraetal. 380/286
METHOD OTHER PUBLICATIONS
(75) Inventors: Oleg A. Kalyadin, Moscow (RU); %I/I ibiiﬁj M. BEI‘I‘OHZ&FM ?flan%}:dsi (?nﬁl ;f Woblt:jer, “Mocliei‘atelyg
. ard, CINOIy-HOUl unctions ransactions on 1nicrnce
iifé{::df,r]i '1;:?{30;:;[2;[2;;0&%[])’ Technology, vol. 5, No. 2, May 2005, pp. 299-327.*
y v " REC 2898, “PKCS #5: Password-Based Cryptography Specification
: _ Version 2.0,” Sep. 2000.*

(73) Assignee: Elcomsoft Co. Ltd., Moscow (RU) Antoon Bosselaers et al., SHA: A Design for Parallel Architectures?,
N _ _ _ _ _ http://homes.esat.kuleuven.be/~cosicart/pdt/ AB-9700.pdf (1997).
(*) Notice: Subject‘ to any dlsclalmer,i the term of this Antoon Bosselaers, Even Faster Hashing on the Pentium, http://

patent 1s extended or adjusted under 35 homes.esat.kuleuven.be/~cosicart/pdt/ AB-9701.pdf (1997).
U.S.C. 154(b) by 1151 days. ¥ cited by examiner
(21) Appl. No.: 11/423,444 Primary Examiner—Gilberto Barron, Jr.
Assistant Examiner—Virginia Ho
. g
(22) Filed: Jun. 11, 2006 (74) Attorney, Agent, or Firm—Bardmesser Law Group
(1) Int. Cl. (57) ABSTRACT
HO4L 29/06 (2006.01)
GO6F 21/00 (2006.01) A system, method and computer program product for recov-
(52) U.S.CLl oo, 380/1; 380/286; 713/184; ering a password including, for each possible password to be
796/6 tested, generating a periodicity unit based on a number of
(58) Field of Classification Search 713/184, Symbols in the password and a size ol a chunk used by a
713/186; 726/22.25. 6; 380/2,28. 44, 286. one-way function to encrypt the password. The periodicity
3%0/1 unit 1s substantially shorter than an input string, that includes
See application file for complete search history. replicated actual .pas.s‘:word psed to encrypt the passwgrd.
Based on the periodicity unit, using the one-way function,
(56) References Cited generating a control value for the periodicity unit. The control

U.S. PATENT DOCUMENTS

6,473,757 B1* 10/2002 Garofalakis et al. 1/1
7,149,801 B2* 12/2006 Burrowsetal. 709/225
2004/0073815 AlL*

4/2004 Sanaietal. 713/202

1 byte counter

v

—

6-symbol password

7-byte “replication” unit

value 1s tested for a match with a control value generated from
the actual password. An indication of a match 1s provided to a
user.

13 Claims, 3 Drawing Sheets

! \ ,

64 bytes

64 bytes

1792 byte period

l Ol

sn|eA
Ysey i1iq 091
anjeA
ysey liq 09l
anjeA
ysey 11q 091

4 P EFEFFR

- TTTTTTTTTT
1+ £

US 7,809,130 B1

L B N BE BE N BE BE B BE B)
e

LIE DR IR L T BE U I BN B O
B e A

4 4 4 444 4 &

LB B BE L B UL B N N BN N I)

4
4
LR BE B B BE N I B B B BN B I

L]
L]
L]
-
-

F &4 449

-
a

L]
-
-
-
-
-
-

LR + F 4 ¥ LR + F £ L
TT AT T AT T TT TTT TT T
f 4 FF A APPSR

T T rr T

+ 4+ £+ FFErT

LI I |
4
LR DA I

r o rr o rr rr rrr rrr rrr
Lii.-ii.—iiiiiiiiiiiii

rrror
LI N

FPAAFFAFF AT FITT r i+
rr rr rr rr rr
4 44 4 FFAdFEP . 4
L L ¥ FFE - L L + + ¥ ¥4 FE
r ' ' o ' rror
-+ r r T L 4T
4 F ¥4 FF A FFE PP
[] rFFP L PP L PFF L FF
4 FF 4 FFAdFF 4 ¥4 FF A FFE PP
4 FFAFEA LA +F A FFA T
4 a2 a2 a4 mam J aa a m g a 4 ma a4 aa aa
4 FFAFEA LA +F A FFA T
L L L N N N L LI N 144 4 44 49
4 & . a . a = - a a a2 a .
*+F A PFFA PSS SIS APPSR FFS S S E A FEdFEd T
4 1 F 4 44 F 54 FFFFFFFFFFFd 54480484 . LI LB
- . a s & a - . a = " aaaoa a
14 F 4 4 F FFF I FFFAFFAFFFFS g ay + 4 -
[] +f i+ ¥+ FFEFrFPFFrEFFErFFr -

+ h

Sheet 1 of 3

so1AqQ $9 s91AQ 0 S9IAQ 9

Oct. 5, 2010

PDJOMSSEd
|IOqQWIAS-O

ofufolefe] -+ [afoflolofefalo]u{o[ofelz]o[*{o]o]e[z[o o[>

U.S. Patent

L A
JJ.JJ.JJ.-J.JJ.J.JJ.

E LR R LR
-.J.J.J.—.J.J.—.

an(eA
ysey Jiq 09|

-
L

L LI L
FT*% % T %% % %N
LK L] Ll
* F %% F 5
F "% F %% F &%
LI R

F % F
.-J.J.—.J.J.

a
T

T =TT
41 484 5454 594
L N
44 F8d 5 pdpF
a2 & a & a

AT Fr

L -
%% FEEFEE

US 7,809,130 B1

L
L
n
L
L]

1% % 1%

polad 9)Aq Z6/1

% salAq +9 s8JAg 19 S8JAQ 19
-

gl

'

e [| [| [| [|

P

=

7 p,

—

=

S Jun uonedlidal, 9Ag-/
«

~—

&

-

piomssed |oquAs-9

seuNad SEOUEE SECUSE SEUNEH

¢ Ol 13]uno2 9JAQ |

Jofelef-

U.S. Patent

U.S. Patent Oct. 5, 2010 Sheet 3 of 3 US 7.809,130 B1

- Processor 301)2
- Main Memory 308

Secondary Memory 130

Hard Disk Drive
332

i

Removable Storage Removable
Drive 314 Storage Unit 316

Communication
Infrastructure 306

Interface 320 Removable

storage Unit 322

328

Network
Interface 324

Communications Path 326

FIG. 3

US 7,809,130 Bl

1

PASSWORD RECOVERY SYSTEM AND
METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s related to cryptography, and, more
particularly, to a faster method for recovery of passwords.

2. Description of the Related Art

Password recovery today 1s an important area of research
and mformation security and information systems security.
Recovering the password may be necessary i any number of
circumstances.

For example, an encrypted disk drive may be recovered in
the course of law enforcement operation, and the law enforce-
ment agency may need to perform forensic recovery of the
data stored on the disk drive. An encrypted message may be
intercepted by a law enforcement agency, and needs to be
decrypted. The password may have been created by a former
employee, who 1s no longer available to open the document.
Alternatively, the password may have been lost or forgotten,
while the document still needs to be opened by the system
administrator. Yet another situation involves the system
administrator testing documents and their passwords to make
sure that the users are not relying on relatively simple pass-
words, or easily discoverable passwords that rely on informa-
tion about the users themselves (for example, the user’s name,
the user’s spouse’s name, their pet’s names, their names
spelled backwards, etc.). These are some of the circumstances
where a system administrator may need to recover the pass-
word, without assistance from whoever chose that password.

A number of conventional methods are known for recov-
ering passwords. These may be based on heuristics (informa-
tion known or that can be guessed about the user), or on a
brute-force approach of sequentially testing the password.
Where no heuristics are available, the brute-force approach
can take a very long time—at times, unacceptably long.

Accordingly, there 1s a need in the art for a fast system and
method for recovering passwords.

SUMMARY OF THE INVENTION

Accordingly, the present mnvention 1s related to a system
and method for rapid encrypted document recovery that sub-
stantially obviates one or more of the disadvantages of the
related art.

In one aspect, there 1s provided a system, method and
computer program product for recovering a password includ-
ing, for each possible password to be tested, generating a
periodicity unit based on a number of symbols in the pass-
word and a size of a chunk used by a one-way function to
convert the password into a control value, such as a hash
value. The periodicity unit 1s substantially shorter than an
input string that includes replicated actual password used to
convert the password into the control value. Based on the
periodicity unit, and using the one-way function, generating a
control value for the periodicity unmit. The control value 1s
tested for a match with a control value generated from the
actual password. An 1ndication of a match 1s provided to a
user.

As one example, the one-way function can be, ¢.g., a hash
function, such as a SHA-1 function, with the password being
6 symbols long, and the periodicity unit being 192 bytes long.

The hash function can be, e.g., SHA-0, SHA-1, SHA-224,
SHA-256, SHA-384 and SHA-3512. The one-way function
can be based on, ¢.g., Blowfish, Twofish, DES and AES

cryptographic algorithms. The periodicity unit can optionally

10

15

20

25

30

35

40

45

50

55

60

65

2

include a counter added to each instance of the possible
password, or other artifacts used to lengthen the periodicity of
the input string.

Additional features and advantages of the invention will be
set Torth 1n the description that follows, and in part will be
apparent {rom the description, or may be learned by practice
of the mvention. The advantages of the invention will be
realized and attained by the structure particularly pointed out
in the written description and claims hereof as well as the
appended drawings.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE AT'TACHED
FIGURES

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are incor-
porated 1n and constitute a part of this specification, illustrate
embodiments of the mnvention and together with the descrip-
tion serve to explain the principles of the invention.

In the drawings:

FIG. 1 illustrates one embodiment of the invention, with
the SHA-1 hashing function as an example.

FI1G. 2 illustrates another embodiment, where a counter 1s
added to the input string of the replicated password.

FIG. 3 1s a schematic diagram of an exemplary computer or
server that can be used 1n the mvention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

(L]
By

ERRED

Reference will now be made 1n detail to the embodiments
of the present invention, examples of which are illustrated 1n
the accompanying drawings.

Thus, the password protection and password recovery
technologies complement each other, somewhat analogous to
dual-use technology 1n the military context—protection of
files and documents has both a benign purpose, and poten-
tially a malicious one. Also, password recovery can have both
usetul and benign applications, as well as misuses.

One-way functions, such as functions based on crypto-
graphic block ciphers (e.g., Blowfish, Twofish, AES, DES), or
hash functions, have long been used as a mechamsm for

converting passwords ito control values. Examples of com-
monly used hash functions are SHA-0, SHA-1, SHA-224,
SHA-256, SHA-512, as well as many others. Most of the
commonly used hash functions operate by converting an
input string of an arbitrary length into a control value, known
as the “hash value,” which 1s of a specified length. Using the
SHA-1 function as an example, the hash value 1s 160 baits
long, which means that the number of possible hash values 1s
2'°° This is, obviously, a very large number. Furthermore,
most one-way functions used 1n cryptographic applications
are such that a change of even one bit in the input string results
in a completely different hash value at the output. Thus, while
the hashing does not guarantee that two different inputs (for
example, two different passwords, or two different files) will
result in a unique hash value, with 2'°° possible hash values,
in practice, this 1s usually the case.

With the password (e.g., a six-symbol password) as the
input string, the output s a hash value, for example, in the case
of the SHA-1 function, a 160 bit value. Passwords, however,
are rarely very long, with most systems using 6 or 8 symbol

passwords, even though theoretically longer passwords can

US 7,809,130 Bl

3

be used. In most cases, the limitation 1s not a technical one,
but a practical one—requiring users to remember very long
passwords, particularly passwords that are pseudorandom, or
contain random numbers and/or letters, 1n addition to mean-
ingful words, places a heavy burden on the user. Thus, many
systems today rely on six-symbol passwords.

In order to make the job of breaking the password through
vulnerabilities 1n the cryptographic or hashing algorithms
more difficult, it 1s common to convert a password into a
longer string through replication, often thousands, or tens of
thousands, of times, so that the input string to the hash func-
tion becomes very long, sometimes several hundred thousand
bytes. This prevents an easily brute-force approach to pass-
word breaking. This 1s also 1llustrated in FIG. 1, which shows
how the hashing function works sequentially on each succes-

sive chunk.

For most hashing algorithms, such as SHA-1, the first
hashing operation 1s performed on a first “chunk,” which, in
the case of the SHA-1 hashing function, 1s 64 bytes long. With
SHA-1, each hashing operation consists of two sub-opera-
tions: (1) extending 64-byte chunk to 80-doubleword array
and (2) mixing current hash value (chaining variables) with
data from the 80-doubleword array. The next hashing opera-
tion 1s a mixing operation that utilizes the previous hash value
(which 1s 160 bits for SHA-1) and the next 64 bytes of the
input string.

It 1s worth noting that the hashing algorithm itself can be a
computationally intensive one, depending on the particular
hashing algorithm and the length of the input string. In the
case where the password 1s replicated tens of thousands of
times to form the input string, the hashing operation 1s very
time consuming, particularly when it needs to be performed
for a large number of possible passwords. For someone who
needs to recover the password by testing each possible pass-
word for validity, the operation therefore consists ol two
steps—(1) converting a possible password 1nto a hash value,
and (2) testing the hash value using some cryptographic algo-
rithm for validity, to see 11 a match occurs.

In other words, regardless ol where the potential passwords
come from—whether one 1s testing all possible passwords
sequentially, or whether some heuristic 1s used, that permaits
focusing on some subset of all the possible passwords, the
process 1s the same for each potential password—A{irst, a
hashing operation needs to be performed to generate the hash
value, and then the hash value needs to be tested against a
stored hash value, or used as a key to try to access a document,
or otherwise verified that this 1s the rnight password (or not) to
see 11 a match has been found.

The present invention therefore focuses on the first step of
this operation, to enable a faster hashing for some hash algo-
rithms. However, the hash algorithms at issue are ones that are
most commonly used—such as MD35, SHA-1, SHA-256, efc.
With reference again to FIG. 1, 1t will be observed that the
input string for the hash function 1s formed by replicating a six
symbol password (in this case, the word “BOUNCE”) many
times, often thousands or tens of thousands of times, depend-
ing on the settings of the password algorithm. It will be
observed that the six symbol (1n other words, six byte) pass-
word does not fit exactly into the “chunk™ of the SHA-1
hashing algorithm, where the chunk 1s 64 bytes. However,
taking three such 64 byte chunks together, which form a 192
byte long unit, and using a six symbol password, 1t will be
observed that 32 six-byte passwords fit exactly into the 192
byte period. In other words, the periodicity of this password
algorithm and this particular hashing function 1s 192 bytes—

15

20

25

30

35

40

45

50

55

60

65

4

the minimum periodic unmit length where both an integer num-
ber of chunks end and an integer number of passwords fit into
a single periodic unit.

The key 1nsight here 1s that there 1s only a need to perform
the entire hashing operation on the first periodic unit (in this
case, the 192 byte unit), while it 1s possible to dispense with
part of the hashing computation that does not depend on the
current hash value. For SHA-1 this part 1s the extension of the
64-byte chunk to the 80-doubleword array. This, obviously,
reduces the total amount of time necessary for the password
recovery algorithm, since the hashing process needs to only
be performed on a much shorter input string. For example, in
the case of a password that 1s replicated 10,000 times, assume

extending takes 20% of hash computation time. It 1s neces-
sary to compute the hash for 60000/64=938 hash chunks. A
tull hash calculation 1s performed on the first three chunks and
on the last chunk. For the remaining 934 chunks, the faster
method described herein can be utilized. This gives approxi-
mately 20% improvement in speed, in this. The degree of
improvement, obviously, depends on the total length of the
input string (1.e., how many times the password 1s replicated
in the mnput string), and the length of the minimum periodic
unit that can be 1dentified. In general, depending on the hash
function, the length of the mput string and the minimum
periodicity unit that can be identified, an improvement on the
order of 20-50% can be expected.

Furthermore, it should be noted that many common pass-
word encryption algorithms take steps that in effect lengthen
the minimum periodic unit. For example, a one byte counter
can be added to each replica of the password, as shown 1n FIG.
2. Thus, each “basic unit” actually consists of the six-symbol
password 1tself (1n other words, six bytes) plus the one byte
counter that 1s incremented by one each time. However, with
a one byte counter, there are only 2°=256 possible counter
Values—thus, the mimimum periodic umt 1s 7x256=1792
bytes. In this case, 64-byte chunks fit integrally, 28 times, into
1’792 bytes—therefore, the minimum-length periodic unit
remains 1792 bytes long. In this case, obviously the degree of
improvement would be less than 1n the case discussed above,
but 1s still considerable, particularly for schemes that repli-
cate the password tens of thousands of times, prior to hashing.
In the most extreme case, for example, where two-byte or
three-byte counters are used, there might not be any period-
icity, and the method would not show any improvement—
however, most practical password encryption schemes do not
rely on such complex methodologies, and therefore are sub-
ject to the method described herein.

The text below 1s borrowed from WIKIPEDIA, an online
encyclopedia resource that discusses hash functions. In par-

ticular, the pseudo code below 1s an algorithm for implement-
ing the SHA-1 function. In the case of the present invention,
the question 1s how many (or how few) “Extend the sixteen
32-bit words 1nto eighty 32-bit words™ loops need to be per-
formed.

Pseudocode for the SHA-1 algorithm:

Note: All varniables are unsigned 32 bits and wrap modulo
2732 when calculating. Initialize variables:

h0:=0x6 3452301

h1:=0xEFCDABR89
h2:=0x98 BADCF'
h3:=0x103254 36
h4:=0xC3D2E1F0

(Ll

US 7,809,130 Bl

S

Pre-processing;
append a single “1” bit to message
append “0” bits until message length=448=-64 (mod 512)

append length of message (before pre-processing), 1n bits as
64-bit big-endian integer to message

Process the message 1n successive 512-bit (64-byte) chunks:
break message mto 512-bit (64-byte) chunks

for each chunk
break chunk into sixteen 32-bit big-endian words w(1),
0=1=15
Extend the sixteen 32-bit words into eighty 32-bit words:
for1from 16 to 79
w(1):=(w(1-3) xor w(1-8) xor w(1-14) xor w(1-16)) leftrotate
1
Initialize hash value for this chunk:
a:=h0
b:=hl
c:=h2
d:=h3
e:=h4
Main loop:
for1 from 0 to 79
11 0=1=19 then
f:=(b and ¢) or ((not b) and d)
k:=0x5AR82 3999
else 1t 20=1=39
f:=b xor c xord
k:=0x6ED9EBA1
else 11 40=1=59
f:=(b and ¢) or (b and d) or (¢ and d)
k:=0x8F1BBCDC
else 1t 60=1=79
f:=b xor ¢ xord
k:=0xCA62C1D6
temp:=(a leftrotate 3)+i+e+k+w(1)
e:=d
d:=c
c:=b leftrotate 30
b:=a
a:=temp
Add this chunk’s hash to result so far:
h0:=h0+a
hl:=hl+b
h2:=h2+c
h3:=h3+d
h4:=h4+e

digest=hash=h0 append hl append h2 append h3 append h4
(expressed as big-endian)

In the case of the SHA-1 function, and the six-symbol
password replicated 10,000 times, the “extend” loop needs to
be performed 60,000/64=937.5 times. However, with the
present invention, 1n the example above (of a 192 byte peri-
odicity umt), the “extend” loop needs to be performed only
three times, resulting 1n a roughly 20% improvement with this
example (and 20-50% for typical cases)—a significant result
in the field of cryptography

Although 1n the discussion above, hash functions were
used as an example, the invention 1s not limited to hash
functions. Any one-way function, where a previous function
value 1s used to generate the next function value, can be used
as well, as long as the mnput string has a periodicity that can be
identified. Furthermore, in the case of hash functions, there
are numerous examples of hash functions where the invention

5

10

15

20

25

30

35

40

45

50

55

60

65

6
1s applicable, such as SHA-0, SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, to name only a few.

Password encryption scheme usually depends on particular
product and 1s determined either by studying source files (i
possible) or by means of reverse engineering. Most password
schemes usually accept a wide range of password lengths.

Selection of the passwords to be tested can be on the basis
ol brute-force testing all the possible six-symbol combina-
tions of all the symbols, or can be based on certain heuristics
that rely on known information about the user. This can
include such things as the user’s first name, last name,
spouse’s or children’s names, parents” names, Social Security
numbers, names spelled backwards, pets’ names, city names,
addresses, etc.

Where such heuristic approaches fail, the next step might
involve using a dictionary. For example, the English language
contains approximately 20,000 words, including variations
on the spelling, conjugations of words, singular/plural, etc.
The applications that encrypt their files, such as MS Word, or
Adobe Acrobat, provide functions for checking the validity of
the password—in other words, 1t 1s not necessary to mvoke
the entire application 1n an attempt to open the document
itseli—it 1s possible to simply use that function and provide
the possible passwords to 1t as an argument, resulting in a
success or failure as the return parameter.

Other heuristics are also known, for example, many sys-
tems require that at least one letter of the password be a capital
letter—and most users pick the first letter, and 1n some cases,
the first two letters as capital letters, and the others as lower-
case letters. Also, some systems require that a password have
at least one digit—and most users pick the last one or two
symbols 1n the password as the digits. All of these heuristics
permit to significantly reduce the total number of passwords
that need to be tested—however, the present invention works
with any such scheme, whether heuristics are used, or
whether all the possible passwords are tested sequentially one
at a time.

An example of the computer system 302 on which the
invention may be implemented 1s 1llustrated 1n FIG. 3. The
computer system 302 includes one or more processors, such
as processor 301. The processor 301 1s connected to a com-
munication infrastructure 306, such as a bus or network).
Various software implementations are described 1n terms of
this exemplary computer system. After reading this descrip-
tion, 1t will become apparent to a person skilled in the relevant
art how to implement the invention using other computer
systems and/or computer architectures.

Computer system 302 also includes a main memory 308,
preferably random access memory (RAM), and may also
include a secondary memory 310. The secondary memory
310 may include, for example, a hard disk drive 312 and/or a
removable storage drive 314, representing a magnetic tape
drive, an optical disk drive, etc. The removable storage drive
314 reads from and/or writes to a removable storage unit 318
in a well known manner. Removable storage unit 318 repre-
sents a magnetic tape, optical disk, or other storage medium
that 1s read by and written to by removable storage drive 314.
As will be appreciated, the removable storage unit 318 can
include a computer usable storage medium having stored
therein computer software and/or data.

In alternative implementations, secondary memory 310
may include other means for allowing computer programs or
other istructions to be loaded into computer system 302.
Such means may include, for example, a removable storage
unit 322 and an interface 320. An example of such means may
include a removable memory chip (such as an EPROM, or
PROM) and associated socket, or other removable storage

US 7,809,130 Bl

7

units 322 and interfaces 320 which allow software and data to

be transierred from the removable storage unit 322 to com-

puter system 302.

Computer system 302 may also include one or more com-
munications interfaces, such as communications interface
324. Communications interface 324 allows soitware and data
to be transierred between computer system 302 and external
devices. Examples of communications interface 324 may
include a modem, a network interface (such as an Ethernet
card), a communications port, a PCMCIA slot and card, etc.
Software and data transierred via communications interface
324 are 1n the form of signals 328 which may be electronic,
clectromagnetic, optical or other signals capable of being
received by communications interface 324. These signals 328
are provided to communications interface 324 via a commu-
nications path (i.e., channel) 326. This channel 326 carries
signals 328 and may be implemented using wire or cable,
fiber optics, an RF link and other communications channels.
In an embodiment of the invention, signals 328 comprise data
packets sent to processor 301. Information representing pro-
cessed packets can also be sent 1n the form of signals 328 from
processor 301 through communications path 326.

The terms “computer program medium”™ and “computer
usable medium™ are used to generally refer to media such as
removable storage units 318 and 322, a hard disk installed in
hard disk drive 312, and signals 328, which provide software
to the computer system 302.

Computer programs are stored 1n main memory 308 and/or
secondary memory 310. Computer programs may also be
received via communications interface 324. Such computer
programs, when executed, enable the computer system 302 to
implement the present mvention as discussed herein. In par-
ticular, the computer programs, when executed, enable the
processor 301 to implement the present invention. Where the
invention 1s implemented using soitware, the soltware may be
stored 1n a computer program product and loaded 1nto com-
puter system 302 using removable storage drive 314, hard
drive 312 or communications interface 324.

Having thus described a preferred embodiment, i1t should
be apparent to those skilled 1n the art that certain advantages
of the described method and apparatus have been achieved. It
should also be appreciated that various modifications, adap-
tations, and alternative embodiments thereof may be made
within the scope and spirit of the present invention. The
invention 1s further defined by the following claims.

What 1s claimed 1s:

1. A computer-implemented method of recovering a pass-
word, the method comprising;

(a) for a possible password to be tested, determining a
length of a periodicity unit based on a number of sym-
bols 1n the possible password and a si1ze of a chunk used
by a one-way function to convert the possible password

into a test control value,

wherein the length of the periodicity unit 1s shorter than an
input string, that includes replicated possible password
used to convert the possible password into the test con-
trol value;

(b) setting an 1nitial one-way function state;

(¢) for a first chunk 1n a first periodicity unit, extending the
first chunk;

(d) storing the value of the extension of the first chunk of
the first periodicity unit;

() updating the one-way function state using the value of
the extension of the first chunk of the first periodicity
unit;

(1) repeating steps (¢)-(e) for other chunks of the first peri-
odicity unit;

10

15

20

25

30

35

40

45

50

55

60

65

8

(g) for a first chunk of a second periodicity unit, updating
the one-way function state using the stored value of the
extension of the first chunk of the first periodicity unait;

(h) repeating step (g) for other chunks of the second peri-
odicity unit with corresponding stored values of the
extensions of the chunks of the first periodicity unit;

(1) repeating steps (g) and (h) for all remaining periodicity
units;

(1) extending a last chunk of the input string;

(k) updating the one-way function state with a value of the
extension of the last chunk, to generate the test control
value:

(1) testing the test control value for a match with a control
value generated from an actual password;

(m) repeating steps (a)-(1) for other possible passwords
until a match 1s found; and

(n) providing, to a user, indication of the match.

2. The method of claim 1, wherein the one-way function 1s
a hash function.

3. The method of claim 2, wherein the hash function 1s a
SHA-1 function, the possible password 1s 6 symbols long,
and the length of the periodicity unit 1s 192 bytes long.

4. The method of claim 2, wherein the hash function 1s any
of SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, and
SHA-512.

5. The method of claim 1, wherein the one-way function 1s
based on any of Blowfish, Twofish, AES and DES crypto-
graphic algorithms.

6. The method of claim 1, wherein each periodicity unit
includes a counter added to each instance of the possible
password.

7. A non-transitory computer useable medium having com-
puter program code stored thereon for executing on a proces-
sor, the computer program code for implementing the method
of claim 1.

8. A system for recovering a password, the system com-
prising:

(a) for a possible password to be tested, means for deter-

mining a length of a periodicity unit based on a number

of symbols in the possible password and a size of a

chunk used by a one-way function to convert the pos-
sible password 1nto a test control value,

wherein the length of the periodicity unit 1s shorter than an
input string, that includes replicated possible password
used to convert the possible password 1nto the test con-
trol value;:

(b) means for setting an 1nitial one-way function state;

(c) for a first chunk in a first periodicity unit, means for
extending the first chunk;

(d) means for storing the value of the extension of the first
chunk of the first periodicity unait;

(¢) means for updating the one-way function state using the
value of the extension of the first chunk of the first
periodicity unit;

(1) means for repeating steps (¢)-(e) for other chunks of the
first periodicity unit;

(g) for a first chunk of a second periodicity unit, means for
updating the one-way function state using the stored
value of the extension of the first chunk of the first
periodicity unit;

(h) means for repeating step (g) for other chunks of the
second periodicity unit with corresponding stored val-
ues of the extensions of the chunks of the first periodicity
unit;

US 7,809,130 Bl
9 10

(1) means for repeating steps (g) and (h) for all remaining 10. The system of claim 9, wherein the hash function 1s a
periodicity units; SHA-1 function, the possible password 1s 6 symbols long,

(]) means for extending q last chunk of the inpu‘[string; and the length of the periodicity unit 1s 192 bytes long.

(k) updating the one-way function state with a value of the 11. The system of claim 9, wherein the hash function 1s any
extension of the last chunk, to generate the test control 5 ©f SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, and
value: SHA-512.

12. The system of claim 8, wherein the one-way function 1s
based on any of Blowfish, Twofish, AES and DES crypto-
graphic algorithms.

10 13. The system of claim 8, wherein each periodicity unit
includes a counter added to each instance of the possible
password.

(1) means for testing the test control value for a match with
a control value generated from t-he an actual password;

(m) means for repeating steps (a)-(1) for other possible
passwords until a match 1s found; and

(n) means for providing, to a user, indication of the match.

9. The system of claim 8, wherein the one-way function 1s
a hash function. £ % % % %

	Front Page
	Drawings
	Specification
	Claims

