

US007807777B2

(12) United States Patent

Suzuki et al.

(54)

US 7,807,777 B2 (10) Patent No.: Oct. 5, 2010 (45) **Date of Patent:**

MARKER PEPTIDE FOR ALZHEIMER'S	C07K 16/00	(2006.01)
DISEASE	G01N 33/53	(2006.01)
	CY O 4 3 7 . 3 3 /F . 4 5	(0000001)

Inventors: Toshiharu Suzuki, Chiba (JP); Yoichi Araki, Sapporo (JP); Naomi Miyagi, Sapporo (JP); Haruyasu Yamaguchi,

Maebashi (JP); Masaki Nishimura, Kusatsu (JP); Kazuo Yamamoto, Tokyo

(JP)

Immuno-Biological Laboratories Co., (73)

Ltd., Fujioka-shi (JP)

Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 58 days.

Appl. No.: 10/577,008 (21)

PCT Filed: (22)Nov. 1, 2004

PCT No.: PCT/JP2004/016209 (86)

§ 371 (c)(1),

(2), (4) Date: Aug. 7, 2006

PCT Pub. No.: **WO2005/044847**

PCT Pub. Date: May 19, 2005

(65)**Prior Publication Data**

> US 2007/0111252 A1 May 17, 2007

Foreign Application Priority Data (30)

(JP) Nov. 5, 2003

(51)Int. Cl.

> A61K 38/00 (2006.01)A61K 38/04 (2006.01)

G01N 33/542 (2006.01)

(52)435/7.1; 435/7.9; 435/7.92

Field of Classification Search None (58)See application file for complete search history.

References Cited (56)

FOREIGN PATENT DOCUMENTS

JP	2003-164298 A	6/2003
WO	WO-02/22819 A1	3/2002
WO	WO-02/22819 A2	3/2002

OTHER PUBLICATIONS

Yoichi Araki et al.; The Journal of Biological Chemistry, vol. 278, No. 49, pp. 49448-49458, Dec. 5, 2003.

Yoichi Araki et al.; The Journal of Biological Chemistry, vol. 279, No. 23, pp. 24343-24354, Jun. 4, 2004.

Vogt, Lorenz et al.; Molecular and Cellular Neurosciences, vol. 17, pp. 151-166 (2001).

Primary Examiner—Olga N Chernyshev

(74) Attorney, Agent, or Firm—Birch, Stewart, Kolasch & Birch, LLP.

(57)**ABSTRACT**

To provide a peptide obtainable by cleaving an N-terminal region and a C-terminal region of Alcadein α, Alcadein β, or Alcadein y; and capable of being a diagnostic marker for Alzheimer's disease. It is possible to detect Alzheimer's disease at an early stage without burdening subjects to be tested by using the peptide as a diagnostic marker.

2 Claims, 22 Drawing Sheets

Fig. 1

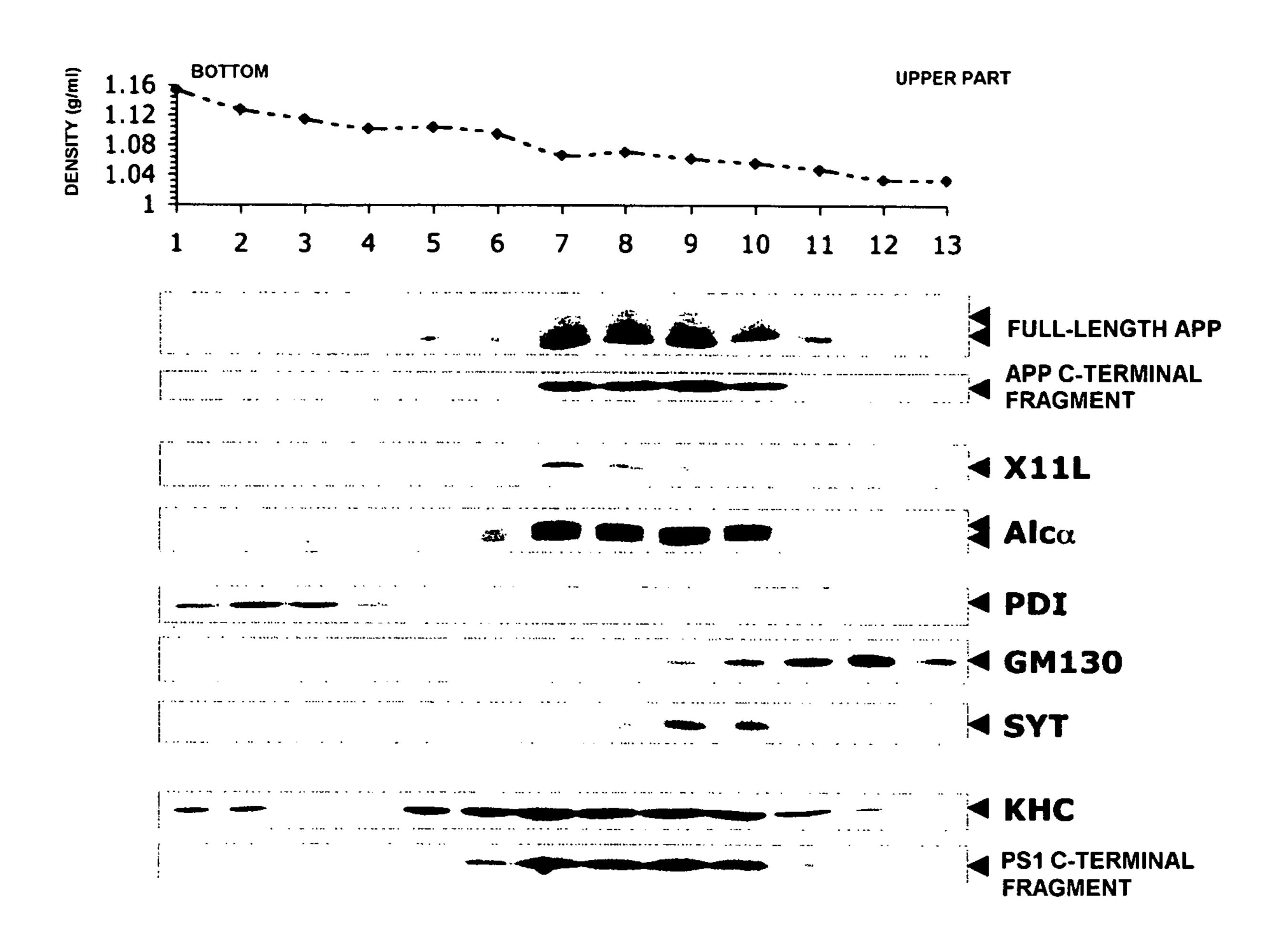
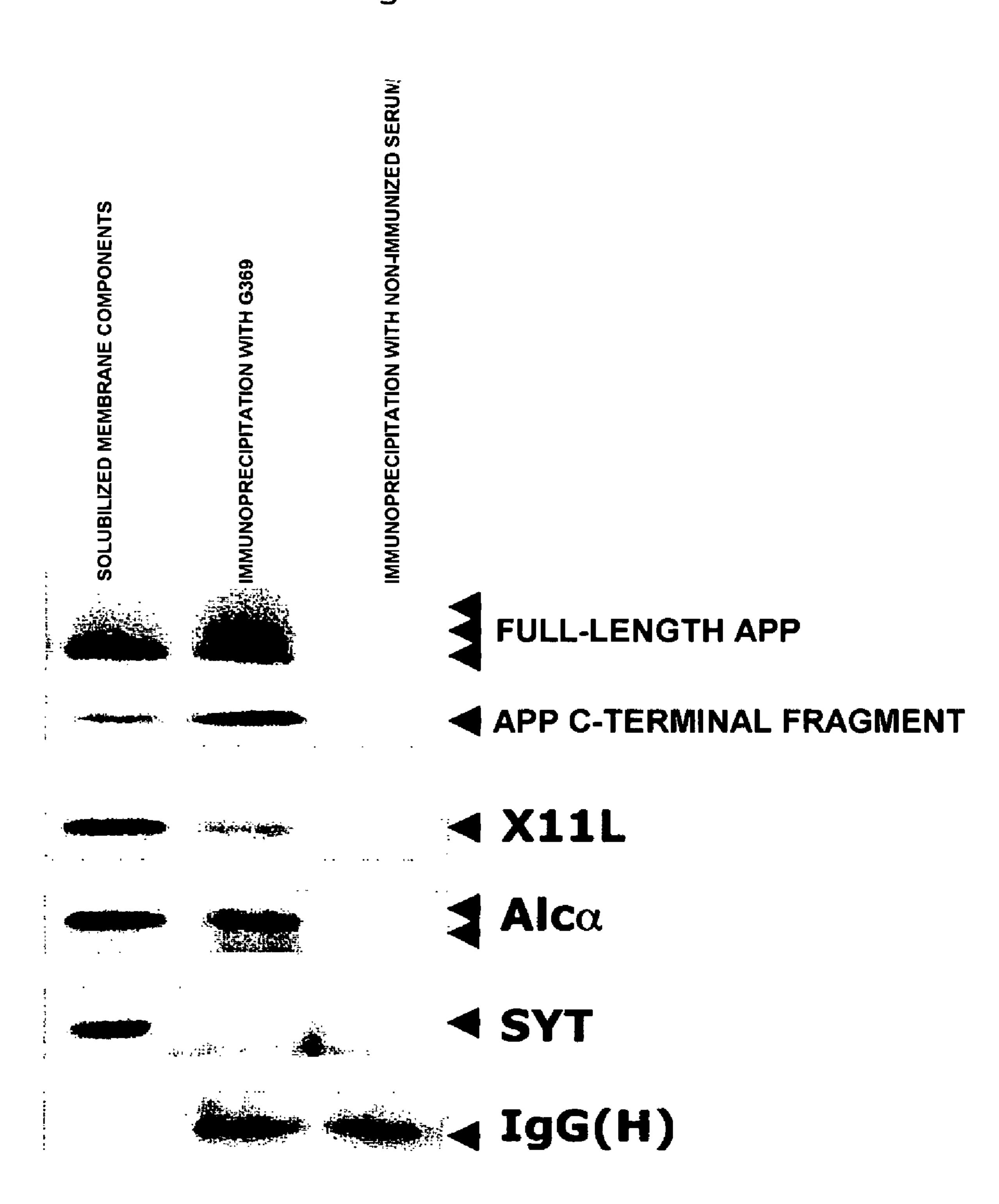



Fig. 2

1 Alc α 2 APP 3 Control

4 Alc α 5 APP 6 Merge

Fig. 4

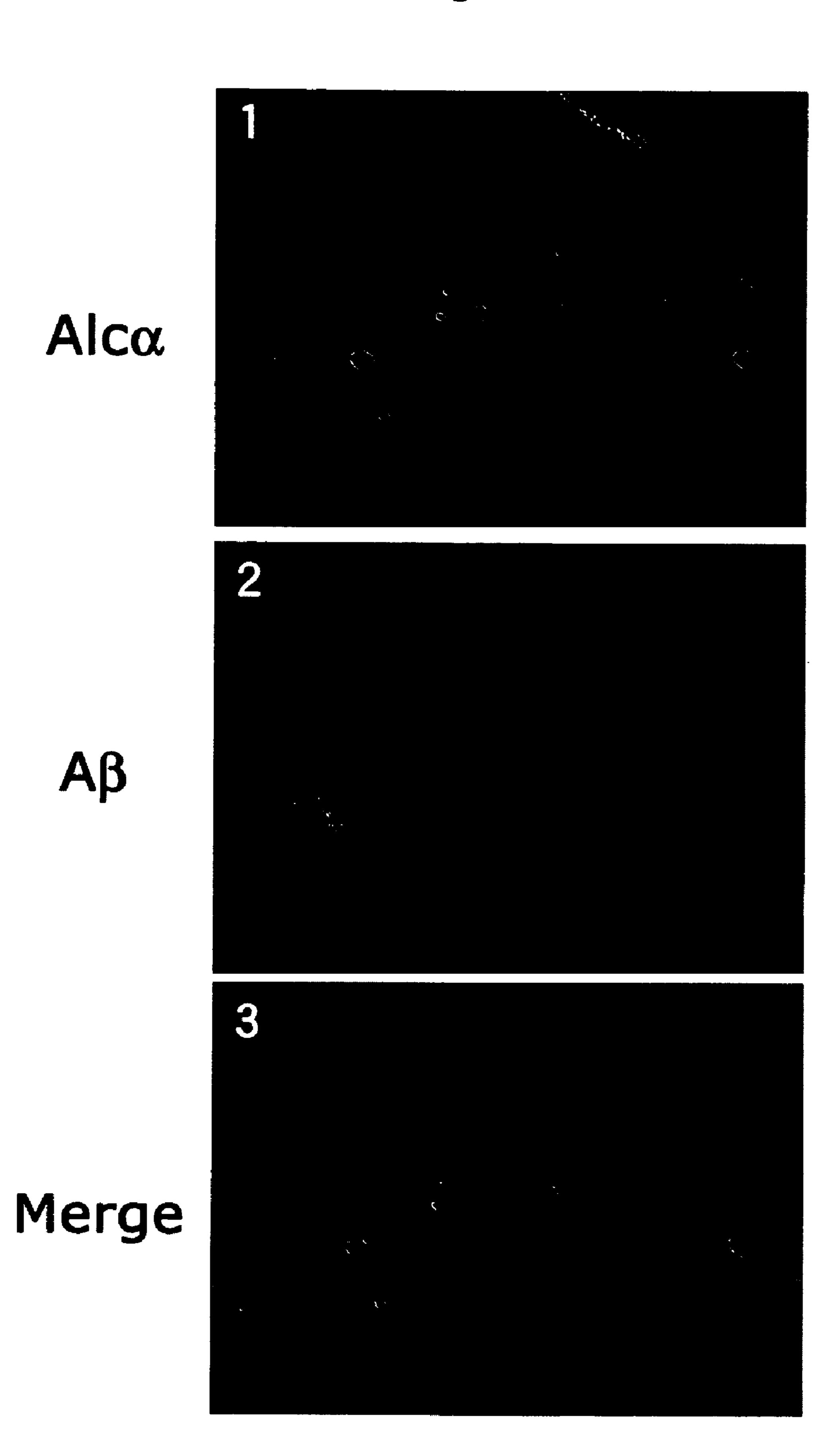


Fig. 5

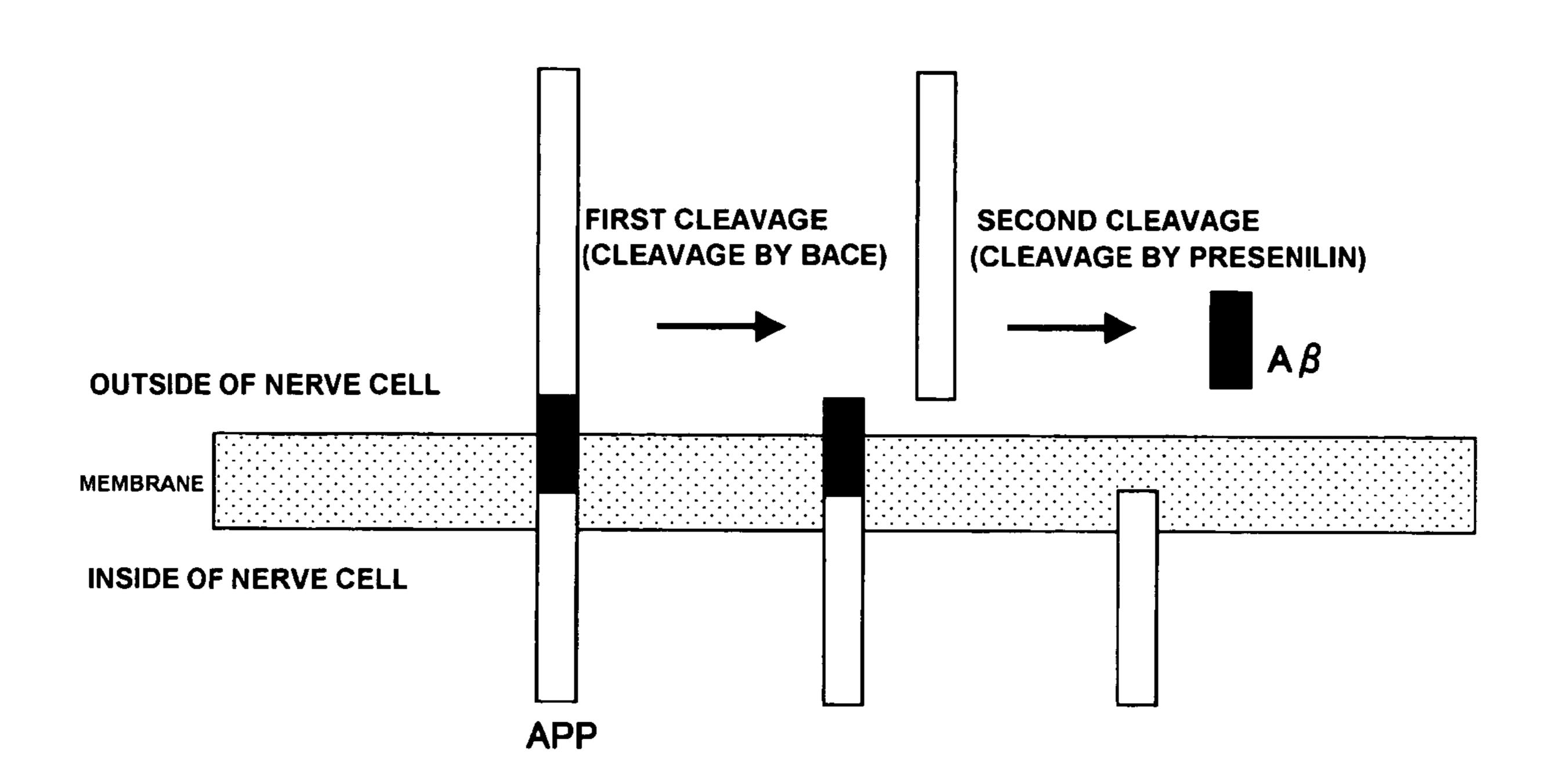


Fig. 6

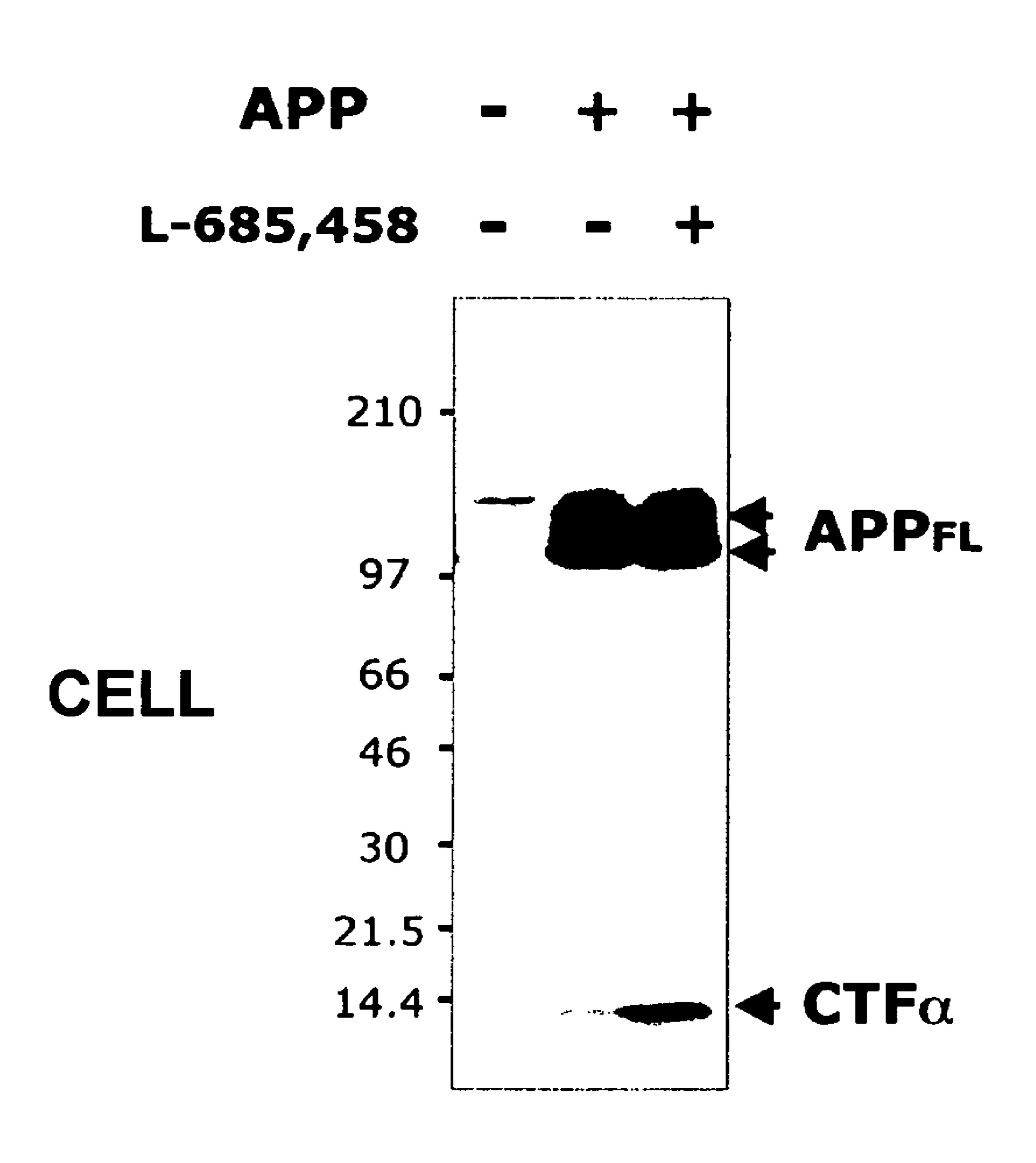


Fig. 7

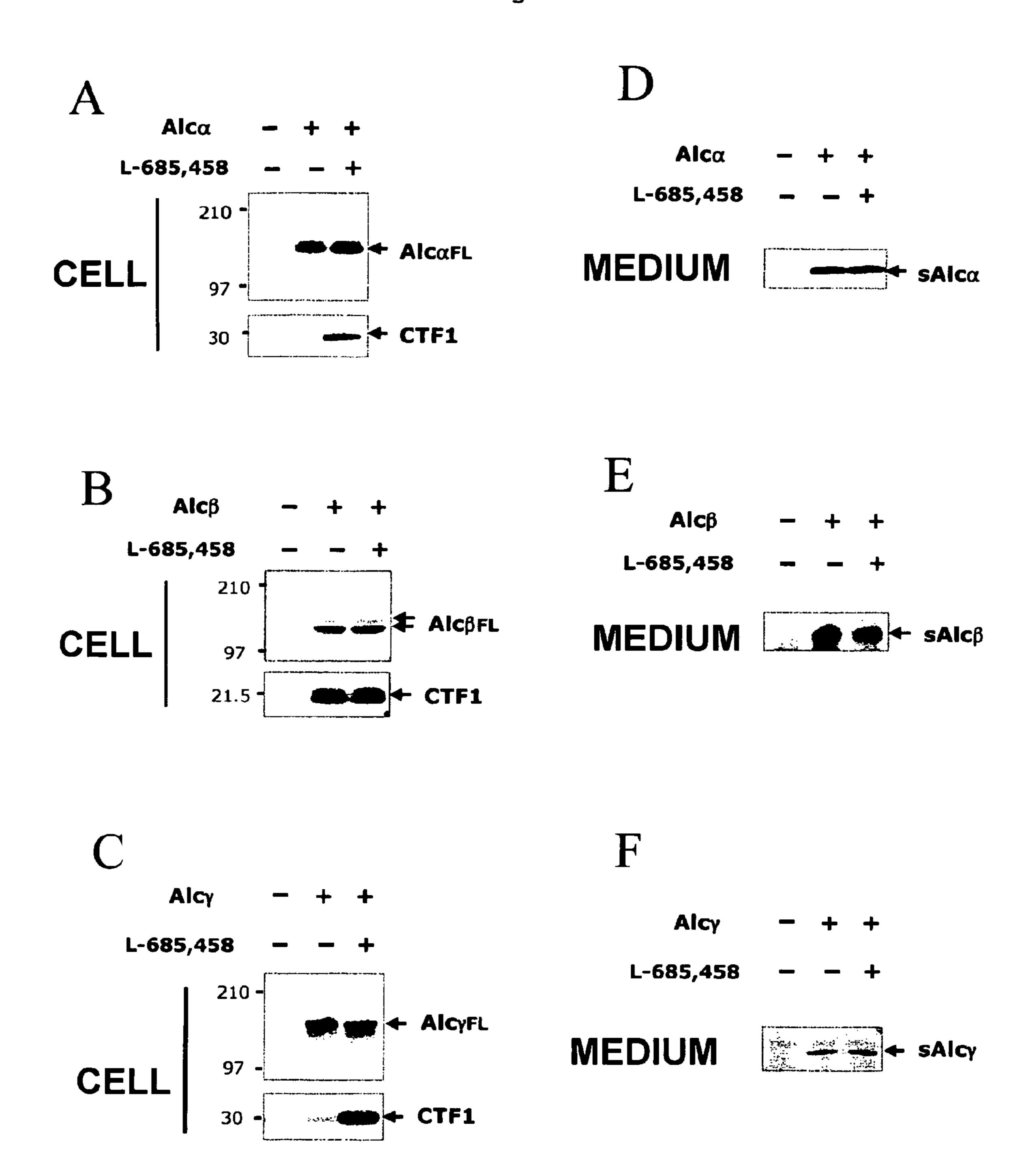


Fig. 8

A Alcα - + + + +

L-685,458 - - - +

Incubate - - 1h 3h 3h

← Alcα-ICD

B Alcβ - + + + +

L-685,458 - - - +

Incubate - - 1h 3h 3h

← Alcβ-ICD

C Alcy _ + + + +

L-685,458 - - - +

Incubate _ - 1h 3h 3h

← Alcy-ICD

Fig. 9

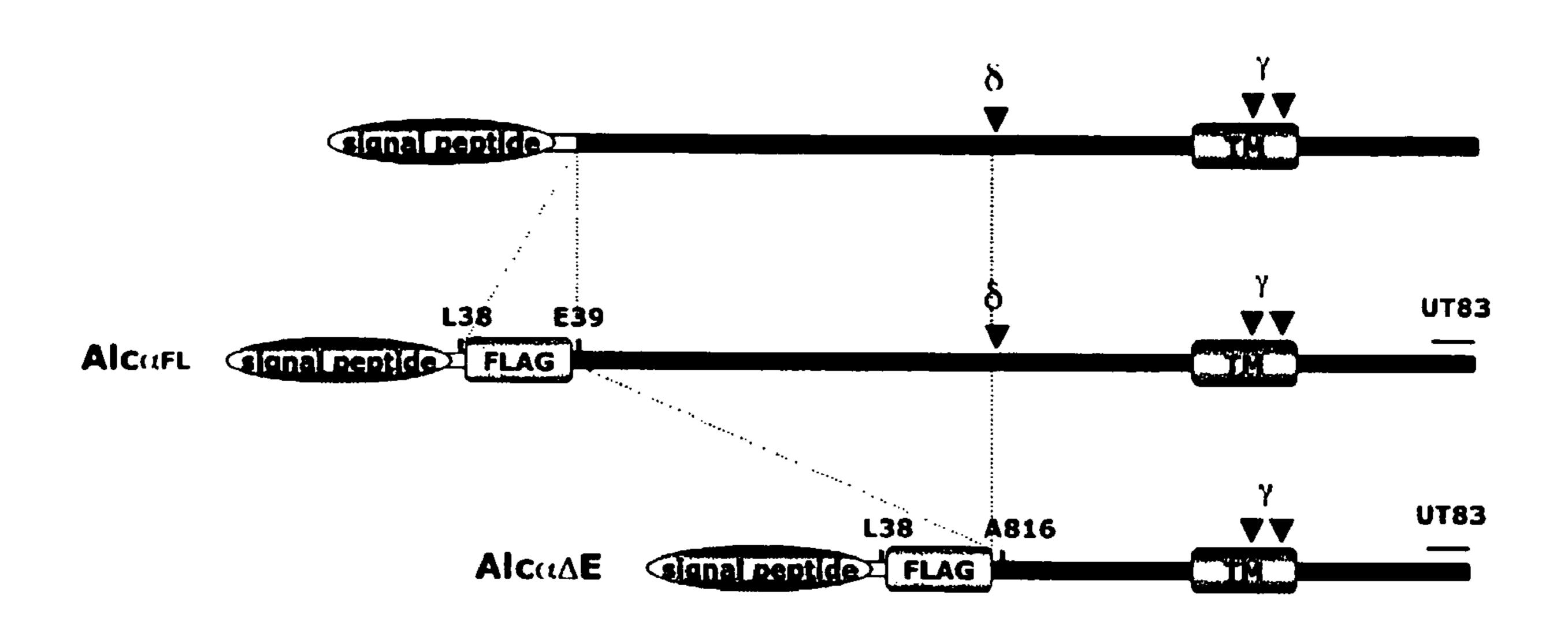


Fig. 10

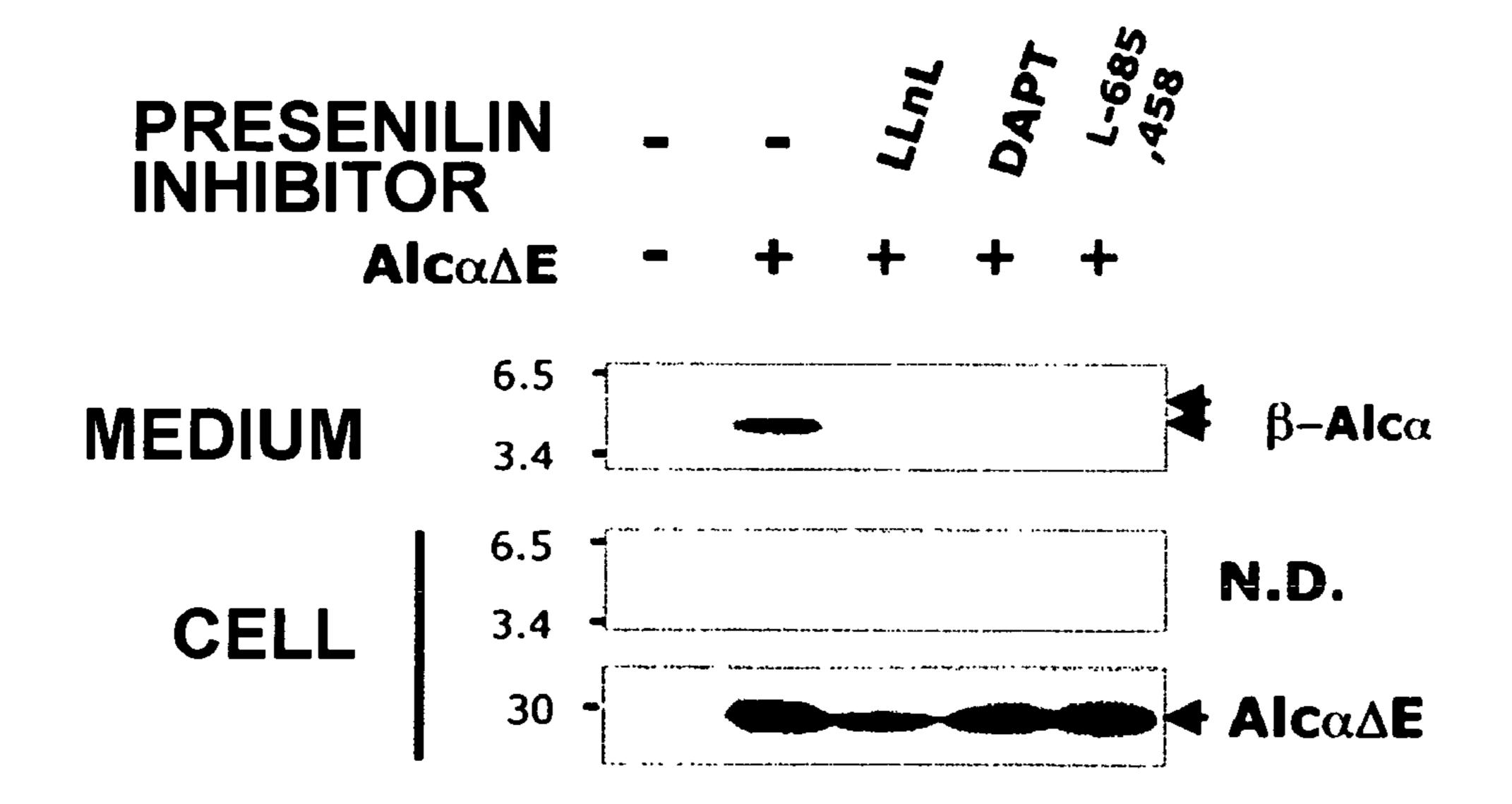
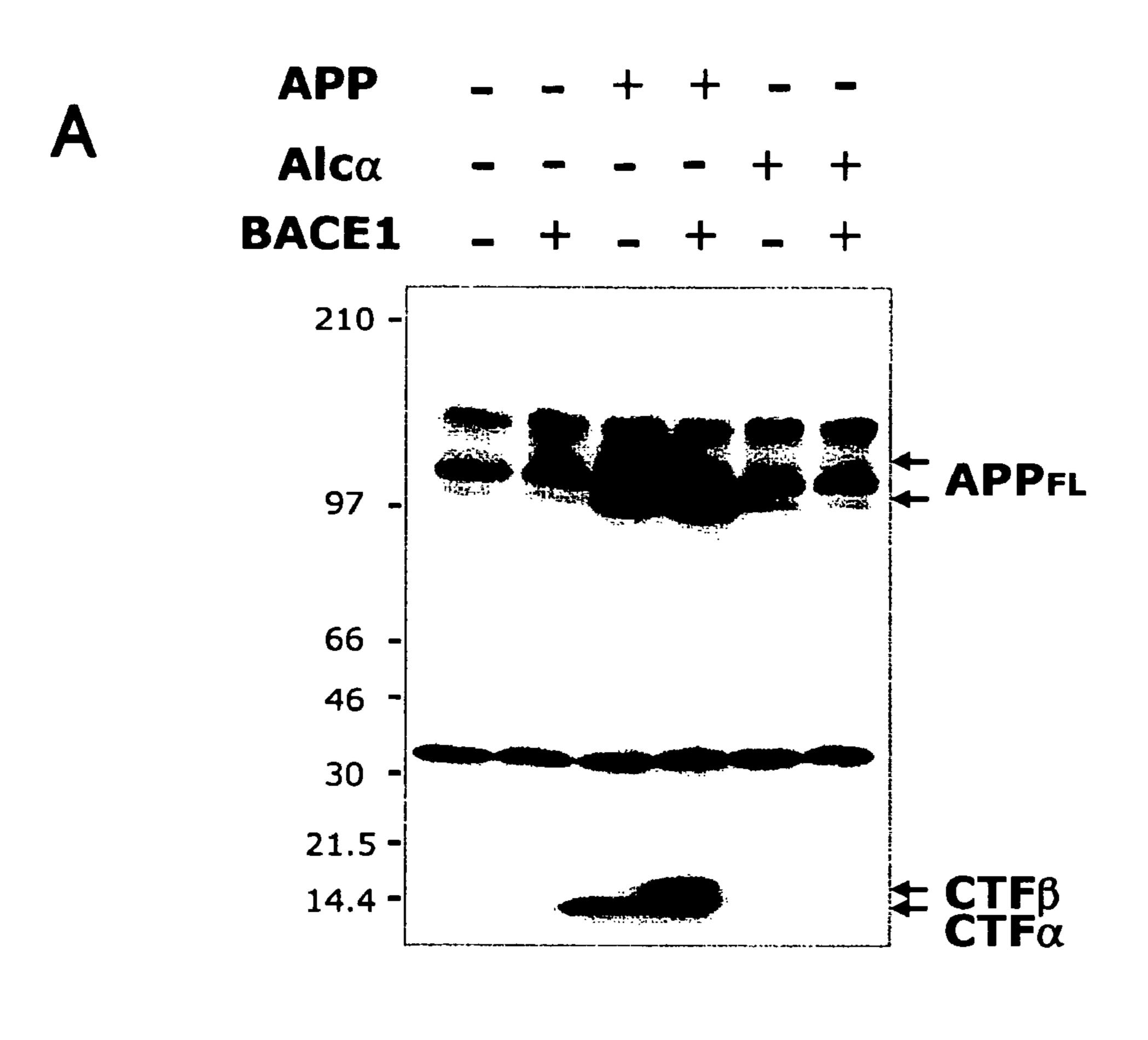



Fig. 11

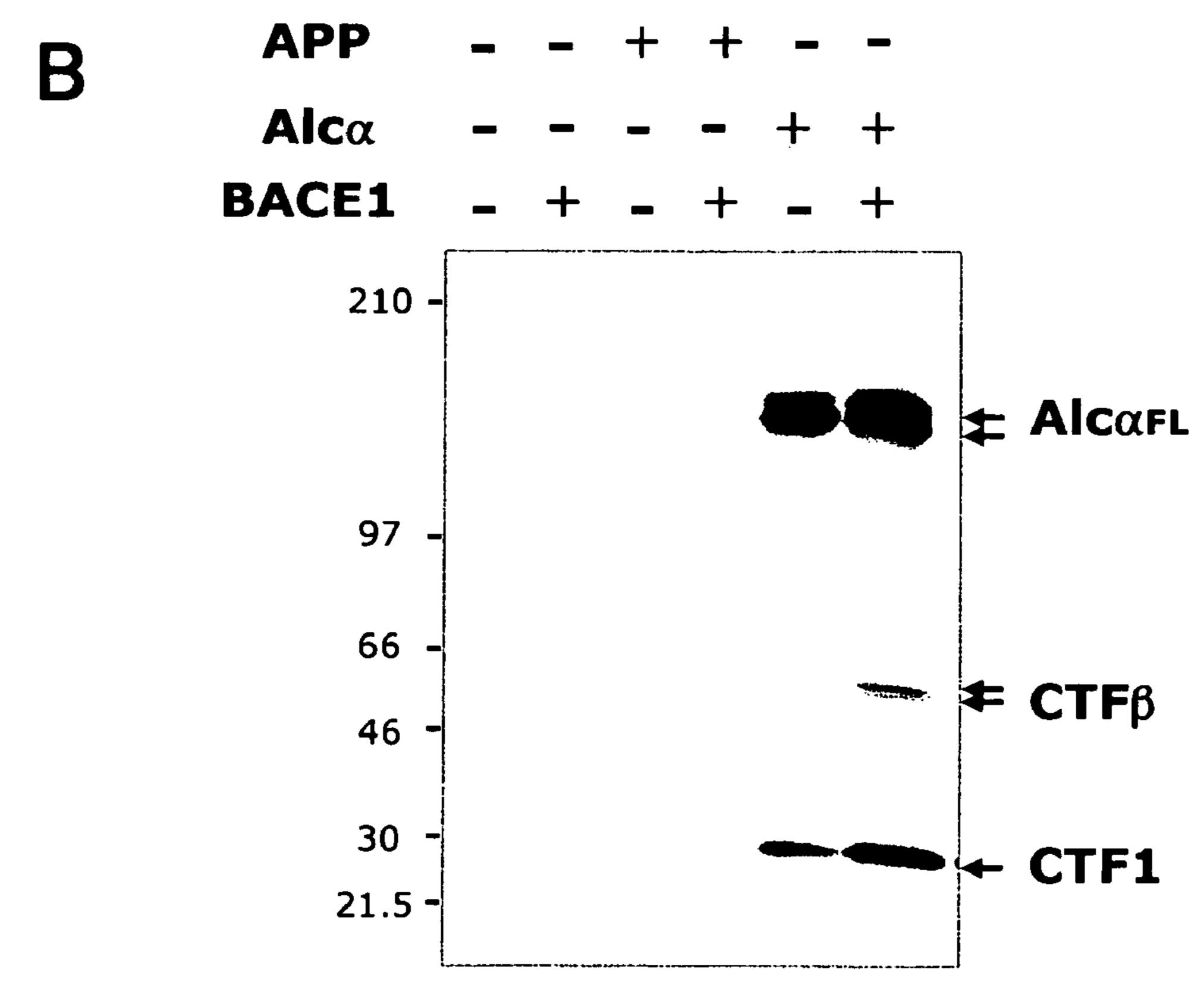


Fig. 12

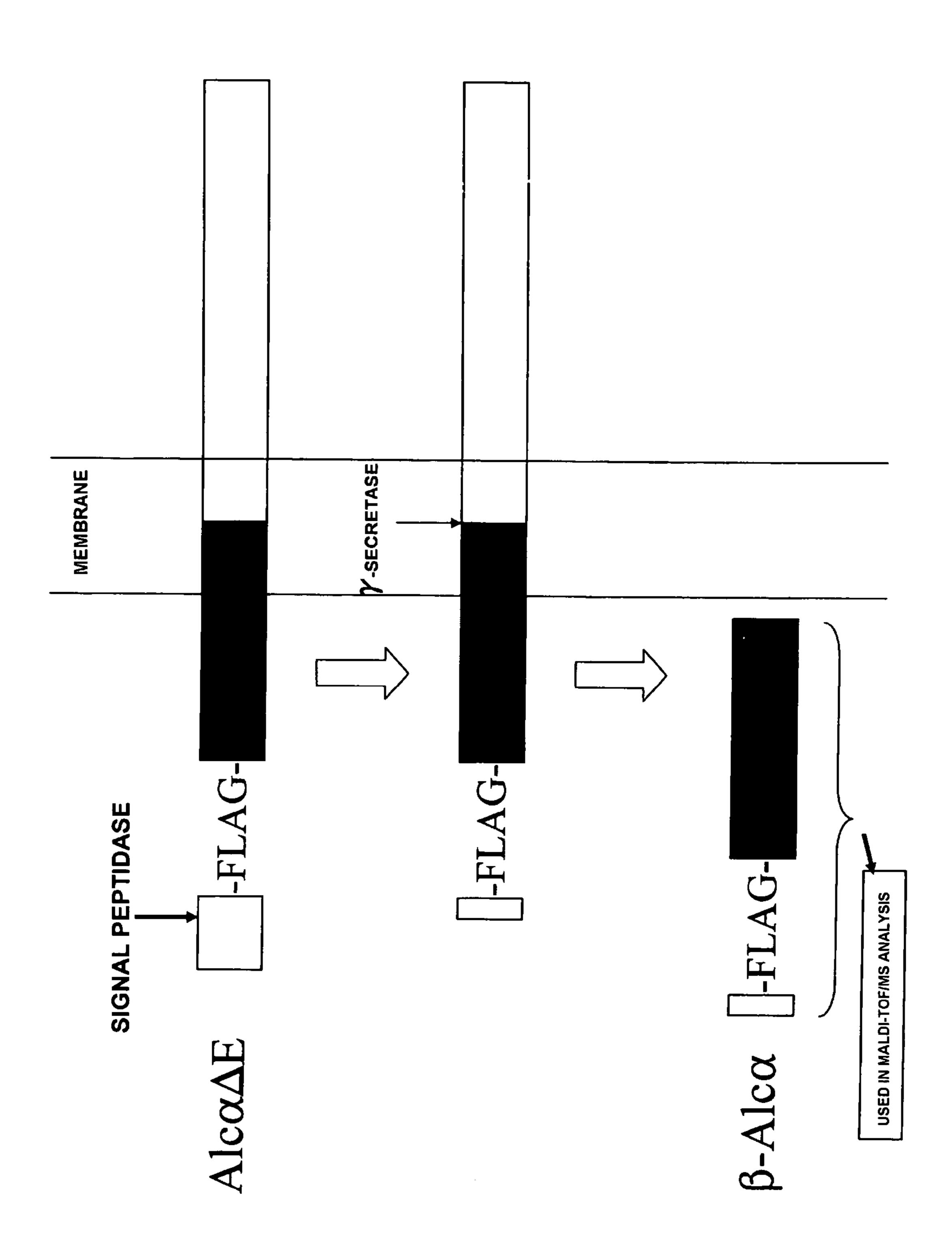


Fig. 13

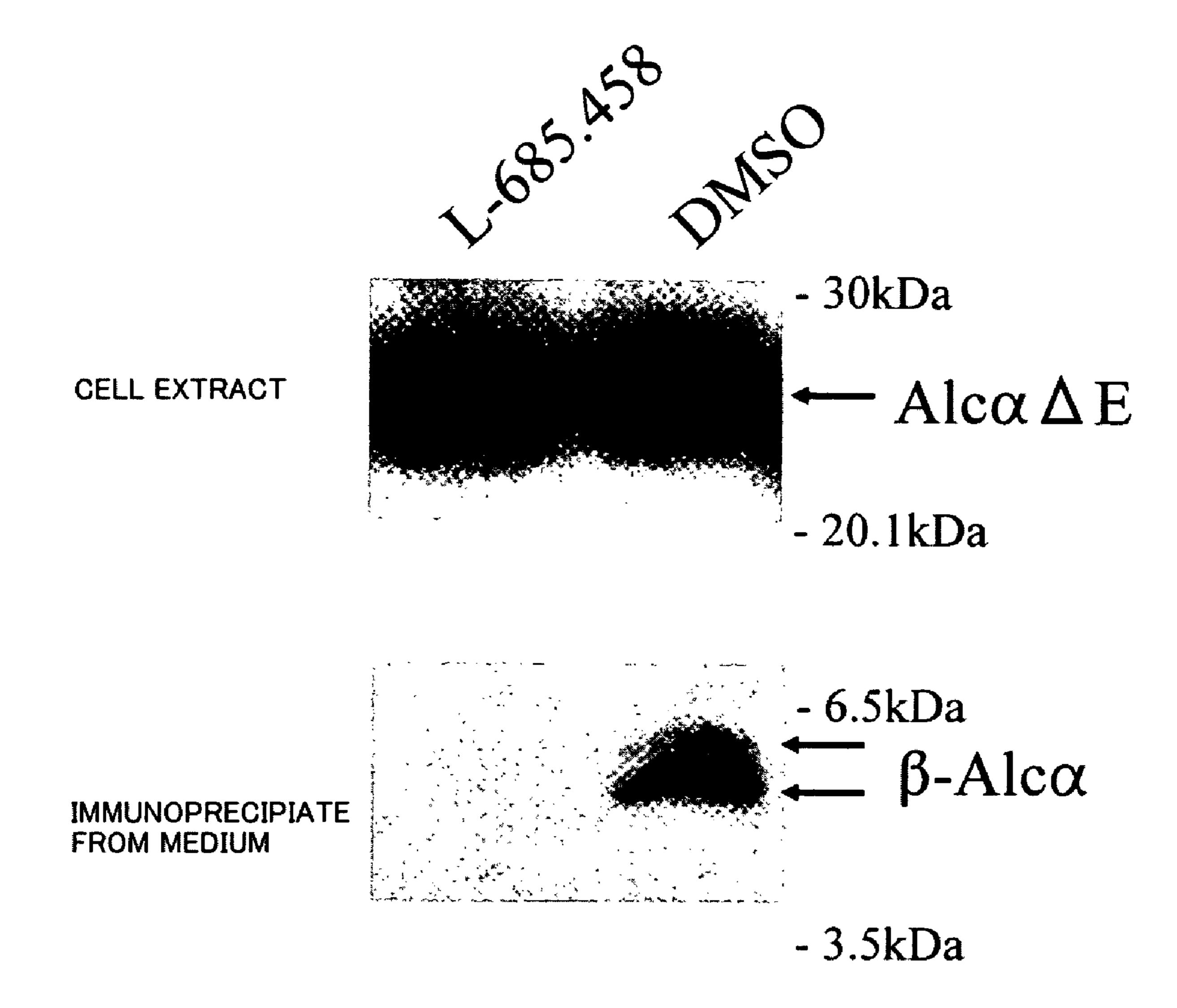
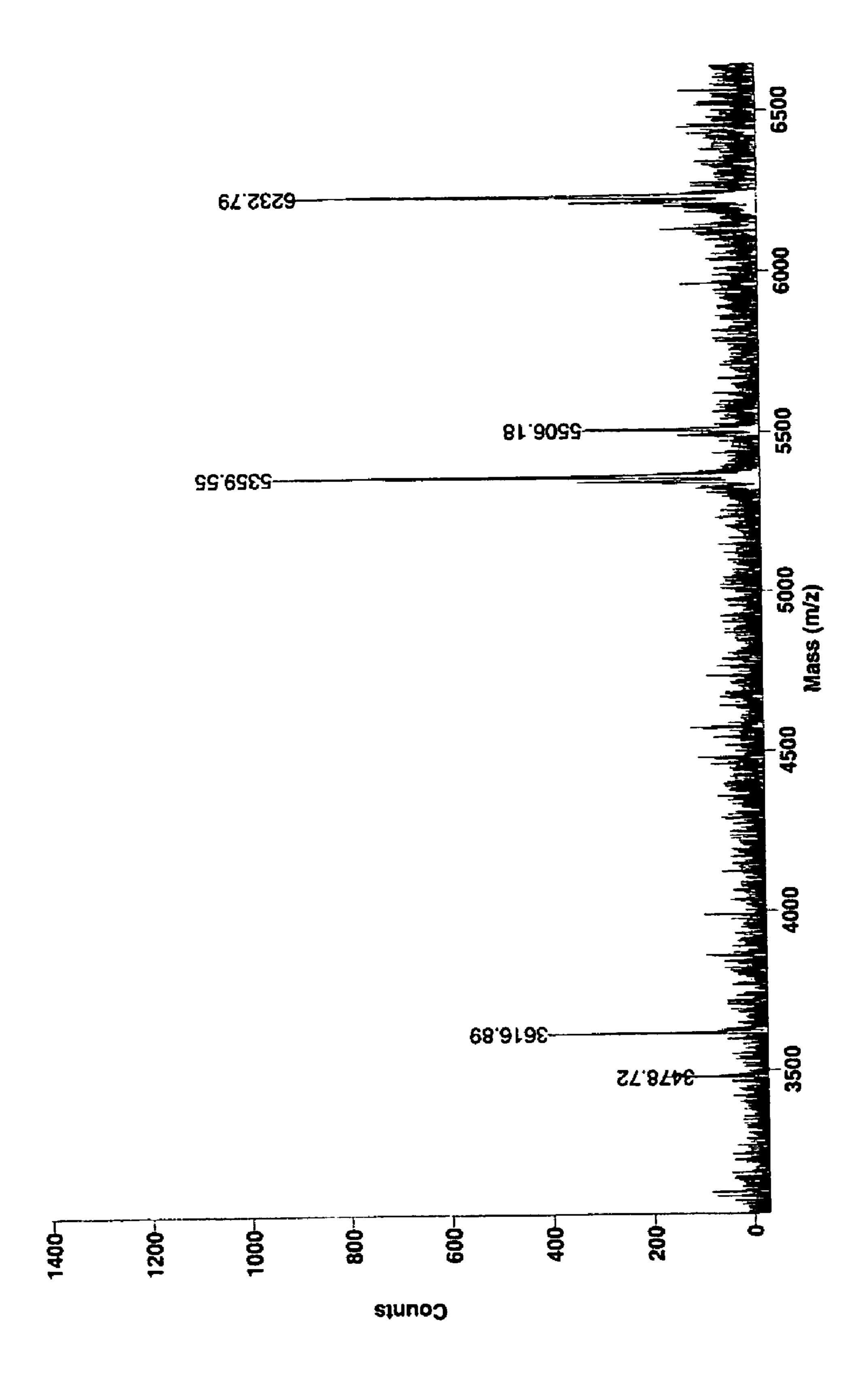



Fig. 14

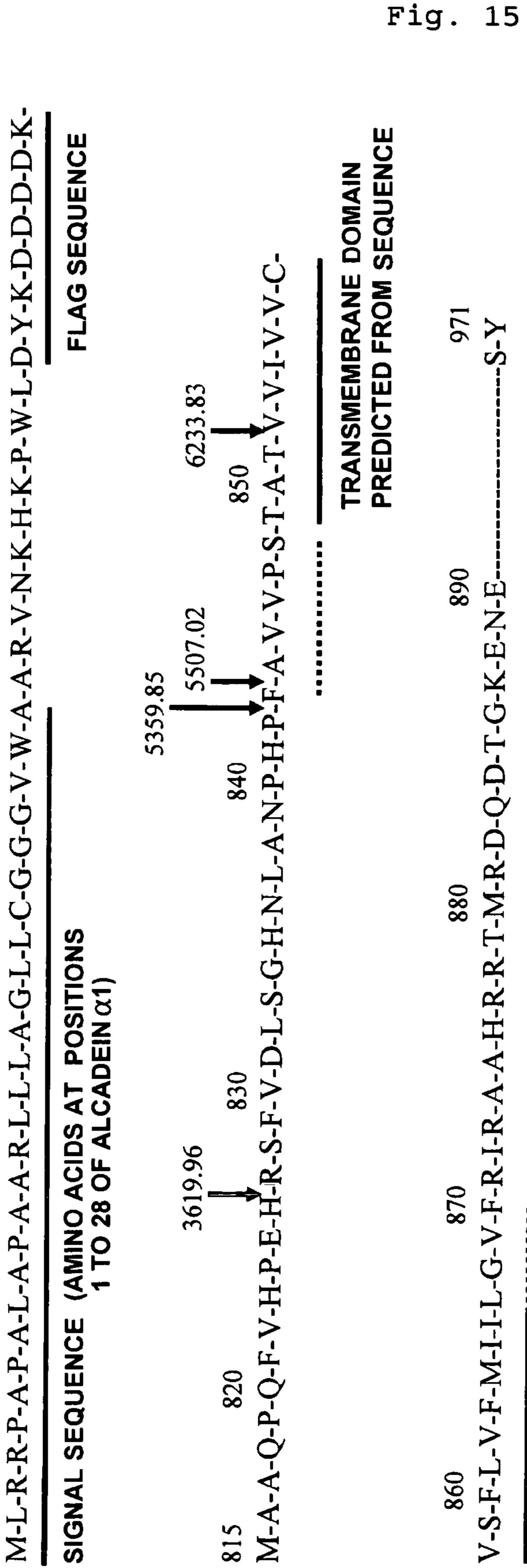


Fig. 16

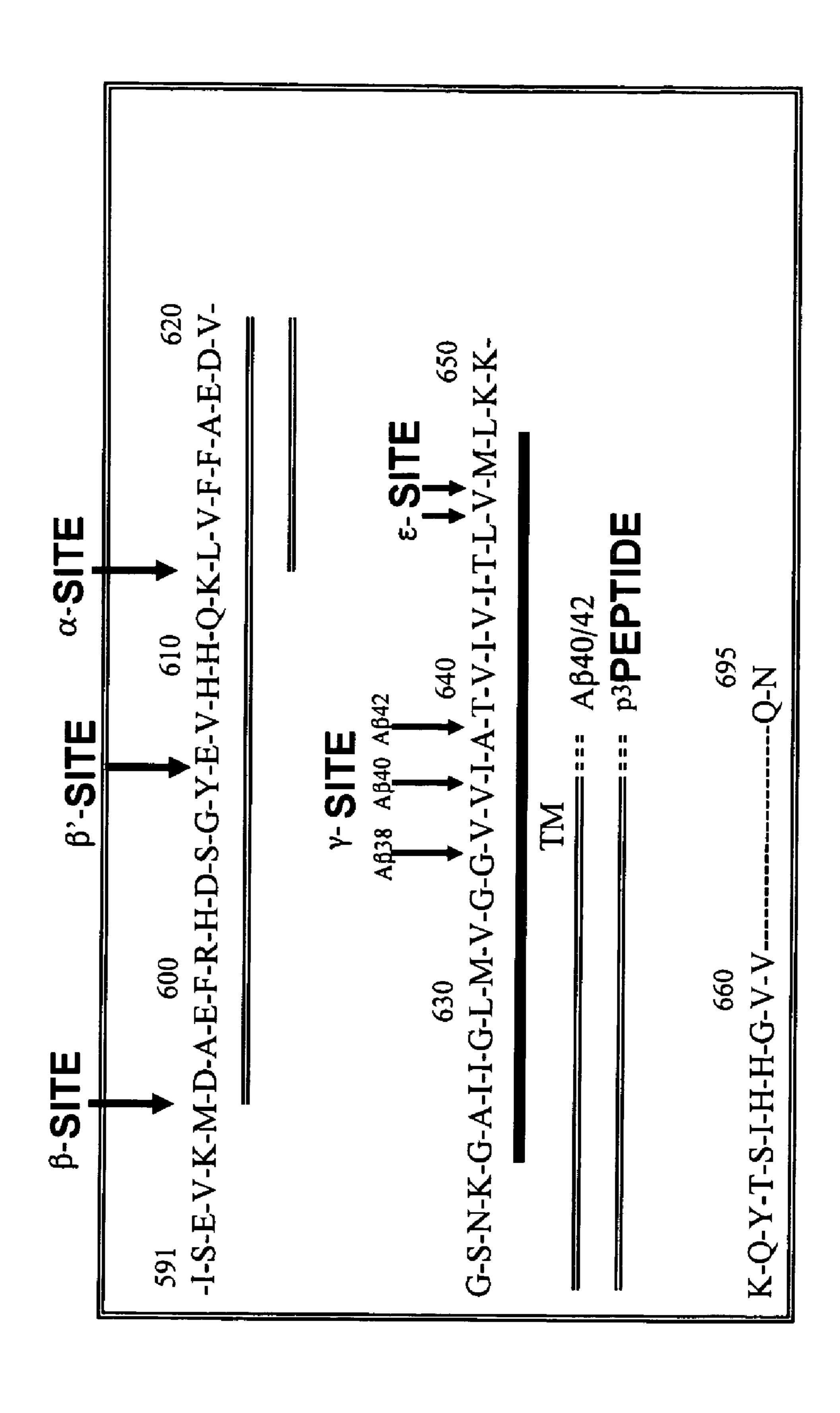


Fig. 17

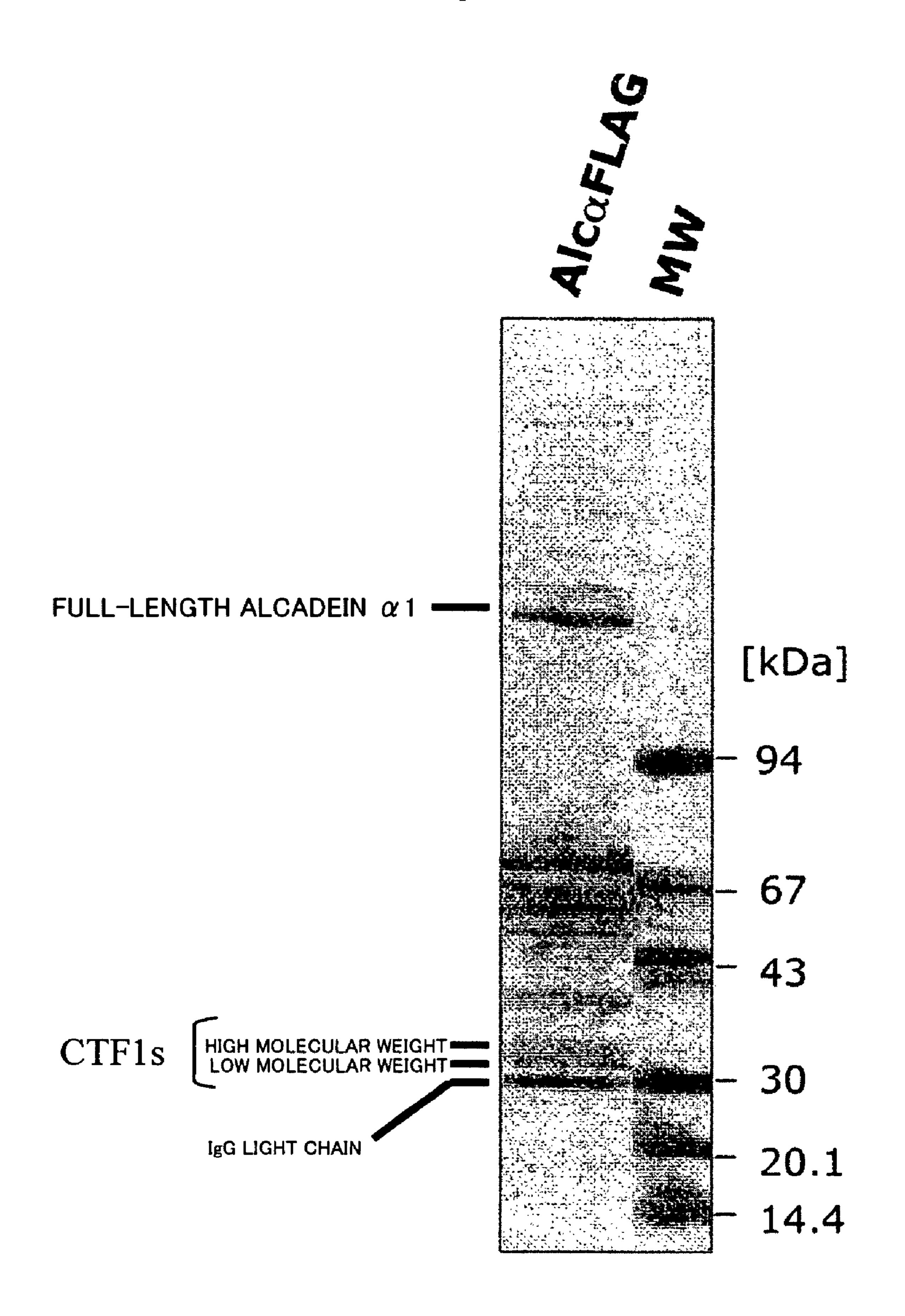


Fig. 18

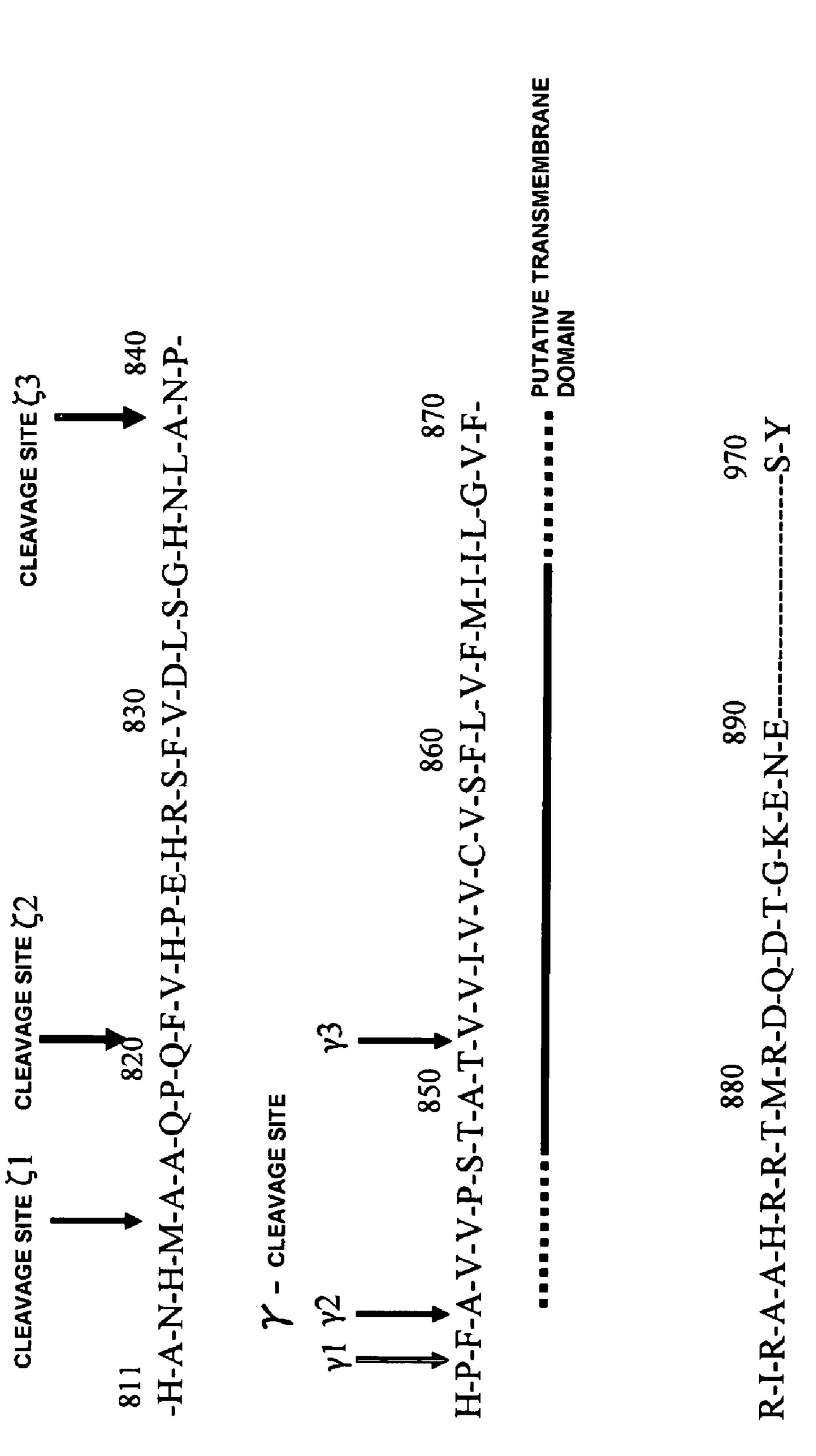


Fig. 19

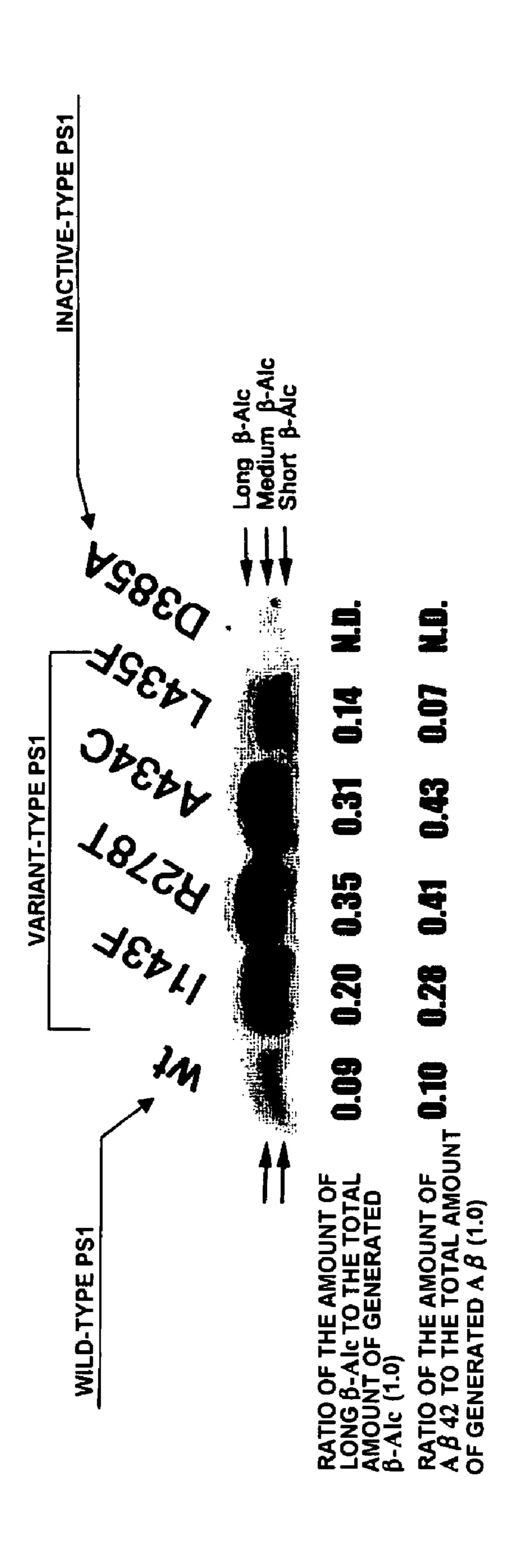


Fig. 20

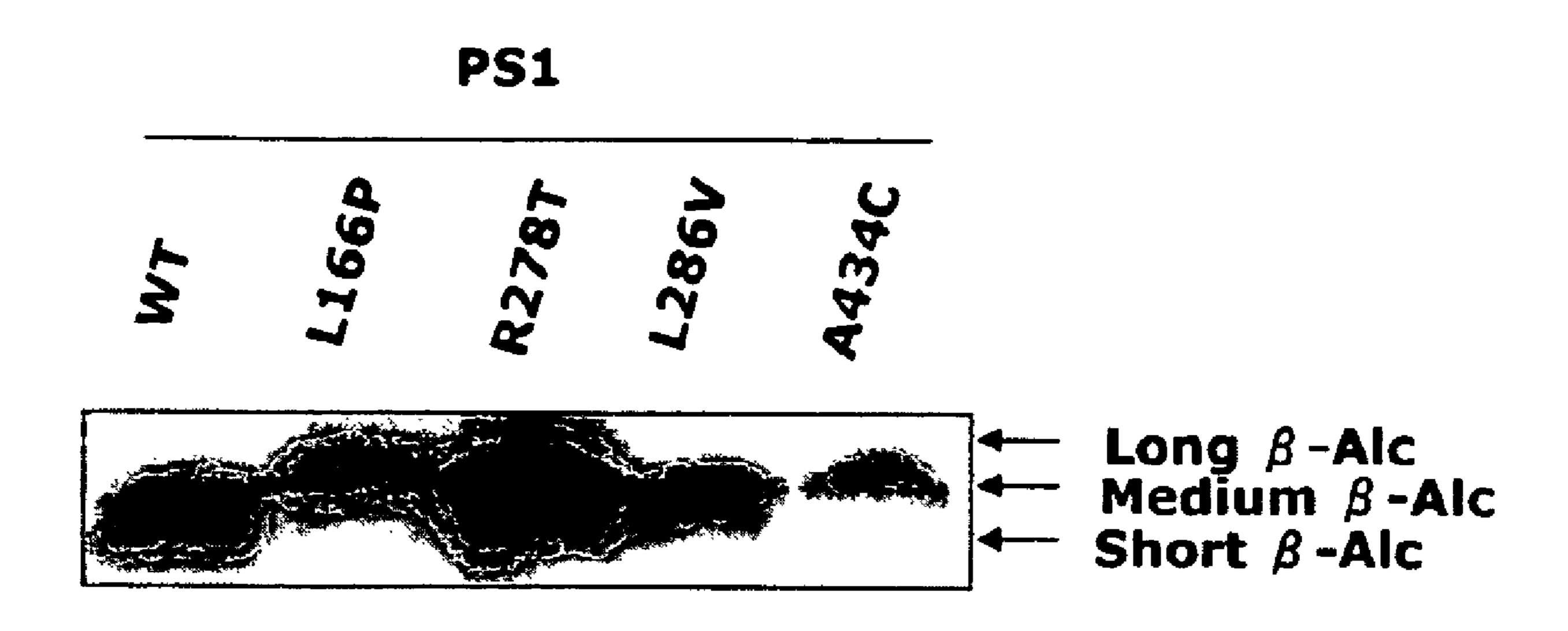
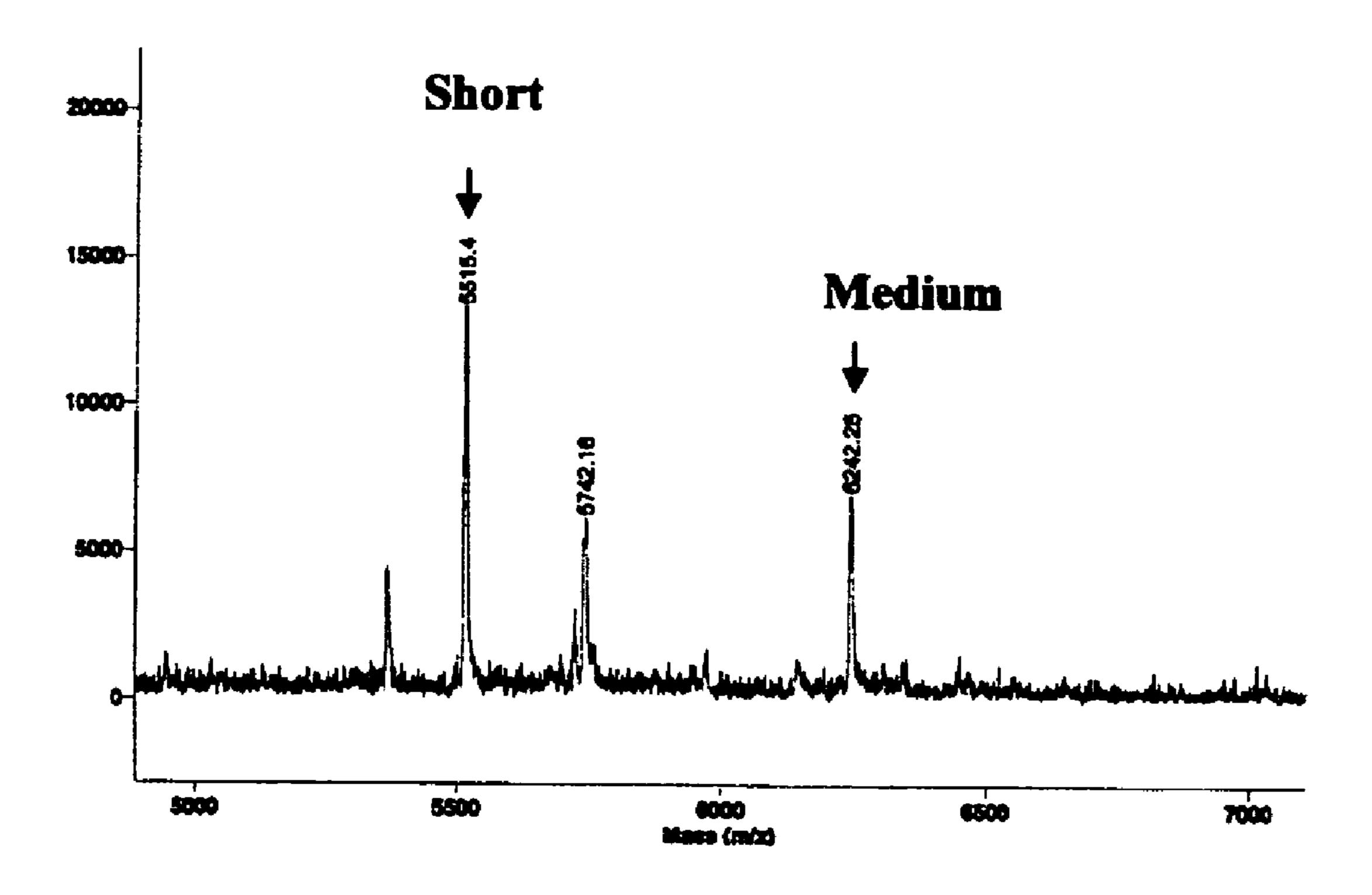



Fig. 21

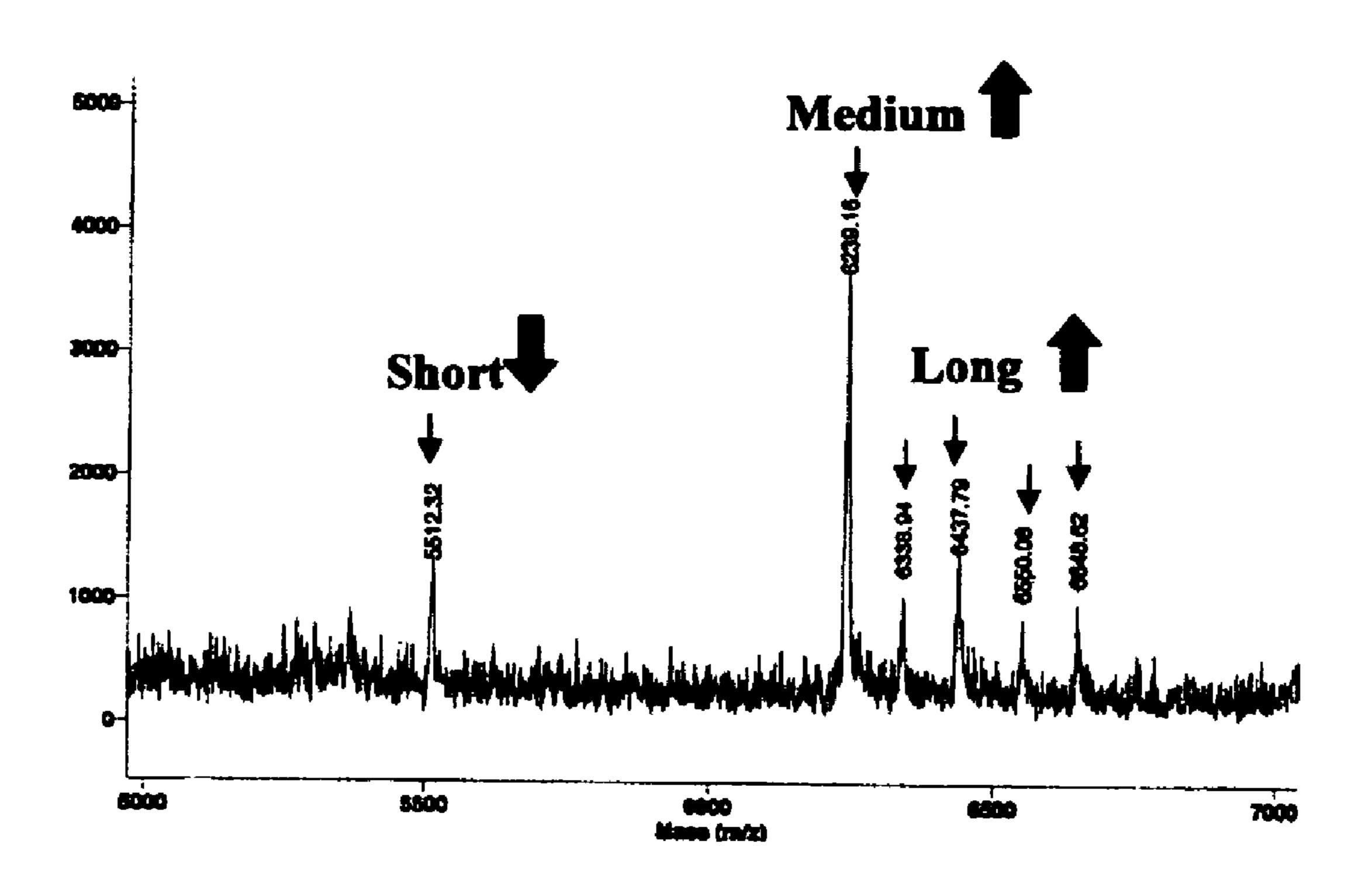


Fig. 22

Sheet 21 of 22

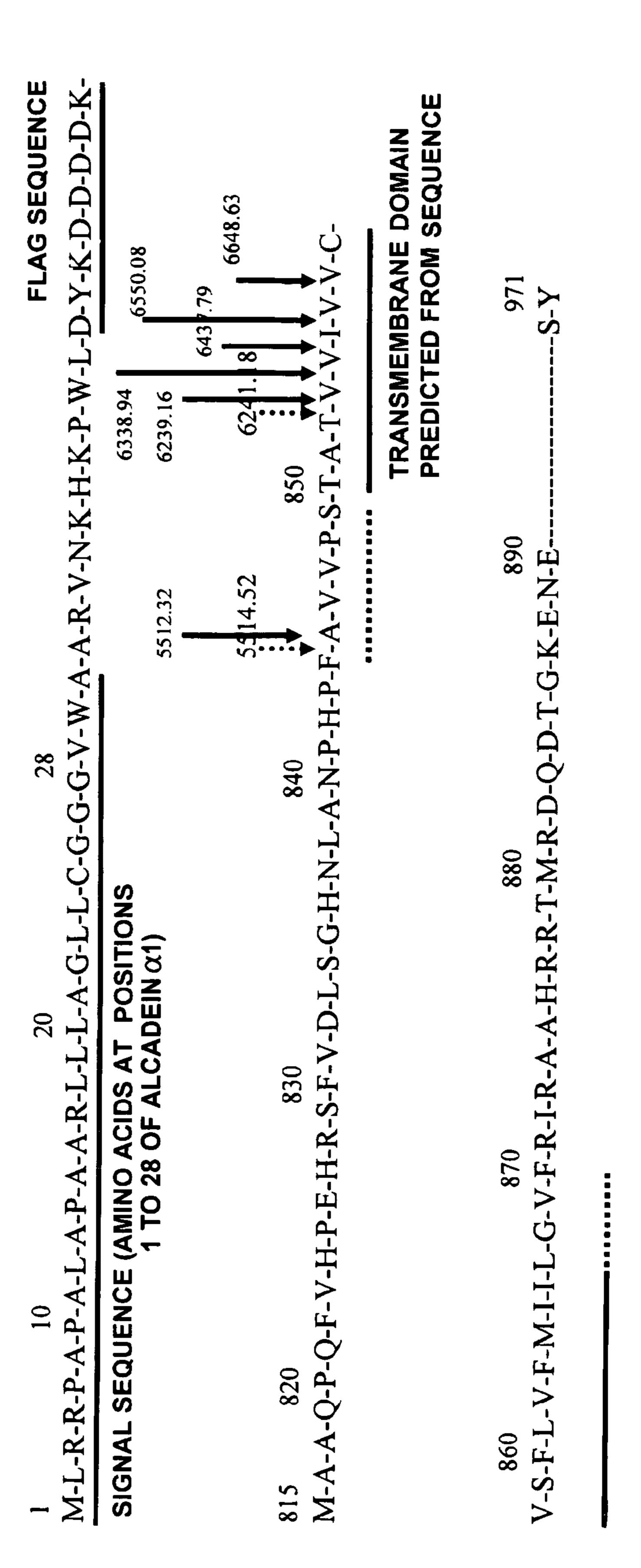
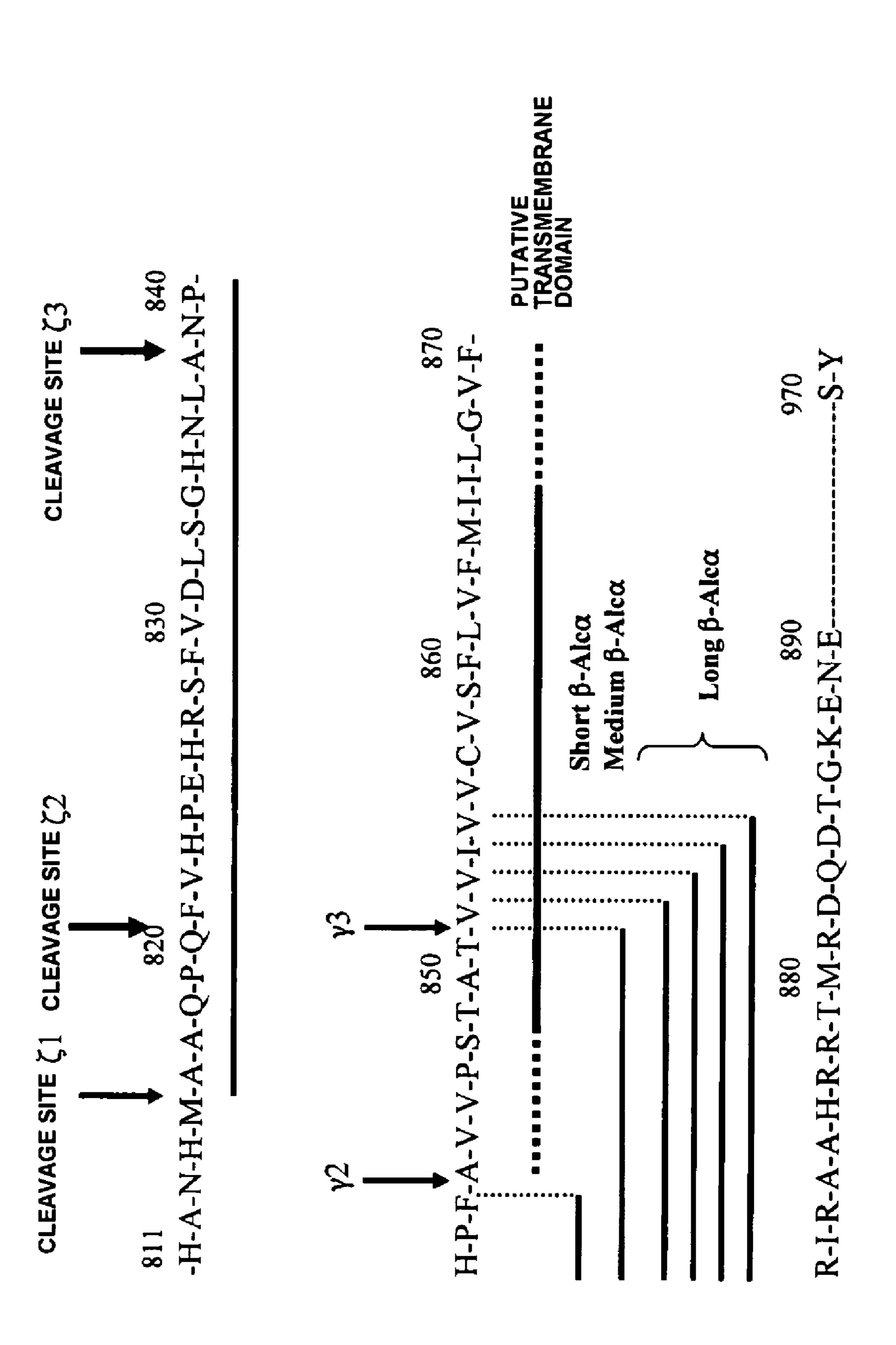



Fig. 23

MARKER PEPTIDE FOR ALZHEIMER'S DISEASE

TECHNICAL FIELD

The present invention relates to peptides which can be used as diagnostic markers for Alzheimer's disease, methods for diagnosing Alzheimer's disease using the peptides, methods for collecting data for diagnosing Alzheimer's disease by using the peptides, methods for screening for therapeutic 10 agents for Alzheimer's disease by using the peptides, antibodies to the peptides, and diagnostic reagents including the antibodies.

BACKGROUND ART

Alzheimer's disease is currently diagnosed by carrying out an interview with a specialized physician and evaluating the degree of brain atrophy using MRI or the like. However, it is difficult to obtain an objective and correct diagnostic conclusion by interview only. Furthermore, it is impossible to identify a so-called pre-patient, before the onset of symptoms. Additionally, apparatuses such as MRI apparatuses are expensive and consequently can be used only in large special hospitals.

Under such circumstances, biochemical diagnosis using a marker is adopted as a simple and objective method. Among main markers for Alzheimer's disease, intracellular tau protein and β -amyloid (hereinafter referred to as "A β ") are known at present (Non-Patent Document 1 and Non-Patent Document 2).

Tau protein is a component constituting microtubules in nerve cells and is leaked out from the cells when the nerve cells are degenerated during an Alzheimer's disease process. As a result, tau protein is detected in cerebrospinal fluid, and is a useful marker. However, tau protein cannot be detected until the condition of the disease progresses. Furthermore, since the leakage amount is small, tau protein is hardly detected in body fluid (for example, blood) other than the cerebrospinal fluid.

A β is a causative substance of Alzheimer's disease. Therefore, A β can be a most effective marker provided that a quantitative change (an increase in the production) or a qualitative change (an increase in the ratio of highly aggregative A β can be precisely measured. However, since A β shows aggregative nature, the amount of A β detected in a patient's cerebrospinal fluid is rather lower than that of healthy subjects.

Non-Patent Document 1: "Decreased beta-amyloid 1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease"; Sunderland, T., Linker, G., Mirza, N., Putnam, K. T., Friedman, D. L., Kimmel, L. H., Bergeson, J., Manetti, G. J., Zimmermann, M., Tang, B., Bartko, J. J., and Cohen, R. M. JAMA 2003, 289, 2094-2103.

Non-Patent Document 2: "Cerebrospinal fluid biomarkers for disease stage and intensity in cognitively impaired patients"; Wahlund, L. O., and Blennow, K. Neurosci. Lett. 2003, 339, 99-102.

DISCLOSURE OF INVENTION

Problems to be Solved by the Invention

As mentioned above, it is difficult to detect Alzheimer's 65 disease at an early stage by a diagnostic method using currently known markers. Furthermore, it is also difficult to

2

diagnose Alzheimer's disease by a method such as blood examination, which is less of a burden on patients.

The present invention has been accomplished under the above-mentioned technical background, and it is an object of the present invention to provide a method for easily and accurately diagnosing Alzheimer's disease.

MEANS FOR SOLVING THE PROBLEM

The present inventors have performed intensive studies in order to solve the above-mentioned problems and, as a result, have found that Alcadein, which is a protein, is cleaved by an enzyme that cleaves a precursor protein of A\beta (hereinafter referred to as "APP") and then is extracellularly secreted in 15 the same manner as in A β . It has been already reported that Alcadein forms a triple complex with X11L and APP and the formation of the complex suppresses the production of A β (Araki, Y. et al., J. Biol. Chem. 2003, 278, 49448-49458 and Japanese Unexamined Patent Application Publication No. 2003-164298). However, the fact that Alcadein is cleaved by the enzyme which cleaves APP and is extracellularly secreted in the same manner as in $A\beta$ is a completely new finding. Additionally, the present inventors have found that the amount of a high-molecular-weight peptide generated from 25 Alcadein by its consecutive cleavages is increased under the conditions that the amount of a high-molecular-weight $A\beta$, which is highly aggregative and highly neurotoxic, is increased.

The present invention has been accomplished on the basis of the foregoing findings.

Accordingly, the present invention provides the following aspects (1) to (15):

- (1) a peptide obtainable by cleaving an N-terminal region and a C-terminal region of Alcadein α , Alcadein β , or Alcadein γ ; and capable of being a diagnostic marker for Alzheimer's disease (hereinafter the peptide is simply referred to as "peptide of the present invention");
- (2) the peptide according to the aspect (1), wherein the N-terminal region to be cleaved is a portion of an extracellular domain at the N-terminal;
 - (3) the peptide according to the aspect (1) or (2), wherein the C-terminal region is cleaved by presentilin);
- (4) the peptide according to the aspect (1), wherein the peptide is obtained by cleaving an N-terminal region and a C-terminal region of Alcadein α; and the cleavage site of the N-terminal region is between amino acids 815 and 816, amino acids 820 and 821, or amino acids 838 and 839 of the amino acid sequence represented by SEQ ID NO: 1;
- (5) the peptide according to the aspect (1) or (2), wherein the peptide is obtained by cleaving an N-terminal region and a C-terminal region of Alcadein α; and the cleavage site of the C-terminal region is between amino acids 842 and 843, amino acids 843 and 844, or amino acids 851 and 852 of the amino acid sequence represented by SEQ ID NO: 1;
- (6) the peptide according to the aspect (1), consisting of an amino acid sequence represented by any one of SEQ ID NOS: 4 to 12;
- (7) a method for collecting data for diagnosing Alzheimer's disease, including a process of detecting or quantitatively determining the peptide according to any one of the aspects (1) to (6) in body fluid or tissues taken from an animal;
 - (8) the method for collecting data for diagnosing Alzheimer's disease according to the aspect (7), wherein the body fluid is blood or cerebrospinal fluid;
 - (9) the method for collecting data for diagnosing Alzheimer's disease according to aspect (7) or (8), wherein a ratio

of a high-molecular-weight peptide in the detected or quantitatively determined peptide is used as an indicator for diagnosing Alzheimer's disease;

- (10) a method for diagnosing Alzheimer's disease, including a process of detecting or quantitatively determining the peptide according to any one of the aspects (1) to (6) in body fluid or tissues taken from an animal;
- (11) the method for diagnosing Alzheimer's disease according to the aspect (10), wherein the body fluid is blood or cerebrospinal fluid;
- (12) the method for diagnosing Alzheimer's disease according to the aspect (10) or (11), wherein a ratio of a high-molecular-weight peptide in the detected or quantitatively determined peptide is used as an indicator for diagnosing Alzheimer's disease;
- (13) a method for screening a therapeutic agent for Alzheimer's disease by contacting cells secreting the peptide according to any one of the aspects (1) to (6) with an agent to be screened and determining a change in the secreted amount of the peptide or a change in the molecular species of the secreted peptide;
- (14) an antibody against the peptide according to any one of the aspects (1) to (6); and
- (15) a diagnostic reagent for Alzheimer's disease, including the antibody according to the aspect (14).

Advantageous Effect Of The Invention

By utilizing the peptide of the present invention, Alzheimer's disease can be detected before clinical symptoms or at an early stage by a simple method which does not put a burden on subjects to be tested.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a photograph showing the results of Western blotting of proteins separated by density-gradient centrifugation.
- FIG. 2 is a photograph showing the results of Western 40 blotting of proteins recovered by immunoprecipitation.
- FIG. 3 is photographs of immunostained brain sections from an Alzheimer's disease patient (Alcα and APP were detected).
- FIG. 4 is photographs of immunostained brain sections 45 from an Alzheimer's disease patient (Alc α and A β were detected).
- FIG. **5** is a diagram schematically illustrating a process of obtaining $A\beta$ from APP.
- FIG. 6 is a diagram showing the results of Western blotting of cell lysates using an anti-APP antibody.
- FIG. 7 is diagrams showing the results of Western blotting of cell lysates using an anti-Alc antibody and media using an anti-FLAG antibody.
- FIG. 8 is diagrams showing the results of Western blotting of membrane fractions using an anti-Alc antibody.
 - FIG. 9 is a diagram illustrating a structure of \dot{A} lc $\alpha\Delta E$.
- FIG. 10 is a diagram showing the results of Western blotting of cell lysates and an medium using an anti-FLAG anti-body.
- FIG. 11 is diagrams showing the results of Western blotting of cell lysates expressing APP or Alcα and BACE1.
- FIG. 12 is a diagram schematically illustrating a process of preparing β -Alc α (a peptide obtained by cleaving an N-terminal region and a C-terminal region of Alc α) including a FLAG sequence.

4

- FIG. 13 is diagrams showing the results of Western blotting of an extract solution of cells expressing $Alc\alpha\Delta$ and immunoprecipitate of a medium when an anti-FLAG antibody is used.
- FIG. 14 is a diagram showing the result of mass spectrometry of β -Alc α secreted from cells expressing Alc $\alpha\Delta$.
- FIG. **15** (SEQ ID NO: 1) is a diagram showing a secondary cleavage site of Alcα determined by the MALDI-TOF/MS method.
- FIG. **16** (SEQ ID NO: 13) is a diagram showing a cleavage site of human APP695.
- FIG. 17 is a diagram showing the results of electrophoresis of a C-terminal region obtained by a primary cleavage of Alc α 1.
- FIG. **18** (SEQ ID NO: 1) is a diagram showing cleavage sites of Alcα.
- FIG. 19 is a diagram showing the results of Western blotting of cells expressing various PS1 variants and Alc $\alpha\Delta E$.
- FIG. 20 is a diagram showing the results of Western blotting of cells expressing various PS1 variants (including L166P variant-type PS1) and Alc $\alpha\Delta E$.
 - FIG. **21** is diagrams showing the results of mass spectrometry of β -Alc obtained from wild-type PS1 or L166P variant-type PS1.
- FIG. **22** (SEQ ID NO: 1) is a diagram showing cleavage sites of β-Alc.
- FIG. 23 (SEQ ID NO: 1) is a diagram schematically showing molecular species of β Alc.

BEST MODE FOR CARRYING OUT THE INVENTION

The present invention will now be described in detail.

The peptide of the present invention is obtained by cleaving at N-terminal and C-terminal regions of Alcadein α , Alcadein β , or Alcadein γ . The peptide generated by these cleavages can be a diagnostic marker for Alzheimer's disease.

There are three types of Alcadein: Alcadein α (hereinafter referred to as "Alc α "), Alcadein β (hereinafter referred to as "Alc β "), and Alcadein γ (hereinafter referred to as "Alc γ "). Alc α is a protein including an amino acid sequence which is the same or substantially the same as the amino acid sequence represented by SEQ ID NO: 1, Alc β is a protein including an amino acid sequence which is the same or substantially the same as the amino acid sequence represented by SEQ ID NO: 2, and Alc γ is a protein including an amino acid sequence which is the same or substantially the same as the amino acid sequence represented by SEQ ID NO: 3.

Alcα, Alcβ, and Alcγ may be proteins derived from any kind of cell (for example, hepatocytes, splenocytes, neurons, glia cells, pancreatic β -cells, myelocytes, mesangial cells, Langerhan's cells, epidermal cells, epithelial cells, goblet cells, endothelial cells, smooth muscle cells, fibroblasts, fibrous cells, muscle cells, fat cells, immune cells (e.g., mac-55 rophages, T-cells, B-cells, natural killer cells, mast cells, neutrophils, basophils, eosinophils, and monocytes), megakaryocytes, synovial cells, chondrocytes, osteocytes, osteoblasts, osteoclasts, mammary cells, hepatocytes, interstitial cells, progenitor cells of these cells, stem cells, and cancer cells) of human and warm-blooded animals (for example, guinea pig, rat, mouse, chicken, rabbit, swine, sheep, bovine, and monkey) or all tissues in which such cells are present, such as brain, various parts of brain (e.g., olfactory bulb, amygdaloid nucleus, cerebral basal nucleus, hippocampus, thalamus, hypothalamus, cerebral cortex, medulla oblongata, and cerebellum), spinal cord, pituitary gland, stomach, pancreas, kidney, liver, gonad, thyroid, gall-bladder, bone marrow,

adrenal gland, skin, muscle, lung, gastrointestinal tract (e.g., large intestine and small intestine), blood vessels, heart, thymus, spleen, submandibular gland, peripheral blood, prostate, testis, ovary, placenta, uterus, bone, joint, and skeletal muscle, and furthermore, may be synthetic proteins as well.

Examples of the amino acid sequence which is substantially the same as the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 include amino acid sequences which contain not less than about 50%, preferably not less than about 60%, more preferably not less 10 than about 70%, still more preferably not less than about 80%, furthermore preferably not less than about 90%, most preferably not less than about 95% identity to the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3, respectively. Preferable examples of the pro- 15 tein which includes an amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 are proteins having the amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or 20 SEQ ID NO: 3 and having an activity of substantially the same quality as that of the protein including the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.

An example of the activity which has substantially the same quality as that of a protein is an activity that binds with the PI domain of X11L. The term substantially the same quality means the natures are equivalent (for example, physiologically or pharmacologically). Therefore, it is preferable that the above-mentioned activities are equivalent (e.g., about 30 0.01 to 100 times, preferably about 0.1 to 10 times, more preferably about 0.5 to 2 times), but it is allowable that the degrees of the activities and the quantitative elements such as molecular weight of the proteins are at different levels.

Alc α , Alc β , and Alc γ of the present invention each include, for example, so-called muteins such as proteins including (1) an amino acid sequence wherein one or more amino acids (preferably about 1 to 30, more preferably about 1 to 10, and further preferably a few (1 to 5) amino acids) are deleted from the amino acid sequence represented by SEQ ID NO: 1, SEQ 40 ID NO: 2, or SEQ ID NO: 3, (2) an amino acid sequence wherein one or more amino acids (preferably about 1 to 30, more preferably about 1 to 10, and further preferably a few (1) to 5) amino acids) are added to the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 45 3, (3) an amino acid sequence wherein one or more amino acids (preferably about 1 to 30, more preferably about 1 to 10, and further preferably a few (1 to 5) amino acids) are inserted into the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3, (4) an amino acid sequence 50 wherein one or more amino acids (preferably about 1 to 30, more preferably about 1 to 10, and further preferably a few (1) to 5) amino acids) in the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 are substituted with other amino acids, or (5) a combination thereof. 55 When an amino acid sequence has the above-mentioned insertion, deletion, or substitution, the site of the insertion, deletion, or substitution is not limited as long as the activity is maintained. Specifically, as regards Alcadein α, Alcadein α1 having the amino acid sequence represented by SEQ ID NO: 60 1 and Alcadein α2 having an amino acid sequence wherein 10 amino acids are inserted between amino acids 71 and 72 of the amino acid sequence represented by SEQ ID NO: 1 are known.

The site where an N-terminal region is cleaved is not lim- 65 ited as long as the obtained peptide can be a diagnostic marker for Alzheimer's disease, but it is preferable that the site is

6

within an extracellular domain at the N-terminal side. Generally, such a site is, in the case of Alcα, between amino acids 815 and 816, amino acids 820 and 821, or amino acids 838 and 839 of the amino acid sequence represented by SEQ ID NO: 1 or in the vicinities thereof; in the case of Alcα, between amino acid 825 and 826 of the amino acid sequence represented by SEQ ID NO: 2 or in the vicinity thereof; and in the case of Alcγ, between amino acids 804 and 805 of the amino acid sequence represented by SEQ ID NO: 3 or in the vicinity thereof.

Furthermore, Alcadein is cleaved at another site at the N-terminal side too in the same manner as in APP: Alc α is also cleaved extracellularly by BACE which cleaves APP at the β -site. Generally, such a site is between amino acid 708 and 709 of the amino acid sequence represented by SEQ ID NO: 1 or in the vicinity thereof.

The site where a C-terminal region is cleaved is not limited as long as the obtained peptide can be a diagnostic marker for Alzheimer's disease, but it is preferably that the site is cleaved by presenilin. Generally, such a site is, in the case of Alcα, between amino acids 842 and 843, amino acids 843 and 844, or amino acids 851 and 852 of the amino acid sequence represented by SEQ ID NO: 1 or in the vicinities thereof; in the case of Alcβ, between amino acids 875 and 876 of the amino acid sequence represented by SEQ ID NO: 2 or in the vicinity thereof; and in the case of Alcy, between amino acids 847 and 848 of the amino acid sequence represented by SEQ ID NO: 3 or in the vicinity thereof. Here, the term "vicinity" means generally a range within 10 amino acids, preferably a range within 5 amino acids from the cleavage site. Specific examples of the peptide of the present invention include a peptide consisting of an amino acid sequence represented by any one of SEQ ID NOS: 4 to 12.

It is thought that the peptide of the present invention can be used as a diagnostic marker for Alzheimer's disease because of the following reasons:

- (1) the peptide of the present invention is obtained from Alcadein that forms a triple complex with APP and X11L (Araki, Y. et al., J. Biol. Chem. 2003, 278, 49448-49458 and Japanese Unexamined Patent Application Publication No. 2003-164298) and is distributed in the brain of an Alzheimer's disease patient in the same manner as in APP (Examples 2 and 3);
- (2) Alcadein is cleaved by BACE as in APP (Example 8);
- (3) the peptide of the present invention is obtained by the cleavage by presenilin as in A β (Examples 4, 6, and 7) and further secreted extracellularly as in A β (Example 7), and when the molecular species of A β is pathologically changed, the molecular species of the peptide of the present invention is also similarly changed (Example 11). On the basis of these facts, it is thought that the generation amount of A β can be predicted from the generation amount of the peptide of the present invention and that the qualitative change of A β can be predicted from the qualitative change of the peptide of the present invention; and
- (4) A β cannot be used as a quantitative diagnostic marker for Alzheimer's disease because of its aggregative ability. A β has an α -helix structure at the N-terminal side and a β -sheet structure at the C-terminal side, and a sequence composed of the 26th to the 29th amino acids forms a β -turn structure at the central portion. Consequently, an antiparallel β -sheet structure is formed by the N-terminal side and the C-terminal side. It is understood that this causes the aggregation of A β ("Oligomerization and fibril assembly of the amyloid β -protein" by Roher, A. E., et al., Biochem. Boiphy. Act 2000, 1502, 31-43). On the other hand, though the peptide of the present invention has an α -helix structure at

the N-terminal side and a β -sheet structure at the C-terminal side as in the basic structure of $A\beta$, the peptide does not have a sequence to form a β -turn structure. Therefore, it is thought that since it is predicted that the α -helix structure is not converted to a β -sheet structure, the peptide does not have aggregative ability.

By using the peptide of the present invention as a diagnostic marker for Alzheimer's disease, Alzheimer's disease can be diagnosed and data for the diagnosis can be collected. Specifically, the diagnosis and the collection of data can be performed by detecting or quantitatively determining the peptide of the present invention in body fluid or tissues taken from animals.

The peptide of the present invention is available in various molecular weights. When a large amount of high-molecular- 15 weight peptide is contained in the peptide of the present invention to be detected or quantitatively determined, it suggests a high possibility of Alzheimer's disease or its prestage. This is based on the fact that the amount of the highmolecular-weight peptide of the present invention is 20 increased under the conditions that the amount of a highmolecular-weight A β (A β 42), which is highly aggregative and highly toxic, is increased (Examples 11 and 12). Therefore, Alzheimer's disease can be diagnosed by using the ratio of the amount of high-molecular-weight peptide to the total 25 amount of the peptide of the present invention as an indicator, in addition to the determination of whether a certain amount of the peptide of the present invention is present in body fluid or the like. Here, the term "high-molecular-weight peptide" means a peptide which is obtained when the cleavage site of 30 an N-terminal region is closer to the N-terminal end, or the cleavage site of a C-terminal region is closer to the C-terminal end, or a combination of both. For example, the high-molecular-weight peptide is defined as a molecular species which is obtained when the cleavage site is shifted to the N-terminal 35 doma. end, the C-terminal end, or both ends from the site of each of the β-Alc molecular species shown in Table 1 described below. Thus, the high-molecular-weight peptide is not specifically defined by its molecular weight. When a primary cleavage site is $\zeta 1$ and a secondary cleavage site is $\gamma 3$ as 40 shown in Table 1, it is predicted that a peptide composed of 36 amino acids and having a molecular weight of about 4000 is obtained. If β-Alc has a molecular weight higher than that of this peptide by the shift of the cleavage site to the N-terminal end or the C-terminal end, the β -Alc is categorized as the 45 above-mentioned "high-molecular-weight peptide". When a primary cleavage site is $\zeta 3$ and a secondary cleavage site is $\gamma 1$ as shown in Table 1, it is predicted that a peptide composed of 4 amino acids and having a molecular weight of 500 to 600 is obtained. If β-Alc has a molecular weight higher than that of 50 this peptide by the shift of the cleavage site to the N-terminal end or the C-terminal end, the β -Alc is categorized as the above-mentioned "high-molecular-weight peptide" even if the molecular weight is about 1000.

Examples of the animal from which body fluid or the like is taken include not only human but also warm-blooded animals other than human such as guinea pig, rat, mouse, chicken, rabbit, swine, sheep, bovine, and monkey.

Examples of the body fluid and tissues include blood, plasma, serum, cerebrospinal fluid, and brain tissues. Among 60 them, blood and cerebrospinal fluid are preferable.

The method for detecting or quantitatively determining the peptide is not limited. Examples of the method include methods using an antibody, e.g., Western blotting, dot blotting, ELISA, sandwich ELISA, radioimmunoassay, and immuno-65 precipitation; mass spectrometry using a MALDI-TOF/MS; and combinations thereof. Among them, sandwich ELISA is

8

most preferable. The sandwich ELISA may be conducted according to the description in the document of Tomita, et al. ("Cleavage of Alzheimer's amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway" Tomita, S., Kirino, Y., and Suzuki, T. J. Biol. Chem. 1998, 273, 6277-6284), for example. Specifically, the peptide of the present invention in a sample solution can be detected or quantitatively determined by (1) immobilizing an antibody specific to the peptide of the present invention on a solid phase, (2) adding the sample solution to the solid phase, (3) washing the solid phase, (4) adding another antibody specific to the peptide of the present invention, (5) adding an enzyme-labeled antibody (anti-IgG antibody) against the antibody, and (6) adding a substrate specific for the enzyme to detect the coloring or the like as an indicator. Here, the antibody specific to the peptide of the present invention can be prepared by a method described below. The anti-IgG antibody which is commercially available may be used. Examples of the solid phase include a micro-titer well and latex particles. Examples of the enzyme label include horseradish peroxidase, alkali phosphatase, and galactosidase.

The antibody of the present invention may be a monoclonal antibody or a polyclonal antibody.

The monoclonal antibody can be prepared, for example, by the method disclosed in the above-mentioned document of Tomita, et al. Specifically, a desired monoclonal antibody can be prepared by (1) administering the peptide of the present invention to an animal, (2) isolating antibody-producing cells from the animal, (3) fusing the antibody-producing cells with myeloma cells to prepare hybridomas, (4) selecting a hybridoma producing an antibody of the present invention from the hybridomas, and (5) separating and purifying the antibody from the culture supernatant of the antibody-producing hybridoma.

The peptide of the present invention to be administered to an animal may be the whole peptide or a partial peptide thereof. The partial peptide to be administered is not limited, but it is preferable that, in the case of a peptide derived from Alcα, the peptide has the amino acid at position 816, 821, or 839 of the amino acid sequence represented by SEQ ID NO: 1 as the N-terminal end and the amino acid at position 842, 843, or 851 of the amino acid sequence represented by SEQ ID NO: 1 as the C-terminal end; in the case of a peptide derived from Alcβ, the peptide is composed of the amino acids at positions 826 to 845 of the amino acid sequence represented by SEQ ID NO: 2; and in the case of a peptide derived from Alcy, the peptide is composed of the amino acids at positions 805 to 824 of the amino acid sequence represented by SEQ ID NO: 3. In addition, the peptide may be administered with a complete or incomplete Freund's adjuvant in order to enhance the antibody productivity. The Animal to be administered with the peptide is not limited. For example, monkey, rabbit, dog, guinea pig, mouse, rat, sheep, goat, and chicken may be used. The peptide administration intervals and number of times are not limited. In general, the peptide is administered about 2 to 10 times for every 2 to 6 weeks. The antibody-producing cells can be obtained by extracting spleen cells or lymph nodes from the animal 2 to 5 days after the last immunization. The myeloma cells to be used are not limited. For example, NS-1, P3U1, SP2/0, or AP-1 may be used. The hybridization can be performed by a general method using a polyethylene glycol or Sendai virus. The selection of a hybridoma which produces the antibody of the present invention can be performed, for example, by applying a culture supernatant of hybridomas to a micro-plate on which the peptide of the present invention is adsorbed,

adding an anti-IgG antibody labeled with an enzyme, and detecting the anti-IgG antibody bound to the micro-plate. The isolation of the antibody of the present invention from the hybridoma culture supernatant can be performed by a general method for isolating and purifying immunoglobulin, e.g., salting-out, alcohol precipitation, isoelectric precipitation, electrophoresis, adsorption and desorption by an ion-exchanger, ultracentrifugation, or gel-filtration.

The polyclonal antibody can be also prepared, for example, according to the method disclosed in the documents of Araki, et al. (Araki, Y., et al., J. Biol. Chem. 2003, 278, 49448-49458 and Araki, Y., et al., J. Biol. Chem. 2004, 279, 24343-24354). Specifically, a desired polyclonal antibody can be prepared by (1) administering the peptide of the present invention to an animal, (2) extracting blood or ascites fluid from the animal, and (3) isolating and purifying the antibody from the blood or the like. The administration of the peptide and the isolation and purification of the antibody can be performed by the same manner as in the monoclonal antibody.

A diagnostic reagent of the present invention is generally prepared by adding the above-mentioned antibody of the present invention to an appropriate buffer solution. The concentration of the antibody and the kind of the buffer solution are not limited. They are properly determined according to the method for detecting or quantitatively determining the peptide of the present invention. Additionally, the diagnostic reagent may contain a component in addition to the antibody of the present invention. Examples of such a component are an enzyme-labeled secondary antibody and a coloring agent.

The peptide of the present invention and Alcadein which is a precursor thereof are similar to A β and APP, respectively, in various respects. Therefore, it is highly suggested that a substance which suppresses the production of the peptide of the present invention also suppresses the production of $A\beta$. Furthermore, it is highly suggested that a substance which changes the molecular species of the peptide of the present invention from a high-molecular-weight peptide to a lowmolecular-weight peptide (i.e., a peptide of the present invention other than the high-molecular-weight peptide) also 40 changes the molecular species of A β from a high-molecularweight peptide of highly toxic to other type. Therefore, it is thought that the screening for a therapeutic agent for Alzheimer's disease can be performed by contacting the cells secreting the peptide of the present invention with an agent to 45 be screened and determining a change in the secretion of the peptide or a change in the molecular species of the secreted peptide.

The cells secreting the peptide of the present invention may be such cells that originally secrete the peptide of the present 50 invention or may be such cells that have been transformed so as to secrete the peptide of the present invention by gene transfer. Examples of the former cells include fibroblasts (Araki, Y., et al., J. Biol. Chem. 2004, 279, 24343-24354) and HEK293 (in the Examples, an Alcadein gene is introduced 55 into this cell, but endogenous Alcadein is expressed without the introduction). The latter cells can be prepared by introducing the full-length gene of Alcadein or a DNA encoding a first cleavage product (or a mimic construct thereof) into cells, for example. In addition, when a change in the molecular species of the peptide of the present invention is investigated, cells secreting a high-molecular-weight peptide of the present invention are preferably used. Such cells can be prepared by introducing a gene of a presentilin variant (1143F, 278T, 434C, L35F, etc.) into the cells so as to stably express 65 the gene or inducing a mutation in the Alcadein gene, as shown in Examples 11 and 12 described below.

10

The method for contacting cells with an agent to be screened is not limited as long as the agent can act on the cells. Examples of the method include a method of directly inoculating an agent into cells and a method of adding an agent to a cell-culture medium.

The change in the amount of secreted peptide and the change in the molecular species of the secreted peptide can be investigated according to the method for detecting or quantitatively determining the peptide of the present invention described above. When a decrease in the secretion amount of the peptide caused by an agent to be screened is observed, the agent can be a candidate for a therapeutic agent for Alzheimer's disease When a change in the molecular species of the peptide, i.e., a change from a high-molecular-weight peptide to a low-molecular-weight peptide, caused by an agent to be screened is observed, the agent also can be a candidate for a therapeutic agent for Alzheimer's disease.

Here, the term "therapeutic agent" includes not only an agent for treating Alzheimer's disease but also an agent having a preventive effect to suppress the onset of symptoms or delay the onset of symptoms of Alzheimer's disease.

EXAMPLES

The present invention will now be described further in detail with reference to Examples.

Example 1

The brain of five 8-week-old C57BL6 mice was homogenized with 10-strokes of a loose-fit Teflon homogenizer (clearance: 0.12 µm) in 30 ml of ice-cooled buffer A (10 mM HEPES of pH 7.4, 0.32 M sucrose, 5 μg/ml chymostatin, 5 μg/ml leupeptin, and 5 μg/ml pepstatin). The homogenate was centrifuged (1000×g, 10 min) to remove unbroken cells and nuclei and to obtain a nucleus-removed cell homogenate. The nucleus-removed cell homogenate was further centrifuged (100000xg, 60 min) to obtain a pellet of a membrane fragment. The membrane fragment was resuspended in 2 ml of the buffer A and then gently overlayered on a solution (10 ml) of the buffer A with an iodixanol density-gradient of 0 to 28% in a Beckmann SW41 tube so as not to disturb the interface between the two solutions, and then centrifuged at 41000 rpm at 4° C. for 115 min. After the centrifugation, 13 fractions each of 900 ml were collected from the bottom of the tube. To 7.5 μl of each fraction, 5 μl of 5×SDS sample buffer (43%) glycerol (Wako), 16% SDS (Wako), 64 ng/ml bromophenol blue (Wako), 5 mM EDTA, and 0.22 M Tris-HCl of pH 6.8) and 2.5 µl of 8 M urea solution were added. The resulting mixture was boiled for 5 min and then subjected to SDS-PAGE using an 8% gel according to the Lammli method. Proteins on the gel were transferred on a nitrocellulose membrane for performing Western blotting. The detection was performed by using an ECL kit (Pharmacia). The used antibodies were an anti-APP cytoplasmic domain antibody (reactive to both fill-length APP and a C-terminal fragment), anti-X11L antibody, anti-Alcα antibody, anti-protein disulfideisomerase (PDI) antibody, anti-Golgi body 130 kDa matrix protein (GM-130) antibody, anti-synaptotagmin (SYT) antibody, anti-mouse kinesin heavy chain (KHC) antibody, and anti-presenilin 1 (PS1) C-terminal fragment antibody. Among them, commercially available anti-X11L antibody (mint2, BD Biosciences), anti-PDI antibody (1D3, Stressgen Biotechnologies), anti-GM130 antibody (#35, BD Biosciences), anti-SYT antibody (#41, BD Biosciences), anti-KHC antibody (H2, CHEMICON International), and anti-PS1 C-terminal fragment antibody (PS1-CTF, CHEMICON

International) were used. The anti-APP cytoplasmic domain antibody was G369 and the anti-Alcα antibody was UT83. The G369 was prepared according to the method disclosed in Oishi, M., et al., Mol. Med. 1997, 3, 11-113. The UT83 was a polyclonal antibody derived from a rabbit immunized with an 5 antigen peptide which was prepared by adding Cys to a C-terminal peptide (amino acids at positions 954 to 971) of human Alcα1 (Araki, Y., et al., J. Biol. Chem. 2003, 278, 49448-49458). FIG. 1 shows the results of the Western blotting.

It was confirmed from the results of the Western blotting 10 that large amounts of APP, X11L, and Alc were contained in the 8th fraction. Five hundred microliters of this fraction was added to an equal quantity of 2×CHAPS buffer (20 mM CHAPS, 20 mM sodium phosphate of pH 7.4, and 280 mM sodium chloride) to solubilize membrane components. Then, 15 conjugate immunoprecipitation with G369 (anti-APP cytoplasmic domain antibody) was performed. Specifically, 4 µl of G369 was added to the solubilized membrane components. The resulting mixture was reacted at 4° C. for 1 hr, and then, to the mixture, 30 µl of 50% protein G-sepharose equilibrated 20 with the 2×CHAPS buffer was further added. The resulting mixture was reacted at 4° C. for 1 hr. After the reaction, the beads were washed with 800 µl of the 2×CHAPS buffer, and then the components attached to the beads were solubilized by boiling the beads for 5 min in 45 µl of a sample-buffer 25 mixture (a mixture of 30 μl of 5×SDS sample buffer and 15 μl of 8 M urea solution). The solubilized components were subjected to SDS-PAGE using an 8% gel, followed by Western blotting as above. An antibody against IgG heavy chain (IgG (H)), in addition to the above-used anti-APP cytoplasmic domain antibody, anti-X11L antibody, anti-Alcα antibody, and anti-SYT antibody, was also used. In addition, as a control, components obtained by conjugate immunoprecipitation using an equal quantity of non-immunized rabbit serum instead of G369 were also subjected to Western blotting. 35 Furthermore, similarly, the solubilized membrane components before the conjugate immunoprecipitation were also subjected to Western blotting. FIG. 2 shows the results.

As shown in FIG. 2, the components obtained by the conjugate immunoprecipitation with G369 contain not only APP 40 but also X11L and Alcα. Therefore, it is thought that APP binds to X11L and Alcα to form a complex composed of the three.

Example 2

Frontal lobe tissues derived from 5 Alzheimer's disease patients were fixed in Kryofix (a mixture of ethanol, polyethylene glycol, and water: Merck) for 1 to 7 days and embedded in paraffin. The embedded tissues were cut into serial sections with a thickness of 4 μ m. The sections were de-paraffined and then immunostained using ABC elite kit (Vector Laboratory).

The immunostain was performed by incubating the sections in a $0.8 \,\mu\text{g/ml}$ anti-Alc α antibody (UT83) solution or a $0.5 \,\mu\text{g/ml}$ anti-APP extracellular domain antibody (22C11: 55 Roche Diagnostics) solution, reacting a secondary antibody with them, and visualizing the peroxidase activity by using a diaminobenzidine-hydrogen peroxide solution. As a control, the sections were incubated in a $0.8 \,\mu\text{g/ml}$ non-immunized rabbit IgG solution and similarly immunostained. Additionally, the sections were incubated in a solution containing both the anti-Alc α antibody and its antigen peptide (40 nM) and similarly immunostained.

FIGS. 3-1, 3-2, and 3-3 show the results of the immunostain performed using the anti-Alcα antibody, anti-APP 65 extracellular domain antibody, and non-immunized rabbit IgG, respectively.

12

As shown in these Figures, Alcα and APP are detected at similar brain regions of Alzheimer's disease patients. When the antigen peptide of the anti-Alcα antibody was presented in the solution (the results are not shown), nothing was detected as in the results shown in FIG. 3-3.

Example 3

The sections prepared in Example 2 were de-paraffined and incubated in a solution containing an anti-Alc α antibody (0.8 µg/ml) and an anti-APP extracellular domain antibody (0.5 µg/ml) or a solution containing an anti-Alc α antibody (0.8 µg/ml) and an anti-A β antibody (1/1000 dilution). As the anti-A β antibody, 4G8 (Sigma Lab) was used.

Then, the sections were incubated in solutions which each contain antibodies at the respective combinations, and then further incubated in a solution containing an FITC-labeled anti-rabbit IgG goat antibody (Jacson immunoresearch lab., 1/30 dilution) and a Cy3-labeled anti-mouse IgG goat antibody (Jacson immunoresearch lab., 1/50 dilution). The autof-luorescence of lipofuscin granules was quenched by Sudan Black B staining before the immunoreaction.

The results when the anti-Alc α antibody and the anti-APP extracellular domain antibody were used as the primary antibodies are shown in FIG. 3-4 (only FITC was detected), FIG. 3-5 (only Cy3 was detected), and FIG. 3-6 (both FITC and Cy3 were detected). The results when the anti-Alc α antibody and the anti-A β antibody were used as the primary antibodies are shown in FIG. 4-1 (only FITC was detected), FIG. 4-2 (only Cy3 was detected), and FIG. 4-3 (both FITC and Cy3 were detected).

As shown in FIGS. 3-4, 3-5, and 3-6, Alc α and APP were detected at similar brain regions of Alzheimer's disease patients. This result agrees with that in Example 2. Additionally, as shown in FIGS. 4-1, 4-2, and 4-3, APP was detected in the vicinity of regions where senile plaques were formed by the accumulation of A β .

From the above-mentioned results, it is suggested that APP and Alca similarly act in the pathogenesis process of Alzheimer's disease.

Example 4

A DNA encoding Alcα, Alcβ, Alcγ, or APP695 (an isoform of human APP consisting of 695 amino acids) was inserted into a mammalian expression vector pcDNA3.1 (Invitrogen).

HEK293 cells were seeded in DMEM (D5796: Sigma) containing 10% fetal bovine serum in a 6-well culture plate (area of base: 10 cm²) and transfected with the expression vector prepared above by using a transfection reagent (LipofectAMINE 2000: Invitrogen). As a control, HEK293 cells were similarly transfected with an empty pcDNA3.1 vector.

One microliter of a DMSO solution containing 1 mM of a presenilin inhibitor L-685,458 (Calbiochem) was added to 1 ml of the culture medium. After the incubation for 24 hrs, a sample of the culture medium was taken. As a control, an equal quantity of DMSO instead of the L-685,458 solution was added to the culture medium and similarly incubated. Then, a sample of the culture medium was taken. The sample of the culture medium was added to 1 ml of HBST buffer (10 mM HEPES of pH 7.4, 150 mM sodium chloride, 0.5% Triton X-100, 5 µg/ml chymostatin, 5 µg/ml leupeptin, and µg/ml pepstatin) for extracting proteins of the cells. The solubilized cells were centrifuged (12000×g, 10 min) and supernatant was collected to recover the solubilized components. The solubilized components (7.5 µl) were added to 7.5 µl of a sample-buffer mixture (a mixture of 5 µl of 5×SDS sample

buffer and 2.5 µl of 8 M urea solution) and boiled for 5 min. This sample was subjected to SDS-PAGE of 8/15% 2-stage gel and then the proteins were transferred on a nitrocellulose membrane for conducting Western blotting. The SDS-PAGE was performed according to the general method of Laemmli. As the primary antibody, an anti-APP cytoplasmic domain antibody (G369, 1/2000 dilution), anti-Alcα antibody (UT83, 0.3 μg/ml), anti-Alcβ antibody (UT99, 0.5 μg/ml), and anti-Alcy antibody (UT105, 1/500 dilution) were used. The detection was performed by using an ECL kit (Pharmacia). The 10 UT99 and UT105 are antibodies recognizing the C-terminals of Alcβ and Alcγ, respectively. FIG. 6 and FIG. 7A to C show the results.

The C-terminal fragment obtained by a primary cleavage of APP is secondarily cleaved by presentlin, and the resulting 15 cleavage fragment is extracellularly secreted (FIG. 5). At this point, the secondary cleavage is inhibited by adding a presenilin inhibitor and the C-terminal fragment of APP is accumulated inside cells. As shown in FIG. 6, this fact is reflected to the result that a large amount of the C-terminal fragment 20 (CTF α) was detected in the cell lysate only when the presenilin inhibitor (L-685,458) was added.

In the cases of Alc α and Alc γ , similarly to the case of APP, C-terminal fragments (CTF1) were detected only when the presentilin inhibitor was added (FIGS. 7A and C). From these 25 results, it is thought that the C-terminal fragments of Alcα and Alcy are cleaved by presentlin as in APP. However, the C-terminal fragment of Alcβ was detected even when the presenilin inhibitor was not added (FIG. 7B). Therefore, it is not confirmed whether the C-terminal fragment of Alc\beta is 30 cleaved by presentilin from this experiment only.

Example 5

FLAG-Alcγ), Alcα, Alcβ, or Alcγ including a FLAG-tag sequence downstream of the N-terminal signal sequence thereof, were prepared. Each of the proteins was inserted into a mammalian expression vector pcDNA3.1 (Invitrogen).

HEK293 cells were seeded in DMEM (D5796: Sigma) 40 containing 10% fetal bovine serum in a 6-well culture plate (area of base: 10 cm²) and the cells were transfected with the expression vector prepared above by using a transfection reagent (LipofectAMINE 2000: Invitrogen). As a control, HEK293 cells were transfected with an empty pcDNA3.1 vector.

One microliter of a DMSO solution containing 1 mM presenilin inhibitor L-685,458 (Calbiochem) was added to 1 ml of the culture medium. After the incubation for 24 hrs, a sample of the culture medium was taken. As a control, an 50 equal quantity of DMSO instead of the L-685,458 solution was added to the culture medium and similarly incubated. Then, a sample of the culture medium was taken.

One hundred and fifty microliters of buffer B (7.7% SDS, 16.7 mM Tris-HCl of pH7.4, 0.3 mg/ml chymostatin, 0.3 55 mg/ml leupeptin, and 0.3 mg/ml pepstatin) was added to 1 ml of the culture medium and boiled for 5 min to denature the protein components. Then, 3.75 ml of buffer C (6.7% NP-40, 0.4 M NaCl, 26 mM EDTA, and 200 mM Tris-HCl of pH 7.4) and 1.75 ml of an enzyme inhibition solution (distilled water 60 containing 10 ng/ml leupeptin, 10 ng/ml pepstatin A, and 10 ng/ml chymostatin) were sequentially added. After the addition of 2 µl of anti-FLAG antibody (Sigma), the resulting mixture was mixed by inverting the tube in a low-temperature chamber (4° C.) for 8 hrs for an antigen-antibody reaction. 65 Then, 50 µl of rinse buffer (0.1% Triton X-100, 1 mM EDTA, 150 mM NaCl, and 10 mM Tris-HCl of pH 7.4) containing

14

25% protein G-sepharose/25% sepharose 4B (Pharmacia Biotech) was added, and the tube was rotated at 4° C. for 3 hrs. The resin components were precipitated by centrifugation (3000 rpm, 5 min, 4° C.) and recovered. The recovered resins were washed, in order to eliminate non-specific binding, with washing buffer I (0.1% Triton X-100, 1 M NaCl, and 20 mM Tris-HCl of pH 7.4), washing buffer II (0.05% SDS, 1% Triton X-100, 5 mM EDTA, 150 mM NaCl, and 50 mM Tris-HCl of pH 7.4), and the rinse buffer, sequentially. Then, 30 μl of a sample-buffer mixture (a mixture of 20 μl of $5 \times SDS$ sample buffer and 10 µl of 8 M urea solution) was added to the resins and mixed. The mixture was boiled for 5 min for solubilizing components which were attached to the resins. After the centrifugation, the supernatant components were subjected to SDS-PAGE using a 6% gel and then the proteins were transferred on a nitrocellulose membrane for conducting Western blotting. The SDS-PAGE was performed according to the general method of Lammli. As the primary antibody, an anti-FLAG antibody (M2, Sigma) was used. The detection was performed by using an ECL kit. FIG. 7D to F show the results.

As shown in these Figures, fragments which can be recognized by the anti-FLAG antibody were detected in all culture media of Alcα, Alcβ, and Alcγ. Since the FLAG tag sequence was bound to the N-terminal of mature Alc α , Alc β , and Alc γ , it is thought that the N-terminal fragments obtained by the primary cleavage of Alcα, Alcβ, and Alcγ are secreted extracellularly.

Example 6

DNAs encoding Alc α , Alc β , or Alc γ were each inserted into a mammalian expression vector pcDNA3.1 (Invitrogen). HEK293 cells were seeded in DMEM containing 10% fetal DNAs encoding proteins (FLAG-Alcα, FLAG-Alcβ, and 35 bovine serum in a 10-cm culture plate (area of base: 60 cm²) and transfected with the expression vector prepared above by using a transfection reagent (LipofectAMINE 2000: Invitrogen). As a control, HEK293 cells were transfected with an empty pcDNA3.1 vector.

After the incubation for 24 hrs, the culture medium was removed and the cells were washed with ice-cooled PBS. Then, 10 ml of PBS was added again. The cells were detached from the plate by pipetting and transferred into a 15 ml Falcon tube. The cells were collected by centrifugation (1500 rpm, 10 min, low-speed refrigerated centrifuge: Beckmann) as a pellet of the cells. One milliliter of buffer D (0.25 M sucrose, 10 mM triethanolamine-acetate of pH 7.8, 5 μg/ml chymostatin, 5 µg/ml leupeptin, and 5 µg/ml pepstatin) was added to the pellet of the cells, and the cells were broken by 12 passages through a 27 G needle. Then, the broken cells were centrifuged with a TOMY TMA-6 rotor at 3000 rpm (1000× g) for 10 min at 4° C. to remove unbroken cells and nuclei and to obtain a nucleus-removed cell homogenate. The nucleusremoved cell homogenate was further centrifuged with a Beckmann TLA-45 rotor at 45000 rpm (100000×g) for 60 min at 4° C. to obtain a supernatant (cytoplasm fragment) and a precipitate (membrane fragment). The membrane fragment was resuspended in 100 µl of the buffer D.

A sample of 20 µl of the resuspended membrane-fragment was incubated at 37° C. for 1 or 3 hrs. Separately, a sample of the resuspended membrane-fragment to which a presenilin inhibitor (L-685,458) was added at a final concentration of 1 μM was also prepared. Twenty microliters of a sample-buffer mixture (a mixture of 13.4 μ l of 5×SDS sample buffer and 6.6 μl of 8 M urea solution) was added to each sample for terminating the reaction. The sample was boiled for 5 min and was subjected to SDS-PAGE using 8/15% 2-stage gel. Then, the

proteins were transferred on a nitrocellulose membrane for conducting Western blotting. The SDS-PAGE was performed according to the general method of Lammli. As the primary antibody, an anti-Alcα antibody (UT83), anti-Alcβ antibody (UT99), and anti-Alcγ antibody (UT105) were used. The 5 detection was performed by using an ECL kit (Pharmacia) FIG. 8A to C shows the results.

As shown in these Figures, fragments (such as Alc α -ICD) containing the C-terminal of each Alc were detected by incubating the membrane fragments of Alc α , Alc β , and Alc γ . 10 However, such fragments were not detected in the samples to which the presentil in inhibitor was added. On the basis of the results above, it is thought that a fragment containing the C-terminal of Alc α and so on was cleaved by presentil.

Example 7

A DNA encoding Alc $\alpha\Delta E$ was prepared for efficiently detecting a cleavage product (A β -like fragment) obtained by a secondary cleavage of Alc α . As shown in FIG. 9, in 20 Alc $\alpha\Delta E$, a fragment between the signal peptide and the primary cleavage site (indicated by δ in the Figure) was removed and the FLAG-tag sequence was introduced into the C-terminal end of the signal peptide.

A DNA encoding Alc $\alpha\Delta E$ was inserted into a mammalian 25 expression vector pcDNA3.1 (Invitrogen). HEK293 cells were seeded in DMEM containing 10% fetal bovine serum in a 10-cm culture plate (area of base: 60 cm²) and transfected with the expression vector prepared above by using a transfection reagent (LipofectAMINE 2000: Invitrogen). As a 30 control, HEK293 cells were similarly transfected with an empty pcDNA3.1 vector. A DMSO solution containing 10 μM LLnL (Calbiochem), 1 μM DAPT (Calbiochem), or 1 μM L-685,458 (Calbiochem), which are presentlin inhibitors, was added to 1 ml of the culture medium at a final concentration of 1 µM. After the incubation for 24 hrs, a sample of the culture medium was taken. As a control, an equal quantity of DMSO instead of the solution of the presenilin inhibitors such as L-685,458 was added to the culture medium and similarly incubated. Then, a sample of the culture medium 40 was taken.

The recovered media were each subjected to immunoprecipitation using an anti-FLAG antibody (M2: Sigma) and Western blotting to detect a presentilin-induced N-terminal cleavage product. Specifically, 4 µl of the anti-FLAG anti- 45 body was added to each recovered culture medium and reacted at 4° C. for 1 hr. Then, 30 µl of rinse buffer (0.1%) Triton X-100, 1 mM EDTA, 150 mM NaCl, and 10 mM Tris-HCl of pH 7.4) containing 50% protein G-sepharose was added and further reacted at 4° C. for 1 hr. Then, the beads 50 were recovered and washed with 800 µl of each of the washing buffer I (the composition is the same as in Example 5), the washing buffer II (the composition is the same as in Example 5), and the rinse buffer (the composition is the same as in above) sequentially. Then, the beads were boiled in 30 µl of 55 2×tricine-sample buffer (900 mM Tris-HCl of pH 8.45, 24%) glycerol, 8% SDS, and 0.005% Coomassie brilliant blue) for 5 min to solubilize components which were attached on the beads. The solubilized components were separated by using a 15% Tris-Tricine gel (as per Schagger & von Jagow method) 60 and subjected to Western blotting using an anti-FLAG antibody (1/2000 dilution) and an anti-Alcα antibody (UT83). The presentilin-induced cleavage product (Aβ-like fragment) and Alc $\alpha\Delta E$ were detected by an ECL kit (Pharmacia).

At the same time, cells were subjected to immunoprecipi- 65 tation and Western blotting. Specifically, proteins were extracted from the cells in 4 ml of HBST buffer (the compo-

16

sition is the same as in Example 4). The solubilized cells were centrifuged (12000×g, 10 min) and the supernatant was collected to recover the solubilized components. Two microliters of the anti-FLAG antibody was added to 1 ml of the solubilized components and the mixture was reacted for 1 hr. Then, 30 μl of HBST buffer containing 50% protein G-sepharose was added and further reacted at 4° C. for 1 hr. Then, the beads were recovered and washed with 800 µl of the HBST buffer 3 times. Then, the beads were boiled in 45 µl of a sample-buffer mixture (a mixture of 30 µl of a 5×SDS sample buffer and 15 µl of 8 M urea solution) for 5 min to solubilize components which were attached on the beads. The solubilized components were separated by using a 15% Tris-Tricine gel (as per Lamili method) and subjected to Western blotting using an anti-FLAG antibody (1/2000 dilution) and an anti-Alcα antibody (UT83). FIG. 10 shows the results mentioned above.

As shown in FIG. 10, Alc $\alpha\Delta E$ which was transfected into the cells were detected in the cell lysates, but the presenilin-induced cleavage product (β -Alc α) was detected only in the culture media and was not detected in the cell lysates. From these results, it is thought that the presenilin-induced cleavage fragment has a property that the majority is secreted into the culture medium, as in A β .

Example 8

DNAs encoding Alca or APP695 were each inserted into a mammalian expression vector pcDNA3.1 (Invitrogen), and a DNA (provided from Dr. Doms) encoding human BACE 1 was inserted into a mammalian expression vector pcDNA3.1Zeo(+) (Invitrogen).

HEK293 cells were seeded in DMEM (D5796: Sigma) containing 10% fetal bovine serum in a 6-well culture plate (area of base: 10 cm²) and transfected with the expression vector prepared above by using a transfection reagent (LipofectAMINE 2000: Invitrogen). Combinations of the introduced DNAs are shown in FIG. 11.

Each of the cells was incubated for 24 hrs. Proteins of the cells were solubilized in HBST buffer (the composition is the same as in Example 4) and subjected to SDS-PAGE using 8/15% gel. The proteins on the gel were transferred on a nitrocellulose membrane for conducting Western blotting using an anti-APP antibody (APP/c, Sigma) and an anti-Alcα antibody (UT83 antibody) FIGS. 11A and B show the results of Western blotting using the anti-APP antibody and ant-Alcα antibody, respectively.

As shown in FIG. 11A, in the cells not expressing BACE1 (3rd lane from the left), CTF α , which is a cleavage product at the α -site, was mainly detected, but in the cells expressing BACE1 (4th lane from the left), CTF β , which is a cleavage product at the β -site, was also detected. Additionally, only two bands indicated by arrows correspond to APP695 are and another two bands detected in the vicinity thereof correspond to endogenous APPs (APP770 and APP751).

As shown in FIG. 11B, in the cells expressing Alcα but not expressing BACE1 (5th lane from the left), a fragment (CTF1) was mainly detected at a position of 30 kDa. Since the molecular weight of this fragment was approximately equal to that of AlcαΔE expressed in Example 7, it is predicted that the cleavage site is between Met-815 and Ala-816 or in the vicinity thereof and that the number of amino acids is about 156. In the cells expressing both Alcα and BACE1 (6th lane from the left), CTF1 and a fragment (CTFβ, the number of amino acid residues calculated from the molecular weight is about 280) with a molecular weight larger than that of CTF1 were detected. It is thought that this fragment is generated when Alcα is cleaved by BACE1. Namely, it is thought that

Alcα is cleaved by BACE1 as in APP. Additionally, with reference to FIG. 11, Alcα is detected as two bands. This is due to sugar chain modification.

Example 9

The cleavage site of γ -secretase in Alc α was identified as follows: A cDNA construct (FIG. 9) expressing Alc $\alpha\Delta E$ protein was prepared. As shown in FIG. 12, cells transfected with this cDNA construct produce and secrete β -Alc α having a 10 FLAG-tag sequence. The β -Alc α secreted by the cells was recovered by immunoprecipitation using an anti-FLAG anti-body, and the molecular weight of the immunoprecipitate was analyzed by using a MALDI-TOF/MS. On the basis of this molecular weight, the cleavage site of γ -secretase was identified. The details will now be described.

(1) Analysis of β-Alcα having a FLAG Sequence by Western Blotting

HEK293 cells were seeded in a 10-cm dish (Corning). When the cells became confluent, the cells were transfected 20 with an expression vector of Alc $\alpha\Delta E$ (pcDNA3-FLAG-hAlcαΔE) by using a transfection reagent (LipofectAMINE 2000: Invitrogen). The cells were incubated in a CO₂ incubator for 24 hrs. Hereat, 2 µl of a DMSO solution containing 1 mMγ-secretase inhibitor L-685,458 (Calbiochem) was added 25 to 1 ml of the culture medium. As a control, cells to which added only the DMSO solution were also prepared. Six milliliters of each culture medium was recovered and centrifuged (15000 rpm, 5 min, high-speed refrigerated microcentrifuge: TOMY). To the resulting supernatant, 1/1000 volume of an 30 enzyme inhibition solution (a DMSO solution containing 5 mg/ml leupeptin, 5 mg/ml pepstatin A, and 5 mg/ml chymostatin) was added to prepare a sample for immunoprecipitation. This sample was mixed with 6 µl of an anti-FLAG antibody solution (M2: Sigma) by inverting at 4° C. for 1 hr. 35 Then, to the mixture, 50 µl of rinse buffer (10 mM Tris-HCl of pH 7.4, 1 mM EDTA, 0.1% Triton X-100, and 150 mM NaCl) containing 25% protein G-sepharose was added, and an antigen-antibody reaction was conducted by mixing by inverting the mixture at 4° C. for 1 hr. After the reaction, the beads were 40 precipitated and recovered by centrifugation (3000 rpm, 5 min, 4° C., high-speed refrigerated microcentrifuge: TOMY SEIKO CO., LTD.), and washed with washing buffer 1 (1 M NaCl, 20 mM Tris-HCl of pH 7.4, and 0.1% Triton X-100), washing buffer 2 (150 mM NaCl, 5 mM EDTA, 50 mM 45 Tris-HCl of pH 7.4, 1% Triton X-100, and 0.05% SDS), and rinse buffer, sequentially. Then, the beads were stirred in 20 µl of a sample-buffer mixture (a mixture of 10 µl of 2×SDS) sample buffer and 10 µl of 8 M urea solution) and then boiled for 5 min to elute components which were adsorbed on the 50 beads. After the centrifugation, the supernatant components were separated by 20% acrylamide Tris-Tricine gel electrophoresis and then subjected to Western blotting using an anti-FLAG antibody (M2: Sigma). The reacting β-Alc having the FLAG-tag was detected by an ECL kit (Pharmacia).

Ice-cooled PBS (1.5 ml) was added to the cells isolated from the culture medium. Then, the cells were detached from the plate by pipetting and transferred into an eppendorf tube. The cells were collected by centrifugation (6000 rpm, 5 min, high-speed refrigerated microcentrifuge: TOMY SEIKO 60 CO., LTD.). The resulting cell pellet was mixed with 0.9 ml of HBST buffer (the composition is the same as in Example 4) by inverting at 4° C. for 1 hr to extract proteins of the cells. The solubilized cells were centrifuged (15000 rpm, 15 min, 4° C., high-speed refrigerated microcentrifuge: TOMY 65 SEIKO CO., LTD.) to recover the solubilized components as the supernatant. To 5 μl of the solubilized components, 10 μl

18

of 2×SDS sample buffer and 5 µl of 1% SDS were added. The resulting mixture was boiled for 5 min. The solubilized components were separated by 20% acrylamide Tris-Tricine gel electrophoresis and then transferred to a nitrocellulose membrane (S&S). After the reaction with an anti-FLAG antibody (M2: Sigma), the reaction product was detected by an ECL kit (Pharmacia) on the membrane.

FIG. 13 shows the results of the Western blotting mentioned above. In the immunoprecipitate sample of the culture medium, $\beta\text{-Alc}\alpha$ having the FLAG sequence was mainly detected as two bands at approximately 5 kDa (the lower diagram, the right lane). However, the $\beta\text{-Alc}\alpha$ was not detected in the immunoprecipitate when the $\gamma\text{-secretase}$ inhibitor L-685,458 was added to the cell culture solution (the lower diagram, the right lane). From this experiment, it was revealed that $\beta\text{-Alc}\alpha$ having the FLAG sequence can be recovered by using the anti-FLAG antibody and it was confirmed that the $\beta\text{-Alc}\alpha$ is a cleavage product of $\gamma\text{-secretase}$.

(2) Mass Spectrometry of β-Alcα having a FLAG Sequence by MALDI-TOF/MS

HEK293 cells were transfected with an expression vector of AlcαΔE (pcDNA3-FLAG-hAlcαΔE) by using a transfection reagent (LipofectAMINE 2000: Invitrogen) to establish a cell line stably expressing Alc $\alpha\Delta E$ having the FLAG sequence. The established cell line cells were seeded in a 225-cm² flask. When the cells became confluent, the culture solution was changed to 40 ml of DMEM medium (D5796: Sigma) containing 10% fetal bovine serum and the cells were incubated in a CO₂ incubator for 24 hrs. Hereat, 1 µl of a DMSO solution containing 1 mM y-secretase inhibitor L-685,458 (Calbiochem) was added to 1 ml of the culture medium. As a control, cells to which only the DMSO solution was added were also prepared. The each culture medium was recovered and centrifuged (10000×g, 5 min, high-speed refrigerated centrifuge: Beckmann). An enzyme inhibition solution (a DMSO solution containing 5 mg/ml leupeptin, 5 mg/ml pepstatin A, and 5 mg/ml chymostatin) at a volume ratio of 1/1000 and 10% sodium azide solution at a volume ratio of 1/1000 were added to the resulting supernatant to prepare a sample for immunoprecipitation. Twenty milliliters of this sample was mixed with 20 µl agarose beads (A2220: Sigma) conjugated to 50% (v/v) anti-FLAG antibody (M2) by inverting in a low-temperature chamber (4° C.) overnight (about 12 hrs) for an antigen-antibody reaction. After the reaction, the beads were precipitated and recovered by centrifugation (3000 rpm, 5 min, 4° C., low-speed refrigerated centrifuge: Beckmann).

The recovered beads were washed, in order to eliminate non-specific binding, with 800 µl of washing buffer 1 (0.1% N-octylglucoside, 140 mM NaCl, 10 mM Tris-HCl of pH 8.0, and 0.025% sodium azide) twice and washing buffer 2 (10 mM Tris-HCl of pH 8.0 and 0.025% sodium azide) twice, sequentially. Then, the beads were stirred with 10 µl of a matrix solution (trifluoroacetate (Wako Pure Chemical Industries, Ltd.)/acetonitrile (Sigma)/water (1:20:20) saturated with sinapinic acid (Applied Biosystem)) to elute components from the beads. In order to completely remove the beads, the eluted components were loaded onto a spin column (Amersham Bioscience) and centrifuged to separate the eluted components only. Two microliters of the eluted components were loaded onto a sample plate (Applied Biosystems) and dried, and then analyzed by using a MALDI-TOF/ MS (PerSpective Biosystems).

Signals of the cell-culture solution of the cells not expressing Alc $\alpha\Delta E$ were used as a background. Peptides having molecular weights of 3619.96, 5359.85, 5507.02, and 6233.83 were detected as β -Alc α having a FLAG sequence (FIG. 14).

Cleavage sites corresponding to these molecular weights were indicated by arrows in FIG. 15. An amino acid sequence predicted to be a transmembrane domain is shown by a solid line and a potential region to be included in the transmem- $\frac{10}{10}$ brane domain is shown by a dotted line. On the basis of the fact that cleavage sites determined from the molecular weights of 5359.85, 5507.02, and 6233.83 exist in the transmembrane domain or the potential region to be the transmembrane domain, the cleavage sites can be determined to be in a 15 cleavage domain of γ-secretase. On the other hand, since the cleavage site determined from the molecular weight of 3619.96 obviously exists in an extracellular domain, there is a high possibility that a cleavage product of β -Alc α is generated by the cleavage at the γ-site. Therefore, the secondary 20 cleavage sites of Alc α by γ -secretase are at least three. This agrees with that fact that APP has a plurality of γ-sites and the variety of $A\beta$ is produced and secreted (FIG. 16).

Example 10

FIG. **16** shows cleavage sites of APP (human APP695) and cleavage products obtained by the cleavage which have been already revealed (the numbers shown in the Figure are amino acid Nos. in the human APP695 isoform). Examples of the cleavage sites include the α -site and β -site which are primary cleavage sites, the γ -site which is a secondary cleavage site, and the ϵ -site which was identified recently (Gu, Y., Misonou, H., Sato, T., Dohmae, N., Takio, K., and Ihara, Y. J. Biol. Chem. 2002, 276, 35235-35238). Examples of the cleavage products include A β 40 and A β 42 which are main A β species and p3 peptide which is a cleavage product of the α -site.

Since Alc α has various similarities to APP, there is a high possibility that Alcα also has a plurality of primary cleavage 40 sites. Hence, the primary cleavage site was identified by determining an amino acid sequence of the N-terminal of a C-terminal fragment (CTF) obtained by the primary cleavage of Alca. However, since the CTF tends to subsequently receive a secondary cleavage, it is difficult to recover a sufficient amount of the protein for determining its N-terminal sequence from the cell extract. Therefore, a cell line of HEK293 cells stably expressing a dominant-negative protein so that a CTF obtained from Alcα does not receive a secondary cleavage was established by inducing a variant into an 50 active site of presentilin (PS) which is a catalytic subunit of γ-secretase. The cell line was further transfected with an expression vector of Alcα1-FLAG which is Alcα having a FLAG tag at the C-terminal (pcDNA3-hAlcα1-FLAG) by using a transfection reagent (LipofectAMINE 2000: Invitro- 55 gen) to establish a cell line stably expressing Alcα1-FLAG.

From the extract of this cell line, CTF α 1-FLAG obtained by a primary cleavage was immunoprecipitated. The precipitate was separated by discontinuous SDS electrophoresis with 8% (upper gel)-15% (lower gel) of acrylamide gels and 60 transferred on a PVDF membrane (Immunobilon-PSQ: Millipore). The CTF α 1-FLAG was detected by Coomassie brilliant blue staining. Two kinds of protein of approximately 30 kDa, which were detected by antibody-specific detection, were analyzed by a gas-phase protein sequencer to determine 65 three amino acid sequences derived from Alc α 1. The details will now be described.

HEK293 cells were transfected with an expression vector (pcDNA3-PS1D385A) of a PS1 (D385A) variant protein obtained by substituting alanine for aspartic acid at position 385 in presenilin 1 (PS1) by using a transfection reagent (LipofectAMINE 2000: Invitrogen); thus, a cell line stably expressing PS1 (D385A) was established. The cells of this cell line were further transfected with an AlcαFLAG expression vector (pcDNA3-hAlcα1-FLAG) by using a transfection reagent (LipofectAMINE 2000: Invitrogen).

The cells of this cell line (denoted as hAlca1 FLAG/ PS1D385A-293cell) were incubated in four 10-cm dishes until reaching a confluent state (about 1×10^8 cells/dish). The cells were washed with ice-cooled PBS. Then, 15 ml of an HBST solution (10 mM HEPES of pH 7.4, 150 mM NaCl, and 0.5% Triton X-100) containing an enzyme inhibition solution (a DMSO solution containing 5 μg/ml leupeptin, 5 μg/ml pepstatin A, and 5 μg/ml chymostatin) was added to the cells and the resulting mixture was stirred by inverting at 4° C. for 0.5 hrs to solubilize the cells. The solubilized cells were centrifuged (12000×g, 10 min, 4° C., high-speed microcentrifuge: TOMY SEIKO CO., LTD.); thus, soluble components were recovered as the supernatant. Fifteen milliliters of the solubilized components was mixed with 30 µl of agarose beads (A2220: Sigma) conjugated to 50% (v/v) anti-FLAG antibody (M2) by inverting in a low-temperature chamber (4° C.) overnight (about 12 hrs) for an antigen-antibody reaction. After the reaction, the beads were precipitated and recovered by centrifugation (3000 rpm, 5 min, 4° C., low-speed refrigerated centrifuge: Beckmann). Then, the beads were washed with 1 ml of HBST 3 times. After the addition of 2 mg/ml FLAG-peptide-containing HBST (30 µl), the immunoprecipitate was competitively eluted; which is a method for performing antigen elution under moderate conditions in order to avoid contamination of immunoglobulin light chains (30 kDa or less) because the molecular weight of CTF1 of Alcα is about 30 kDa. The eluate was centrifuged (12000×g, 10 min, 4° C., high-speed microcentrifuge: TOMY SEIKO CO., LTD.). Then, 5×SDS sample buffer was added to the supernatant at a volume ratio of 1/5 and acrylamide gel electrophoresis was performed according to the general method of Laemmili. The separated proteins were transferred on an Immobilon-PSQ membrane (Millipore) and detected by staining using Coomassie brilliant blue (CBB) stain (FIG. **17**).

Two kinds of protein (proteins indicated as CTF1s) were detected at approximately 30 kDa. The amino acid sequences of these proteins were determined by using a gas-phase protein sequencer 492HT (Applied BioSystem). The results revealed that the protein with a higher molecular weight includes two types of amino acid sequence. The primary cleavage sites deduced based on these sequences are between Met-815 and Ala-816 (this cleavage site is referred to as "ζ1") and between Gln-820 and Phe-821 (this cleavage site is referred to as " ζ 2") (FIG. 18). The ζ 1 agrees with the site determined in Example 8. The $\zeta 2$ is a newly found primary cleavage site. Additionally, it was revealed that the protein with a lower molecular weight of CTF1s includes one type of amino acid sequence. The primary cleavage site deduced based on this sequence is between Ala-838 and Asn-839 (this cleavage site is referred to as "ζ3") (311) (FIG. 18).

As shown above, Alca has 3 primary cleavage sites (ζ 1, ζ 2, and η 3) and 3 secondary cleavage sites (γ 1, γ 2, and γ 3). As a result, it is understood that, in human beings, at least 9 types of β -Alca are produced (Table 1).

PRIMARY CLEAVAGE SITE	SECONDARY CLEAVAGE SITE	THE NUMBER OF AMINO ACIDS	•
ζ1	γ1	27	SEQ ID NO: 4
ζ1	γ2	28	SEQ ID NO: 5
ζ1	γ3	36	SEQ ID NO: 6
	γ1	22	SEQ ID NO: 7
ζ2	γ2	23	SEQ ID NO: 8
ζ2	γ3	31	SEQ ID NO: 9
ζ3	γ1	4	SEQ ID NO: 10
ξ2 ξ2 ξ3 ξ3 ξ3	γ2	5	SEQ ID NO: 11
ζ3	γ3	13	SEQ ID NO: 12

The result that a plurality of types of β -Alc α are generated well agrees with the fact that a plurality of types of A β generated from APP which is synchronously metabolized.

Example 11

In Alzheimer's disease (AD), it is recognized not only an increase in the generation of $A\beta$ but also a change in the molecular species of $A\beta$. Furthermore, it is reported that the ratio of the amount of $A\beta$ 42, which is highly aggregative, to the total amount of generated $A\beta$ is increased in AD patients. The increase of the ratio of $A\beta$ 42 is thought to be highly involved in the onset of Alzheimer's disease. For example, it is known that the ratio of $A\beta$ 42 to $A\beta$ is prominently increased in patients of familial Alzheimer's disease (FAD) having a variant in the presentlin gene. Since Alc α has various similarities to APP, there is a possibility in Alc α that the molecular species of β -Alc α generated by a presentlin variant is changed as in APP. Consequently, in order to confirm this possibility, the following experiment was conducted.

Expression vectors (pcDNA3-PS1I143F, pcDNA3-PS1R278T, pcDNA3-PS1A434C, and pcDNA3-PS1L435F) expressing four types of PS1 variant found in AD patients, i.e., I143F (substituting Phe for Ile at position 143), R278T (substituting Thr for Arg at position 278), A434C (substituting Cys for Ala at position 434), and L435F (substituting Phe for Leu at position 435) were prepared. These vectors and an expression vector of C99/CTF of APP (pcDNA3-APPC99) were introduced to HEK293 cells by using a transfection reagent (LipofectAMINE 2000: Invitrogen) to establish a cell 45 line stably expressing both proteins. The cells of the cell line were seeded in a 10-cm dish (Corning). When the cells became confluent, pcDNA3-FLAG-hAlcαΔE was introduced into the cells by using a transfection reagent (LipofectAMINE 2000: Invitrogen) to transitorily express CTF1 of 50 Alcadein α .

Separately, expression vectors (pcDNA3-PS1 and pcDNA3-PS1D385A) expressing wild-type PS1 (wt) and inactive-type PS1 (D385A, Asp at the catalytic site of PS1 is substituted with Ala not to have γ -secretase activity) were 55 prepared and introduced into HEK293 cells by using a transfection reagent (LipofectAMINE 2000: Invitrogen) to establish cell lines stably expressing both types of PS1. The cells of each cell line were seeded in a 10-cm dish (Corning). When the cells became confluent, pcDNA3-APPC99 and pcDNA3- 60 FLAG-hAlc $\alpha\Delta$ E were introduced into the cells by using a transfection reagent (LipofectAMINE 2000: Invitrogen) to transitorily express CTF of APP and CTF1 of Alcadein α .

The cells transfected with genes were incubated in a CO₂ incubator for 24 hrs. The culture solution was recovered and 65 centrifuged (15000 rpm, 5 min, 4° C., high-speed refrigerated centrifuge: Beckmann). To 7.5 ml of the supernatant, 7.5 µl of

22

an enzyme inhibition solution (a DMSO solution containing 5 mg/ml leupeptin, 5 mg/ml pepstatin A, and 5 mg/ml chymostatin) was added to prepare a sample. After the addition of 6 μl of an anti-FLAG antibody solution (M2: Sigma, lot No. 103k6043) to the sample, the resulting mixture was mixed by inverting at 4° C. for 1 hr. Then, 50 µl of rinse buffer containing 25% protein G-sepharose was added and the mixture was mixed by inverting at 4° C. overnight for an antigen-antibody reaction. After the reaction, the beads were washed with washing buffer 1 (1 M NaCl, 20 mM Tris-HCl of pH 7.4, and 0.1% Triton X-100), washing buffer 2 (150 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl of pH 7.4, 1% Triton X-100, and 0.05% SDS), and rinse buffer (10 mM Tris-HCl of pH 7.4, 1 mM EDTA, 0.1% Triton X-100, and 150 mM NaCl), sequen-15 tially. Then, 20 μl of a sample-buffer mixture (a mixture of 10 µl of 2×SDS sample buffer and 10 μl of 8 M urea solution) was added to the beads and stirred. The beads were boiled for 5 min to elute components which were adsorbed to the beads.

After the centrifugation, the supernatant components were separated by 20% acrylamide Tris-Tricine gel electrophoresis and then subjected to Western blotting using an anti-FLAG antibody solution (M2: Sigma). The reacted β-Alcα having a FLAG tag was detected by using an ECL kit (Pharmacia) and quantitatively determined by using an NIH image software. At the same time, Aα40 and Aβ42 in the culture medium were quantitatively determined by sELISA according to the method of Tomita, et al. (J. Biol. Chem. 1988, 273, 6277-6284). FIG. 19 shows the results of the Western blotting and ratios of the amount of long β-Alcα to the total amount of generated β-Alcα (1.0) and ratios of the amount of AP42 to the total amount of generated Aβ (1.0). The N.D. in the Figure means the value was lower than the detection limit.

In the cells expressing the wild-type PS1, 2 types of β -Alc (indicated as short β -Alc and medium β -Alc in the Figure) were mainly detected. On the other hand, in the cells expressing PS1 having a FAD variant, the amount of β-Alc (indicated as long β-Alc) having a higher molecular weight was increased. The ratio of the long β -Alc to the total β -Alc α was increased in the cells expressing a PS1 variant; which is the same tendency as the increase in the ratio of A β 42 to the total A β . Namely, it was revealed that a qualitative change in β -Alc reflects a quantitative change in A β . A qualitative change in β -Alc (such as the increase in the ratio of long β -Alc) in cerebrospinal fluid or blood of patients reflects a qualitative change in A β . Therefore, the detection of β -Alc instead of the detection of A β 42, which is highly aggregative, can find patients at an early stage or pre-patients of whom qualitative change is difficult to detect.

Example 12

In order to use in the determination of a cleavage site at the C-terminal of β -Alc shown in FIG. 19 by using a MALDI-TOF/MS, a PS1 variant expressing a larger amount of a high-molecular-weight β -Alc was intensively searched by conducting the same experiment as in Example 11. As a result, as shown in FIG. 20, it was found that a large amount of high-molecular-weight β -Alc was secreted in the culture medium of the cells expressing L166P (Leu at position 166 is substituted with Pro) PS1 variant, compared with other PS1 variants. Consequently, the molecular weights of β -Alc produced and secreted by the wild-type PS1 and the L166P variant-type PS1 were determined by mass spectrometry according to the method in Example 9. FIG. 21 shows the results. In the cells expressing the L166P variant-type PS1, the amount of short β -Alc (indicated by a bold downward arrow) is decreased and

the amount of medium β -Alc (indicated by a bold upward arrow) is increased compared to those in the cells expressing the wild-type PS1. This is also obvious from the results of the Western blotting analysis shown in FIG. **20**. Furthermore, long β -Alc, which was not detected in the cells expressing the 5 wild-type PS1, was also detected.

23

FIG. 22 shows the cleavage sites of β -Alc which were revealed from the results shown in FIG. 21. The dotted line arrows indicate the cleavage sites in the cells expressing the wild-type PS1 and the solid line arrows indicate the cleavage sites in the cells expressing the L166P variant-type PS1. It was revealed that the cleavage sites of β -Alc shifted to the C-terminal side in the L166P variant-type PS1. This result well agrees with the fact that the cleavage site at the C-termi-

nal side of A β shifts to the C-terminal side in a variant-type PS1 of familial Alzheimer's disease. FIG. **23** schematically shows 3 cleavage sites (ζ 1, ζ 2, and ζ 3) at the N-terminal side and 3 cleavage sites (γ 1, γ 2, and γ 3) at the C-terminal side of β -Alc and β -Alc molecular species generated by the cleavage at the γ -site shifted to the C-terminal side by the variant-type PS1 (the cleavage site γ 1 was not detected in the experiment in Example 12).

The present invention contains subject matter disclosed in the specification and/or the drawings of Japanese Patent Application No. 2003-375363 on which the claim for a priority right is based, and the entire contents of the documents, patents, and patent applications cited as references are incorporated herein by reference.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 17
<210> SEQ ID NO 1
<211> LENGTH: 971
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 1
Met Leu Arg Arg Pro Ala Pro Ala Leu Ala Pro Ala Ala Arg Leu Leu
Leu Ala Gly Leu Leu Cys Gly Gly Gly Val Trp Ala Ala Arg Val Asn
Lys His Lys Pro Trp Leu Glu Pro Thr Tyr His Gly Ile Val Thr Glu
        35
                            40
Asn Asp Asn Thr Val Leu Leu Asp Pro Pro Leu Ile Ala Leu Asp Lys
    50
                        55
Asp Ala Pro Leu Arg Phe Ala Gly Glu Ile Cys Gly Phe Lys Ile His
Gly Gln Asn Val Pro Phe Asp Ala Val Val Asp Lys Ser Thr Gly
                85
Glu Gly Val Ile Arg Ser Lys Glu Lys Leu Asp Cys Glu Leu Gln Lys
            100
                                105
                                                    110
Asp Tyr Ser Phe Thr Ile Gln Ala Tyr Asp Cys Gly Lys Gly Pro Asp
        115
                            120
Gly Thr Asn Val Lys Lys Ser His Lys Ala Thr Val His Ile Gln Val
    130
                        135
                                            140
Asn Asp Val Asn Glu Tyr Ala Pro Val Phe Lys Glu Lys Ser Tyr Lys
145
                    150
                                        155
                                                            160
Ala Thr Val Ile Glu Gly Lys Gln Tyr Asp Ser Ile Leu Arg Val Glu
                165
                                    170
                                                        175
Ala Val Asp Ala Asp Cys Ser Pro Gln Phe Ser Gln Ile Cys Ser Tyr
            180
                                185
Glu Ile Ile Thr Pro Asp Val Pro Phe Thr Val Asp Lys Asp Gly Tyr
        195
                            200
                                                205
Ile Lys Asn Thr Glu Lys Leu Asn Tyr Gly Lys Glu His Gln Tyr Lys
    210
                        215
Leu Thr Val Thr Ala Tyr Asp Cys Gly Lys Lys Arg Ala Thr Glu Asp
225
                    230
                                        235
                                                            240
Val Leu Val Lys Ile Ser Ile Lys Pro Thr Cys Thr Pro Gly Trp Gln
```

250

255

245

-continued

												0011	СТП	aca	
Gly	Trp	Asn	Asn 260	Arg	Ile	Glu	Tyr	Glu 265	Pro	Gly	Thr	Gly	Ala 270	Leu	Ala
Val	Phe	Pro 275	Asn	Ile	His	Leu	Glu 280	Thr	Сув	Asp	Glu	Pro 285	Val	Ala	Ser
Val	Gln 290	Ala	Thr	Val	Glu	Leu 295	Glu	Thr	Ser	His	Ile 300	Gly	Lys	Gly	Сув
Asp 305	Arg	Asp	Thr	Tyr	Ser 310	Glu	Lys	Ser	Leu	His 315	Arg	Leu	Сув	Gly	Ala 320
Ala	Ala	Gly	Thr	Ala 325	Glu	Leu	Leu	Pro	Ser 330	Pro	Ser	Gly	Ser	Leu 335	Asn
Trp	Thr	Met	Gly 340	Leu	Pro	Thr	Asp	Asn 345	Gly	His	Asp	Ser	Asp 350	Gln	Val
Phe	Glu	Phe 355	Asn	Gly	Thr	Gln	Ala 360	Val	Arg	Ile	Pro	Asp 365	Gly	Val	Val
Ser	Val 370	Ser	Pro	Lys	Glu	Pro 375	Phe	Thr	Ile	Ser	Val 380	Trp	Met	Arg	His
Gly 385	Pro	Phe	Gly	Arg	Lys 390	Lys	Glu	Thr	Ile	Leu 395	Сув	Ser	Ser	Asp	Lys 400
Thr	Asp	Met	Asn	Arg 405	His	His	Tyr	Ser	Leu 410	Tyr	Val	His	Gly	Cys 415	Arg
Leu	Ile	Phe	Leu 420	Phe	Arg	Gln	Asp	Pro 425	Ser	Glu	Glu	Lys	Lуs 430	Tyr	Arg
Pro	Ala	Glu 435	Phe	His	Trp	Lys	Leu 440	Asn	Gln	Val	Сув	Asp 445	Glu	Glu	Trp
His	His 450	Tyr	Val	Leu	Asn	Val 455	Glu	Phe	Pro	Ser	Val 460	Thr	Leu	Tyr	Val
Asp 465	Gly	Thr	Ser	His	Glu 470	Pro	Phe	Ser	Val	Thr 475	Glu	Asp	Tyr	Pro	Leu 480
His	Pro	Ser	Lys	Ile 485	Glu	Thr	Gln	Leu	Val 490	Val	Gly	Ala	Cys	Trp 495	Gln
Glu	Phe	Ser	Gly 500	Val	Glu	Asn	Asp	Asn 505	Glu	Thr	Glu	Pro	Val 510	Thr	Val
Ala	Ser	Ala 515	Gly	Gly	Asp	Leu	His 520	Met	Thr	Gln	Phe	Phe 525	Arg	Gly	Asn
Leu	Ala 530	Gly	Leu	Thr	Leu	Arg 535	Ser	Gly	Lys	Leu	Ala 540	_	Lys	Lys	Val
Ile 545	Asp	Сув	Leu	Tyr	Thr 550	Сув	Lys	Glu	Gly	Leu 555	Asp	Leu	Gln	Val	Leu 560
Glu	Asp	Ser	Gly	Arg 565	Gly	Val	Gln	Ile	Gln 570	Ala	His	Pro	Ser	Gln 575	Leu
Val	Leu	Thr	Leu 580	Glu	Gly	Glu	Asp	Leu 585	Gly	Glu	Leu	Asp	Lys 590	Ala	Met
Gln	His	Ile 595	Ser	Tyr	Leu	Asn	Ser 600	Arg	Gln	Phe	Pro	Thr 605	Pro	Gly	Ile
Arg	Arg 610	Leu	Lys	Ile	Thr	Ser 615	Thr	Ile	Lys	Cys	Phe 620	Asn	Glu	Ala	Thr
Сув 625	Ile	Ser	Val	Pro	Pro 630	Val	Asp	Gly	Tyr	Val 635	Met	Val	Leu	Gln	Pro 640
Glu	Glu	Pro	Lys	Ile 645	Ser	Leu	Ser	Gly	Val 650	His	His	Phe	Ala	Arg 655	Ala
Ala	Ser	Glu	Phe 660	Glu	Ser	Ser	Glu	Gly 665	Val	Phe	Leu	Phe	Pro 670	Glu	Leu

-continued

Arg Ile Ile Ser Thr Ile Thr Arg Glu Val Glu Pro Glu Gly Asp Gly Ala Glu Asp Pro Thr Val Gln Glu Ser Leu Val Ser Glu Glu Ile Val His Asp Leu Asp Thr Cys Glu Val Thr Val Glu Gly Glu Glu Leu Asn His Glu Gln Glu Ser Leu Glu Val Asp Met Ala Arg Leu Gln Gln Lys Gly Ile Glu Val Ser Ser Ser Glu Leu Gly Met Thr Phe Thr Gly Val Asp Thr Met Ala Ser Tyr Glu Glu Val Leu His Leu Leu Arg Tyr Arg Asn Trp His Ala Arg Ser Leu Leu Asp Arg Lys Phe Lys Leu Ile Cys Ser Glu Leu Asn Gly Arg Tyr Ile Ser Asn Glu Phe Lys Val Glu Val Asn Val Ile His Thr Ala Asn Pro Met Glu His Ala Asn His Met Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe Ala Val Val Pro Ser Thr Ala Thr Val Val Ile Val Val Cys Val Ser Phe Leu Val Phe Met Ile Ile Leu Gly Val Phe Arg Ile Arg Ala Ala His Arg Arg Thr Met Arg Asp Gln Asp Thr Gly Lys Glu Asn Glu Met Asp Trp Asp Asp Ser Ala Leu Thr Ile Thr Val Asn Pro Met Glu Thr Tyr Glu Asp Gln His Gly Glu Glu Asp Asp Ile Thr Ser Ala Glu Ser Glu Ser Glu Glu Glu Glu Gly Glu Gln Gly Asp Pro Gln Asn Ala Thr Arg Gln Gln Gln Leu Glu Trp Asp Asp Ser Thr Leu Ser Tyr <210> SEQ ID NO 2 <211> LENGTH: 968 <212> TYPE: PRT <213> ORGANISM: human <400> SEQUENCE: 2 Met Val Leu Gly Cys Glu Leu Ser Gly Ser Thr Arg Val Val Gly Val Glu Ala Leu Leu Thr Gly Ala Ser Ser Pro Leu Pro Gly Val Gly Pro Ala Asn Lys His Lys Pro Trp Ile Glu Ala Glu Tyr Gln Gly Ile Val Met Glu Asn Asp Asn Thr Val Leu Leu Asn Pro Pro Leu Phe Ala Leu Asp Lys Asp Ala Pro Leu Arg Tyr Ala Gly Glu Ile Cys Gly Phe

-continued

												0011	C 111.	aca	
Arg	Leu	His	Gly	Ser 85	Gly	Val	Pro	Phe	Glu 90	Ala	Val	Ile	Leu	Asp 95	Lys
Ala	Thr	Gly	Glu 100	Gly	Leu	Ile	Arg	Ala 105	Lys	Glu	Pro	Val	Asp 110	Сув	Glu
Ala	Gln	Lys 115	Glu	His	Thr	Phe	Thr 120	Ile	Gln	Ala	Tyr	Asp 125	Сув	Gly	Glu
Gly	Pro 130	Asp	Gly	Ala	Asn	Thr 135	Lys	Lys	Ser	His	Lys 140	Ala	Thr	Val	His
Val 145	Arg	Val	Asn	Asp	Val 150	Asn	Glu	Phe	Ala	Pro 155	Val	Phe	Val	Glu	Arg 160
Leu	Tyr	Arg	Ala	Ala 165	Val	Thr	Glu	Gly	Lys 170	Leu	Tyr	Asp	Arg	Ile 175	Leu
Arg	Val	Glu	Ala 180	Ile	Asp	Gly	Asp	Суs 185	Ser	Pro	Gln	Tyr	Ser 190	Gln	Ile
Cys	Tyr	Tyr 195	Glu	Ile	Leu	Thr	Pro 200	Asn	Thr	Pro	Phe	Leu 205	Ile	Asp	Asn
Asp	Gly 210	Asn	Ile	Glu	Asn	Thr 215	Glu	Lys	Leu	Gln	Tyr 220	Ser	Gly	Glu	Arg
Leu 225	Tyr	Lys	Phe	Thr	Val 230	Thr	Ala	Tyr	Asp	Сув 235	Gly	Lys	Lys	Arg	Ala 240
Ala	Asp	Asp	Ala	Glu 245	Val	Glu	Ile	Gln	Val 250	Lys	Pro	Thr	Сув	Lys 255	Pro
Ser	Trp	Gln	Gly 260	Trp	Asn	Lys	Arg	Ile 265	Glu	Tyr	Ala	Pro	Gly 270	Ala	Gly
Ser	Leu	Ala 275	Leu	Phe	Pro	Gly	Ile 280	Arg	Leu	Glu	Thr	Сув 285	Asp	Glu	Pro
Leu	Trp 290	Asn	Ile	Gln	Ala	Thr 295	Ile	Glu	Leu	Gln	Thr 300	Ser	His	Val	Ala
305 Lys	Gly	Cys	Asp	Arg	Asp 310	Asn	Tyr	Ser	Glu	Arg 315	Ala	Leu	Arg	Lys	Leu 320
CAa	Gly	Ala	Ala	Thr 325	Gly	Glu	Val	Asp	Leu 330	Leu	Pro	Met	Pro	Gly 335	Pro
Asn	Ala	Asn	Trp 340	Thr	Ala	Gly	Leu	Ser 345	Val	His	Tyr	Ser	Gln 350	Asp	Ser
Ser	Leu	Ile 355	Tyr	Trp	Phe	Asn	Gly 360		Gln	Ala	Val	Gln 365	Val	Pro	Leu
Gly	Gly 370	Pro	Ser	Gly	Leu	Gly 375	Ser	Gly	Pro	Gln	Asp 380	Ser	Leu	Ser	Asp
His 385	Phe	Thr	Leu	Ser	Phe 390	Trp	Met	Lys	His	Gly 395	Val	Thr	Pro	Asn	Lys 400
Gly	Lys	Lys	Glu	Glu 405	Glu	Thr	Ile	Val	Cys 410	Asn	Thr	Val	Gln	Asn 415	Glu
Asp	Gly	Phe	Ser 420	His	Tyr	Ser	Leu	Thr 425	Val	His	Gly	Cys	Arg 430	Ile	Ala
Phe	Leu	Tyr 435	Trp	Pro	Leu	Leu	Glu 440	Ser	Ala	Arg	Pro	Val 445	Lys	Phe	Leu
Trp	Lys 450	Leu	Glu	Gln	Val	Cys 455	Asp	Asp	Glu	Trp	His 460	His	Tyr	Ala	Leu
Asn 465	Leu	Glu	Phe	Pro	Thr 470		Thr	Leu	Tyr	Thr 475		Gly	Ile	Ser	Phe 480
	Pro	Ala	Leu			Asp	Asn	Gly			His	Pro	Pro	_	
				485					490					495	

-continued

													C 1111	<u> </u>	
Glu	Pro	Ala	Leu 500	Met	Ile	Gly	Ala	Cys 505	Trp	Thr	Glu	Glu	Lys 510	Asn	Lys
Glu	Lys	Glu 515	Lys	Gly	Asp	Asn	Ser 520	Thr	Asp	Thr	Thr	Gln 525	Gly	Asp	Pro
Leu	Ser 530	Ile	His	His	Tyr	Phe 535	His	Gly	Tyr	Leu	Ala 540	Gly	Phe	Ser	Val
Arg 545	Ser	Gly	Arg	Leu	Glu 550	Ser	Arg	Glu	Val	Ile 555	Glu	Сув	Leu	Tyr	Ala 560
Cys	Arg	Glu	Gly	Leu 565	Asp	Tyr	Arg	Asp	Phe 570	Glu	Ser	Leu	Gly	Lys 575	Gly
Met	Lys	Val	His 580	Val	Asn	Pro	Ser	Gln 585	Ser	Leu	Leu	Thr	Leu 590	Glu	Gly
Asp	Asp	Val 595	Glu	Thr	Phe	Asn	His 600	Ala	Leu	Gln	His	Val 605	Ala	Tyr	Met
Asn	Thr 610	Leu	Arg	Phe	Ala	Thr 615	Pro	Gly	Val	Arg	Pro 620	Leu	Arg	Leu	Thr
Thr 625	Ala	Val	Lys	Сув	Phe 630	Ser	Glu	Glu	Ser	Сув 635	Val	Ser	Ile	Pro	Glu 640
Val	Glu	Gly	Tyr	Val 645	Val	Val	Leu	Gln	Pro 650	Asp	Ala	Pro	Gln	Ile 655	Leu
Leu	Ser	Gly	Thr 660	Ala	His	Phe	Ala	Arg 665	Pro	Ala	Val	Asp	Phe 670	Glu	Gly
Thr	Asn	Gly 675	Val	Pro	Leu	Phe	Pro 680	Asp	Leu	Gln	Ile	Thr 685	Cys	Ser	Ile
Ser	His 690	Gln	Val	Glu	Ala	Lys 695	Lys	Asp	Glu	Ser	Trp 700	Gln	Gly	Thr	Val
Thr 705	Asp	Thr	Arg	Met	Ser 710	Asp	Glu	Ile	Val	His 715	Asn	Leu	Asp	Gly	Cys 720
Glu	Ile	Ser	Leu	Val 725	Gly	Asp	Asp	Leu	Asp 730	Pro	Glu	Arg	Glu	Ser 735	Leu
Leu	Leu	Asp	Thr 740	Thr	Ser	Leu	Gln	Gln 745	Arg	Gly	Leu	Glu	Leu 750	Thr	Asn
Thr	Ser	Ala 755	Tyr	Leu	Thr	Ile	Ala 760	Gly	Val	Glu	Ser	Ile 765	Thr	Val	Tyr
Glu	Glu 770	Ile	Leu	Arg	Gln	Ala 775	Arg	Tyr	Arg	Leu	Arg 780	His	Gly	Ala	Ala
Leu 785	Tyr	Thr	Arg	Lys	Phe 790	Arg	Leu	Ser	Сув	Ser 795	Glu	Met	Asn	Gly	Arg 800
Tyr	Ser	Ser	Asn	Glu 805	Phe	Ile	Val	Glu	Val 810	Asn	Val	Leu	His	Ser 815	Met
Asn	Arg	Val	Ala 820	His	Pro	Ser	His	Val 825	Leu	Ser	Ser	Gln	Gln 830	Phe	Leu
His	Arg	Gly 835	His	Gln	Pro	Pro	Pro 840	Glu	Met	Ala	Gly	His 845	Ser	Leu	Ala
Ser	Ser 850	His	Arg	Asn	Ser	Met 855	Ile	Pro	Ser	Ala	Ala 860	Thr	Leu	Ile	Ile
Val 865	Val	Cys	Val	Gly	Phe 870	Leu	Val	Leu	Met	Val 875	Val	Leu	Gly	Leu	Val 880
Arg	Ile	His	Ser	Leu 885	His	Arg	Arg	Val	Ser 890	Gly	Ala	Gly	Gly	Pro 895	Pro
Gly	Ala	Ser	Ser 900	Asp	Pro	Lys	Asp	Pro 905	Asp	Leu	Phe	Trp	Asp 910	Asp	Ser

-continued

Ala Leu Thr Ile Ile Val Asn Pro Met Glu Ser Tyr Gln Asn Arg Gln Ser Cys Val Thr Gly Ala Val Gly Gly Gln Glu Asp Glu Asp Ser Ser Asp Ser Glu Val Ala Asp Ser Pro Ser Ser Asp Glu Arg Arg Ile Ile Glu Thr Pro Pro His Arg Tyr <210> SEQ ID NO 3 <211> LENGTH: 955 <212> TYPE: PRT <213 > ORGANISM: human <400> SEQUENCE: 3 Met Leu Pro Gly Arg Leu Cys Trp Val Pro Leu Leu Leu Ala Leu Gly Val Gly Ser Gly Ser Gly Gly Gly Gly Asp Ser Arg Gln Arg Arg Leu Leu Ala Ala Lys Val Asn Lys His Lys Pro Trp Ile Glu Thr Ser Tyr His Gly Val Ile Thr Glu Asn Asn Asp Thr Val Ile Leu Asp Pro Pro Leu Val Ala Leu Asp Lys Asp Ala Pro Val Pro Phe Ala Gly Glu Ile Cys Ala Phe Lys Ile His Gly Gln Glu Leu Pro Phe Glu Ala Val Val Leu Asn Lys Thr Ser Gly Glu Gly Arg Leu Arg Ala Lys Ser Pro Ile Asp Cys Glu Leu Gln Lys Glu Tyr Thr Phe Ile Ile Gln Ala Tyr Asp Cys Gly Ala Gly Pro His Glu Thr Ala Trp Lys Lys Ser His Lys Ala Val Val His Ile Gln Val Lys Asp Val Asn Glu Phe Ala Pro Thr Phe Lys Glu Pro Ala Tyr Lys Ala Val Val Thr Glu Gly Lys Ile Tyr Asp Ser Ile Leu Gln Val Glu Ala Ile Asp Glu Asp Cys Ser Pro Gln Tyr Ser Gln Ile Cys Asn Tyr Glu Ile Val Thr Thr Asp Val Pro Phe Ala Ile Asp Arg Asn Gly Asn Ile Arg Asn Thr Glu Lys Leu Ser Tyr Asp Lys Gln His Gln Tyr Glu Ile Leu Val Thr Ala Tyr Asp Cys Gly Gln Lys Pro Ala Ala Gln Asp Thr Leu Val Gln Val Asp Val Lys Pro Val Cys Lys Pro Gly Trp Gln Asp Trp Thr Lys Arg Ile Glu Tyr Gln Pro Gly Ser Gly Ser Met Pro Leu Phe Pro Ser Ile His Leu Glu Thr Cys Asp Gly Ala Val Ser Ser Leu Gln Ile Val Thr Glu Leu Gln Thr Asn Tyr Ile Gly Lys Gly Cys Asp Arg Glu Thr Tyr Ser Glu Lys Ser Leu

-continued

													C 111.	aca	
Gln	Lys	Leu	Cys	Gly 325	Ala	Ser	Ser	Gly	Ile 330	Ile	Asp	Leu	Leu	Pro 335	Ser
Pro	Ser	Ala	Ala 340	Thr	Asn	Trp	Thr	Ala 345	Gly	Leu	Leu	Val	Asp 350	Ser	Ser
Glu	Met	Ile 355	Phe	Lys	Phe	Asp	Gly 360	Arg	Gln	Gly	Ala	Lуз 365	Ile	Pro	Asp
Gly	Ile 370	Val	Pro	Lys	Asn	Leu 375	Thr	Asp	Gln	Phe	Thr 380	Ile	Thr	Met	Trp
Met 385	Lys	His	Gly	Pro	Ser 390	Pro	Gly	Val	Arg	Ala 395	Glu	Lys	Glu	Thr	Ile 400
Leu	Сув	Asn	Ser	Asp 405	Lys	Thr	Glu	Met	Asn 410	Arg	His	His	Tyr	Ala 415	Leu
Tyr	Val	His	Asn 420	Cys	Arg	Leu	Val	Phe 425	Leu	Leu	Arg	Lys	Asp 430	Phe	Asp
Gln	Ala	Asp 435	Thr	Phe	Arg	Pro	Ala 440	Glu	Phe	His	Trp	Lys 445	Leu	Asp	Gln
Ile	Cys 450	Asp	Lys	Glu	Trp	His 455	Tyr	Tyr	Val	Ile	Asn 460	Val	Glu	Phe	Pro
Val 465	Val	Thr	Leu	Tyr	Met 470	Asp	Gly	Ala	Thr	Tyr 475	Glu	Pro	Tyr	Leu	Val 480
Thr	Asn	Asp	Trp	Pro 485	Ile	His	Pro	Ser	His 490	Ile	Ala	Met	Gln	Leu 495	Thr
Val	Gly	Ala	Сув 500	Trp	Gln	Gly	Gly	Glu 505	Val	Thr	ГÀЗ	Pro	Gln 510	Phe	Ala
Gln	Phe	Phe 515	His	Gly	Ser	Leu	Ala 520	Ser	Leu	Thr	Ile	Arg 525	Pro	Gly	Lys
Met	Glu 530	Ser	Gln	Lys	Val	Ile 535	Ser	Cys	Leu	Gln	Ala 540	Cys	Lys	Glu	Gly
Leu 545	Asp	Ile	Asn	Ser	Leu 550	Glu	Ser	Leu	Gly	Gln 555	Gly	Ile	Lys	Tyr	His 560
Phe	Asn	Pro	Ser	Gln 565	Ser	Ile	Leu	Val	Met 570	Glu	Gly	Asp	Asp	Ile 575	Gly
Asn	Ile	Asn	Arg 580	Ala	Leu	Gln	Lys	Val 585	Ser	Tyr	Ile	Asn	Ser 590	Arg	Gln
Phe	Pro	Thr 595	Ala	Gly	Val		Arg 600		Lys	Val	Ser	Ser 605	Lys	Val	Gln
Cys	Phe 610	Gly	Glu	Asp	Val	Сув 615	Ile	Ser	Ile	Pro	Glu 620	Val	Asp	Ala	Tyr
Val 625	Met	Val	Leu	Gln	Ala 630	Ile	Glu	Pro	Arg	Ile 635	Thr	Leu	Arg	Gly	Thr 640
Asp	His	Phe	Trp	Arg 645	Pro	Ala	Ala	Gln	Phe 650	Glu	Ser	Ala	Arg	Gly 655	Val
Thr	Leu	Phe	Pro 660	Asp	Ile	Lys	Ile	Val 665	Ser	Thr	Phe	Ala	Lys 670	Thr	Glu
Ala	Pro	Gly 675	Asp	Val	Lys	Thr	Thr 680	Asp	Pro	Lys	Ser	Glu 685	Val	Leu	Glu
Glu	Met 690	Leu	His	Asn	Leu	Asp 695	Phe	Сув	Asp	Ile	Leu 700	Val	Ile	Gly	Gly
Asp 705	Leu	Asp	Pro	Arg	Gln 710	Glu	Сув	Leu	Glu	Leu 715	Asn	His	Ser	Glu	Leu 720
His	Gln	Arg	His	Leu 725	Asp	Ala	Thr	Asn	Ser 730	Thr	Ala	Gly	Tyr	Ser 735	Ile

-continued

Tyr Gly Val Gly Ser Met Ser Arg Tyr Glu Gln Val Leu His His Ile 740 745 750 Arg Tyr Arg Asn Trp Arg Pro Ala Ser Leu Glu Ala Arg Arg Phe Arg 755 760 765 Ile Lys Cys Ser Glu Leu Asn Gly Arg Tyr Thr Ser Asn Glu Phe Asn 770 775 Leu Glu Val Ser Ile Leu His Glu Asp Gln Val Ser Asp Lys Glu His 785 790 795 800 Val Asn His Leu Ile Val Gln Pro Pro Phe Leu Gln Ser Val His His 815 805 810 Pro Glu Ser Arg Ser Ser Ile Gln His Ser Ser Val Val Pro Ser Ile 820 825 830 Ala Thr Val Val Ile Ile Ile Ser Val Cys Met Leu Val Phe Val Val 835 845 840 Ala Met Gly Val Tyr Arg Val Arg Ile Ala His Gln His Phe Ile Gln 850 855 860 Glu Thr Glu Ala Ala Lys Glu Ser Glu Met Asp Trp Asp Asp Ser Ala 875 865 870 880 Leu Thr Ile Thr Val Asn Pro Met Glu Lys His Glu Gly Pro Gly His 895 885 890 Gly Glu Asp Glu Thr Glu Gly Glu Glu Glu Glu Glu Ala Glu Glu 900 905 910 Met Ser Ser Ser Gly Ser Asp Asp Ser Glu Glu Glu Glu Glu 915 920 Glu Gly Met Gly Arg Gly Arg His Gly Gln Asn Gly Ala Arg Gln Ala 930 935 940 Gln Leu Glu Trp Asp Asp Ser Thr Leu Pro Tyr 950 945 955 <210> SEQ ID NO 4 <211> LENGTH: 27 <212> TYPE: PRT <213> ORGANISM: human <400> SEQUENCE: 4 Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp 10 15 Leu Ser Gly His Asn Leu Ala Asn Pro His Pro <210> SEQ ID NO 5 <211> LENGTH: 28 <212> TYPE: PRT <213> ORGANISM: human <400> SEQUENCE: 5 Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp 10 15 Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe <210> SEQ ID NO 6 <211> LENGTH: 36 <212> TYPE: PRT

<213> ORGANISM: human

-continued

```
<400> SEQUENCE: 6
Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp
Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe Ala Val Val Pro
                                25
            20
                                                    30
Ser Thr Ala Thr
        35
<210> SEQ ID NO 7
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 7
Phe Val His Pro Glu His Arg Ser Phe Val Asp Leu Ser Gly His Asn
                                    10
Leu Ala Asn Pro His Pro
<210> SEQ ID NO 8
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 8
Phe Val His Pro Glu His Arg Ser Phe Val Asp Leu Ser Gly His Asn
                                    10
Leu Ala Asn Pro His Pro Phe
            20
<210> SEQ ID NO 9
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 9
Phe Val His Pro Glu His Arg Ser Phe Val Asp Leu Ser Gly His Asn
                                    10
Leu Ala Asn Pro His Pro Phe Ala Val Val Pro Ser Thr Ala Thr
                                                    30
            20
                                25
<210> SEQ ID NO 10
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 10
Asn Pro His Pro
<210> SEQ ID NO 11
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 11
Asn Pro His Pro Phe
```

-continued

```
<210> SEQ ID NO 12
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: human
<400> SEQUENCE: 12
Asn Pro His Pro Phe Ala Val Val Pro Ser Thr Ala Thr
                                    10
<210> SEQ ID NO 13
<211> LENGTH: 73
<212> TYPE: PRT
<213> ORGANISM: Human
<400> SEQUENCE: 13
Ile Ser Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr
Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser
                                25
                                                    30
Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala
        35
                            40
                                                45
Thr Val Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr
    50
                        55
                                            60
Ser Ile His His Gly Val Val Gln Asn
65
                    70
<210> SEQ ID NO 14
<211> LENGTH: 37
<212> TYPE: PRT
<213> ORGANISM: Human
<400> SEQUENCE: 14
Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp
                                    10
Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe Ala Val Val Pro
                                25
                                                    30
Ser Thr Ala Thr Val
        35
<210> SEQ ID NO 15
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Human
<400> SEQUENCE: 15
Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp
                                    10
                                                        15
Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe Ala Val Val Pro
                                25
Ser Thr Ala Thr Val Val
        35
<210> SEQ ID NO 16
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Human
```

-continued

```
<400> SEQUENCE: 16
Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp
                                    10
                                                        15
Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe Ala Val Val Pro
            20
                                25
                                                    30
Ser Thr Ala Thr Val Val Ile
        35
<210> SEQ ID NO 17
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Human
<400> SEQUENCE: 17
Ala Ala Gln Pro Gln Phe Val His Pro Glu His Arg Ser Phe Val Asp
Leu Ser Gly His Asn Leu Ala Asn Pro His Pro Phe Ala Val Val Pro
Ser Thr Ala Thr Val Val Ile Val
        35
                            40
```

The invention claimed is:

- 1. An isolated peptide consisting of the amino acid sequence selected from the group consisting of SEQ ID NOS: ³⁰ 4 to 12 and 14 to 17.
- 2. A method for diagnosing Alzheimer's disease, comprising:

obtaining a sample of brain tissue taken from a subject,

determining co-localization of the peptide according to claim 1 with amyloid precursor protein (APP) present in said sample,

wherein Alzheimer's disease is indicated when the colocalization is detected as compared to the absence of said co-localization in a control non-Alzheimer's disease sample.

* * * * *