US007805735B2
a2 United States Patent (10) Patent No.: US 7,805,735 B2
Shenfield et al. 45) Date of Patent: Sep. 28, 2010
(54) SYSTEM AND METHOD OF REPRESENTING 7,409,591 B2* 8/2008 Sakaietal. 714/25
DATA ENTITIES OF STANDARD DEVICE 2004/0117435 Al* 6/2004 Rossmanith et al. 709/202
APPLICATIONS AS BUILT-IN COMPONENTS
(75) Inventors: Michael Shenfield, Richmond Hill
(CA); Richard Qing, Ontario (CA); Ken FOREIGN PATENT DOCUMENTS
Wallis, Oakville (CA); Viera Bibr,
Kilbride (CA); Cameron Bateman, San WO WO 98/30962 7/1998
Francisco, CA (US); Kamen Vitanov,
Maississauga (CA)
(73) Assignee: Research In Motion Limited, Waterloo, (Continued)
Ontario (CA
(CA) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this | | o
patent is extended or adjusted under 35 John D. Poole, Model-Driven Architecture: Vision, Standards And
U.S.C. 154(b) by 1240 days Emerging Technologies, Apr. 2001.*
(21) Appl. No.: 11/350,098 (Continued)
Primary Examiner—ILechi Truon
. V g
(22) Filed: kFeb. 9, 2006 (74) Attorney, Agent, or Firm—Mark Sprigings; Gowling
Lafleur Hend LLP
(65) Prior Publication Data ATEHE HEIEERON
US 2006/0251047 A1 Nov. 9, 2006 (57) ABSTRACT
Related U.S. Application Data
(60) Provisional application No. 60/672,077, filed on Apr. A system and methoFl for develt‘:)pmg a standard data compo-
1R 2005 nent for coupling with a plurality of components of a com-
" ' ponent-based application to access a stored data entity of a
(51) Int. CL non-cqmp(?nent-ba:%ed natiﬁfe application, the :Elpp]iCElﬁOIlS for
GOGF 3/00 (2006.01) executing 1n a runtime environment of a device. The system
GO6F 15/16 (2006.01) and method comprises an application module configured for
GOGF 9/44 (2006'()?) storing a model of the component-based application 1includ-
o, _ ing features of data and message component definitions
(2? ;‘J'-SI-dCli-' Cl """ ﬁ """ S 7191/1328’ 7097202 3771197/;12089 expressed in a structured definition language. Also included is
(58) Field of Classification Search ... 7 09/202 17710 6 a native module configured for storing properties of the data
Q Leation file f | b ’ entity of the native application and a standard module for
ee application lile for complete search history. generating the standard data component definition based on
(56) References Cited the features of the component-based application and the prop-

U.S. PATENT DOCUMENTS
5/2004 TTrinh et al.

erties of the data entity of the native application. The standard
data component definition 1s expressed in the structured defi-
nition language.

6,735,773 Bl
7,013,335 B2 *
7,406,520 B2 *

3/2006 Barnhouseetal. 709/223

7/2008 Schneider et al. 709/225 17 Claims, 9 Drawing Sheets

108
\ Integrated Davsiopment
Application Runtime - \.-*E_'f‘f'."f‘.’."."ff‘.'.'f’l‘.’?.“.'i_____________I
Environment RE i I :
/~ 105 ! l 400:
| User-defined Data i
Component-based [~) Component Definition E
Application i o !
. s s
| User-defined 406
'L | Component Definitionsg -/ E
116 E - of Other TYDEE "
706 4
Y ¥ v 7] e , AT
[] l
| : 401!
Provisioned Standard [5 Standard Data / |
Data Component = ; Component Definition |
F 0 <] Lbe—) N__)
v ~401 \ 706
NADESs 700 and/or 1210
Device Specific APIs 702 B

US 7,805,735 B2
Page 2

FOREIGN PATENT DOCUMENTS

WO WO 02/057875 7/2002

WO WO 2004/059939 7/2004

WO WO 2004/079973 9/2004
OTHER PUBLICATIONS

Rosenblum, “The Reincarnation of Virtual Machines”, Aug. 31,
2004, Virtual Machines, vol. 2, No. 5.

PCT International Search Report and Written Opinion for PCT Inter-
national Application No. PCT/CA2006/000186, May 30, 2006, 12
pages, International Searching Authority.

Mendel Rosenblum, “The Reincarnation of Virtual Machines™, Aug.
31, 2004, Virtual Machines, vol. 2, No. 5.

International Preliminary Search Report on Patentability for Interna-
tional Application No. PCT/CA2006/000186. Dated Nov. 1, 2007.
International Search Report for International Application No. PCT/
CA2006/000186. Dated May 2, 2008.

Extended European Search Report. Dated May 2, 2008.

* cited by examiner

U.S. Patent Sep. 28, 2010 Sheet 1 of 9 US 7,805,735 B2

100 " 106
" @ /

1 Wireless Device 108

Wireless Device

Web Servi
AG Provisioning S0 SETVIEES

Serve

106

110

Relay Syste

i i)

Wireless Network

Discovery

Server — g 106

112

Application

System Repositoryl 14

Application Registry Data Sources

Design
Development Tool

FIG 1

U.S. Patent Sep. 28, 2010 Sheet 2 of 9 US 7,805,735 B2

to
network
10

200 _ 202 user
transcelver Interface
222
218
204 N\ dev:c: Znﬁ'astructure
t, 212
220
206
Navigator Editor section

230 232

Viewer section
236

201

U.S. Patent Sep. 28, 2010 Sheet 3 of 9 US 7,805,735 B2

To wireless
network
102

120(Network 1202 User
Connection Interface
Interface
1222
1218 1208 1210
..

oa — .

s 1212

device infrastructure

1220

RE

299

100
Figure 3

U.S. Patent Sep. 28, 2010 Sheet 4 of 9 US 7,805,735 B2

/105

Data
400 I
406 Workilow

404

Message 40 Presentation

105

U.S. Patent Sep. 28, 2010 Sheet 5 of 9 US 7,805,735 B2

1204 Device Infrastructure

304

application container framework services

communication 206
service
SCreen service 308
component |
application .
| persistence 310
service
access service 312
pTOViSioning 3 1 4
service
utility service 316

Figure 5

U.S. Patent Sep. 28, 2010 Sheet 6 of 9 US 7,805,735 B2

606

/116
60

IARN

UI Layer

M

Model Layer

Design Time Run Time
model 608 model 610

Y A
standard modul¢

Service Layer

model application
validator 620 senerator 622

security
service 632

Data sources 106 discovery 634

o Repository 114/ Registry 112

U.S. Patent Sep. 28, 2010 Sheet 7 of 9 US 7,805,735 B2

105

NDA

NDA 704

704

NADE 700 NADE 700

Device Data Repository 1210

U.S. Patent Sep. 28, 2010 Sheet 8 of 9 US 7,805,735 B2

105
Integrated Development
Environment Module
Application Runtime ————— ' odu
Environment RE :
105 I 400,
l User-defined Data
Component-based Component Definitions
Application I
-
N .

Provisioned Standard
Data Component

.l Standard Data
Component Definition

I O O O O O o D e i T O S O B R B s Sy A W D S B O O B ay A s sam

401 706
NADEs 700 and/or 1210
Device Specific APls 702
100

U.S. Patent Sep. 28, 2010 Sheet 9 of 9 US 7,805,735 B2

Access application model

0 obtain details of component
Interaction 901

900
/

Access data entity properties
To obtain details of
data format 902

Generate standard data
component 903

Include component definition

To couple component to
Component application 904

US 7,805,735 B2

1

SYSTEM AND METHOD OF REPRESENTING
DATA ENTITIES OF STANDARD DEVICE
APPLICATIONS AS BUILT-IN COMPONENTS

This application claims the benefit of U.S. provisional
60/672,077, filed Apr. 18, 2003, the entire disclosure of which
1s herein incorporated by reference.

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by any one of the patent document or patent disclosure, as
it appears 1n the Patent and Trademark Office patent file or
records, but otherwise reserves all copyrights whatsoever.

This application relates generally to communications
between a client application and a data source coupled over a
network.

BACKGROUND

There are continually increasing numbers of terminals and
mobile devices 1n use today, such as smart phones, PDAs with
wireless communication capabilities, personal computers,
self-service kiosks and two-way pagers/communication
devices. Software applications which run on these devices
help to increase their utility. For example, a smart phone may
include an application which retrieves the weather for arange
of cities, or a PDA which may include an application that
allows a user to shop for groceries. These software applica-
tions take advantage of the connectivity to a network 1n order
to provide timely and useful services to users. However, due
to the restricted resources of some devices, and the complex-
ity of delivering large amounts of data to the devices, devel-
oping and maintaining soitware applications tailored for a
variety of devices remains a difficult and time-consuming
task.

Devices from different manufacturers expose native appli-
cation data entities (NADEs) by providing their native appli-
cation programming interfaces (APIs), which are usually not
compliant with one other. Following the traditional way of
developing a native application, a third party application ven-
dor tailors or re-develops native applications on a per-device
manner 1n order to use specific vendors” proprietary function
calls (native APIs) to access NADEs resident 1in onboard
memory of the device. Furthermore, for a specific device, the
same piece of code for each of the respective native APIs has
to be rewritten or otherwise tailored for each of 1ts device
specific native applications 1n order to access the device’s
respective NADEs. This revision (1.e. versioning) of native
APIs could be avoided by somehow sharing the code of the
native APIs among these native applications.

Systems and methods disclosed herein provide a develop-
ment tool to obviate or mitigate at least some of the above-
presented disadvantages.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features will become more apparent 1n the
tollowing detailed description 1n which reference 1s made to
the appended drawings wherein:

FIG. 1 1s a block diagram of a communication network
system;

FIG. 2 1s a block diagram of a tool for developing and
generating the applications of FIG. 1 including standard data
components;

FIG. 3 1s a block diagram of a device of FIG. 1;

FIG. 4 shows an example configuration of the application
of FIG. 1;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 51s example embodiment of a runtime environment of
FIG. 1;

FIG. 6 15 a block diagram of the tool architecture of FI1G. 2;

FI1G. 7 1s a further embodiment of the runtime environment
of FIG. 5;

FIG. 8 shows an example representation of cooperation
between the runtime environment and the tool of FIG. 1; and

FIG. 9 15 a flowchart of the design process of the standard
data components of FIG. 8.

DESCRIPTION

Devices from different manufacturers expose native appli-
cation data entities (NADEs) by providing their native appli-
cation programming interfaces (APIs), which are usually not
compliant with one other. Furthermore, for a specific device,
the same piece of code for each of the respective native APIs
has to be rewritten or otherwise tailored for each of 1ts device
specific native applications 1n order to access the device’s
respective NADEs. Contrary to present implementations
there 1s provided a system and method for developing a stan-
dard data component for coupling with a plurality of compo-
nents of a component-based application to access a stored
data entity of a non-component-based native application, the
applications for executing 1n a runtime environment of a
device. The system and method comprises an application
module configured for storing a model of the component-
based application including features of data and message
component definitions expressed 1n a structured definition
language. Also included 1s a native module configured for
storing properties of the data entity of the native application
and a standard module for generating the standard data com-
ponent definition based on the features of the component-
based application and the properties of the data entity of the
native application. The standard data component definition 1s
expressed in the structured definition language.

Accordingly there 1s provided a system for developing a
standard data component for coupling with a plurality of
components of a component-based application to access a
stored data entity of a non-component-based native applica-
tion, the applications having the plurality of components
including metadata descriptors expressed 1n a structured defi-
nition language for defining execution of the application 1n a
runtime environment of a device, the system comprising: an
application module configured for storing a model of the
component-based application including features of data and
message metadata descriptors expressed 1n the structured
definition language; a native module configured for storing
properties of the data entity of the native application; and a
standard module for generating the standard data component
definition as additional metadata descriptors based on the
teatures of the component-based application and the proper-
ties of the data entity of the native application, the additional
metadata descriptors of the standard data component defini-
tion expressed in the structured definition language.

Also provided 1s a method for developing a standard data
component for coupling with a plurality of components of a
component-based application to access a stored data entity of
a non-component-based native application, the applications
having the plurality of components including metadata
descriptors expressed 1n a structured definition language for
defining execution of the application in a runtime environ-
ment of a device, the method comprising the steps of: access-
ing a model of the component-based application including
teatures of data and message component metadata descriptors
expressed 1n the structured definition language; accessing
properties of the data entity of the native application; and

US 7,805,735 B2

3

generating the standard data component definition as addi-
tional metadata descriptors based on the features of the com-
ponent-based application and the properties of the data entity
of the native application, the additional metadata descriptors
of the standard data component definition expressed 1n the
structured definition language.

Also provided 1s a computer program product for develop-
ing a standard data component for coupling with a plurality of
components of a component-based application to access a
stored data entity of a non-component-based native applica-
tion, the applications having the plurality of components
including metadata descriptors expressed 1n a structured defi-
nition language for defining execution of the application in a
runtime environment of a device, the computer program prod-
uct comprising: a computer readable medium; an application
module stored on the computer readable medium and config-
ured for storing a model of the component-based application
including features of data and message metadata descriptors
expressed 1n the structured definition language; a native mod-
ule stored on the computer readable medium and configured
for storing properties of the data entity of the native applica-
tion; and a standard module stored on the computer readable
medium for generating the standard data component defini-
tion as additional metadata descriptors based on the features
of the component-based application and the properties of the
data entity of the native application, the additional metadata
descriptors of the standard data component definition
expressed in the structured definition language.

Network System 10

Referring to FIG. 1, a network system 10 comprises mobile
communication devices 100 for interacting with one or more
backend data sources 106 (e.g. a schema-based service such
as web service or database that provides enterprise services
used by an application 105) via a wireless network 102
coupled to an application gateway AG. The devices 100 are
devices such as but not limited to mobile telephones, PDAs,
two-way pagers, dual-mode communication devices. It 1s
recognised that the application gateway AG and data sources
106 can be linked via extranets (e.g. the Internet) and/or
intranets as 1s known in the art. The application gateway AG
handles request/response messages initiated by the applica-
tion 105 as well as subscription notifications pushed to the
device 100 from the data sources 106. The Application Gate-
way AG functions as a Data Mapping Server for mediating
messaging between a client runtime RE on the device 100
(executing the application(s) 105) and a backend server of the
data sources 106. The gateway AG can provide for asynchro-
nous messaging for the applications 105 and can integrate and
communicate with legacy back-end data sources 106. The
devices 100 transmit and receive the wireless applications
105, as further described below, when in communication with
the data sources 106, as well as transmit/receive messaging,
associated with operation of the applications 105. The
devices 100 operate as web clients of the data sources 106
through execution of the applications 105 when provisioned
on respective runtime environments RE of the devices 100.

For satistying the appropriate messaging associated with
the applications 105, the application gateway AG communi-
cates with the data sources 106 through various protocols
(such as but not limited to HTTP, SQL, and component API)
for exposing relevant business logic (methods) to the appli-
cations 105 once provisioned on the devices 100. The appli-
cations 1035 can use the business logic of the data sources 106
similarly to calling a method on an object (or a function). It 1s
recognized that the applications 105 can be downloaded/
uploaded in relation to data sources 106 via the network 102

5

10

15

20

25

30

35

40

45

50

55

60

65

4

and application gateway AG directly to the devices 100. For
example, the application gateway AG 1s coupled to a provi-
sioning server 108 and a discovery server 110 for providing a
mechanism for optimized over-the-air provisioning of the
applications 105, including capabilities for application 105
discovery from the device 100 as listed in a Universal
Description, Discovery and Integration (UDDI), for example,
registry 112. The Registry 112 1s a directory service where
businesses can register and search for Web services, and can
be part of the Discovery Service implemented by the server
110. The registry 112 1s used for publishing the applications
105. The application 105 information 1n the registry 112 can
contain such as but not limited to a Deployment Descriptor
DD (contains information such as application 105 name,
version, and description) as well as the location of this appli-
cation 105 1n an application repository 114. The registry can
provide a directory for storing information about web ser-
vices (as provided by the data sources 106) including a direc-
tory of web service interfaces described by WSDL, for
example. Further, UDDI as a registry 112 1s based on Internet
standards such as but not limited to XML, HTTP, and DNS

protocols.

Referring again to FIG. 1, for initialization of the runtime
environment RE, the RE can receive the gateway AG URL
and the gateway AG public key 1n a network data server 115
(e.g. Mobile Data Service) service book. The runtime envi-
ronment RE uses this information to connect to the gateway
AG for mitial handshaking. Device 100 provisioning 1s
implemented by a web client system 118, depending on the
domain, which pushes the network data server 115 service
book to the device 100. It 1s recognised there could be more
than one gateway AG 1n the network 10, as desired. Once
initialized, access to the applications 105 by the devices 100,
as downloaded/uploaded, can be communicated via the gate-
way AG directly from the application repository 114, and/or
in association with data source 106 direct access (not shown)
to the repository 114.

Communication Device 100

Reterring to FI1G. 3, the devices 100 are devices such as but
not limited to mobile telephones, PDAs, two-way pagers or
dual-mode commumnication devices. The devices 100 include
a network connection interface 1200, such as a wireless trans-
ceiver or a wired network interface card or a modem, coupled
via connection 1218 to a device infrastructure 1204. The
connection mterface 1200 i1s connectable during operation of
the devices 100 to the network, such as to the wireless net-
work 102 by wireless links (e.g., RFE, IR, etc.), which enables
the devices 100 to communicate with each other and with
external systems (such as the back end data sources 106) via
the network 102 and to coordinate the requests/response mes-
sages between the client application programs 1035 and the
data sources 106 (see FIG. 1). The network 102 supports the
transmission of data in the requests/response messages
between devices 100 and external systems, which are con-
nected to the network 102. A wireless data transmission pro-

tocol can be used by the wireless network 102, such as but not
limited to DataTAC, GPRS or CDMA.

Referring again to FI1G. 3, the devices 100 also have a user
interface 1202, coupled to the device infrastructure 1204 by
connection 1222, to interact with a user (not shown). The user
interface 1202 includes one or more user mput devices such
as but not limited to a QWERTY keyboard, a keypad, a
track-wheel, a stylus, a mouse, a microphone and the user
output device such as an LCD screen display and/or a speaker.
If the screen 1s touch sensitive, then the display can also be
used as the user input device as controlled by the device

US 7,805,735 B2

S

infrastructure 1204. The user interface 1202 1s employed by
the user of the device 100 to coordinate the requests/response

message messages over the system 10 (see FIG. 1) as

employed by client applications 105 of a runtime environ-
ment RE, further described below.

Referring again to FIG. 3, operation of the device 100 1s
enabled by the device mirastructure 1204. The device 1nira-
structure 1204 includes the computer processor 1208 and the
associated memory module 1210. The computer processor
1208 manipulates the operation of the network interface
1200, the user interface 1202 and the runtime environment
RE of the communication device 100 by executing related
instructions, which are provided by an operating system and
client applications 103 located in the memory module 1210.
Further, 1t 1s recognized that the device infrastructure 1204
can include a computer readable storage medium 1212
coupled to the processor 1208 for providing instructions to
the processor and/or to load/update client applications 105 in
the memory module 1210. The computer readable medium
1212 can include hardware and/or software such as, by way of
example only, magnetic disks, magnetic tape, optically read-
able medium such as CD/DVD ROMS, and memory cards. In
cach case, the computer readable medium 1212 may take the
form of a small disk, floppy diskette, cassette, hard disk drive,
solid state memory card, or RAM provided 1in the memory
module 1210. It should be noted that the above listed example
computer readable mediums 1212 can be used either alone or
in combination.

Runtime Environment RE of Device 100

Referring again to FIG. 3, the Runtime Environment RE of
the device 100 1s coupled to the device infrastructure 1204 by
the connection 1220, and 1s preferably capable of generating,
hostmg and executing the client applications 105 (which are
in the form of component applications—see below) from
meta-data definitions. Therefore, Runtime Environment RE
provides the native client runtime environment for the client
applications 105 and is an interface to the device 100 func-
tionality of the processor 1208 and associated operating sys-
tem of the device infrastructure 1204. The Runtime Environ-
ment RE provides an application container 299, for example,
for execution of the applications 105. The application con-
tainer 299 can be referred to as a smart host container for the
client application 105, and can be responsible for analyzing
message meta-data (of the messages) and for updating the
representation of the meta-data of the data components 400

and standard data components 401 instantiated 1n the memory
module 1210.

Further, specific functions of the client runtime environ-
ment RE can include such as but not limited to support for
language, coordinating memory allocation, networking,
management of data during I/O operations, coordinating
graphics on an output device of the devices 100 and providing
access to core object oriented classes and supporting files/
libraries.

The terminal runtime environment of the devices 100 pret-
erably supports the following basic tunctions for the resident
executable versions of the client applications 105 (see FIG.
3), such as but not limited to:

provide a communications capability to send messages to
the Web Services 106 or messages to any other generic
schema defined services connected via the network 102 to the

devices 100;

provide data mput capabilities by the user on the input
device 1202 of the devices 100 to supply data parts for Web
Services’ outgoing messages (messages to the service);

10

15

20

25

30

35

40

45

50

55

60

65

6

provide data presentation or output capabilities for Web
Services’ response messages (1Incoming messages) or uncor-
related notifications of the Web Service 106 on the output
device 1202;

provide data storage services to maintain local client data
in the memory module 1210 (see F1G. 2) of the device 100, for
example for the data components 400 and standard data com-
ponents 401 (see FIG. 5); and

provide an execution environment for a scripting language
for coordinating operation of the application components
400,402, 404, 406 (sce FIG. 4) of the client applications 105
including the standard data components 401 (see FIG. 5).

The component applications 105 comprise software appli-
cations which are executed by the Runtime Environment RE.
The Runtime Environment RE creates the application con-
tainer 299 for each component 400, 402,404,406 (sec F1G. 4)
of the application 105, each time that the component appli-
cation 105 1s executed. The application container 299 loads
the components 400, 402, 404, 406 of the application 1035
linked with the standard data components 401 and can create
native code which 1s executed by the processor 1208 in the
device inirastructure 1204. The application container can
provision the component application 103 as per the template-
based native execution and metadata-based execution models
as described.

Reterring to FIG. 3, the client runtime RE loads the meta-
data contained in the component 400, 401, 402, 404, 406
definitions and builds the executable version of the applica-
tion 105 on the device 100, via the application container 299.
For example, there are the two operational models for client
runtime: template-based native execution and metadata-
based execution. With the template-based native execution
model the runtime hosts data, message, and screen templates
pre-built on the device 100 using the native code. When the
application 105 definition 1s loaded, the client environment
provided by the client runtime RE fills the templates with
metadata-defined parameters from the components 400, 401,
402, 404 and builds the executable client application 105 1n
the native format. The worktlow script (for example ECMA -
Script) of the worktlow component 406 could be either con-
verted to native code or executed using an appropriate script
interpreter (e.g., ECMAScript Interpreter) to a native code
redirector, where the redirector interprets calls to the scripting
language into operations on native components through a
native runtime engine. With the metadata-based execution,
the runtime environment of the client runtime RE either keeps
component 400, 401, 402, 404, 406 defimitions 1n XML (for
example), which are parsed during execution time or uses
native representation of XML (for example) nodes. During
execution, the native runtime engine operates on definitions
of the components 400, 401, 402, 404, 406 rather than on
native component entities. It 1s recognized that the template-
based approach can be more performance efficient over the
metadata-based execution, but can require a more sophisti-
cated execution environment and more memory resources.

Referring to FIG. 5, the Runtime Environment RE can also
provide framework services 304 (a standard set of generic
services) to the client application 105, 1n the event certain
services are not included as part of the components 400, 401,
402,404, 406 (see F1G. 4) or received as separate components
(not shown) as part of the component application 105. The
application 105 has communications 1214 with the applica-
tion container 299, which coordinates communications 1216
with the framework services 304, as needed. The framework
services 304 of the Runtime Environment RE can coordinate
communications via the connection 1220 with the device
infrastructure 1204, and can include such as but not limited to

US 7,805,735 B2

7

a communication service 306, a presentation service 308, a
persistence service 310, an access service 312, a provisioning,
service 314 and a utility service 316. The communication
service 306 manages connectivity between the component
applications 105 and the external system 10, such as the
messages and associated data sent/recerved 1n respect to the
web service (by the communication service 306) on behalf of
the component applications 105. The presentation service
308 manages the representation of the component application
1035 as they are output on the output device of the user inter-
face 1202 (see FIG. 3). The persistence service 310 allows the
component application 105 to store data in the memory mod-
ule 1210 (see FIG. 3) of the device infrastructure 1204. The
access service 312 provides the component application 105
access to other software applications which are present on the
communication device 100 and are not component based
applications 105, rather native based applications. The pro-
visioning service 314 manages the provisioming of software
applications on the communication device 100. Application
provisioning can include requesting and receiving new and
updated component applications 105, configuring component
applications 105 for access to services which are accessible
via the network 102, moditying the configuration of compo-
nent applications 103 and services, and removing component
applications 105 and services. The utility service 316 1s used
to accomplish a variety of common tasks, such as performing,
data manipulation 1n the conversion of strings to different
formats.

It 1s recognized that the framework services 304 of the
communication device 100 can provide functionality to the
component applications 105, which can include the services
described above. As a result, the component applications 1035
can have access to the functionality of the communication
device 100 without having to implement 1t. The runtime envi-
ronment RE of the device 100 has only preferably one copy of
the code which implements these services present in the
framework services 304, regardless of the number of compo-
nent applications 105 which are present, thereby minimizing,
code duplication of the framework services 304. Further,
unlike ordinary applications where all service requests or
service API calls are programmed by developers 1n the native
code, the component definitions 400,401, 402, 404 and work-
flow 406 describe service requests using a structured defini-
tion language such as XML and the set of instructions such as
ECMAScript. The structured definition language provides a
non-procedural definition of the application’s user interface
1202, persistent storage and communications with the Web
Service, while the instructions provide the procedural com-
ponent linkage. The Client runtime environment interprets
these definitions 400, 401, 402, 404 into the native calls to

supported services.

Application Developer Tool 116

Referring to FIG. 1, the applications 105 can be stored in
the repository 114 as a series of packages that can be created
by a developer tool 116, which 1s employed by developers of
the applications 105. The developer tool 116 can be a RAD
tool used to develop the Wireless Application 105 packages,
as well as develop built 1n or standard data components 401
(see FIG. 7) for accessing native application data entities
(NADEs) 700 such as but not limited to contacts, email, tasks,
calendar, appointments of native device applications (NDAs)
704 (e.g. Microsoit Outlook features) and other non-compo-
nent based applications that may be desirable for direct access
by the component applications 105, as further described
below. It 1s recognised that the non-component based appli-
cations, including NDAs 704, contain a plurality of data that

10

15

20

25

30

35

40

45

50

55

60

65

8

may overlap one another. For example, contacts and email
applications can both contain a separate copy of an individu-
als name and email address, which preferably could be one
copy sharable by the component and non-component based
applications through the standard data components 401.

The developer tool 116 can provide support for a drag-and-
drop graphical approach for the visual design of the applica-
tion 105, including the mapping model. For example, 1n a
component based XML-Script application model, the appli-
cation 105 packages can be represented as metadata (XML)
that can be generated automatically by the developer tool 116
through an automatic code generation process. The developer
tool 116 can provide for the automatic generated code to
include or be otherwise augmented by an industry standard
scripting language (e.g. JavaScript) or other scripting/pro-
gramming languages known 1n the art. The availability of the
application 103 packages of the repository 114 are published
via the discovery service of the server 110 1n the registry 112.
It 1s recognized that there can be more than one repository 114
and associated registries 112 as utilized by the particular
network 10 configuration of the application gateway AG and
associated data sources 106.

Referring to FIG. 2, the developer tool 116 1s operated on
a computer 201 that can be connected to the network 10 via a
network connection interface such as a transceiver 200
coupled via connection 218 to a device inirastructure 204.
The transceiver 200 can be used to upload completed appli-
cation programs 105 to the repository 114 (see FIG. 1), as
well as access the registry 112 and selected data sources 106.
Referring again to FIG. 2, the developer tool 116 also has a
user interface 202, coupled to the device infrastructure 204 by
connection 222, to iteract with a user (not shown). The user
interface 202 includes one or more user mput devices such as
but not limited to a keyboard, a keypad, a trackwheel, a stylus,
a mouse, a microphone, and 1s coupled to a user output device
such as a speaker (not shown) and a screen display 206. I the
display 206 1s touch sensitive, then the display 206 can also be
used as the user input device as controlled by the device
inirastructure 204. The user interface 202 1s employed by the
user of the developer tool 116 to coordinate the design of
applications 105 and/or the standard data components 401
(see FIG. 5) using a series of editors 600 and viewers 602 (see
FIG. 6) and using a plurality of wizards 604 to assist/drive 1n
the worktlow of the development process.

Referring again to FIG. 2, operation of the tool computer
201 1s enabled by the device mirastructure 204. The device
inirastructure 204 includes a computer processor 208 and the
associated memory module 210. The computer processor 208
mampulates the operation of the network interface 200, the
user 1nterface 202 and the display 206 of the developer tool
116 by executing related instructions, which are provided by
an operating system and application 105 design editors 600,
wizards 604, dialogs 605 and viewers 602 resident in the
memory module 210. Further, 1t 1s recognized that the device
infrastructure 204 can include a computer readable storage
medium 212 coupled to the processor 208 for providing
istructions to the processor 208 and/or to load/design the
applications 1035 also resident (for example) 1n the memory
module 210. The computer readable medium 212 can include
hardware and/or soitware such as, by way of example only,
magnetic disks, magnetic tape, optically readable medium
such as CD/DVD ROMS, and memory cards. In each case, the
computer readable medium 212 may take the form of a small
disk, floppy diskette, cassette, hard disk drive, solid state
memory card, or RAM provided in the memory module 210.

US 7,805,735 B2

9

It should be noted that the above listed example computer
readable mediums 212 can be used either alone or 1n combi-
nation.

Referring again to FIGS. 2 and 8, the developer tool 116 1s
operated on the computer 201 as a development environment
tor developing the applications 105 and/or the standard data
components 401. The development methodology of the
developer tool 116 can be based on a visual “drag-and-drop™
system of building the application visual, data, messaging
behaviour, and runtime navigation model. The developer tool
116 can be structured as a set of plug-ins to a generic inte-
grated design environment (IDE) framework, such as but not
limited to the Eclipse framework, or the developer tool 116
can be configured as a complete design framework without
using plug-in architecture. For exemplary purposes only, the
developer tool 116 will now be described as a plug-in design
environment using the Eclipse framework.

Referring to FIGS. 2 and 6, Eclipse makes provisions for a
basic, developer tool 116 environment that can be extended to
provide custom editors, wizards, project management and a
host of other functionality. The Eclipse Platform 1s designed
for building integrated development environments (IDEs)
that can be used to create applications as diverse as web sites,
embedded Java TM programs, C++ programs, and Enterprise
JavaBeans TM. The navigator view 230 shows files 1n a user’s
(e.g. developer) workspace; a text editor section 232 shows
the content of a file being worked on by the user of the
developer tool 116 to develop the application 105 and/or
standard data components 401 1n question; the tasks view
section 234 shows a list of to-dos for the user of the developer
tool 116; and the outline viewer section 236 shows for
example a content outline of the application 105 and/or stan-
dard data components 401 being designed/edited, and/or may
augment other views by providing information about the cur-
rently selected object such as properties of the object selected
in another view. It 1s recognised that the developer tool 116
aids the developer 1n creating and moditying the coded defi-
nition content of the application 105 and/or standard data
components 401, for example 1n a structured definition lan-
guage (e.g. in XML). Further, the developer tool 116 also aids
the developer 1n creating, modifying, and validating the inter-
dependencies of the definition content between the applica-
tion message/data and/or screen/data relationships included
in the application 105 definition and the standard data com-
ponents 401. It 1s also recognised that presentation on the
display of wizard 604 and dialog 605 content for use by the
developer (during use of the editors 600 and viewers 602) can
be positioned in one of the sections 230,232, 234, 236 and/or
in a dedicated wizard section (not shown), as desired.

The Eclipse Platform 1s built on a mechanism for discov-
ering, mtegrating, and running modules called plug-ins (1.e.
editors 600 and viewers 602). When the Eclipse Platform 1s
launched via the UI 202 of the computer 201, the user 1s
presented with an integrated development environment (IDE)
on the display 206 composed of the set of available plug-ins,
such as editors 600 and viewers 602. The various plug-ins to
the Eclipse Platiorm operate on regular files in the user’s
workspace 1ndicated on the display 206. The workspace con-
s1sts of one or more top-level projects, where each project
maps to a corresponding user-specified directory in the file
system, as stored 1n the memory 210 (and/or accessible on the
network 10), which 1s navigated using the navigator 230. The
Eclipse Platform Ul paradigm 1s based on editors, views, and
perspectives. From the user’s standpoint, a workbench dis-
play 206 consists visually of views 602 and editors 600.
Perspectives manifest themselves in the selection and
arrangements of editors 600 and views 602 visible on the

10

15

20

25

30

35

40

45

50

55

60

65

10

display 206. Editors 600 allow the user to open, edit, and save
objects. The editors 600 follow an open-save-close lifecycle
much like file system-based tools. When active, a selected
editor 600 can contribute actions to a workbench menu and
toolbar. Views 602 provide mnformation about some object
that the user 1s working with 1n the workbench. A viewer 602
may assist the editor 600 by providing information about the
document being edited. For example, viewers 602 can have a
simpler lifecycle than editors 600, whereby modifications
made 1n using a viewer 602 (such as changing a property
value) are generally saved immediately, and the changes are
reflected immediately 1n other related parts of the display 206.
It 1s also recognised that a workbench window of the display
206 can have several separate perspectives, only one of which
1s visible at any given moment. Each perspective has 1ts own
viewers 602 and editors 600 that are arranged (tiled, stacked,
or detached) for presentation on the display 206.

Applications 105

For example, the applications 103 can be compiled appli-
cations for transmission to, and subsequent execution on, the
device 100 or can be packages having application elements or
artifacts such as but not limited to XML definitions, map-
pings, application resources, and optionally resource bundle
(s) for localization support. XML file definitions can be XML
coding of application data, messages, screens components
(optionally workflow components), part of the raw uncom-
piled application 105. It 1s recognised that XML syntax 1s
used only as an example of any structured definition language
applicable to coding of the applications 105. The XML defi-
nitions may be produced either by the developer tool 116
generation phase, described below, or may be hand-coded by
the developer as desired. The application XML definitions
can be generically named and added to the top level (for
example) of ajar file.

The resources are one or more resources (1mages, audio-
clips, video clips, etc. . . .) that are packaged with the appli-
cation 105 as static dependencies. For example, resources can
be located relative to a resources folder (not shown) such that
a particular resource may contain 1ts own relative path to the
main folder (e.g. resources/icon.gif, resources/screens/cli-
part__1.0/happyiace.gif, and resources/soundbytes/midi/in-
themood.midi1). The resource bundles can contain localiza-
tion 1nformation for each language supported by the
application 105. These bundles can be located 1n a locale
folder, for example, and can be named according to the lan-
guage supported (e.g. locale/lang_en.properties and locale/
lang_{ir.properties).

Referring to FIG. 4, as an example only, the applications
105 can be component architecture-based soitware applica-

tions which can have artifacts written, for example, 1n eXten-
sible Markup Language (XML) and a subset of ECMAScript.

XML and ECMAScript are standards-based languages,
which allow software developers to develop the component
applications 103 1n a portable and platiorm-independent way.
A block diagram of the component application 105 comprises
the data components 400, the presentation components 402
and the message components 404, which are coordinated by
workflow components 406 through interaction with the client
runtime environment RE of the device 100 (see FIG. 1) once
provisioned thereon. The structured definition language (e.g.
XML) can be used to construct the components 400, 402, 404
as a series of metadata records, which consist of a number of
pre-defined elements representing specific attributes of a
resource such that each element can have one or more values.
Each metadata schema typically has defined characteristics
such as but not limited to; a limited number of elements, a

US 7,805,735 B2

11

name ol each element, and a meaning for each element.
Example metadata schemas include such as but not limited to
Dublin Core (DC), Anglo-American Cataloging Rules
(AACR2), U.S. Government Information Locator Service
(GILS), Encoded Archives Description (EAD), Instructional
Management System (IMS) Global Learning Consortium,
and Australian Government Locator Service (AGLS). Encod-
ing syntax allows the metadata of the components 400, 402,
404 to be processed by the runtime environment RE (see FIG.
1), and encoding schemes include schemes such as but not
limited to XML, HTML, XHTML, XSML, RDF, Machine
Readable Cataloging (MARC), and Multipurpose Internet
Mail Extensions (MIME). The client runtime environment
RE of the device 100 operates on the metadata descriptors of
the components 400, 402, 404 to provision an executable
version of the application 105.

Referring again to FI1G. 4, the data components 400 define
data entities, which are used by the application 105. Data
components 400 define what nformation 1s required to
describe the data entities, and 1n what format the information
1s expressed/stored. For example, the data component 400
may define information such as but not limited to an order
which 1s comprised of a unique 1dentifier for the order which
1s formatted as a number, a list of items which are formatted
as strings, the time the order was created which has a date-
time format, the status of the order which 1s formatted as a
string, and a user who placed the order which 1s formatted
according to the definition of another one of the data compo-
nents 400. It 1s recognised that standard data components 401
(see F1G. 5) of the runtime environment RE can be similar 1n
design and content to that of the data components 400 (or data
components 401) of the application 105. Further, 1t 1s recog-
nized that in the above described client component applica-
tion 105 definitions hosting model, the standard data compo-
nents 401 may vary depending on the client platform and
environment of the device 100.

Referring again to FIG. 4, the message components 404
define the format of messages used by the component appli-
cation 105 to communicate with external systems such as the
web service. For example, one of the message components
404 may describe information such as but not limited to a
message for placing an order, which includes the unique
identifier for the order, the status of the order, and notes
associated with the order. It 1s recognised that data definition
content of the components can be shared for data 400 and
message 404 components that are linked or otherwise contain
similar data definitions. The message component 404 allows
the message content to be evaluated to determine whether
mandatory fields have been supplied 1n the message and to be
sent to the data source 106 via the AG.

Referring again to FIG. 4, the presentation components
402 define the appearance and behavior of the component
application 105 as 1t displayed by a user interface of the
devices 100. The presentation components 402 can specily
GUI screens and controls, and actions to be executed when
the user interacts with the component application 105 using
the user interface. For example, the presentation components
402 may define screens, labels, edit boxes, buttons and
menus, and actions to be taken when the user types 1n an edit
box or pushes a button. It 1s recognised that data definition
content of the components can be shared for data 400 and
presentation 402 components that are linked or otherwise
contain similar data definitions.

Referring to FIGS. 1 and 4, 1t1s recognized that in the above
described client component application 10S definitions host-
ing model, the presentation components 402 may vary
depending on the client platform and environment of the

10

15

20

25

30

35

40

45

50

55

60

65

12

device 100. For example, 1n some cases Web Service consum-
ers do not require a visual presentation. The application defi-
nition oi the components 400, 402, 404, 406 of the component
application 105 can be hosted 1n the Web Service repository
114 as a package bundle of platform-neutral data 400, mes-
sage 404, worktlow 406 component descriptors with a set of
platform-specific presentation component 402 descriptors for
various predefined client runtimes RE. When the discovery or
deployment request message for the application 105 1s 1ssued,
the client type would be specified as a part of this request
message. In order not to duplicate data, message, and work-
flow metadata while packaging component application 105
for different client platforms of the communication devices
100, application definitions can be hosted as a bundle of
platform-neutral component definitions linked with different
sets of presentation components 402. For those Web Service
consumers, the client application 105 would contain selected
presentation components 402 linked with the data 400 and
message 404 components through the workflow components
406.

Referring again to FI1G. 4, the workflow components 406 of
the component application 103 define processing that occurs
when an action 1s to be performed, such as an action specified
by a presentation component 402 as described above, or an
action to be performed when messages arrive from the appli-
cation gateway AG (see FIG. 1). Presentation, worktlow and
message processing are defined by the workilow components
406. The worktlow components 406 are written as a series of
instructions 1n a programming language (e.g. object oriented
programming language) and/or a scripting language, such as
but not limited to ECMAScript, and can be (for example)
compiled into native code and executed by the runtime envi-
ronment RE, as described above. An example of the workilow
components 406 may be to assign values to data, manipulate
screens, or send the message 105. As with presentation com-
ponents, multiple worktlow definitions can be created to sup-
port capabilities and features that vary among devices 100.
ECMA (European Computer Manufacturers Association)
Script 1s a standard script language, wherein scripts can be
referred to as a sequence of 1nstructions that 1s interpreted or
carried out by another program rather than by the computer
processor. Some other example of script languages are Perl,
Rexx, VBScript, JavaScript, and Tcl/Tk. The scripting lan-
guages, in general, are instructional languages that are used to
mampulate, customize, and automate the facilities of an exist-
ing system, such as the devices 100.

Referring to FI1G. 4, the application 103 1s structured, for
example, using component architecture such that when the
device 100 (see FIG. 1) receives a response message from the
application gateway AG containing message data, the appro-
priate worktflow component 406 interprets the data content of
the message according to the appropriate message component
404 defimitions. The workflow component 406 then processes
the data content and inserts the data into the corresponding
data component 400 for subsequent storage in the device 100.
Further, 1f needed, the worktlow component 406 also inserts
the data into the appropriate presentation component 402 for
subsequent display on the display of the device 100. A turther
example of the component architecture of the applications
105 1s for data mput by a user of the device 100, such as
pushing a button or selecting a menu 1tem. The relevant work-
flow component 406 1nterprets the input data according to the
appropriate presentation component 404 and creates data
entities, which are defined by the appropriate data compo-
nents 400. The workilow component 406 then populates the
data components 400 with the input data provided by the user
for subsequent storage in the device 100. Further, the work-

US 7,805,735 B2

13

flow component 406 also inserts the input data into the appro-
priate message component 404 for subsequent sending of the
input data as data entities to the data source 106, web service
for example, as defined by the message component 404.

An example component application 105 represented 1n
XML and mEScript could be as follows, including data com-
ponents 400 as “wcData” and message components 404 con-
tent as “wcMsg™,:

<wcData name="User >
<dfield name="name” type="String” key="1""/>
<dfield name="passwordHash™ type="String”/>
<dfield name="street” type="String”/>
<dfield name="city” type="String”/>
<dfield name="postal” type="String”’/>
<dfield name="phone” type="String”/>
<fwcDat
<wcData name="0OrderStatus’>
<dfield name="confNumber” type="Number” key="1""/>
<dfield name="status” type="String”’/>
<dfield name="datetime” type="Date”’/>
</wcData>
<wcData name="Order”>
<dfield name="orderld” type="“"Number” key="1"/>
<dfield name="special™ type="String”/>
<dfield name="user” cmp="true” cmpName="User”’/>
d
d

S S ST ST =

<dfield name="datetime” type="Date™/>
<dfield name="orderStatus” cmp="true” cmpName="OrderStatus”/>
</fwcData>
<wcData name="Special”>
<dfield name="desc” key="1"" type="String”/>
<dfield name="price” type="Number”/>
</wcData>
<wcMsg name="1nAddSpecial” mapping="Special”>
</wcMsg>
<wcMsg name="inRemoveSpecial” pblock="mhRemoveSpecial>
<mfield name="desc” mapping="Special.desc”/>
</wcMsg>
<wcMsg name="1nOrderStatus™>
<mfleld name="orderld” mapping="Order.orderld™/>
<mfield name="status” mapping="Order.orderStatus™/>
</wcMsg>
<wcMsg name="“1mnUserInfo” mappimmg="User >
</wcMsg>
<wcMsg name="outOrder”>
<mfield name="special” mapping="Order.special”/>
<mfleld name="user” mapping="Order.user’/>
<mfield name="datetime” mapping="Order.datetime™/>
</wcMsg>

As given above, the XML wcData element content defines
the example data component 400 content, which 1s comprised
of a group of named, typed fields. The wcMsg element con-
tent defines the example message component 404, which
similarly defines a group of named, typed fields.

Development Tool 116 Architecture

FIG. 6 1llustrates the overall developer tool 116 structure
for designing applications 105 and/or the standard data com-
ponents 401. The developer tool 116 1nterface (UI 202 and
display 206—see FIG. 2) 1s primarily a user-facing module
601 collection of graphical and text editors 600, viewers 602,
dialogs 605 and wizards 604. The large majority of external
interactions are accomplished through one or more of these
editors 600, with the developer/user, using a system of drag
and drop editing and wizard driven elaboration. The second-
ary and non-user facing system interface 1s that of the “Back-
end”, whereby the developer tool 116 connects to and digests
data source 106 services such as Web Services and SQL
Databases. As described above, the developer tool 116 can be
built on the Eclipse platform, whereby the user interface
system components can be such as but not limited to compo-
nents of editors 600, viewers 602, dialogs (not shown) and

10

15

20

25

30

35

40

45

50

55

60

65

14

wizards 604, which are plug-in modules 601 that extend
Eclipse classes and utilize the Eclipse framework, for
example. As shown, the developer tool 116 communicates
with Backend data sources 106 and UDDI repositories 114
and registries 112. These external systems 106, 112, 114 may
not be part of the developer tool 116 but are shown for com-
pleteness.

UI Layer 606

The developer tool 116 has a Ul Layer 606 composed
mainly of the editors 600 and viewers 602, which are assisted
through the workflow wizards 605. The layer 606 has access
to an extensive widget set and graphics library known as the
Standard Widget Toolkit (SWT), for Eclipse. The Ul layer
606 modules 601 can also make use of a higher-level toolkit
called JFace that contains standard viewer classes such as
lists, trees and tables and an action framework used to add
commands to menus and toolbars. The developer tool 116 can
also use a Graphical Editing Framework (GEF) to implement
diagramming editors. The Ul layer 606 modules 601 can
follow the Model-View-Controller design pattern where each
module 601 1s both a view and a controller. Data models
608,610 represents the persistent state of the application 105
and are implemented 1n the data model layer 612 the devel-
oper tool 116 architecture. The separation of the layers 606,
612 keeps presentation specific information in the various
views and provides for multiple Ul modules 601 (e.g. editors
600 and viewers 602) to respond to data model 608,610
changes. Operation by the developer of the editors 600 and
viewers 602 on the display 202 (see FIG. 2) can be assisted by
the wizards 604 for guiding the development of the applica-
tion 105 and/or standard data components 401.

Referring to FIG. 6, the Ul Layer 606 1s comprised of the
set of editors 600, viewers 602, wizards 604 and dialogs 605.
The Ul Layer 606 uses the Model-View-Controller (MVC)
pattern where each Ul module 601 1s both a View and a
Controller. UI Layer modules 601 interact with data models
608,610 with some related control logic as defined by the
MVC pattern. The editors 600 are modules 601 that do not
commit model 608,610 changes until the user of the devel-
oper tool 116 chooses to “Save” them. Viewers 602 are mod-
ules 601 that commit their changes to the model 608,612
immediately when the user makes them. Wizards 604 are
modules 601 that are step-driven by a series of one or more
dialogs 603, wherein each dialog 605 gathers certain infor-
mation from the user of the developer tool 116 via the user
interface 202 (see FIG. 2). No changes are applied to the
design time model 608 using the wizards 604 until the user of
the developer tool 116 selects a confirmation button like a
“Finish™. It 1s recognised in the example plug-in developer
tool 116 environment, modules 601 can extend two types of
interfaces: Eclipse extension points and extension point inter-
faces. Extension points declare a unique package or plug-in
already defined 1n the system as the entry point for functional
extension, e€.g. an editor 600, wizard 604 or project. Extension
point imterfaces allow the developer tool 116 to define 1ts own
plug-n mterfaces, e.g. for skins 618 and backend 616 con-
nectors, as further described below.

Data Models 608, 610

The developer tool 116 data models 608,610 are based, by
example, on the Eclipse Modeling Framework (EMF). It 1s
recognised that other modeling frameworks can be used, as
desired. The framework provides model 608, 610 change
notification, persistence support and an eificient reflective
API for manipulating EMF objects generically. The code
generation facility 1s used to generate the model 608, 610

US 7,805,735 B2

15

implementation and create adapters to connect a model layer
612 with the user interface modules 601 of the UI layer 606.

Referring again to FIG. 6, modules 601 (primarily Editors
600 and Viewers 602) in the developer tool 116 are observers
of the data models 608,610 and are used to interact or other-
wise test and modily the data models 608,610 of the applica-
tion (e.g. components 400, 402, 404, 406—sce FI1G. 4) and
standard data components 401 (see FIG. 5) 1n question. It 1s
recognised that the components 400, 402, 404, 406 of the
application 105 and the standard data components 401 pret-
erably of the runtime environment RE can be incorporated as
a set 1n the data models 608,610, 1n order to test the iterop-
erability of the components 400,401, 402, 404, 406 as needed
by the developer when using the developer tool 116. When the
data model 608,610 changes, the models 608,610 are notified
and respond by updating the presentation of the application
105. The developer tool 116 uses the Eclipse Modeling
Framework (EMF), for example, to connect the Eclipse Ul
framework to the developer tool 116 data model 608,610,
whereby the modules 601 can use the standard Eclipse inter-
faces to provide the information to display and edit an object
on the display 206 (see FIG. 2). In general, the EMF frame-
work implements these standard interfaces and adapt calls to
these 1nterfaces by calling on generated adapters that know
how to access the data model 608,610 residing 1n memory
210. The design time Data Model 608 1s used to represent the
current version of the application 105 (e.g. an application
module) 1n development along with the standard data com-
ponents 401 and 1s accessed by the users employing the
modules 601 to interact with associated data of the model
608. Modules 601 can also trigger validation actions on the
Design Time Data Model 608. Modules 601 can also cause
some or all of the application 105 to be generated from the
Design Time Data Model 608 resident 1n memory 210. In
general, the Design Time Data Model 608 accepts a set of
commands via the UI 202 (see FI1G. 2) that affect the state of
the model 608, and 1n response may generate a set of events.
Each module 601 (editor 600 and viewer 602) described
includes the set of commands and the events that atfect the
module 601 and data model 608 pairing.

Referring to FIG. 6, the Runtime Data Model 610 repre-
sents the state of an emulated application 105 under develop-
ment by the developer tool 116, using as a basis the contents
of the design-time data model 608. The runtime data model
610 stores values for the following major items, such as but
not limited to: standard data components 401; Data Compo-
nents 400 (see FIG. 4); Global Variables; Message Compo-
nents 404; Resources; Screen Components 402 and Styles.
The Runtime Data Model 610 collaborates with the Design-
Time Data Model 608 and a Testing/Preview viewer (not
shown) during emulation of application 105 for testing and
preview purposes (for example). The viewer also collaborates
with the skin manager 616 for emulating the runtime data
model 610 for a specified device 100 type. The Runtime Data
Model 610 also notifies, through a bridge 613, the viewer as
well as any other modules 601 of the UI layer 606 associated
with changes made to the model 610. For example, an API call
can be used as a notifier for the associated modules 601 when
the state of the model 610 has changed. The Design Time Data
Model 608 represents the state of an application 105 devel-
opment project and interacts with the modules 601 of the Ul
layer 606 by notifying modules 601 when the state of the
model 608 has changed as well as saving and loading objects
from storage 210. The model’s 608 primary responsibility 1s
to define the applications 103 including such as but not lim-
ited to the following items: standard data components 401 ;

Data Component 400. Definitions; Global Variable Defini-

10

15

20

25

30

35

40

45

50

55

60

65

16

tions; Message Component 404 Definitions; Resource 304,
306 Definitions; Screen Component 402 Definitions; Scripts
406; Style Definitions and Backend data source 106 Mapping
302 Descriptors. The Design Time Data Model 608 responds
to commands of each editor 600, viewer 602. The Design
Time Data Model 608 also fires events to modules 601 1n
response to changes in the model 608, as well as collaborat-
ing/communicating with the other modules 601 (module 601 -
module 601 interaction) by notifying respective modules 601
when the data model 608 has changed. The data model 608
depends on an 1nterface 1n order to serialize model 608 con-
tent retrieval and storage to and from the memory 210.

The above describes the mechanism used by the developer
tool 116 editors 600 and viewers 602 to interact with the
models 608,610. The EMF.Edit framework 1s an optional
framework provided by the Eclipse framework. The devel-

oper tool 116 can use the EMF.E

Edit framework and generated
code (for example) as a bridge or coupling 613 between the
Eclipse Ul framework and the tool models 608,610. Follow-
ing the Model-View-Controller pattern, the editors 600 and
viewers 602 do not know about the models 608,610 directly
but rely on interfaces to provide the information needed to
display and edit.

Standard Data Components 401

It 1s recognised that the SDCs 401 could be part of the skin
manager 618 for emulating the runtime environment RE of
the device 100 and/or the SDCs 401 could be part of the
application model layer 612 (see FIG. 6), along with the
model 608 of the application 105 including application ele-
ments such as but not limited to component 400, 402, 404,
406 metadata descriptions as well as at least a reference (e.g.
mapping) to the SDC 401. In general, the SDCs 401 are built
by a standard component module 629 using knowledge of the
properties, stored 1n a native module 631, such as but not
limited to: the data structures of the NDAS 704 (e.g. the
NADEs 700), and/or the communication interface of the
respective APIs 704, as well as those data structures used by
the device 100 for storing the NADEs 700 1n the memory
1210 of the device 100. The application developer creates the
SDCs 401 using the module 629 of the developer tool 116,
whereby the runtime environment RE utilizes the SDCs 401
information during execution of the application 105 when
accessing the data of the NDAs 704. The SDCs 401 can be
generated as an annotation to the application 105 metadata, or
for example the SDCs 401 can be included as a separate file
instead for inclusion 1n a representative runtime environment
RE module for implementation on the device 100.

Service Layer 614

Referring again to FIG. 6, a service layer 614 provides
tacilities for the Ul layer 606 such as validation 620, local-
1zation 624, generation 622, build 626, standard data compo-
nent module 629 and deployment 628, further described
below. The developer tool 116 can make use of the Eclipse
extension point mechanism to load additional plug-ins for
two types of services: backend connectors 616 and device
skin managers 618 with associated presentation environ-
ments 630.

The backend connector 616 defines an Eclipse extension
point to provide for the developer tool 116 to communicate
with or otherwise obtain information about different backend

data sources 106, in order to obtain the message format (e.g.
as provided by WSDL definitions) of the selected data source

106. The backend connector 616 can be used as an interface to

connect to and to investigate backend data source 106 ser-
vices such as Web Services and SQL Databases. The backend
connector 616 facilitates building a suitable application mes-

US 7,805,735 B2

17

sage and data set to permit communication with these ser-
vices from the application 105 when runming on the device
100. The backend connector 616 can support the access to
multiple different types of data sources 106, such as but not
limited to exposing respective direct communication nter-
faces through a communication connector-based architec-
ture. At runtime the developer tool 116 reads the plug-in
registry to add contributed backend extensions to the set of
backend connectors 616, such as but not limited to connectors
tor Web Services.

The Backend Connector 616 can be responsible for such as
but not limited to: connecting to a selected one (or more) of
the backend data sources 106 (e.g. Web Service, Database);
providing an interface for accessing the description of the
backend data source 106 (e.g. messages, operations, and data
types); and/or providing for the identification of Notification
services (those which push notifications over the network 10
to the device 100—see FI1G. 1). The Backend Connector 616
can provide an interface to the backend data source 106 (e.g.
a web service, SQL Database or other) for access of the data
source 106 description, and can provide a level of abstraction
between implementation specific details of the backend mes-
saging and generic messaging descriptions. For example, the
Backend Connector 616 can be used to generate appropriate
messaging 404 and data 400 component (e.g. data elements)
sets for the application 105, and 1s used by the Model Valida-
tor 620 as part of validation tasks to verity models 608,610
with standard data components 401 under development. For
example, the backend connector 616 can be implemented as
an 1nterface using an API call as the protocol to access the
underlying backend data source 106 (e.g. using a WSDL
Interface for Web Services). It 1s recognised that the data
source 106 information accessed through the connector 616
can be used to help construct the standard data components
401, as further described below.

The device skin manager 618 defines an Eclipse extension
point, for example, to allow the developer tool 116 to emulate
different devices 100 (see FIG. 1), such that the look and feel
of different target devices 100 (of the application 105) can be
specified. At runtime the developer tool 116 reads the plug-in
registry to add contributed skin extensions or presentation
environments 630 to the set of device environments 630 coor-
dinated by the manager 618, such as but not limited to envi-
ronments 630 for a generic BlackBerry™ or other device 100.
The Skin Manager 618 1s used by the Testing/Preview viewer
806 to load visual elements of the data model 608,610 that
look appropriate for the device 100 that 1s being emulated, 1.¢.
clements that are compatible with the specified environment
630. Different skins or presentation environments/formats
630 are “pluggable” into the manager 618 of the developer
tool 116, meaning that third parties can implement their own
presentation environments 630 by creating new unique
Skinlds (an Eclipse extension point), for example, and imple-
menting an appropriate mterface to create instances of the
screen elements supported by the runtime environment RE of
the emulated device 100. In order to load a new presentation
environment 630, the Testing/Preview viewer 806 first asks
the Manager 618 for an instance of the specified environment
630. The Manager 618 then instantiates the environment 630
and the Testing/Preview viewer 806 uses the specified envi-
ronment 630 to construct the screen elements according to the
screen components of the model 608,610. For example, the
presentation environments 630 (e.g. SkinPlugins) are 1denti-
fied to the SkinManager 618 through a custom Eclipse exten-
s1on point using the Eclipse framework.

The model validation 620 of the service layer 614 provides
tacilities for the Ul layer 606 such as validating the design

10

15

20

25

30

35

40

45

50

55

60

65

18

time data model 608 and/or the standard data components
401. The Model Validator 620 1s used to check that the rep-
resentation ol application 105 messages 1s in line with the
backend data source 106 presentation of messaging opera-
tions. The Model Validator 620 can be responsible to validate
the model 608 representation of the application 105 to be
generated, for example such as but not limited to elements of:
workilow sanity o the worktlow component 406; consistency
of parameters and field level mappings of the components
400, 402, 404, 406; screen control mappings and screen
refresh messages of the screen components 402; message
and/or data duplications inter and 1ntra component 400, 401,
402, 404, 406. In order to achieve its responsibilities, the
validator collaborates with the Design Time Data Model 608,
the message structures 302, 304, an application generator 622
and the backend connector 616. The Model Validator 620
utilizes as part of the validation task the Design Time Data
Model 608 (for application 105 validation) and the message
structures 302, 304, as well as the backend connector 616,
which supports the interface to the backend data sources 106.

Referring again to FI1G. 6, the localization Service 624 has
responsibilities such as but not limited to: supporting a build
time localization of user visible strings; supporting additional
localization settings (e.g. default time & date display format,
default number display format, display currency format, etc);
and creating the resource bundle files (and resources) that can
be used during preparation of the deployable application 105
(e.g. an application jar file) by a Build Service 626. For
example, the localization service 624 can be implemented as
a resource module for collecting resources that are resident 1n
the design time data model 608 for inclusion in the deployable
application 105. The JAR file can be a file that contains the
class, 1image, and sound files for the application gathered into
a single file and compressed for efficient downloading to the
device 100. The Localization Service 624 1s used by the
application Generator 622 to produce the language specific
resource bundles, for example. The Build Service 626 imple-
ments preparation of the resource bundles and packaging the
resource bundles with the deployable application 105. The
Localization Service 624 interacts (provides an interface)
with the tool editors 600 and viewers 602 for setting or oth-
erwise manipulating language strings and locale settings of
the application 105.

Referring to FIG. 6, the Generator 622 can be responsible
for, such as but not limited to: generation of the application
XML from the components 400, 401, 402, 404; optimizing
field ordering of the component 400, 401, 402, 404 descrip-
tors; and generation of dependencies and script transforma-
tion as desired for storage 1n the memory 210. The Generator
622 collaborates with the Design Time Data Model 608 to
obtain the content of the developed components 400, 402, 404
comprising the application 105, as well as cooperating with

the standard data components 401. The Generator 622 utilizes
the Model Validator 620 to check that both the application 105

definitions (of the components 400, 401, 402, 404, 406) arc
correct. The Generator 620 then produces the XML code of
the application 105, with inclusions and/or augmentations of
the script of the worktlow components 406, and/or the stan-
dard data components 401 file descriptors (used by the runt-
ime environment RE). The Generator 622 uses the Localiza-
tion Service 624 to produce the language resource bundles,
through for example a Resource Bundles interface (not
shown). The Generator 622 generation process can be kicked
off through a Generate 1nterface accessed by the developer
using the Ul 202 of the developer tool 116 (i.e. by user input
events such as mouse clicks and/or key presses). It 1s recog-
nised that the generator 622 can be configured as a collection

US 7,805,735 B2

19

of modules, such as but not limited to a code module for
generating the XML (which may include associated script). It
1s recognised that the standard data components 401 can be
developed while the application 105 1s in development, or can
be developed once the application 105 development 1s com-
plete.

The deployment service 628 1s used to deploy the appro-
priate application 105 descriptor file with respect to the
repository 114 and registry 112 and/or to deploy the standard
data components 401 (for example as part of a published
runtime environment RE module 300 upgrade or for incor-
poration as original operating soiftware supplied with the
device 100 when provided to the user). The Build Service 626
provides a mechanism for building the deployable form of the
application 105 and/or the runtime environment RE module
300. The Build Service 626 produces via a build engine the
deployable application 1035 file and/or the runtime environ-
ment RE module 300 file. These files are made available to the
deployment service 628 via an output interface of the devel-
oper tool 116. The security service 632, has the ability to sign
the application 105 file and/or the runtime environment RE
module 300 file to prevent tampering with their contents, and
to provide the i1dentity of the originator. There can be two
example options for signing, either making use of DSA with
SHA1 digest, or RSA with MD5, as 1s know 1n the art. For
example, the security service 632 can handle certificates that
are used for application 105 and/or mapping model file sign-
ing. The security service 632 can have the ability to request,
store and use a public/private key pair to help ensure the
validity of both the originator and content of the application
105 and/or runtime environment RE module 300 files as
deployed.

FIG. 7 shows an example configuration of the runtime
environment RE having a plurality of provisioned (e.g. 1n
executable form) component-based applications 105 (con-
sisting of data 400, presentation 402, message 404, worktlow
406, or an alternate combination thereol) interacting with one
or more commonly provisioned standard data components
(SDCs) 401. It 1s recognised that the SDCs 401 can be rep-
resented as a set 706 of SDCs 401, such that the SDC 401
content of the set 706 1s either static (e.g. part of the runtime
environment RE as provided globally by the device 100) or
dynamic (e.g. updatable based on the type of applications 105
provisioned or otherwise stored on the device 100 change).
The standard data components 401 provide access to native
device application data entities (NADEs) 700 by either invok-
ing native device-dependent APIs 702 or by making data
requests directly to device memory 1210 (1.e. device data
repositories for native device applications NDA 704). The
APIs 702 are specific methods prescribed by the native device
application 704 (or the device operating system as desired) by
which the SDC 401 can make requests of the native device
application 704. Examples of APIs include such as but not
limited to ODMA (Open Document Management API) and
SAX (Simple API for XML). The NDAs 704 are typically
non-component-based applications and normally require the
APIs 704 for accessing their functionality and corresponding
NADESs 700. Examples of the NDAs can include such as but
not limited to Microsoit Outlook TM having features of con-
tacts, email, tasks, calendar, appointments with correspond-
ing NADEs 700.

As described above, the component applications 105 are
constructed by the developer tool 116 in a component-based
means with a plurality of interacting components 400, 402,
404, 406. Preferably, runtime elements of the applications
105 are defined as provisioned components (for example as

described above) 1n the runtime environment RE. In one

10

15

20

25

30

35

40

45

50

55

60

65

20

embodiment, the applications 105 comprise a data compo-
nent 400, components of other types (e.g. components 402,
404, 406) and reference and/or inclusion of the SDCs 401 for
representing shared (by multiple applications 105) standard
data defimitions for accessing the NADEs 700. Each compo-
nent 400, 401, 402, 404, 406 1s of a specific type, which 1s
associated with predefined behaviors or functions. For
example, each data component 400 could be created, deleted,
updated, and its field values can be retrieved and/or set. In one
embodiment of the component applications 103, three types
of components include: (1) data component 400 having
behaviors to create, remove, load, persistent, update; (11) mes-
sage component 404 having a send or transmit behaviour; and
(111) screen component 402 having behaviours to display,
refresh, close displayed elements on the UI 1202 of the device
100.

The component-based applications 105 are preferably pro-
vided shared access to the NADEs 700 of the native device
applications 704 through the preferably shared SDCs 401
provisioned 1n the runtime environment RE. The SDCs 401
can be provisioned as part of the application 105 (1.e. multiple
copies of the SDC 401 for each of the provisioned applica-
tions 105) or as part of the runtime environment RE and
therefore shared by multiple applications 105 (1.e. a single
copy of the SDC 401 shared by multiple provisioned appli-
cations 105). It 1s noted that the SDC 401 XML definitions
can be included as part of the runtime environment RE mod-
ule implemented on the device 100 for access to all provi-
sioned applications 105 (similar 1n function to the common
set of services 304 provided to the applications 105—see
FIG. 5) and therefore the SDCs 401 are only referenced for
example by name in the XML definitions/metadata of the
component applications 105. Another SDC 401 implementa-
tion embodiment would be for the XML definitions/metadata
of the SDC 401 to be part of the application 105 XML defi-
nitions/metadata but only one copy 1s provisioned in the runt-
ime environment RE for sharing by the plurality of the com-
ponent applications provisioned 1n the runtime environment
RE. In this case, the runtime environment RE would have
knowledge of the sharable SDCs 401 and would only provi-
s1on the first copy of a particular SDC 401 while other pro-
visioning requests would be denied and 1nstead access given
to the already provisioned initial SDC 401. In any of the
manners described above, access to the NADEs 700 of the
NDAs 704 would be prowded to the component applications
105 via the SDCs 401.

FIG. 8 demonstrates the symbolic interrelationship
between the runtime environment RE for hosting component-
based applications 105 on the device 103 in cooperation with
the provisioned SDCs 401 and the integrated developer tool
116 for developing the component application 105 definitions
in conjunction with developing the SDC 401 defimitions. The
device 100 also provides the memory 1210 for storage of the
NADEs 700 accessed by the provisioned component appli-
cations 1035 through the provisioned SDCs 401. It 1s recogn-
1sed that knowledge of the common set 706 of standard data
component SDC 401 definitions 1s shared by the developer
tool 116. Accordingly, the SDCs 401 are treated as built-in
data components for the component applications 105. The
definitions of SDCs 401 are standardized to a specific series
of devices or devices of a specific manufacturer, and are
encompassed by the developer tool 116 during application
105 development and are executed by the runtime environ-
ment RE. The SDCs 401 act/react similarly to developer-
defined data components 400 as far as the other components
402, 404, 406 of the application 105 are concerned, but the

SDCs 401 also interface as a “tront-end” to the data of the

US 7,805,735 B2

21

NDAs 704 stored in the respective NADEs 700, accessed
either directly or indirectly through the APIs 702 of the NDAs
704 and/or the operating system of the device infrastructure
1204 (see F1G. 3). It 1s recognised that the development of the
applications 105 coupled to the SDCs 401 can be facilitated
through use of the standard module 629 of the tool for devel-
oping the SDCs 401 along with the model layer 612 1n con-
junction with the skin manager 618 with selected presentation
environments 630 for simulating the runtime environments
RE of the device 100.

It 1s recogmised that knowledge of the API 704 features
(¢.g. callable functions and call format) must be made avail-
able to the user of the developer tool 116 when developing the
SDCs 401, in the case where the APIs 702 are used to access
the NADEs 700 through the NDAs 704. Otherwise, knowl-
edge of the storage format and content, for example, of the
NADEs 700 are made available to the user of the developer
tool 116 when developing the SDCs 401, in order for inclu-
sion 1n the definitions of the SDCs 401 to enable direct access
by the applications 105 (e.g. such as in interaction between
components 400, 402, 404, 406 with the appropriate SDC
401) of the NADE 700 data content. Accordingly, 1n either
case (direct or indirect access of the NADEs 700) the SDCs
401 are treated as another version of the application 105 data
components 400 described above. It should be noted that 1n
both access cases, the runtime environment RE would have
knowledge of the storage location of the NADEs 700 in the
storage 1210, for example as monitored by the persistence
service 310 of the services framework 304 (see FIG. 5).
Otherwise, the runtime environment RE would rely upon the
operating system of the device infrastructure 1204 for infor-
mation on the storage location of the NADEs 700 1n the
memory 1210.

As shown symbolically in FIG. 8, the runtime environment
RE and the developer tool 116 share the common set 706 of
standard data component 401 definitions. It 1s recognised that
the developer tool 116 can have multiple sets 706 for different
devices 100 and combinations of component applications
1035, and/or can have a master set 706 for use 1n developing all
envisioned component applications 105 for all envisioned
runtime environments RE of selected devices 100. The runt-
ime environments RE provides a runtime context and imple-
mentation of the SCDs 401, while the developer tool 116
offers application developers the facilities of accessing and
embedding or otherwise associating the defimitions of the
SCDs 401 into/with the component applications 105 in the
development stage. Further, 1t 1s recognised that the SDCs
401 content of the runtime environments RE and the devel-
oper tool 116 are to be 1n sync, 1n order to provide for proper
implementation of the developed applications 103 coupled to
the SDCs 401. Furthermore, different versions of the SDCs
401 could be developed by the developer tool 116 for ditfer-
ent targeted runtime environments RE and devices 100.

Furthermore, 1t 1s recognised that certain Functions that are
not available through the device APIs 702 can be incorporated
as behaviours or functions of the data components 400, which
automatically become available to SDCs 401 during execu-
tion of the now coupled components 400, 402, 404, 406 of the
application 105 with the SDC 401. For example, in the devel-
opment of the application 105 with built-in SDCs 401, search
functions can be defined and incorporated into the data com-
ponents 400, which the become available to any SDC 401
cooperating with the application components 400, 402, 404,
406 during access of the NADEs 700. For example, a Contact
search function 1s usually not directly available through the
device API 702. Without built-in SDCs 401, the developer

may have to implement the search function for each of the

10

15

20

25

30

35

40

45

50

55

60

65

22

NADEs 700, and the code written 1s not sharable among
device applications 105 that require the same function. It 1s
recognised that the additional functionality desired could also
be incorporated 1n the SDCs 401 themselves, as desired or
shared between the data components 400 and the SDCs 401.

Further, it 1s recogmised that the additional functionality
could 1nclude searching across a grouping of NADEs 700—
1.¢. the SDC 401 accesses data from a plurality of the NDAs
704 of the corresponding NADEs 700. With respect to the
data component 400, along with the aforementioned behav-
iours for individual data components 400, the search function
(or other additional desired functionality/features) may be
available to a set of the data components 400, or a data
collection.

Reterring to FIG. 9, a generation process 900 of the stan-
dard data component 401 1n conjunction with information on
the component application 1035 and the properties of the data
entity NADE 700 1s shown, including steps such as but not
limited to:

step 901—accessing the model 608 of the component-
based application 105 including features of data 400 and
message 404 component definitions expressed 1n the struc-
tured definition language;

step 902—accessing properties of the data entity 700 of the
native application 704 from the native module 631;

step 903—generating the standard data component 401
definition based on the features of the component-based
application 103 and the properties of the data entity 700 of the
native application 700, the standard data component 401 defi-
nition expressed 1n the structured defimtion language; and

step 904—incorporating the standard data component 401
definition into either the component-based application 105
definitions or the runtime environment RE module for execu-
tion on the device 100.

Advantageously, in the component-based application 105,
the access to the built-in data repository NADEs 700 of the
device 100 1s presented as access through standard data com-
ponents SDCs 401, thereby helping to reduce the need for
additional and non-reusable (between device applications
105) code 1n each application 105 as could be the case for a
traditional application 704 exposing the access as device APIs
702. Moreover, when developing the component application
105 coupled to SDCs 401, the developer may not have to use
platform-dependent APIs 702 and implement corresponding
code to access standard data repositories NADEs 700 (e.g.,
Contact, Email, Task, etc.) as 1s usually inevitable for the
traditional applications NDAs 704. Advantageously, by coop-
erating with SDCs 401 1n a manner used for the other data
components 400, the interacting components 400, 402, 404,
406 of the application 105 can access the data in the NADESs
700, such as but not limited to data being created, modified,
deleted, and/or searched 1n a device-independent manner.

The developer tool 116 system and methods described
above may be implemented by any hardware, software or a
combination of hardware and soiftware having the above
described functions. The software code, either 1n its entirety
or a part thereof, may be stored in a computer readable
memory. Further, a computer data signal representing the
soltware code which may be embedded 1n a carrier wave may
be transmitted via the communication network 102. Such a
computer readable memory and a computer data signal are
also within the scope of the present invention, as well as the
hardware, software and the combination thereof. While par-
ticular embodiments of the present mmvention have been
shown and described, changes and modifications may be
made to such embodiments without departing from the true
scope of the invention.

US 7,805,735 B2

23

The embodiments of the invention 1n which an exclusive
property of privilege 1s claimed are defined as the follows:
1. A system for developing a standard data component for
coupling with a plurality of components of a component-
based application to access a stored data entity of a non-
component-based native application, the applications having
the plurality of components including metadata descriptors
expressed 1n a structured definition language for defining
execution of the application in a runtime environment of a
device, the system comprising:
a computer readable memory for storing instructions; and
a processor for executing the instructions stored in the
computer readable memory, the instructions, when
executed by the processor, providing:
an application module configured for storing a model of the
component-based application including features of data and
message metadata descriptors expressed in the structured
definition language;
a native module configured for storing properties of the
data entity of the native application; and
a standard module for generating the standard data com-
ponent definition as additional metadata descriptors
based on the features of the component-based applica-
tion and the properties of the data entity of the native
application, the additional metadata descriptors of the
standard data component definition being expressed 1n
the structured definition language,
wherein the application module 1s configured for including
a reference to the standard data component definition 1n
the metadata descriptors of the plurality of components,
such that the standard data component defimition 1s
external to the metadata descriptors of the plurality of
components and therefore the standard data component
definition 1s configured for remote access through the
reference:;
wherein the additional metadata descriptors of the standard
data component include an ability to invoke APIs of the

non-component-based native application for accessing
the stored data entity.

2. The system of claim 1, wherein the properties of the data
entity are selected from the group comprising: a description
ol a data structure of the native application; a description of a
communication interface of a respective application program
interface of the native application; and a description of the
data structure used by the device for storing the data entity 1in
a device memory.

3. The system of claim 2, wherein the additional metadata
descriptors of the standard data component include an ability
to directly access the stored data entity through a data request
to the device memory.

4. The system of claim 2, wherein the plurality of compo-
nents are selected from the group comprising: a data compo-
nent, a message component, a workflow component, and a
presentation component.

5. The system of claim 4, wherein the additional metadata
descriptors are configurable to be operatively coupled to the
plurality of components through the metadata descriptors of
the plurality of components.

6. The system of claim 2 further comprising a runtime
emulator module for emulating the runtime environment of
the device during development of the standard data compo-
nent, the standard data component configured for providing a
plurality of the component-based applications access to the
data entity of the native application.

7. The system of claim 6, wherein the application module
1s configured for including the additional metadata descrip-

10

15

20

25

30

35

40

45

50

55

60

65

24

tors of the standard data component 1n the metadata descrip-
tors of the component-based application model.

8. The system of claim 1 further comprising the standard
module configured for

generating a runtime environment module for including

the additional metadata descriptors of the standard data
component.

9. A method for developing a standard data component for
coupling with a plurality of components of a component-
based application to access a stored data entity of a non-
component-based native application, the applications having
the plurality of components including metadata descriptors
expressed 1n a structured definition language for defining
execution of the application in a runtime environment of a
device, the method comprising executing istructions stored
in a computer readable memory, the 1nstructions for:

accessing a model of the component-based application

including features of data and message component
metadata descriptors expressed 1n the structured defini-
tion language;

accessing properties of the data entity of the native appli-

cation; and generating the standard data component
definition as additional metadata descriptors based on
the features of the component-based application and the
properties of the data entity of the native application, the
additional metadata descriptors of the standard data
component definition being expressed in the structured
definition language; and

including a reference to the standard data component defi-

nition in the metadata descriptors of the plurality of
components, such that the standard data component
definition 1s external to the metadata descriptors of the
plurality of components and therefore the standard data
component definition 1s configured for remote access
through the reference;

wherein the additional metadata descriptors of the standard
data component include an ability to invoke APIs of the

non-component-based native application for accessing
the stored data entity.

10. The method of claim 9, wherein the properties of the
data entity are selected from the group comprising: a descrip-
tion of a data structure of the native application; a description
ol a communication interface of a respective application pro-
gram 1nterface of the native application; and a description of
the data structure used by the device for storing the data entity
in a device memory.

11. The method of claim 10 further comprising the step of
emulating the runtime environment of the device during
development of the standard data component, the standard
data component configured for providing a plurality of the
component-based applications access to the data entity of the
natrve application.

12. The method of claim 11, wherein the application mod-
ule 1s configured for including the additional metadata
descriptors of the standard data component in the metadata
descriptors of the component-based application model.

13. The method of claim 10, wherein the additional meta-
data descriptors of the standard data component include the
ability to directly access the stored data entity through a data
request to the device memory.

14. The method of claim 10, wherein the plurality of com-
ponents are selected from the group comprising: a data com-
ponent, a message component, a workilow component, and a
presentation component.

15. The method of claim 14, wherein the additional meta-
data descriptors are configurable to be operatively coupled to

US 7,805,735 B2

25

the plurality of components through the metadata descriptors
of the plurality of components.

16. The method of claim 9 further comprising a step of
generating a runtime environment module for including the
additional metadata descriptors of the standard data compo-
nent.

17. A computer program product for developing a standard
data component for coupling with a plurality of components
of a component-based application to access a stored data
entity of a non-component-based native application, the
applications having the plurality of components including
metadata descriptors expressed 1n a structured definition lan-
guage for defining execution of the application in a runtime
environment of a device, the computer program product com-
prising:

a computer readable-memory;

an application module stored on the computer readable
memory and configured for storing a model of the com-
ponent-based application including features of data and

message metadata descriptors expressed in the struc-
tured definition language;

10

15

20

26

a native module stored on the computer readable memory
and configured for storing properties of the data entity of
the native application; and

a standard module stored on the computer readable memory
for generating the standard data component definition as
additional metadata descriptors based on the features of the
component-based application and the properties of the data
entity of the native application, the additional metadata
descriptors of the standard data component definition being
expressed in the structured definition language;

wherein the application module 1s configured for including
a reference to the standard data component definition 1n
the metadata descriptors of the plurality of components,
such that the standard data component definition 1s
external to the metadata descriptors of the plurality of
components and therefore the standard data component
definition 1s configured for remote access through the
reference;

wherein the additional metadata descriptors of the standard
data component include the ability to invoke APIs of the
non-component-based native application for accessing the
stored data entity.

	Front Page
	Drawings
	Specification
	Claims

