US007804430B2
a2 United States Patent (10) Patent No.: US 7.804.430 B2
Pearlstein et al. 45) Date of Patent: Sep. 28, 2010
(54) METHODS AND APPARATUS FOR 5479,166 A 12/1995 Read et al.
PROCESSING VARIABLE LENGTH CODED 5.512.896 A 4/1996 Read et al.
DAIA 5,530,401 A 7/1996 Kumaki et al.
5 .
(75) Inventors: Larry Pearlstein, Newtown, PA (US): 5,784,631 A 7/1998 WISE .ioviviiiiiiiiiinnnns 382/246
RiChard Sita, Alldl.lbonj NJ (‘[JS):J 5,835,145 A 11/1998 Olly.‘:lIlg et al.
Richard Selvaggi, Doylestown, PA (US) 5,852,469 A 12/1998 Nagai et al.
5,969,650 A 10/1999 Wilson
(73) Assignee: Broadcom Corporation 6,011,498 A * 1/2000 Wittigccevverrririnnnnnnne. 341/67
| | o | 6,014,095 A * 1/2000 Yokoyama 341/67
(*) Notice: Subject to any disclaimer, the term of this 6.069.575 A * 5/2000 Kinouchi etal. 341/67
%ats‘ﬂg 115 527(‘;‘;%‘1‘3? O‘:;r dadJ“Sted under 33 6,313,766 B1* 11/2001 Langendorfet al. 341/67
R Y s 6317461 Bl 11/2001 Chujoh et al.
(21) Appl. No.: 12/133,489
(22) Filed: Jun. 5, 2008 _
(Continued)
(65) Prior Publication Data OTHER PURI ICATIONS
US 2008/0231482 Al Sep. 235, 2008 o
Wong, S. et al.; Future Directions of (Programmable and
Related U.S. Application Data Reconfigurable) Embedded Processors.
(62) Davision of application No. 11/538,336, filed on Oct. (Continued)
3, 2006, now Pat. No. 7,385,534, which 1s a division of . . .
application No. 11/046,048, filed on Jan, 28, 2005, *.rimary Examiner—Linh V Nguyen
' o S " (74) Attorney, Agent, or Firm—McAndrews, Held & Malloy,
now Pat. No. 7,132,963. [td
(60) Provisional application No. 60/609,511, filed on Sep.
13, 2004. (57) ABSTRACT
(51) Int.CL
HO3M 7/40 (2006.01) An apparatus for processing variable length coded data
(52) US.CL ..., 341/67;, 341/359; 341/65; includes a coetlicient butler unit and several lookup tables.
341/106; 341/107 The coelficient buffer unit includes a coellicient memory and
(58) Field of Classification Search 341/58, an index register for storing an indication ot a non-zero nature
341/59, 65, 67, 106, 107; 375/240.15; 345/520, of coetlicients stored in the coefficient memory. Advanta-
345/589 geously, the lookup tables may be altered to adapt the appa-
See application file for complete search history. ratus for processing variable length coded data to handle
_ encoding or decoding video adhering to a specific standard.
(56) References Cited Furthermore, the lookup tables may be adapted to accelerate

U.S. PATENT DOCUMENTS

the determination of the presence of escape codes and the
subsequent handling of the escape codes.

4,068,298 A 1/1978 Dechant et al.

4,764,896 A 8/1988 Freimark et al.

5369405 A * 11/1994 Choietal. .ccooveeeeeeeee.... 341/63 6 Claims, 16 Drawing Sheets
=
S RO ADDR WADDR RDATA LEVEL | &
S - SCAN -
> g TABLE UNIT COEFFICIENT =
(Fa
= <« ADDR 304 MEMORY DO N, =
5 306 =
= DMA WDATA | } RUN- asT 2
= INT LEVEL =
= _ RATA | | UNIT ~
= - 308 e
T~

»| INDEX REGISTER |e—
310 COEFFICIENT
CEB UNIT 208 VECTOR

US 7,804,430 B2

Page 2
U.S. PATENT DOCUMENTS 7,460,041 B2* 12/2008 Yangetal. 341/107
2007/0139228 Al 6/2007 Pearlstein et al.
6,573,846 Bl 6/2003 Trivedi et al. 2007/0194957 Al 8/2007 Watanabe
6,636,222 Bl 10/2003 Valmiki et al.
6,650,785 B2 11/2003 Boon OTHER PUBLICATIONS

6,674,376 Bl 1/2004 Nishimura Van Dusen, Chuck; MPEG-2 Tutorial, MPEGoverview.ppt.

6,799,246 B1* 9/2004 Wise et .::11* 711/117 Knee. Mike: MPEG Video: Mar. 2002: Snell & Wilcox.
7,132,963 B2 11/2006 Pearlstein et al.

7,262,718 B2* 8/2007 Sugisawaeeeenn..n. 341/64 * cited by examiner

US 7,804,430 B2

Sheet 1 0of 16

Sep. 28, 2010

U.S. Patent

S0LLLOLOLOLOLLL Y ————

oLl
431104LNOD
INISSII0Hd
03IA

8oL
4344ng
AYIYLS

5300J H1INJT
119VIdYA

L Ol

901
INION3
03009

0dJIN

'J13 'J00N NOILIIOIYd
'SS3HAAY TVIIVdS "'SHOLIIA NOILOW

S1N419144309
10 S$0019

70l
AHOIIIN
QIUYHS

S1N41J144409
10 S)J014

¢0l
L1INN 130

— 04dIA

001

US 7,804,430 B2

Sheet 2 0of 16

2010

b/

Sep. 28

U.S. Patent

801
di444
NVIdLS
NOH4/0L

Y
=
™
900 («— 5
LINN | ==
gs4d " =
] o
v

¢ Ol

0l
AdOWNAN

Q4aVHS

¢0¢ SN d34SNVHL v1vd 441513934 1v301

Y Y v
207 21T ¥ 91
LINN [« LINA LINN LINN
937 1N7A 1n1 1N19

vee
SH31S193Y

70
d31104d1N0OJ
SN4 ANY
d3IN3N03S

0¢¢ 405533044

1%
N1V

A

CCC
AdOWdN
‘dLSNI

™

US 7,804,430 B2

Sheet 3 0of 16

Sep. 28, 2010

U.S. Patent

TO ILUT 214 AND GLUT 216

¢ 9l
N413144403 OLE
03do3 LINA
43151934 X3aN|
80¢ —
Z0€
LINN 1IN ICL
- || 713AT I
1SV NNY o YLYam
0Q¢
NN yaavy AdONGN v0E yaav
LN319144309 LINN 318V 1 -
- 1| NV IS
13A3T v1vay 4aaym yaav 03d

TO/FROM SHARED MEMORY 104

]
o0 I
F 7V 9l
4-..,,
4
2 Z1Z LINN - 9D 13AT] 91z LINN
2 Z0
~ LNTA OL X30N| YilA a3Lsnray LN19 WOYA
77 119V
- 4001 X3aN! ELE]
0L 13A31aNY NNYH
AR,
11971 dN)00T
2 X3aNI 0L 27A
o
=t
2
i
P,
—
=
gl
s
g —
g 0y 1SV
91z LNN 118 LINN I-. _ w"u_,_N: 131
LN19 01 NOILYN9IGNYSIO 379V1 dNY007 Lig I. NNY g 0K
NOILYN9IGNYSIC
bt 13Ad1 -

< d01V13dd0J
1003 3dVJ53

7L¢ LINM L

U.S. Patent

U.S. Patent Sep. 28, 2010 Sheet 5 of 16 US 7,804,430 B2

I N
‘- o
LD LD

H16
FULL ESCAPE
(IN TABLE)
h08

FULL ESCAPE
(NOT IN TABLE)
MAXLEVEL

RUN

500 _(‘

]
B S
& 0 Ol 022
<
< Jle Lol 13A31 Q3LSnrav NOILONELSNI dNY00T 10553J0dd
— NO4H
&L
I~
N Oy
-
%mmmummw <3003 40 3dAL 809 119 _H_ﬂ_:_,_:
a 30 NOILYIIONI LINN 919017 I4YdIND] NOILYN9IGINYSIC 0N
X3aNI JNNF
— NNYXVIN
= _ SONILLIS
S —_ -
: 7719 NLYLS
2 > TINTTIXYIN
= p
~
y—
—
g |
oS
gl
= N
D N
” - = 09 319VL dNY001 1 1SV
P
$S3Yaay Isvd NnY¥ Ln1o VY 1IN | 7
NRE) inn 839
e «—
A 209 319Y1 dn00T NOd-
$S34aay Isvg 13AI1 LN19 YNIXYWNOY
ETEN
91z LINN LN19

U.S. Patent

US 7,804,430 B2

Sheet 7 0f 16

Sep. 28, 2010

U.S. Patent

L0OC
1JV4d41N|

ANIING 0L

3003 HLINAT F18VIdVA

L Dld

0L
378YL dNX00T
13A37 ONY NNY

0L
319Y L
dMI00 INTVA

XA0N|

rL¢ LINI
L1 INOdA

US 7,804,430 B2

Sheet 8 0f 16

Sep. 28, 2010

U.S. Patent

£08SN8 vLvQ 8 Ol
A A A
(08 SNg $$34a0Y
e ______ e
307 LINN gss] " _ —
—— — -
| i 818 HI1S193Y _ WﬂmU
801 Vivad J1IHM | |
| | 8 aNY "D3S
43449 1 “
>$Ew _ L g _ _
= o 918 43151934 _
| P _ SLig JLIHM |
. 52 || 018 4300230 | |
= o | I ssawoay | |
_ == | | 7IBYILSI9N _
801 = | | vLvd Qvay |
uang | | 68 = _ _
041 |
NYIHLS _ - B _ BN“
NOY- _ 718 H3LSI03L 30vH3LNI
| _ SLig a3y NION3
| 03ddYIN,
| _ AHOWIW,

rIIIIIIIIIIIIIIIIII

U.S. Patent

15
23

31

39
47

Sep. 28, 2010

55
03

14
22

30
33
46

o4
62

13
2

10 11 12
20

13
26

19
27

17
29

29
37

28

42 | 43 | 44 | 45

41

03
oN

16
24

32 | 33 | 34 | 35 | 36

902

40

48 | 49 | 50 | 51 | 52
56 | 57 | 58 | 59 | 60

28

42

43

53

Sheet 9 0of 16

27

29

41

44

10

34
28

US 7,804,430 B2

36
o1

46
63

15
26
30

40

14

18 | 24 | 31

11

39

32
33
47

23

46

33
37

o0

of

49

43

41

21

43

44

39
62

2 | 4 | 7 | 13] 16
3 | 8 | 12 | 17 | 25

904

16
29
33

11

43

13
40

32
26

24
19

20

14
50
37
31

13
49

of

o6
23

42

30

15
52

22

38
55

FIG. 9

45

59

17
12

21

906

35
29

58

53 | 60 | 61 | 54 | 47

Ol Old
SIA

US 7,804,430 B2

¢dv3d XJ01d
3dI1N

7101l
o LNTI AS
= SINTVA LSY1/1IAITNNY e—S3A
= 10 9NIQY3IY Y3994
= 2101
5
7> ON ;3131dIN02 S1N3I19144309

— $S379V av3IY 10 Y7019 Qv3y

LHOWIN a3YY 0L 1INN VING 399141 M

— 9001
e
S 3001 ﬁ
M, ON
S $S379V 319VL dNX00T
2 404 SY3LSI1934 dNL3S Jr
P 001

SS399V AHOWIN QFUYHS |

d0d4 Sd415193d dlL3S

¢001

U.S. Patent

US 7,804,430 B2

Sheet 11 of 16

Sep. 28, 2010

U.S. Patent

L1 Ol

A Y
LINM
LNTA X4UN|

0l

e 3dAl

4%
314V1 dNX00 |
X4ANI 0L J 1A

0y
318Y L
dMI001 X3an

0L 1IAJT1 ANV NNd |«

€

0lY
XN
JENEN

0v
LINN

d05531J0dd <

0l 1dVJ5d

1447
d0LlV13dd09
1003 1dVJS

118v.L dNA00T LId
NOILVNIIANYSIA

€

L

HLIN31NOIL40d

rL¢ LINM LOTI

15414 X1434dd

LOC
1JV4d4LNI
NOd4

JNILLIS
JILVLS

US 7,804,430 B2

Sheet 12 of 16

Sep. 28, 2010

U.S. Patent

0éC
d0553130dd
0L

1dAl 1aV354

¢l Old

70cl
d01JVd1lXd
idAl 1dVJS

l

ESC MATCH FLAG

¢0cl
1INN NOSIdVaiNl0d

|

vly
H0LY13HH0J 3009 3dVIS3

1009 HLINAT 1aVIdVA

H1INIT NOI1d0d
15414 XIdd4d

LOC
1JV4d41NI
NO4A

US 7,804,430 B2

Sheet 13 0f 16

Sep. 28, 2010

U.S. Patent

30¢ LINN

a9 0L

(AHYSS3JIN 41)

3l¢
11V UNV 7l¢ -

LINO LA OL

—

—]
LLl
—
LLl]
—

el Old

0L
319YL dNY0OT
13A371 ANV NNY

0L
378Y1
dNi001 INTYA

Z1Z LINN LN1A

XAANI

PL¢ LINN
101 NO4dd

US 7,804,430 B2

Sheet 14 of 16

Sep. 28, 2010

U.S. Patent

FROM VLUT 212

1SV

NId

1dAd 1

7l 9l
Ov14 802 LINN 932
041Z NON T _ _
LINN OY14d 044Z NON
44151944 X4UNI
80¢ -
LINN o vivam
LINT
14Ad1 i YO
NNY - ¥LvOH
90¢
Ad0NTIN vOe
40dvm dady
. IN313144303 LINN 3181 _
NVJS]
vivam d004dv4 - qddy 044
13414S
41dV.1L NVaS

TO/FROM SHARED MEMORY 104

US 7,804,430 B2

Sheet 15 0f 16

Sep. 28, 2010

U.S. Patent

A4OWIN QIUVHS 0L
SINII9144309 YIINVHL
0L LINN YINQ 4399141 J(

o A
Gl Ol SIA

¢1131dINC

SEENNLY
11IdM AdOW4IA

SdA

ON

¢AdONdIN
1N4131141403 NI XJ01d
JdILN4

LINM THAJT-NNY 01
Viva 19Ad1-NNd J0IA0Yd | o

¢lal

016Gl

8061

S53JIV AdOINIIN 04dVHS
d04 Sd41S133d d13S

% ANy 97A LX3N 3A1393
9061 0L SINIWITI 4399141

ON
, 4 d

ﬂ

95439V 118V1 aNAM00 |
d04 Sd41S133d d13S

1dV1S

v0S1

US 7,804,430 B2

Sheet 16 0of 16

Sep. 28, 2010

U.S. Patent

8091

9091

7091

¢031

91 Ol

d315194d X4dN|
NI 9V11-0d4Z-NON 3d01S

AdOWAN LN413144307
NI 13Ad1 34018

d1.LNI0d
11V0dN 0L NNd 45N

14A3T ANV NNd A13334

US 7,804,430 B2

1

METHODS AND APPARATUS FOR
PROCESSING VARIABLE LENGTH CODED
DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a divisional of co-pending U.S. appli-

cation Ser. No. 11/538.336, filed Oct. 3, 2006, entitled
“METHODS AND APPARATUS FOR PROCESSING
VARIABLE LENGTH CODED DATA”, having as inventors
Larry Pearlstein et al., and owned by instant assignee, which
1s a divisional of U.S. application Ser. No. 11/046,048 (now
U.S. Pat. No. 7,132,963), filed Jan. 28, 2005, entitled
“METHODS AND APPARATUS FOR PROCESSING
VARIABLE LENGTH CODED DATA”, having as inventors
Larry Pearlstein et al., and owned by instant assignee, which
claims the benefit of prior provisional application Ser. No.
60/609,511, filed Sep. 13, 2004, the contents of which are

hereby incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to processing of variable
length coded data and, more particularly, to methods and

apparatus for such processing.

BACKGROUND

There has recently been a great deal of interest 1n support-
ing a wide array of standards for video encoding and decoding
in consumer products. Digital video standards of commercial
interest include: the International Standards Organization
(ISO) MPEG-2 and MPEG-4 standards; the Microsoft®
V(-1 draft standard; the International Telecommunication
Union Telecommunication Standardization Sector (ITU-T)
H.263 and H.264 standards; the On2 VP6 standard:; and the
digital videotape (DV) standard.

It 1s likely that multi-standard video encoders and decoders
will become more prevalent in coming years 1n a wide array of
products. Such products may include: set-top boxes for
receiving video over cable, digital subscriber line (DSL),
satellite link and/or the Internet; digital TVs; personal video
recorders; handheld devices (including personal digital assis-
tants, dedicated personal video players and mobile phones);
and wireless devices. High performance processors will be
required for runming applications on these widely varied
products.

Fixed function variable length coder/decoder units are
available, where “fixed function” refers to the fact that such
units are dedicated to a particular standard, for example, the
H.264 standard. Fixed function variable length coder/decoder
units may also be found in typical MPEG-2 video encoder and
video decoder chips including the Xilleon™ 200 family of
chips from ATl Technologies Inc. of Markham, Ontario,
Canada. Unfortunately, fixed function variable length coder/
decoder units lack the flexibility to work across a variety of
video compression methods.

It 15 also known that variable length coding/decoding may
also be performed by a general purpose reduced instruction
set computer (RISC) processor or a complex instruction set
computer (CISC) processor, such as those found in personal
computers. However, such high-performance general pur-
pose processors are hard to characterize in terms of worst case
performance, due to the dependence of general purpose pro-
cessors on the statistical behavior of instruction and data
caches. Additionally, general purpose processors are expen-

10

15

20

25

30

35

40

45

50

55

60

65

2

stve to 1implement, as they require large die area. General
purpose processors are also relatively inefficient at handling
variable-length data, since they are implicitly designed for
processing byte-aligned data.

Many of the digital video standards transform eight pixel
by eight pixel arrays that are representative of a portion of a
frame 1n a digital video sequence. The result of this transior-
mation may be called a block of coellicients. The block of
coellicients may be encoded using variable length codes as a
form of eflicient compression. A macroblock may be defined
to include four eight-by-eight luminance blocks of coetii-
cients and two eight-by-eight chrominance blocks of coetli-
cients.

The output of a video encoder in some standards 1s known
as an Elementary Stream (JS) The lowest-level entity 1n the
ES 1s an encoded block of coetlicients. Each encoded block 1s
terminated by an end-of-block code. A macroblock may be
formed by concatenating the four luminance blocks and the
two chrominance blocks. The six encoded blocks may be
preceded by a macroblock header that contains control infor-
mation belonging to the macroblock: spatial address, motion
vectors, prediction modes, field/frame DCT mode, quantizer
step size. The result 1s a coded macroblock.

Variable length codes often arise out of attempts to com-
press an amount of data to be transmitted. One type of vari-
able length code 1s the “run-level” type of code. Run-level
codes recognize situations in which a sequence of values are
to be transmitted, where many of the values are null (0). The
code replaces a long series of null values with an indication of
the value (level) that follows the series and an indication of the
length (nm) of the series. Through the use of such a code, a
series ol 28 0-valued bits that precede a value of 17 may be
reduced to an indication of the 17 (a level value) and five bits
(a run value) indicating that there 1s a series of 28 null values
ahead of the 17.

Compression codes also include so-called entropy encod-
ing schemes wherein the most common symbols are mapped
to the shortest code strings. An example of an entropy encod-
ing scheme 1s Huffman coding, which 1s used in the MPEG-2
standard. In the MPEG-2 standard, for example, blocks of
coellicients are first run-level encoded and then each run-
level combination (symbol) 1s Hulffman encoded.

Run-level encoding, in particular, requires that a block of
coellicients be written 1nto locations 1n a coefficient butfer. A
run-level encoder may then read the coetficient buller, loca-
tion by location, to determine run-level combinations repre-
sentative of the block of coetficients. In the reverse, decoding,
case, a run-level decoder recerves run-level combinations and
uses the run-level combinations to formulate a block of coet-
ficients 1n a coelficient butiler. As there are typically many null
entries 1n a block of coetlicients, it may be considered that the
writing, by the run-level decoder, of null entries to the coet-
ficient butfer 1s mnetficient.

Huffman encoding, 1n particular, requires that a code be
determined to correspond to each received run-level combi-
nation. For the sake of efficiency, a single code may map to
more than one run-level combination. For instance, a maxi-
mum run value may be defined and a given run-level combi-
nation may include a given run value and a given level value.
When the given run value exceeds the maximum run value,
the maximum run value may be subtracted from the given run
value to provide an intermediate run value. The code gener-
ated then corresponds to a combination of the intermediate
run value and the given level value. To distinguish this code
from the same code generated when the received run value 1s
equivalent to the intermediate run value just determined, the
former code may be preceded by an “escape code”. In par-

US 7,804,430 B2

3

ticular, the escape code may 1dentily the following code to be
a “delta-run” code. A “delta-level” code may be similarly
determined and 1dentified.

Determining an escape code to generate based on recerved
run and level values can be a complex and processor-time
consuming exercise. Existing encoders are known to either
implement a hardwired approach, which 1s inherently inflex-
ible, or implement a programmed approach on a general-
purpose RISC processor or a purpose-specific processor.
Unfortunately, such existing approaches do not specifically
accelerate the determining and handling of escape codes.

Clearly, then, there 1s a need for methods and apparatus for
eiliciently encoding and decoding data that manipulates vari-
able length coded data efliciently at very high processing
rates.

SUMMARY

An apparatus for processing variable length coded data
includes a coetlicient builer unit and several lookup tables.
The lookup tables, 1n particular, may be adapted to accelerate
the determination of the presence of escape codes and the
subsequent handling of the escape codes. For instance, a
lookup table may select, based on results of a number of
comparisons, a type of escape code from among a plurality of
types of escape code. Alternatively, alookup table may select,
based on some received values and some values located 1n the
lookup table, a type of escape code from among a plurality of
types of escape code. Further, an escape code may be 1denti-
fied by correlating an 1nitial bit pattern 1n a recerved code to
known bit patterns related to escape codes.

Additionally, the coefficient buffer unit may include a
memory and an index register for storing an indication of a
non-zero nature of coellicients stored in the memory. Advan-
tageously, the index register allows for more efficient pro-
cessing of blocks of coellicients during both encoding and
decoding. Furthermore, the lookup tables may be altered to
adapt the apparatus for processing variable length coded data
to handle encoding or decoding video adhering to a specific
standard.

According to an aspect of the present invention, there 1s
provided a method of populating a memory for use 1n decod-
ing a stream of encoded values. The method 1includes 1nitial-
1zing, to an 1nitial value, a pointer to a memory location 1n the
memory, recerving a run value and an associated level value in
the stream, updating the pointer using the run value, to give an
updated pointer, populating a memory location in the
memory, the memory location in the memory 1dentified by the
updated pointer, using the level value and populating a
memory location in an index register, the memory location in
the index register identified by the updated pointer, to indicate
that the memory location in the memory i1dentified by the
updated pointer has been populated. In another aspect of the
invention, a run-level decoding apparatus 1s provided for
carrying out this method.

According to another aspect of the present invention, there
1s provided a method of handling coellicient data recerved
from a first memory. The method includes receiving a coet-
ficient value stored 1n the first memory at a given address,
receiving an index register value stored 1n an index register at
an address corresponding to the given address and determin-
ing, based on the index register value, whether to write the
coellicient value to a second memory. In another aspect of the
invention, a direct memory access apparatus 1s provided for
carrying out this method.

According to still another aspect of the present invention,
there 1s provided a method of run-level encoding. The method

10

15

20

25

30

35

40

45

50

55

60

65

4

includes 1mmitializing a value of a first pointer to a first memory
location 1n a memory that includes a plurality of memory
locations, receiving a coellicient vector having a plurality of
indexed coellicient vector elements corresponding to the plu-
rality of memory locations, incrementing a value of a second
pointer to a location in the coellicient vector until the second
pointer references a location of a given mdexed coelficient
vector element that indicates a presence of a coellicient in a
second memory location 1n the memory, where the second
memory location corresponds to the given indexed coelficient
vector element, determining a difference between the value of
the first pointer and the value of the second pointer, determin-
ing a run value based on the difference, outputting the run
value, reading, from the second memory location, a coetfi-
cient value and outputting the coellicient value as a level
value. In another aspect of the invention, a run-level encoding
apparatus 1s provided to carry out this method.

According to a further aspect ol the present invention, there
1s provided a programmable apparatus for processing variable
length coded data. The programmable apparatus includes a
memory having a plurality of memory locations, a register
storing a pointer to a particular memory location of the plu-
rality of memory locations, a lookup table storing a reference
to the pointer associated, at least 1n part, with a run value and
a level value and a processor. The processor 1s adapted to
execute a sequence of istructions stored 1n the memory and
responsive to receiving the reference to the register, branch
the executing away from the sequence to execute an 1nstruc-
tion stored 1n the particular memory location.

According to a still further aspect of the present invention,
there 1s provided an escape code selection apparatus for pro-
ducing variable length coded data. The escape code selection
apparatus includes a first comparator adapted to compare a
received run value to a previously stored run value to produce
a first comparison result, a second comparator adapted to
compare a recerved level value to a previously stored level
value to produce a second comparison result and a logic unit
adapted to select, based, at least 1n part, on the first compari-
son result and the second comparison result, a type of escape
code from among a plurality of types of escape code.

According to an even further aspect of the present mven-
tion, there 1s provided a method of producing variable length
coded data. The method includes receiving a run value rep-
resented as a run plurality of bits, receiving a level value
represented as a level plurality of bits, forming an address by
combining the run value and the level value, using the address
to determine a value for a disambiguation bit, determining a
maximum level value for the run value, determining a maxi-
mum run value for the level value and selecting, based, at least
in part, on the run value, the level value, the maximum run
value, the maximum level value, the disambiguation bit and
previously stored values, a type of escape code from among a
plurality of types of escape code. In another aspect of the
invention, an escape code selection apparatus 1s provided for
carrying out this method.

According to an even further aspect of the present mven-
tion, there 1s provided a method of handling variable length
coded data. The method includes receiving a string of binary
digits, recerving a prefix first portion length, comparing a first
number of binary digits of the string to a reference string,
where the first number 1s equivalent to the prefix first portion
length, based on the comparing, generating a positive match
indicator and generating an output string having a predeter-
mined prefix second portion length, where the output string
includes values of a second number of binary digits in the
string of binary digits that directly follow the first number of
binary digits, where the second number 1s equivalent to the

US 7,804,430 B2

S

prefix second portion length. In another aspect of the inven-
tion, an escape code correlator 1s provided for carrying out
this method.

Other aspects and features of the present invention will
become apparent to those of ordinary skill in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

In the figures which 1llustrate example embodiments of this
invention:

FIG. 1 illustrates a video CODEC circuit employing a
programmable microcoded engine according to an embodi-
ment of the present invention;

FIG. 2 1llustrates the microcoded engme of FIG. 1 includ-
ing a coelficient buffer unit and various lookup table units
according to an embodiment of the present invention;

FIG. 3 illustrates the coellicient butifer unit of the program-
mable microcoded engine of FIG. 2 1n encode mode accord-
ing to an embodiment of the present invention;

FI1G. 4 illustrates an index lookup table unit of the program-
mable microcoded engine of FIG. 2 1n encode mode accord-
ing to an embodiment of the present invention;

FI1G. 5 illustrates a table for use in converting level and run
values to variable length codes;

FI1G. 6 1llustrates a general purpose lookup table unit of the
programmable microcoded engine of FIG. 2 1n encode mode
according to an embodiment of the present invention;

FIG. 7 illustrates a value lookup table unit of the program-
mable microcoded engine of FIG. 2 1n encode mode accord-
ing to an embodiment of the present invention;

FIG. 8 illustrates, as a detailed block diagram, an engine
interface and bitstream bufler unit of the programmable
microcoded engine of FIG. 2;

FI1G. 9 illustrates arrays of memory locations for the scan
table and a coellicient memory for the coellicient buifer unit
of FIG. 3;

FIG. 10 1llustrates steps in a method of controlls
generation of run/level/last data at the coetlicient bui
of FIG. 3;

FI1G. 11 illustrates the index lookup table unit of FIG. 4 in
decode mode according to an embodiment of the present
imnvention;

FIG. 12 illustrates an escape code correlator of index
lookup table unit of FIG. 11 according to an embodiment of
the present invention;

FI1G. 13 1llustrates the value lookup table unit of FIG. 7 in
decode mode according to an embodiment of the present
invention;

FI1G. 14 1llustrates the coeltficient builfer unit of FIG. 3 in
decode mode according to an embodiment of the present
invention;

FIG. 135 1llustrates steps in a method of controlling the
generation of coellicients from run/level/last data at the coet-

ficient buffer unit of FIG. 14; and

FIG. 16 illustrates steps 1n a method of decoding received
run and level values to determine coetlicient values according,
to an embodiment of the present ivention.

ing the
‘er unit

DETAILED DESCRIPTION

FI1G. 1 illustrates a video CODEC (COder-DECoder) cir-

cuit 100 for use 1n encoding and decoding a digital video
sequence. A digital video sequence may be considered a
series of digital still images, where each digital still image 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

described by values of picture elements, called “pixels”. A
discrete cosine transtform (DCT) unit 102 may be used to
represent the digital still images as arrays of quantized coet-
ficients. The DCT umt 102 may also implement motion com-
pensation techniques, and other techniques, to reduce the
total number of arrays of quantized coetlicients and to reduce
the number of non-zero coellicients per array of quantized
coellicients. The arrays may then be stored in a shared
memory 104, where the arrays may be accessed by a pro-
grammable microcoded engine 106 for processing variable
length coded data. The microcoded engine 106 may use the
arrays to generate variable length coded data representative of
the arrays of coellicients. The vanable length coded data may
then be output to a stream butier 108 under control of a video
processing controller 110. The video processing controller
110 may also insert additional syntax elements (both fixed
and variable length) among the variable length coded data
produced by the microcoded engine 106.

FIG. 2 illustrates, as a block diagram, the programmable
microcoded engine 106. Microcode refers to low level
instructions that control a microprocessor. The microcode of
the microcoded engine 106 may be reprogrammed to allow
the microcoded engine 106 to be adapted for use 1n multiple
video encoding and decoding applications, 1.e., encoding and
decoding according to a selected standard among multiple
standards.

The microcoded engine 106 includes a processor 220 for
executing a sequence of 1nstructions stored in an nstruction
memory 222. The mstruction memory 222 has a plurality of
instruction memory locations. Associated with the processor
220 1s a plurality of registers, where each register 1s for storing
a pointer to a particular nstruction memory location 1n the
instruction memory 222.

The microcoded engine 106 includes a local register data
transier bus 202 that includes an address bus and a data bus
and 1s controlled by a sequencer and bus controller 204 within
the processor 220. An array of special processing units are
connected for communication through the local register data
transier bus 202.

The special processing units may include a bitstream butfer
(BSB) unmit 206 for providing read access to bitstreams stored
in the stream buffer 108 that include vanable length binary
strings. Equally, the BSB unit 206 may write bitstreams to the
stream buller 108, where the bitstreams include variable
length binary strings. The BSB unit 206 may communicate
with the local register data transier bus 202, and thereby with
the rest of the special processing units, via an engine interface
207.

The special processing units may also include a Co-Efli-
cient Buller (CEB) unit 208. As will be described, the CEB
unit 208 may be arranged to perform scan conversion on-the-
fly from a random access memory (RAM) based scan table.
The CEB unit 208 may also, when encoding, handle creation
of a zero/non-zero tlag vector as part of a direct memory
access (DMA) operation, which transiers coellicients from
the shared memory 104. The CEB unit 208 may also, when
decoding, force coelficients to zero as part of the DMA opera-
tion that transfers coefficients to the shared memory 104,
based onthe zero/non-zero tlag vector. The CEB unit 208 may
also transpose columns of coellicients to allow for efficient
burst access.

The special processing units may also include a Value
Lookup Table (VLUT) unit 212 adapted to convert a recerved
code 1index to a corresponding variable length code string and
a representation of the length of the variable length code
string, when encoding, or to convert a received code index to
non-zero value (level) and an indication of separation from a

US 7,804,430 B2

7

prior non-zero value (nm), when decoding. The output of the
VLUT unit 212 may be processed through a set of program-
mable barrel shifters in an arithmetic logic unit (ALU) 218,

which programmable barrel shifters allow single cycle shift-
ing and rotating of data words. Such processing may be seen
to allow for efficient alignment of the various output bit fields

L] [y

in different modes.

The special processing units may also iclude an Index
Lookup Table (ILUT) unit 214 adapted to, 1n a decode mode,
find the codebook 1ndex of a variable length code applied to
the ILUT unit 214 and, in an encode mode, find a variable
length code index corresponding to received codebook sym-
bol information applied to the ILUT unit 214, dependent upon
the setting of a mode bit. The ILUT unit 214 may be RAM-
based or Content Addressable Memory-based.

The special processing units may also include a General
Purpose Lookup Table (GLUT) unit 216. The GLUT unit 216
may be particularly useful for determining when level and run
values exceed limits 1n a table that maps such level and run
values to variable length codes.

As mentioned 1n passing above, the special processing
units may include conventional elements, such as the ALU
218. As with known ALUs, the AL U 218 employs a collection
of logic gates to perform operations such as addition, subtrac-
tion, and multiplication of integers as well as bit-wise Bool-
can operations (e.g., AND, OR, NOT, XOR).

In FIG. 2, the local register data transfer bus 202 1s shown
abstractly. In practice, the address bus and data bus that make
up the local register data transter bus 202 can be implemented
through tri-state controlled buses or through the use of mul-
tiplexing logic to select among data sources, the latter being
more commonly used in modem 1ntegrated circuits. Further-
more the portion of the data bus that carries data written by the
sequencer and bus controller 204 may be distinct from the
portion of the data bus employed to carry data read from the
various special processing units 208, 212, 214, 216, 218.

The CEB unit 208, 1llustrated 1n detail in FIG. 3, includes
a DMA unit 302 for reading DC'T coeftficients from the shared
memory 104 1n encode mode and writing DCT coetlicients to
the shared memory 104 i decode mode. In communication
with the DMA unit 302 1s a scan table unit 304 for converting,
according to a selected scan table, a memory location speci-
fied by the DMA unit 302 to a memory location 1n a coedli-
cient memory 306. Dependent upon encode or decode mode,
the coellicient memory 306 may be read from, or written to,
by a run-level unit 308. Access to the coetlicient memory 306
may be mirrored by access to an index register unit 310 that 1s
arranged to maintain, 1n an associated index register, a record
of the presence or absence of a coelficient at each memory
location 1n the coelficient memory 306.

The ILUT unit 214, illustrated 1n detail in FIG. 4, includes
several lookup tables. For use 1n encode mode, the lookup
tables include a run and level to mndex lookup table 402, a
disambiguation bit lookup table unit 404, a run maxima
lookup table 602 and a level maxima lookup table 604. To
select between a received level value and an adjusted level
value for use 1n the run and level to index lookup table 402, a
level multiplexer (MUX) 410 1s provided. For use in decode
mode, the ILUT unit 214 includes a variable length code to
index lookup table 412 and an escape code correlator 414.

The GLUT unit 216, as illustrated 1n detail in FIG. 6,
includes a run maxima look up table 602, which receives, as
input, the level value and the last indication generated at the
CEB unit 208 as well as a level base address and generates, as
output, a maximum run value for the provided level value.
Similarly, the GLUT unit 216 includes a level maxima look
up table 604, which receives, as mput, the run value and the

10

15

20

25

30

35

40

45

50

55

60

65

8

last indication generated at the CEB unit 208 as well as a run
base address and generates, as output, a maximum level value
for the provided run value.

The output of the run maxima look up table 602 1s received
by a run multiplier 606R while the output of the level maxima
look up table 604 1s recerved by a level multiplier 606L. The
output of the run multiplier 606R 1s recerved by a first com-
parator 607 A, which also receives the run value recerved from
the CEB unit 208. The output of the level multiplier 606L 1s
received by a second comparator 6078, which also receives
the level value recetved from the CEB unit 208. The output of
the run maxima look up table 602 1s also recerved by a thurd

comparator 607C, which also receives the run value recerved
from the CEB unit 208. Similarly, the output of the level
maxima look up table 604 1s received by a fourth comparator
607D, which also recetrves the level value received from the
CEB umt 208. A fifth comparator 607EF receives the maxi-
mum level value from the ILUT unit 214 and the level value

received from the CEB unit 208.

The output of the five comparators 607A, 6078, 607C,
607D, 607E may be received by a compare logic unit 608,
whose output may be a jump index for the processor 220
and/or an adjusted level value for the ILUT unit 214. A jump
index may be an indication of a particular register among the
registers 224, where the particular register stores a pointer to
an 1nstruction in the instruction memory 222 that may be
executed by the processor 220.

Asillustrated in FIG. 7, the VL UT unit 212 includes a value
lookup table 702 for determining a variable length code based
on a recerved index value. Alternatively, when loaded with
different data, the value lookup table 702 included in the
VLUT unit 212 can be used to provide a run and level lookup
that may be used to determine a run value, level value and last
indication based on a recerved 1index value.

An exemplary configuration for the engine interface 207
and the BSB unit 206 1s illustrated in FIG. 8. An address

decoder 810 within the engine interface 207 1s connected to
an address bus 802 and a data bus 803, which are part of the
local register data transier bus 202, for communication with
the sequencer and bus controller 204 at the processor 220.

The address decoder 810 connects to a read_bits register
812, a read_data register 814, a write_bits register 816 and a
write_data register 818, also of the engine interface 207. The
four registers 812, 814, 816, 818 represent “memory
mapped” ports. Storage elements, such as tlip-tlops, may or
may not be associated with the registers 812, 814, 816, 818.
Each of the registers 812, 814, 816, 818 connects both to the
data bus 803 and to a variable length string interface 820. The

variable length string interface 820 receives mput from a read
FIFO 822 and provides output to a write FIFO 824.

A drawing similar to FIG. 8 may be constructed, wherein
the engine interface 207 1s register mapped such that access to
the BSB Unit 206 1s determined by encoded instruction fields,
rather than memory bus addresses.

In overview, the microcoded engme 106, with the array of
special processing units connected via one or more register
data transfer buses, may be employed to convert arrays of
quantized DCT coef101ents to variable length coded data in
encode mode and to convert variable length coded data to
arrays of quantized DC'T coeflficients 1n decode mode. Impor-
tant to the operation of the microcoded engine 106 1s the CEB
umt 208 for converting the quantized DCT coellicients to
level and run values 1n encode mode and converting level and
run values to quantized DCT coetlicients in decode mode.

Additionally, several lookup tables 212, 214, 216 are

US 7,804,430 B2

9

employed for conversion between level and run values and
variable length coded data representative thereol and vice
versa.

In operation, the CODEC circuit 100 may be used in
encoding a digital video sequence to produce variable length
coded data or may be used 1n decoding variable length codes
to produce a digital video sequence. The encoding operation

may be considered first.

When the CEB unit 208 1s 1n an encode mode, blocks of
DCT coellicients are transterred from the shared memory 104
into the coetlicient memory 306 and then read out as run/
level/last values under the control of the processor 220. The
coellicient memory 306 may be treated as a ping-pong butifer
with each side holding one eight by eight block of coetli-
cients, where a coellicient may be, for instance, represented
by a 16-bit value. As 1s known, a ping-pong buifer contains
two separate builers so that, while data 1s written to one
butler, data may be read from the other buifer.

The transfer of the blocks of DCT coelficients from the
shared memory 104 into the coetlicient memory 306 may be
arranged to occur one coellicient at a time. According to
instruction received from the processor 220, the DMA unit
302 requests, from the shared memory 104, a specific coelli-
cient by the memory location (ADDR, see FIG. 3) of the
specific coelficient in the coellicient array as stored in the
shared memory 104. Once the DMA unit 302 receives the
specific coellicient (RDATA), the DMA unit 302 transmits
the specific coellicient (WDATA) to the coellicient memory
306 while specifying the memory location (ADDR) to the
scan table unit 304. The scan table unit 304 may use a selected
RAM-based scan table to determine a memory location
(WADDR) for the specific coetlicient in the coelficient array
as stored in the coelficient memory 306.

As the coellicient memory 306 receives the specific coel-
ficient (WDATA) and the memory location (WADDR) for
storing the specific coelficient, the same information 1s
received by the index register unit 310. At the memory loca-
tion (WADDR) 1n an index register within the index register
unit 310, a binary indication of whether the specific coetii-
cient 1s zero (e.g., binary indication=0) or non-zero (e.g.,
binary indication=1) may be recorded. Once the entire DCT
coellicient array has been transiferred from the shared
memory 104 to the coellicient memory 306, a 64-bit (in the
case of an eight-by-eight DCT coetficient array) coded coet-
ficient vector may be generated from the bits in the index
register unit 310.

According to some standards, ¢.g., MPEG-2, a coellicient
array may be stored for encoding 1n a manner d1 ‘erent from
the manner in which the coefficient array was stored after
creation. As illustrated 1 FIG. 9, a first array 902 illustrates
memory locations of DCT coellicients (by reference number)
in an array as stored after creation. For instance, where
memory locations 1n the array may be referred to 1n an (X, y)
format, where x 1s a horizontal index (x=0, 1, ..., 7)and y 1s
a vertical index (y=0, 1, ..., 7), the memory location (2, 0) 1n
the first array 902 holds the DCT coellicient with reference
number 2.

The scan table unit 304 may be used to re-order the DCT
coellicients into a “zig-zag™ sequence, which 1s known to help
to facilitate entropy coding by placing low-frequency coetii-
cients before high-frequency coelficients.

The z1g-zag sequence reordering 1s represented by a sec-
ond array 904 1n FIG. 9, in which a given memory location 1s
represented by the reference number of the DCT coetlicient
occupying the given memory location 1n the first array 902.
According to the second array 904, when the DMA unit 302
specifies memory location (0, 1) for storing the DCT coelli-

10

15

20

25

30

35

40

45

50

55

60

65

10

cient with reference number 8, the second array 904 indicates
memory location (2, 0) (1.e., the memory location in the first
array 902 of DCT coetlicient with reference number 2) for
storing the DCT coellicient in the coetlicient memory 306. A
third array 906 1n FIG. 9 illustrates the memory locations of
the DCT coellicients after being written to the coelficient
memory 306 1n memory locations selected according to the
second array 904. Continuing the example above, the DCT
coellicient with reference number 8 may be found 1n the third
array 906 1n memory location (2, 0).

In a second example, according to the second array 904,
when the DMA unit 302 specifies memory location (4, 4) for
storing the DCT coellicient with reference number 36, the
second array 904 generates memory location (7, 4) (1.e., the
memory location 1n the first array 902 of DCT coellicient with
reference number 39) for storing the DCT coelficient in the
coellicient memory 306.

In this manner, a first block of coelfficients may be trans-
terred, by the DMA unit 302, from the shared memory 104
into the coellicient memory 306. Subsequently, a second
block of coetlicients may be transierred, by the DMA umit
302, from the shared memory 104 into the other side of the
coellicient memory 306 while the first block 1s processed by
the other special processing units of the microcoded engine
106.

The sequence of events for encoding at the CEB unit 208 1s
illustrated 1n FIG. 10 to begin with the setting up of some
registers 1in the DMA unmit 302 (step 1002). Two 1dentical sets
of registers may be set up to allow for separate and 1ndepen-
dent access to the shared memory 104. The DMA registers
may include: a register for indicating a start address 1n the
shared memory 104; a register for indicating a start address 1n
the coelficient memory 306; a register for indicating a selec-
tion of a scan table 1n the scan table umit 304; and a register for
indicating a number of 128-bit (eight-coelficient) words to
transier for each block, e.g., eight words for an eight pixel by
eight pixel block.

Registers may also be set up in the run-level unit 308 (step
1004). For example, a register may be set up to indicate a start
address 1n the coellicient memory 306 for reading by the
run-level unit 308. Additionally, a register may be set up such
that writing to the register will mmitialize the hardware, 1.¢.,
write a zero value to each memory location 1n each memory
location 1n the index register associated with the index regis-
ter unit 310.

A register may also be set up to indicate a maximum
number of coellicients to encode. Under normal circum-
stances, the value 1n this register 1s equivalent to the block size
(e.g., 64 coellicients), but this register may be used to limit
encoding by defining a maximum number of coellicients for
which to generate variable length codes, regardless of the
number of coelficients actually encoded. This register may be
used by the run-level unit 308 to determine when to set the last
indication.

A register may also be used to indicate a DCT block size.
Such a DCT block size register may be used to establish a
valid portion of the coetficient memory 306 during process-
ng.

The processor 220 may trigger the DMA unit 302 (step
1006) to read the shared memory 104, first, by writing an
indication to one of the two DMA setup registers to be used
for such a purpose and, second, by writing an indication that
the required operation 1s a DMA Read (get) operation.

The processor 220 may read a DMA status register (step
1008) to determine when the requested memory access 1s
completed. If the DMA status register indicates that the
requested memory access 1s ongoing, the processor 220 may

US 7,804,430 B2

11

wait before reading the DMA status register again. Once the
processor 220 has determined that the requested memory
access 1s complete, the processor 220 may trigger the ILUT
unit 214 (step 1012) to obtain successive run/level/last data
for encoding by writing to a register specifically designed to
trigger such obtaining.

While triggering the ILUT unit 214 (step 1012) to obtain
successive run/level/last data for encoding, the processor 220
may determine whether all the DCT coetficients 1n the block
have been read (step 1014), or, at least, whether all the DCT
coellicients to be encoded (based on an indication in the
register that specifies this quantity) have been read. This
determination may be made by monitoring the last indication
output from the run-level unmit 308. However, it should be
noted that, even as the CEB unit 208 determines that all the
DCT coellicients in one block have been read from one side of
the coetlicient memory 306, the next block 1s being loaded
into the other side of the coellicient memory 306 from the
shared memory 104.

Upon determination that all the DCT coellicients 1n the
block have been read (step 1014), the processor 220 may set
up the registers (step 1002) in the DMA umt 302 for reading,
the next block.

To facilitate generation of run/level/last data, the run-level
unit 308 may 1nitialize (step 1004) a record of a “read index
pointer” (RIP) and a “previous read pointer” (PRP) to refer to
memory locations in the coetficient memory 306 and corre-
sponding memory locations 1n the Coded Coeflicient Vector
received from the index register unit 310.

Each time the run-level unit 308 receives an instruction
from the processor 220 to produce run/level/last data (step
1012), the run-level unit 308 begins a data processing opera-
tion that may be logically equivalent to the following
sequence ol steps:

1) Imtialize the value of the RIP to point to the first element

of the vector:

2) Determine whether the value of the Coded Coetficient
Vector element at the location pointed to by the RIP 1s
Zero;

3) I1 the value of the Coded Coellicient Vector element at
the location pointed to by the RIP 1s zero then:
increment the value of the RIP such that the RIP points

to the next element of the Coded Coeflicient Vector:
and
return to Step 2);
4) I1 the value of the Coded Coetlicient Vector element at
the location pointed to by the RIP 1s one then:
determine a difference between the value of the RIP and
the value of the PRP; output a value one less than the
difference as the run value; and

write the value 0 to the Coded Coellicient Vector ele-
ment at the location pointed to by the RIP;

5) Output the coelficient value stored 1n the coetficient
memory 306 at the memory location corresponding to
the location pointed to by the RIP as the level value.

6) Update the value of the PRP to be equal to the value of
the RIP:

7) IT all of the remaining elements of the Coded Coetlicient
Vector, starting at the element pointed to by the RIP, are
zero then set the “last” indication to 1; otherwise set the
“last” indication to 0 and return to Step 2).

Note that 1t may be advantageous to represent the level
value using a sign-and-magnitude representation, where the
“level” 1s actually the magnitude of the coelficient value. The
tollowing discussion generally assumes that the level repre-
sents the coellicient magnitude. Note that, although the above

10

15

20

25

30

35

40

45

50

55

60

65

12

procedure 1s specified sequentially, the equivalent data pro-
cessing operation may be carried out in digital logic 1n a
single processor cycle.

For example, consider the following DCT coetlicient array
as stored in the shared memory 104:

474 —-68 102 0O 45 770 =57 42
0 =62 =71 =58 0 =33 0O 0
0 73 4 64 0 0O 0 0
0 0o =42 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

After transfer from the shared memory 104 by the DMA umit
302 according to the zig-zag pattern provided by the scan
table 304, the coetlicients may be stored in the coefficient
memory 306 as follows:

474 -68 0 0 -62 102 0 =71]
73 0 0 0 41 =38 45 70
0 64 -42 0 0 0 0 0
0 0 =33 =57 42 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0

While the coefficients are being stored in the coefficient
memory 306, a corresponding array 1s being created 1n the
index register unit 310 as follows:

1 1 001 1 01
1 00 01 111
0 1 1 00 00 0
001 11 000
0 00 00000
00000000
0 00 00000
0 00 00000

For purposes of run value and level value determinations,
the array in the coellicient memory 306 may be considered a
one-dimensional coelflicient vector, (—474, —68, 0, 0, -62,
102,0,-71,73,0,0,0,41,-58,45,70,0, 64, -42,0, 0, 0, 0,
0,0,0,-33,-57,42,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0). Additionally, the correspond-
ing array in the imdex register unit 310 may be considered a
coded coetlicient vector, (1,1,0,0,1,1,0,1,1,0,0,0, 1, 1,
1,1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0). The coded
coellicient vector may be transierred from the index register
unit 310 to the run-level unit 308 for the generation of run and
level values.

Upon recerving a command from the processor 220 to
produce a run value and a level value, the run-level unit 308
may sequentially read bits from the coded coelficient vector
and imncrement the read index position until a bit 1s read that

US 7,804,430 B2

13

indicates the presence of a coeflicient i the coefficient
memory 306. The run-level unit 308 may then determine a
difference between a previous read position and the read
index position and output the difference as the run value. The
run-level unit 308 may then read a coetlicient value from a
memory location in the coetlicient memory 306 correspond-
ing to the read index position in the coded coellicient vector
and output the coelficient value as the level value.

Continuing the example, the following run and level values
would be generated by the run-level unit 308:
run=0, level=—474
run=>0, leve]l=—68
run=2, level=-62
run=>0, level=102
run=1, level==71
run=>0, level=73
run=3, level=41
run=0, level=-58
run=0, level=45
run=0, level=70
run=1, level=64
run=0, level=-42
run=7/, level=-33
run=>0, level==57
run=>0, level=42

When the “last” indication has been set to 1 (see Step 7
above) the run-level unit 308 may output the last indication
indicating that the remainder of coeflicients for the current
block of DCT coellicients are zero.

Turning to FIG. 4 and the operation of the ILUT unit 214,
upon receipt of the run/level/last data, the ILUT unit 214 uses
the disambiguation bit lookup table unit 404, with the run/
level/last data as input, to generate a single disambiguation bit
for transmission to the GLUT unit 216. According to criteria
to be discussed below, the GLUT unit 216 may generate an
adjusted level value. The adjusted level value may be recerved
by the level MUX 410 along with the level value recerved by
the ILUT unit 214. The ILUT unit 214 uses the received run
value and the output of the level MUX 410 to reference the
run and level lookup table 402 to generate an index for trans-
mission to the VLUT unit 212.

The mndex generated by the ILUT unit 214 may be used by
the VLUT umt 212 to find a Huifman code (or other prefix-
free code) value corresponding to the symbol defined by the
run and level values. Hullman coding uses a specific method
for choosing a code value to represent each run and level
combination, resulting 1n a prefix-free code (that 1s, no bit
string of any code value1s a prefix of the bit string of any other
code value) that expresses the most common run and level
combinations in the shortest way possible.

Codes that may be dertved from run and level combinations
are graphically represented 1n a table 500 1n FIG. 5 to include
an “in-table” region 502 and a “not-in-table” region 504.
Within the in-table region 502, the code values that may be
generated by the value lookup table 702 are called explicit
codes and are specifically represented by the codes 1n a main
region 506. The code values that fall outside the main region
506 are called escape codes and may be represented 1n a
variety of ways.

A delta-run escape code 1s a code value outside of the main
region 506 but inside a delta-run escape region 510. For a
given run value and level value, a maximum run value sup-
ported for the given level value may be found. When the given
run value exceeds the maximum run value, the maximum run
value may be subtracted from the given run value to provide
an intermediate run value. When a delta-run escape code 1s
required, the ILUT unit 214 uses the run and level to index

10

15

20

25

30

35

40

45

50

55

60

65

14

lookup table 402 to generate an 1ndex from the intermediate
run value and the given level value. The 1index, so generated,

references a code value that may be found in the main region
506.

A delta-level escape code 1s a code value outside of the
main region 506 but iside a delta-level escape region. The
delta-level escape region 1s divided into a delta-level escape
(1n-table) region 512 and a delta-level escape (not-in-table)
region 314. For a given run value and level value, a maximum
level value supported for the given run value may be found.
When the given level value exceeds the maximum level value
yet 1s still in the delta-level escape (in-table) region 512, the
maximum level value may be implicitly subtracted from the
given level value by appropnate loading of the run and level
to index lookup table 402. When a delta-level escape code 1s
required, the ILUT unit 214 uses the run and level to index
lookup table 402 to generate an index from the given run
value and the level value. The 1index, so generated, references
a code value that may normally be found 1n the main region

506.

However, when the given level value exceeds the maxi-
mum level value and 1s 1n the delta-level escape (not-in-table)
region 514, 1t 1s not possible to achieve the implicit subtrac-
tion of the maximum level value through the use of the run
and level to imndex lookup table. As such, the ILUT unit 214
does not generate an 1ndex from the given run value and the
intermediate level value. Instead, based on the information
provided by the CEB unit 208 and the ILUT unit 214, the

GLUT umt 216 generates an adjusted level value.

In particular, the fourth comparator 607D may compare the
level value received from the CEB unit 208 to the maximum
level supplied by the level maxima lookup table 604. Addi-
tionally, the second comparator 607B may compare the level
value recerved from the CEB unit 208 to a double maximum
level value supplied by the level multiplier 6061, where the
double maximum level value 1s twice the maximum level
supplied to the level multiplier 606L by the level maxima

lookup table 604.

If the fourth comparator 607D indicates to the compare
logic unit 608 that the level value recerved from the CEB unait
208 exceeds the maximum level and the second comparator
6078 indicates to the compare logic umt 608 that the double
maximum level value exceeds the received level value and the
fitth comparator 607E indicates to the compare logic unit 608
that the recerved level exceeds the value MAXLEVEL, then
the compare logic unit 608 may ascertain that an adjusted
delta-level escape code 1s necessary. The compare logic unit
608 may then determine the adjusted level by subtracting the
maximum level supplied by the level maxima lookup table
604 from the level value recerved from the CEB unit 208. The
adjusted level value may then be then transmitted to the ILUT
unmit 214, where the adjusted level value may be recerved at the
level MUX 410. The processor 220, having received a jump
index from the GLUT umt 216 indicating an adjusted delta-
level escape code as the escape code type, may arrange for the
level MUX 410 to pass the adjusted level value to the run and
level to index lookup table 402. When an adjusted delta-level
escape code 1s required, the ILUT umt 214 uses the run and
level to index lookup table 402 to generate an index from the
given run value and the adjusted level value. The index, so
generated, references a code value that may be found in the
main region 506.

As the determination of a delta-run escape code or a delta-
level escape code requires determination of a maximum run
value for a given level value or a maximum level value for a
given run value, the run maxima lookup table 602 and the

US 7,804,430 B2

15

level maxima lookup table 604 may be configured to provide
these values to the run and level to index lookup table 402.

Among the possible run and level combinations are a set of
ambiguous combinations that could lead to either a delta-run
escape code or a delta-level escape code. As such, a set of
rules 1s used at the ILUT unit 214 to determine which type of
escape code to use. According to this set of rules, the disam-
biguation bit lookup table unit 404 may be configured to
generate, for run and level combinations 1n the set of ambigu-
ous combinations, a one-bit value that indicates whether the
delta-run escape code or the delta-level escape code 1s to be
used.

The disambiguation bit lookup table unit 404 may receive
the run value, the level value and the last indication, where
both the run value and level value are represented as a number
of bits. The disambiguation bit lookup table unit 404 may
then form an address by combining the run value and the level
value 1n such a manner that the address 1s represented as a
value having a fewer number of bits than a sum of the number
of bits 1n the run value and the number of bits 1n the level
value. The disambiguation bit lookup table unit 404 may then
use the address to reference a disambiguation bit lookup table

to determine a value for the disambiguation bit that 1s trans-
mitted to the GLUT unit 216.

The level value received by the ILUT unit 214 may be used
as 1nput, along with a run base address, to the run maxima
lookup table 602, which may output a maximum run value for
the received level value for transmission to the run and level
to 1ndex lookup table 402. Additionally, the run value
received by the ILUT unit 214 may be used as mput, along
with a level base address, to the level maxima lookup table
604, which may output a maximum level value for the

received run value for transmission to the run and level to
index lookup table 402.

The run base address and the level base address may be
used to provide an oifset from a programming register that
remains static during periods of operation. A base address
may be used to allow multiple tables to exist within the run
maxima lookup table 602 or the level maxima lookup table
604. In operation, one of the multiple tables may be selected
through the setting of a base address rather than loading a new
table each time a change 1s required. As should be clear,
setting a single value may be considered much faster than
loading an entire table.

A Tull escape code 1s a code value that includes an 1indica-
tion of the run value and the level value. Full escape codes
may be related to run and level combinations that reference
code that are in the full escape (in-table) region 508 or 1n the
tull escape (not-in-table) region 516.

In operation, the GLUT unit 216 recerves run/level/last
data from the CEB unit 208 as well as the disambiguation bit
from the ILUT unit 214, when necessary. The GLUT unit 216
may also receive static indications of a MAXRUN value and
a MAXLEVEL value, which define the in-table region 502 of
the table 500 of FIG. 5. Notably, since all possible run values
are 1n the exemplary in-table region 502 of the table 500 of
FIG. 5, the recetved MAXRUN value 1s not used by the
exemplary GLUT unit 216 of FIG. 6.

The GLUT unit 216 uses the received information to gen-
erate an indication of the type of code that will be generated
by the VLUT unit 212. The indication of type of code, 1.¢.,
whether the code 1s an explicit code, a delta-run escape code,
a delta-level escape code, an adjusted delta-level escape code
or a full escape code, 1s transmitted to the processor 220 1n the
form of a jump 1ndex. The subsequent actions of the processor
220 are determined by the jump index.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

For instance, 1f the type of code 1s indicated as an explicit
code, the index generated by the ILUT unit 214 1s sent to the
VLUT unit 212 and a variable length code corresponding to
the index 1s found 1n the value lookup table 702 (F1G. 7). The
processor 220 instructs the VLUT unit 212 to send the vari-
able length code to the BSB unit 206 via the engine interface
207.

I1 the type of code 1s indicated as a delta-run escape code,
the index generated by the ILUT unit 214 1s sent to the VLU'T
unit 212 and a variable length code corresponding to the index
1s found 1n the value lookup table 702 (FIG. 7). The processor
220 sends a code prefix indicative of the delta-run escape
code-type to the BSB unit 206 via the engine interface 207
and then structs the VLUT unit 212 to send the variable
length code to the BSB unit 206 via the engine interface 207.

If the type of code 1s indicated as a delta-level escape code

or an adjusted delta-level escape code, the index generated by
the ILUT unit 214 1s sent to the VLUT unit 212 and a variable
length code corresponding to the index 1s found 1n the value
lookup table 702 (FIG. 7). The processor 220 sends a code
prefix indicative of the delta-level escape code-type to the
BSB unit 206 via the engine interface 207 and then instructs
the VLUT unit 212 to send the variable length code to the BSB
unit 206 via the engine interface 207.
If the type of code 1s indicated as a full escape code, the
VLUT umt 212 1s not used and the index output from the
ILUT unit 214 may be 1gnored. The processor 220 sends a
code prefix indicative of the tull escape code-type to the BSB
umt 206 via the engine interface 207 and then sends the run
value and level value to the BSB unit 206 via the engine
interface 207.

This sequence of events may be repeated until a block 1s
complete.

Notably, different tables may be loaded into the VLU'T unit
212 (the value lookup table 702), the ILUT unit 214 (the run
and level to index lookup table 402, the disambiguation bit
lookup table unit 404) and the GLUT unit 216 (the run
maxima lookup table 602, the level maxima lookup table 604,
the general purpose lookup table 606) to support different
compression methods and, consequently, different video

encoding and decoding standards.

Reading or writing to the registers 812, 814, 816, 818 of the
BSB unit 206 of FIG. 8 causes the BSB unit 206 to perform
certain actions. When data 1s to be written to the write FIFO
824, the data value 1s determined by a value currently and/or
previously written to the write_data register 818 and the num-
ber of bits which are to be written 1s controlled by values
currently and/or previously written to the write_bits register
816. In one embodiment of the present invention, the act of
writing a value of N to the write_bits register 816 causes the
rightmost N bits previously written to the write_data register
816 to be appended to a data stream transmitted by the write
FIFO 824 to the stream buifer 108.

The varniable length string interface 820 combines multiple
strings of bits of varying lengths into data units, each data unit
having a predetermined length, for example, an integer mul-
tiple of one byte (e1ght bits) for convenient storage and trans-
mission.

In exemplary operation of the present invention, to write 37
bits to the stream buiffer, an element of the microcoded engine
106 writes the 37 bits to the write_data register 816. The
clement then writes the value 37 to the write_bits register 816.
The act of writing the value 37 to the write_bits register 816
causes the variable length string interface 820 to append the
3’7 bits written to the write_data register 816 to a data stream
transmitted to the write FIFO 824 for transmission to the
stream bufler 108.

US 7,804,430 B2

17

In operation, the CODEC circuit 100 may be used in
encoding a digital video sequence to produce variable length
coded data or may be used 1n decoding variable length codes
to produce a digital video sequence. The decoding operation
may be considered as follows.

The vanable length string interface 820 extracts strings of
bits of varying lengths, at arbitrary starting bit positions, from
data units received at the read FIFO 822. The data units may
be arranged to have a predetermined length, for example, an
integer multiple of one byte.

When an element of the microcoded engine 106 performs
a read on the read_data register 814, the value returned 1s the
value of the next N bits 1n the stream butier 108 connected to
the read FIFO 822, relative to the “current read bit position”™
in the stream buffer 108. The current read bit position 1s
controlled by values written to the read_bits register 812.
When the current read bit position 1s to be updated, the current
read bit position advances according to a value currently or
previously written to the read_baits register 812.

In exemplary operation of the present invention, the stream
buifer 108 presents the sequence of bits within the bitstream
being processed, starting from the “current read bit position™,
at the read_data register 814. This sequence of bits can be
tetched by the processor by performing a read operation on
the read_data register 814. an element of the microcoded
engine 106 writes the value 37 to the read_bits register 812.
The element then performs a read on the read_data register
814. Responsive to recetving a read request via the read_data
register 814, the varniable length string interface 820 returns
3’7 bits from the read FIFO 822, starting with a bitat a “current
read bit position” pointed to by a bit read pointer in the
variable length string interface 820. The current read bit posi-
tion 1s then incremented by 37/, In exemplary operation of the
present mvention the “current read bit position” may be
advanced by 37 bits by writing the value 37 to the read_bits
register.

Once a variable length code has been read from the stream
builer 108 via the engine interface 207 and the BSB unit 206,
the processor 220 transfers the variable length code to the
ILUT unit 214 (see FIG. 11). The ILUT unit 214 uses the
variable length code to index lookup table 412 to generate an
index based on the variable length code and also uses the
escape code correlator 414 to determine a type of escape
code. Based on the type of escape code, the ILUT unit 214
may send a jump index to the processor 220.

A variable length code that includes an escape code may be
considered to have two major parts: a code prefix; and a code
value. The code value may be selected to represent a particu-
lar combination of run value and level value 1n the case of the
delta-run escape code-type and the delta-level escape code-
type. Alternatively, the code value may be selected to pre-
cisely setoutarun value and a level value 1n the case of the tull
escape code-type. The code prefix includes a first portion to
indicate an escape code and a second portion to indicate a
particular type of escape code.

The escape code correlator 414 receives the variable length
code and an idication of the length of the first portion of the
code prefix. Where the length of the first portion of the code
prefix 1s N bits, a comparison unit 1202 (see FIG. 12) com-
pares the first N bits of the received vanable length code to the
known escape code indication. Where a match 1s found, the
comparison unit 1202 generates an ESC_MATCH_FLAG
signal indicating the match. Where a match 1s not found, the
comparison unit 1202 does not generate a signal. The ESC_
MATCH_FLAG signal may be recerved by an escape type
extractor 1204.

10

15

20

25

30

35

40

45

50

55

60

65

18

The escape type extractor 1204 also receives the variable
length code and the indication of the length of the code prefix.
Additionally, the escape type extractor 1204 may be pre-
loaded with an 1ndication of the length of the second portion
of the code prefix. Starting with the bit after the final bit of the
first portion of the code prefix, the escape type extractor 1204
may record, responsive to recerving the trigger from the com-
parison unit 1202, the values of the bits indicative of the
particular type of escape code. Based on the recorded values,
the escape type extractor 1204 may generate an output string
for transmission to the processor 220.

In one instance of operation of the ILUT unit 214, 11 the
type of code 1s indicated as an explicit code, the index gen-
erated by the ILUT unit 214 1s transierred to the VLUT unait
212. The VLUT unit 212 finds a level value and a run value 1n
the value lookup table 702 (FIG. 13) based on the received
index. The level value and the run value are then transterred to

the CEB unit 208 according to instruction from the processor
220.

If the type of code 1s indicated as a delta-run escape code,
the index generated by the ILUT unit 214 1s sent to the VLU'T
umt 212. The VLUT unit 212 finds a level value and a run
value 1n a run and level lookup table 704 (FI1G. 13) based on
the received index. Additionally, the level value 1s sent to the
ILUT unit 214 and the run value 1s sent to the AL U 218. Atthe
ILUT unit 214, a maximum run may be generated at the run
maxima lookup table 604 for the received level value. The
processor may then execute an instruction to transfer the
maximum run to the ALU 218. At the ALU 218, the run value
1s added to the maximum run to generate an adjusted run

value, which 1s recerved at the CEB unit 208 along with the
level value determined by the VLUT unit 212.

If the type of code 1s indicated as a delta-level escape code,
the index generated by the ILUT unit 214 1s sent to the VLU'T
unit 212. The VLUT umt 212 finds a level value and a run
value 1n the run and level lookup table 704 based on the
received mdex. Additionally, the run value 1s sent to the ILUT
unmit 214 and the level value 1s sent to the ALU 218. At the
ILUT unit 214, a maximum level may be generated at the
level maxima lookup table 604 for the recerved run value. The
processor may then execute an instruction to transfer the
maximum level to the ALU 218. At the ALU 218, the level
value 1s added to the maximum level to generate an adjusted
level value, which 1s recerved at the CEB unit 208 along with
the run value determined by the VLUT unit 212.

If the type of code 1s indicated as a full escape code, neither
the VLUT unit 212 nor the ILUT umt 214 are used. The data
following the full escape code indication i1n the variable
length code, 1.e., the level value and the run value, 1s routed
directly to the CEB unit 208 by the processor 220.

Like the tables used in the encoding process, the tables
used 1n the decoding process (the variable length code to
index lookup table 412, the escape code correlator 414, the
run maxima lookup table 602, the level maxima lookup table
604, the run and level lookup table 704) can be changed to
support different compression methods and, consequently,
different video encoding and decoding standards.

At the CEB unit 208, the decode mode involves the recep-
tion of run/level/last values, presented under control of the
processor 220, which are subsequently loaded into the coet-
ficient memory 306 to form a block of DCT coelficients. The
coelficients are then transferred, via the DMA unit 302, from
the coetlicient memory 306 to the shared memory 104. As
mentioned previously, 1t 1s typical to treat the coelficient
memory 306 as a ping-pong butfer with each side holding one
block of coetlicients.

US 7,804,430 B2

19

Once an 1n1tial block 1s written into the coeflicient memory
306 by the processor 220, a second block may be written mnto
the other side of the coellicient memory 306 while the mnitial
block 1s read by the DMA unit 302 and written to the shared
memory 104.

The sequence of events for decoding at the CEB unit 208 1s
illustrated 1 FIG. 15 to begin with the setting up of some
registers in the run-level unit 308 (step 1502). In one register,
a pointer to an address within the coellicient memory 306
may be mitialized (e.g., to a value of “-17). Another register
may be established such that writing to this register triggers
an mitialization of the index register 1n the index register unit
310 for run/level processing. Additionally, a register may be
used to store an indication of the block size. Where the num-
ber of coe 111

Ticients decoded 1s different from the indicated
block size, 1t may be considered that a bitstream error has
occurred.

Registers may also be set up in the DMA umt 302 (step
1504). Two 1dentical sets of registers may be set up to allow
for separate and independent access to the shared memory
104. The DMA registers may include: a register for indicating
a start address 1n the shared memory 104; a register for indi-
cating a start address 1n the coelficient memory 306; a register
for indicating a selection of a scan table in the scan table unit
304; and a register for indicating a number of 128-bit (e1ght-
coellicient) words to transfer for each block.

The processor 220 may then trigger (step 1506) the various
clements of the microcoded engine 106 to start decoding the
contents to the stream butler 108 as described above and write
run/level values to the CEB unit 208 until a block 1s complete.

FI1G. 16 1llustrates steps 1n an exemplary decoding method
at the CEB unit 208. The run-level unit 308 may receirve a first
run value and a first level value associated with the first run
value (step 1602). The first run value may be used to update
the pointer (1604). In particular, the first run value may be
added to the pointer, which 1s then further incremented by
one. The first level value (WDATA) may then be stored in the
coellicient memory 306 at a memory location (WADDR)
specified by the updated pointer. As the run value may be
considered to indicate a number of zeroes that precede the
associated level value, the level value 1s assumed to be non-
ZEro. Correspondmg to the storage of each received level
value 1n the coe
the non-zero nature of the level value (1.e., a NON_ZER-
O_FLAG) may be stored (step 1608) 1n the index register 1n
the index register unit 310 at the memory location (WADDR)
specified by the updated pointer.

Using the exemplary run and level values discussed above,
the pointer may be iitialized to “-17. A first set of run and
level data may be recerved as run=0, level=—474. As such, the
pointer may be incremented to O (pointer=pointer+run+1=—
1+0+1) and the level value —474 may be stored in location O
in the coellicient memory 306. Additionally, a binary 1 may
be stored 1n location 0 in the index register in the mdex
register unit 310. A second set of run and level data may be
received as run=0, level=—68. As such, the pointer may be
incremented to 1 (0+0+1) and the level value —-68 may be
stored 1n location 1 1n the coefficient memory 306. Addition-
ally, a binary 1 may be stored in location 1 in the index register
in the index register unit 310. A third set of run and level data
may be received as run=2, level=—62. As such, the pointer
may be incremented to 4 (1+2+1) and the level value —62 may
be stored 1n location 4 1n the coelficient memory 306. Addi-
tionally, a binary 1 may be stored in location 4 in the index
register 1n the index register umt 310. A fourth set of run and
level data may be recerved as run=0, level=102. As such, the
pointer may be incremented to 5 (4+0+1) and the level value

Ticient memory 306, a one-bit indication of

10

15

20

25

30

35

40

45

50

55

60

65

20

102 may be stored in location 5 i the coellicient memory
306. Additionally, abinary 1 may be stored 1n location S inthe
index register in the index register umt 310. A fifth set of run
and level data may be recerved as run=1, level=-71. As such,
the pointer may be imcremented to 7 (5+1+1) and the level
value -71 may be stored in location 7 in the coelficient
memory 306. Additionally, a binary 1 may be stored in loca-
tion 7 1n the mdex register 1in the index register unit 310. The
updating of the pointer and the storing of coetlicient values in
the coelilicient memory 306 and storing the NON_ZER-
O_FLAG 1n the index register in the index register unit 310
continues until the block 1s complete.

Advantageously, at the beginning of the populating of the
coellicient memory 306, the index register 1n the index reg-
ister unit 310 1s filled with zeros. At the end of the populating
of the coetlicient memory 306, the index register 1n the index
register unit 310 only has values of one at locations corre-
sponding to the memory locations 1n the coefficient memory
306 at which level values have been stored. As such, there 1s
no need to perform initialization of the coedf]

icient memory
306, which 1s much larger than the index register and, there-
fore, takes longer to initialize. Thus, a time savings 1s realized
through the use of this method.

The processor 220 may repeatedly trigger the decoding, by
the run-level unit 308, of run and level information deter-
mined, by the combination of the ILUT unit 214 and the
VLUT unit 212, from a variable length code recerved from the
stream builer 108 (step 1506) until the processor 220 deter-
mines (step 1508) that an entire block has been written to the
coellicient memory 306, ¢.g., by recognizing a last indication
in recerved run/level/last information.

Once 1t has been determined (step 1508) that an entire
block has been written to the coellicient memory 306, the
processor 220 may make a determination as to whether a
previously triggered DMA operation has completed (step
1510). To make such a determination, the processor 220 may
read the DMA status register. Upon determining that a previ-
ously triggered DMA operation has completed (step 1510),
the processor 220 may trigger (step 1512) the DMA unit 302
to read the coetlicient memory 306 and write to the shared
memory 104, first, by writing an indication to one of the two
DMA setup registers to be used for such a purpose and,

second, by writing an indication that the required operation 1s
a DMA Write (put) operation.

The transter of the blocks of DCT coetlicients from the
coellicient memory 306 into the shared memory 104 may be
arranged to occur one coelflicient at a time. Alternatively
groups ol coelficients may be aggregated to permit larger
transfers to the shared memory 104. The DMA unit 302
specifles the memory location (ADDR, see FIG. 14) of a
specific coellicient to the scan table unit 304, where the
memory location (ADDR) of the specific coellicient relates to
a memory location 1n the coellicient array as 1t will be stored
in the shared memory 104. The scan table unit 304 may use a
selected RAM-based scan table to determine a read memory
location (RADDR) for the specific coellicient 1n the coetll-
cient array as stored 1n the coefficient memory 306.

The same read memory location (RADDR) 1s transmitted
to (that 1s, placed on an address bus available to) the mndex
register unit 310 to trigger a response indicating the present or
absence of a coellicient 1n the specified memory location 1n
the coetlicient memory 306. Once the DMA unit 302 receives

the specific coetlicient (RDATA) and the response (NON_
/ZERO_FLAG) from the index register unit 310, the DMA
unit 302 may consider the response from the index register

unit 310.

US 7,804,430 B2

21

If the response from the index register unit 310 indicates
that a coetlicient 1s present at the specified memory location,
the DMA umt 302 may transmit the specific coelficient
(WDATA) to the shared memory 104. Ifthe re sponse from the
index register unit 310 indicates that a coellicient i1s absent at
the specified memory location, the DMA unit 302 may trans-
mit a null value (WDATA) to the shared memory 104.

At this point the processor 220 may, again, set up the

registers (step 1502) in the run-level unit 308 for receiving the
next block of DCT coeflicients.

Once the processor 220 has determined that the requested
memory access 1s complete, the transier of the block from the
stream buller 108 to the shared memory 104 may considered
complete. However, 1t should be noted that, even as the CEB
unit 208 completes transierring one block from one side of the
coellicient memory 306 to the shared memory 104, the next
block 1s being loaded into the other side of the coelficient
memory 306.

Once a block of DCT coellicients has been transierred to
the shared memory 104, the block of DCT coefficients in the
shared memory 104 may then be read by the DCT unit 102
(see FI1G. 1) and converted, by the DCT unit 102, to a digital
video sequence.

Other modifications will be apparent to those skilled 1n the
art.

We claim:

1. A method of handling coelficient data received from a
first memory, said method comprising:

receiving a coellicient value stored 1n said first memory at
a given address;

receiving an index register value stored 1n an index register
at an address corresponding to said given address;

10

15

20

25

30

22

determiming, based on said index register value, whether to
write said coellicient value to a second memory;

receving a read command speciiying an address 1n said
second memory;

determining an address in said first memory based on said

address 1n said second memory; and

providing said address in said first memory to said first

memory.

2. The method of claim 1 further comprising determining,
based on said index register value, whether to write a prede-
termined default value to said second memory.

3. The method of claim 2 wherein said predetermined
default value 1s a null value.

4. A direct memory access apparatus operable to:

recerve a coellicient value stored 1n a first memory at a

given address;

recerve an mdex register value stored 1n an index register at

an address corresponding to said given address;
determine, based on said index register value, whether to
write said coellicient value to a second memory;
recerve a read command specitying an address in said
second memory;

determine an address 1n said first memory based on said

address 1n said second memory; and

provide said address in said first memory to said first

memory.

5. The direct memory access apparatus of claim 4, turther
operable to determine, based on said index register value,
whether to write a predetermined default value to said second
memory.

6. The direct memory access apparatus of claim 5 wherein
said predetermined default value 1s a null value.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

