12 United States Patent

US007801866B1

(10) Patent No.: US 7.801.866 B1

Kathuria et al. 45) Date of Patent: Sep. 21, 2010
(54) SYSTEMS AND METHODS FOR READING 2002/0091702 A1 7/2002 Mullinsovuveen.ee 707/100
ONLY DURABLY COMMITTED DATA IN A 2002/0152422 Al 10/2002 Sharmaetal. 714/13
(Sj‘(()SB'/[rBE/[BI/ITT(I)_IF% ,'TTR(LTNI_IS?A%?II(S)EN:;)ERMITS LAZY 2002/0198891 Al 12/2002 Lietal.cooceniinninen. 707/102
2003/0061537 Al* 3/2003 Chaetal. 714/16
(75) Inventors: Vishal I(;f.:lthuria:J Woodinvﬂlej WA 2004/0010499 A1* 1/2004 Ghoshetal. .coeen.......... 707/100
(US); Hanumantha Kodavalla, 2004/0024795 Al* 2/2004 Hindetal. 707/204
Bellevue, WA (US); Michael J. 2005/0055445 Al* 3/2005 Guptaetal.o....... 709/226
Zwilling, Redmond, WA (US) 2008/0077636 Al* 3/2008 Gupta et al. 707/204
(73) Assignee: Microsoft Corporation, Redmond, WA
(US)
(*) Notice: Subject to any disclaimer, the term of this OIHER PUBLICATIONS
%aglg 118 SZ}({E;ILdei7%r daadJSUSth under 33 Mohan, C., etal., “ARIES: A Transaction Recovery Method Support-
S 4 IS ing FineGranularity Locking and Partial Rollbacks Using Write Ahed
(21) Appl. No.: 10/782,988 Logging,” ACM Transactions of Database Systems, vol. 17, No. 1,
Mar. 1992, pp. 94-162.*
22) Filed: Feb. 20, 2004 ,
(22) file ‘ (Continued)
(51) Int.CL DPrrimar . .
v Examiner—Neveen Abel Jalil
GOGE 17750 (2006.01) Assistant Examiner—Farhan M Syed
Y
gg gi-fl-d(i)li: Clasmﬁcatlon Search """""""""" 70770/(75/882 (74) Attorney, Agent, or Firm—Woodcock Washburn LLP
o 707/202,203 (57) ABSTRACT
See application file for complete search history.
(56) References Cited

5,800,074
5,900,870
5,933,838
6,047,291
0,108,004
0,112,024
6,199,195
0,240,414
0,338,056
6,370,541
0,519,597
0,556,983
0,578,046
6,772,178
0,983,295

U.S. PATENT DOCUMENTS

A “lazy commit™ allows database transactions to be commuit-
ted faster by not waiting for log records of the transaction to

A 9/1998 Souderetal. 707/21 be written to disk. When a system crash occurs during the
A 5/1999 Malone etal. 345/333 commit process, transactions may be lost because the log data
A * 81999 Lomet ...l 707/202 1s not available to recreate the transaction. While lazy com-
A 4/2000 Anderson etal. 707/103 mits speed up processing, they also increase the potential for
A 8/2000 Medl oo 345/346 data inconsistency. This invention introduces the concept of
A 8/2000 Almond etal. 395703 1o AN NI
Bl 3/2001 Goodwinetal. 717/1 urable reads —lransaclions thal require 15oiation 1rom
B1* 52001 Reizeretal 707/8 lazy commit transactions and which must be guaranteed to
B1 1/2002 Desslochetal. ...oovvnnn..... 707/2 read only durably committed data. When durable read trans-
Bl 4/2002 Chouetal. ... 707/103 action attempts to read data changed by a lazy commut trans-
Bl 2/2003 Chengetal.ccoceev. 707/10 action, the system ensures the lazy commit transaction’s
Bl 4/2003 Altschuleretal. 706/55 changes are first made durable.
B2 6/2003 Changetal. 707/103
B2 8/2004 Mandal etal. 707/204
B1* 1/2006 Hartccvvvvennnnnnn, 707/204 22 Claims, 7 Drawing Sheets
@ Order of steps 200
\
a1 Volatile Memory D
214 ' r 208"
\' P/i / ?}E; ...EE___:___ PEE:;EN
} 262 [Sre
|
222 204

cation

202 — Dala
ae || (1) | UL P N

210

® Page CRASH
(7) gt s
\ 248 {,_ 210 (™ 2
230 232 208
\ # Persistent
Transaction Log Buffer G@H Data
Store

Lazy Commit
(only steps 1-3
occur before the
data page 204 can
be read again)

k e
Crash Problem

(step 4 does not
occur before the
crash)

US 7,801,866 B1
Page 2

OTHER PUBLICATIONS

Mazzola Paluska, J. et al., “Footloose: A Case for Physical Eventual
Consistency and Selective Conflict Resolution”, Proceedings of the
5" IEEE Workshop on Mobile Computing Systems and Applications,
2003, 170-179,

Huang, Yun-Wu. et al., “Lightweight Version Vectors for Pervasive
Computing Devices™, IEEE, 2000, 43-48.

Ramsey, N. et al., “An Algebraic Approach to File Synchronization™,
Software Engineering Notes, Association for Computing Machinery,
Sep. 2001, 26(5), 175-185, XP002295139.

Andrews, T. et al., “Combining Language and Database Advances in
an Object-Oriented Development Environment” , OOPSLA Proceed-
ings, Oct. 4-8, 1987, 430-440.

Beard, et al., “Multilevel and Graphical Views of Metadata”,
Research and Technology Advances in Digital Libraries, 1998, 256-
265.

Beitner, N. D. et al., “Multimedia Support and Authoring in Micro-
cosm: An Extended Model”, Department of Electronics and Com-
puter Science, University of Southampton, 12 pages.

Berg, C., How Do I Create Persistent Java Objects? Dr. Dobb’s
Journal, 1997, 22(4), 98-101.

Bhattacharya, S. et al., “Coordinating Backup/Recovery and Data
Consistency Between Database and File Systems”, International

Conference on Management of Data and Symposium on Principles of

Database Systems, Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data, 2002, 500-511.

Biliris, A., “The Performance of Three Database Storage Structures
for Managing Large Objects”, ACM SIGMOD, 1992, 276-285.
Booch, G. Benjamin/Cummings Publishing Co, “Object-Oriented
Analysis and Design with Applications™, 1994, 155. 156, 179-183.
Bracchi et al., “Binary Logical Associations in Data Modelling”,
Modelling in Data Base Management Systems G.M. Nijssen. (ed),
North Holland Publishing Company: 1976, 125-147.

Buneman, P. et al., Inheritance and Persistence in Database Program-
ming Languages, ACM, 1986, 4-15.

Chien, A.A., “Concurrent Aggregates (CA)—Design and Experience
with a Concurrent Object—Oriented Language Based on Aggre-
gates”, J. Parallel and Distributed Computing, 1995, 25(2), 174-196.
Chryssostomidis, Chryssosiomos, et al., “Geometric Modeling
Issues in Computer Aided Design of Marine Structures”, M TS Jour-
nal, 22(2) pp. 15-33.

“Computervision Launches Design Automation Development Plat-
form for Windows™, PR Newswire, Financial News, Jan. 10, 1995.
D’ Andrea, A. et al., “Unisql’s Next Generation Object-Relational
Database Management System”, ACM SIGMOD Record, Sep. 1996,
25(2), 70-76.

Darby, C., Object Serialization 1n Java 1.1. Making Objects Persis-
tent, WEB Techniques, 1997, 2(9), 55, 58-59.

“Developer’s Guide to Apple Data Detectors-For Version 1.0.2”, ©
Apple Computer, Inc., 1997, 1-34.

Dietrich, Walter C., Jr., et al., “TGMS: An Object-Oriented System
for Programming Geometry”, Software-Practice and Experience,
Oct. 1989, 19(10), 979-1013.

Dobashi, Y. et al, “Skylight for Interior Lighting Design™, Computer
Graphics Forum, 1994, 13(3), C85-C96.

Dorsch, Jeff, “Accel Signs with IBM to Buy Altium PCB Unit-Accel
Technologies Acquires the Assets to Aitium’s P-CAD Business
Unit”, EDA Licensing, Electronic New, Jan. 16, 1995, 4 pages.
Fegaras, Leonidas, “Optimizing Object Queries Using an Effective
Calculus”, ACM Transactions on Database Systems, Dec. 2000,
25(4), 457-516.

Findler, R.B. et al., Contract Soundness for Object-Oriented Lan-
guages ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSILA, 2001, 15 pages.
Foley et al., Computer Giaphics: Principles and Practices, Second
Edition, Addison-Wesley Publishing Company, 1990, Ch. 5 and 9,
pp. 201-283.

Frus, A.-Christensen, et al.“Geographic Data Modeling: Require-
ments and Research Issues in Geographic Data Modeling,” Nov.
2001. Proceedings of the 9th ACM International Symposium on
Advances in Geographic Information Systems, 2-8.

Fuh, Y-C. et al, “Implementation of SQL3 Structured Types with
Inheritance and Value Substitutability”, Digital Symposium Collec-
tion, 2000. Abstract only, 2 pages, www.acm.org/sigmod/disc/
p__implementationoyostw.htm.

Garret, J.H., Jr. et al, “An Object Oriented Environment for Repre-
senting Building Design and Construction Data”, Advanced Con-
stricction Technology Center, Jun. 1989, Document No. 89-37-04.
1-34.

Godoy Simoes, M. et al, “A RISC-Microcontroller Based
Photovoltaic System for Illumination Applications™, APEC 2000.
Fifteenth Annual IEEE Applied Power Electronics Conference and
Exposition, Feb. 6-10, 2000, 2, 1151-1156.

Goscinski, A. “Distributed Operating Systems The Logical Design™,
Addison-Wesley, 1991, 306-313.

Harrison, C.J. et al., “*Structure Editors: User-Defined Type Values
and Type Inference”, IEEE, 2000, 241-247.

Haverlock, K., “Object Seralization. java. and C++”, Dr. Dobbd’s
Journal, 1998, 23(8), 32, 34, 36-37.

Hay, David C, “Data Model Patterns: Convention of Thought”,
(Dorset House Publishing, New York, NY 1996, 47-67, 235-259.
Hernandez, M. A. et al, ““The Merge/Purge Problem for Large Data-
bases, International Conference on Management of Data and Sym-
posium on Principles of Database Systems”, Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data,
1995, 127-138.

Hsiao, HI. et al., “DLFM: A Transactional Resource Manager”,
SIGMOD, Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, 2000, 518-528.

Kaneko, K, et al, “Design of 3D CG Data Model of Move Animation
Database System”, Advanced Database Research and Development
Series, vol. 3. Proceedings of the Second Far-East Workshop on
Future Database Systems, 1992, 364-372.

Kaneko, K. et al., Towards Dynamics Animation on Object-Oriented
Animation Database System Move. Advanced Database Research
and Development Series, vol. 4, Database Systems for Advanced
Applications 1993, 3-10.

Katz, R.H., “Toward a Unified Framework for Version Modeling in
Engineering Databases”, ACM Computing Surveys, 1990, 22(4),
375-408.

Kawabe, S. et al, “A Framework for 3D Modeling Constraint-Based
Description and Non-Manifold Geometric Modeling”, A Collection
of Contributions based on Lectures Presented at the 2d Toyota Con-
ference, Organization of Engineering Knowledge for Product Model-
ling in Computer Integrated Manufacturing, Japan, Oct. 2-5, 1988,
325-357.

Kempfer, L., “CAD Jumps on Windows 3.1 Bandwagon”, Computer
Aided Engineering, 1993, 24-25.

Khan, L. et al, A Performance Evaluation of Storing XML Data in
Relational Database Management Systems, WiDM, 2001, 31-38.
Khoshafian, S. et al, “Object Identify”. OOPSLA’86. 1986, 21, 406-
416.

Kiesling, R., “ODBC in UNIX Environments”, Dr. Dobb’s Journal,
Dec. 2002, 27(12), 16-22.

King et al, ““TriStarp- An investigation into the Implementation and
Exploitation of Bunary relational Storage Structures”, Proc. 8.sup.th
BNCOD(British National Conference On Data Bases), pp. 64-84
(York 1990).

Krouse, I.K., “Geometric Models for CAD/CAM?”, Machine Deisgn,
Jul. 24, 1990, 99-105.

LeBlanc, Andrew R., et al. “Design Data Storage and Extraction
Using Objects™, Concurrent Engineering: Research and Applica-
tions, 1993, 1, 31-38.

Leontiev, Y. et al, “On Type Syst:sms for Object-Oriented Database
Programming Languages”, ACM Computing Surveys, Dec. 2002,
34(4), 409-449,

Lim, J.B. et al, “Trnasaction Processing in Mobile, Heterogeneous
Database Systems”, [EEFE Trans. on Knowlegde and Data Engineer-
ing, 2002,14(6), 1330-1346.

Mallet, S. et al., “Myrtle: A set-Oriented Meta-Interpreter Driven by
a Relational Trace for Deductive Databases Debugging”, Lecture
Notes in Computer Science, 1999, 1559, 328-330.

Mariani, J. A., Oggetto: “An Object Oriented Database Layered ona
Triple Store”, The Computer Journal , 1992, 35(2),108-118.

US 7,801,866 B1
Page 3

McMahon, L..E, “SED-A Non-Interactive Text Editor”, Bell Labora-
tories, Aug. 15, 1978, 10 pages.

“Mechanical Design Software (Buyers Guide)”, Computer-Aided
Engineering, Dec. 1993, 12(12), 32-36.

Melton, J. et al, “SQL and Management of External Data”, SIGMOD
Record, Mar. 2001, 30(1), 70-77.

Mitchell, W.J., “The Logic of Architecture”, Massachusetts Institute
of lechnology, 1990, 139-143.

Navathe, S.B., “Evolution of Data Modeling for Databases,” Comi-
munications of the ACM, Sep. 1992, 35(9), 112-123.

Nelson, M. et al, “Generic Support for Caching and Disconnected
Operation”, 4th Workshop on Workstation Operating Systems, Oct.
1993, 61-65.

Nyssen, G.M. et al., “Conceptual Schema and Relational Database
Design, A Fact Oriented Approach™, Department of Computer Sci-
ence, University of Queensland, Prentice Hall, 10-33, 42-43, 48-51,
156-170.

Oracle 91 SQL Reference, Release 2 (9.2). Mar. 2002, 13-89 to 13-90.
Orenstein, J, et al, “Query Processing in the Object Store Database
System”, ACM SIGMOD International Conference on Management
of Data, Jun. 1992, 21(2),403-412.

Ottogalli, F.G. et al., “Visualisation of Distributed Applications for
Performance Debugging”, Lecture Notes in Computer Science, Jan.
2001, 2074, 831-840.

Pachet, et al, “A Combinatorial Approach to Content-Based Music
Selection™, Multimedia Computing and Systems, Jun. 7, 1999, 457 -
462.

Papiani, M. et al, “A Distributed Scientific Data Archive Using the
Web, XML and SQL/MED”, SIGMOD Record. Sep. 1999, 28(3),
56-62.

Powell, M., “Objected Retferences, Identifiers, and Equality White
Paper”, (Jul. 2, 1993), OMG TC Document 93.7.5, 1-24.

Prosise, J., “2-D Drafting: Why Pay More?”. PC Magazine: The
Independent Guide to IBM-Standard Personal Commiting, 1993,
12(4), 255-289.

Reiner, A. et al., “Benefits of X-based Three-Tier Client/Server
Model with ESRI Applications”, Virtual Solutions, 1995, 9 pages.
Read, III, B.C., “Developing the Next Generation Cockpit Display
System”, IEEFE Aerospace and Electronics Systems Magazine, 1996,
11(10), 25-28.

Rouse, N.E., “CAD Pioneer are Still Trailblazing™ , Machine Design,
Oct. 22, 1987, 59(25),117-122.

Roussopoulos, N. et al., “Using Semantic Networks for Data Base
Management”, Proceedings of the I°" Supplemental VLDB Confer-
ence, 1975, 144-172.

Santos, J.L.T. et al., “Computer Aided Mechanical Engineering
Design Environment for Concurrent Design Process™, Proceedings
of the 1993 ITEC Workshop on Concurrent Engineering, May 4-6,

1993, Simulation in Concurrent Engineering, 71-83.

Seshadri, P., “Enhanced Abstract Data Types in Object-Relational
Databases”, The VL.DB Journal, The International on Very Large
Databases, 1998, 7, 130-140.

Simon, A.R., Strategic Dataoase Iechnology: Management for the
Year 2000, 1995, pp. 6-9, 14-17, 55-57, Morgan Kaufmann Publish-
ers.

Sreenath, N., “A Hybrid Computation Environment for Multibody
Simwation”, Mathematics and Computers in Simuiation, 1992, 121-
140.

Signhal, A. et al., “DDB: An Object Design Data Manager for VL SI
CAD”, Association for Computer Machirnery, 1993, 467-470.
Stevens, T., “Value in 3-D” Industry Week, Jan. 8, 1995, 45-46.
Stonebraker, M., “The Case for Partial Indexes”, SIGMOD Record,
1989, 18(4), 4-9.

Strickland, T.M., “Intersection of Relational and Object”, Proceed-
ings of the AM/FM International Conference XVII, Mar. 14-17, 1994,
69-75.

Sutherland, J. et al., “The Hybrid Object-Relational Architecture
(HORA), An Integration of Object-Oriented and Relational Technol-
ogy”’, Applied Computing: States of the Art and Practice, 1993,
326-333.

Suzuki, H. et al., “Geometric Modeling for Modeling Products”,
Proceedings of the Third international Conference on Engineering
Graphics and Descriptive Geometry, Jul. 11-16, 1988, Vienna Aus-
tria. 2, 237-243.

Sreckanth, U. et al., “A Specification Environment for Configuring a
Discrete-Part Manufacturing System Simulation Infrastructure”,
International Conference on Systems, Man and Cybernetics, Oct.
17-20, 1993, 1, 349-354.

Taylor, R.H. et al., “An Integrated Robot System Architecture”, Pro-
ceedings of the IEEE, Jul. 1983, 71(7), 842-856.

Varlamis I. et al., “Bridging XMIL-Schema and Relational Databases.

A System for generating and Manipulating Relational Databases
using Valid XML Documents”, DocEng’ O, Nov. 9-10, 2001.

Wilcox, J., “Object Databases-Object Methods in Distributed Com-
puting”, Dr. Dobbs Journal, Nov. 1994, 19(13), 26-34.

Watanabe, S., “Knowledge Integration for Architectural Design”,
Knowledge-Based Computer-Aided Architectural Design. 1994,
123-146,

Waugh, A., “Specifying Metadata Standards for Metadata Tool Con-
figuration”, Computer Networks and ISDN Systems, 1998, 30, 23-32.
Wold, E. et al., “Content-Based Classification, Search, and Retrieval
of Audio”, IEEE Multimedia, IEFEE Compuler Society, 1996, 3,
27-36.

Yoshikawa, M. et al.. “XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases™, ACM
Transactional on Internet technology, Aug. 2001, 1(1), 110-141.

* cited by examiner

US 7,801,866 B1

Sheet 1 of 7

Sep. 21, 2010

U.S. Patent

0G aAlq Addo| 4

L

==

1]

9
suoljedl|ddy

Ot pieogAey

€S d/| HOMISN

(A,

3JIna(g 9brIOIS

4/ U0d [ElI=SS

62 90BI01G 9|qEAOIBY

Z 9SnoOW

145
4/1 8AuQg 1eopdo

gc eyeg | g 'sboid

weiboid 1BYI0

eZ Sng WaSAS

GG

96 sSng [SOS

Ly J0JIUON

L _

Jaydepy 1sOH

gz @Al Addoj4
==F=—==v| | £Z3A\QPseH
€€ d/1 AU ¢t d/|
)ysIg oneubepy SAlQ XsIJ PIEH
_ A
8P LC
1a)depy 0apiA 1un Buissasold

0z Ienduos

i g¢ 'sddy _ GE SO

8t Vivd
WvHOO0dd

hmwzqmooma
HIHLO

9¢ SINVYHOOH
NOLLYOIddY

| GE SO
(GZ AVH)

9¢ SOId

(2 WOY)

A4

4 AJowBpyy Wa)sAS

US 7,801,866 B1

Sheet 2 of 7

Sep. 21, 2010

U.S. Patent

¢ Old
\\\m._oﬂw/
eleQ] @ 1ayng Bo7 uonjoesues |
JUSISISIO | _
80¢ 207 u\;
ﬂ 012

NS
@ abed
0L¢c

vee |
abed B
Bleq)
14014
—
(urebe pea.
aq ued 0z abed
4% \

Bjep ay} a10jaq

Aoway 9|i1ejoA

¢ccc

IN220 $-| sda)s)
Juwwo) ajqeln

»/ 00c

c0c¢

uoljeod
-ljddy

US 7,801,866 B1

Sheet 3 of 7

Sep. 21, 2010

U.S. Patent

(yselo

ay) a10}8q JN220
JOU S90p {7 da)s)

wajqo.id yseldn

e

21019

eleq
JU3)SISIad

80¢
_

~

e
\\mzowwj e
Bleq Uoljed
alsisiogd |+ | -liddy
_mON Vil 20C

c9cC

¢ Ol

(uiebe peal aq
ued 0z abed ejep
ay) 8.10}8(q Jn220
c-1 sdals Ajuo)

N lapng Ho uoipesuel
Yo Hnyg DO7 uon 1
«-—
cec
0LC |\;

/TN
HSVYHO

N

PP . S — A4

1474 \

AOWBIN 3)11e|OA,

Jjuwuwon Azeq

Otc

uoned -

@ -l|ddy

¢ee

»/ 00¢

US 7,801,866 B1

Sheet 4 of 7

Sep. 21, 2010

U.S. Patent

¥ Old

(urebe peau aqg
ued 0z abed ejep
ay} a10jad Jnd20
}SN {7 sda)s)

peay a|qeing

\\\Eoym/
eleq @ 1ayng B0 uonoesuel |
jJua)sisiad
80¢ 767 |\ "o
_ 012 .
NST @
@ obed @
01¢
{4 | Jones
abed B @ -l|ddy
ele(AN
POC 777
YT ,
\\\m:ouw// ° C9¢ @ J
ejeq uoned 007
woisisiag | | -liddy .\A »/
_MON _.?NN .NON 1-1....-1-.,11..1..1.# _\N ﬁ 1l.1 u N _.. N
ﬂ U 892 Alowa\ a|11ejoA

K 00¢

—
as
= ——
> G "'Old (wney)
o
%w 916 y ON
» Nwwos
-

210]S ejeg

PLG 0} < SSA NS
bo7 ysni HWWON3|geIn(
A NSuibs 71 G
ON
I~
T
&
g » JILWLWO JIWUUIO
w J! 9 Aze SOA
=
L » w om 0l
ON
—
y— '
Q abed ele(]
= e | oA p0G
S
/5. m
906 m uoljoesuel} e
. ulI sabed a|dijnw
sbedeleq | o5 ! UUM SaLli}
abuey) . g|diynw pejeadal
m 29 jybiw
» sda}s asay|

U.S. Patent
N
5
_

US 7,801,866 B1

g9 (umpy)

NS1ebed = N L9
S 1PE=Y=S|qeIn(
- !
= 210]] ejeQq
& 0
,w bo1 g__(m_Eoo 42
= _‘_wﬂ_n_
NS78bed 0} N
i S wuo)a|qelnd 0L9
- | 9SBealou|
|
" X
-
3
7 _SaA

U.S. Patent

ON

NSTIpeayajgeing
< NST8bed

A
. abed eleq -
peay
> OZ
1 oL9
ON
SOA—
peay
909 a|qeln

peay a|qeing

¢09

(seuz)

009

US 7,801,866 B1

Sheet 7 of 7

Sep. 21, 2010

U.S. Patent

L Ol

abed payJe e
uo jiq ayj buues|p

zb. (umpey)
A

90/

"y %ov_vs_/

¢0.

910]S
Elep ay} O} |«

abed ajlAA

A A

ON

ON

abed
UO JIg Je3|))

SOA

abed

310]S
E}ep ay] O}
abed a)lup
0} }sanbay

A

IE 0 v
or

011

804

US 7,801,866 B1

1

SYSTEMS AND METHODS FOR READING
ONLY DURABLY COMMITTED DATA IN A
SYSTEM THAT OTHERWISE PERMITS LAZY
COMMIT OF TRANSACTIONS

TECHNICAL FIELD

The present invention relates generally to database trans-
actions, and more particularly, to enabling efficient “durable
read” capabilities to enable proper i1solation of transactions
from the effects of lazy commit transactions 1n a data base
system that utilizes a transaction log to ensure data consis-
tency 1n the event of an unexpected system interruption and
allows “lazy commits.”

BACKGROUND

A “lazy commait” allows database transactions to be com-
mitted faster by not waiting for log records of the transaction
to be synchronously written to disk. When a system crash
occurs, transactions may be lost because the log records are
not available to redo the transaction. For certain applications,
that 1s acceptable because these applications can recreate the
transactions after resumption from a crash. While lazy com-
mits speed up processing for this class of applications, they
also create the potential for data inconsistency 1n case another
application reads “lazily committed” changes from a {first
store and updates a second store based on that data. In the
event of a crash, the changes in the first store might be lost,
leaving the first store and the second store 1n an inconsistent
state. What 1s missing in the art 1s an efficient means for
certain transactions to conduct “durable reads”—that 1s, read
only “durably committed” data, to 1solate their processing
from that of a lazy commit transaction to eliminate the pos-
sibility of the above-mentioned inconsistency. The present
invention provides a solution.

SUMMARY

Various embodiments of the present invention enable
“durable reads™ for transactions that require 1solation from
the effects of lazy commuit transactions and which must be
guaranteed to read only durably committed data. When a
durable read transaction attempts to read data changed by a
lazy commut transaction, the system ensures the lazy commut
transaction’s changes are first made durable.

In one embodiment of the present invention, a data page 1s
marked (as “not durable”) after a “lazy commuit™ transaction
makes changes to the data page. Then, when a second trans-
action seeking to obtain durable data from the changed data
page determines that the data page 1s marked (that the data 1s
not durable), the transaction causes the log to immediately
flush to the disk so that the commuit log entry that pertains to
the “lazy commit™ transaction that modified the data page
becomes a durable log entry. The transaction also causes the
“lazy commuit” transactions that have not yet committed but
which might have modified the page to flush their transaction
log entries to disk whenever they commit. The data page 1s
then unmarked (1immediately or at a later point 1n time) and
the data, now durable (because of flushing the log entry to the
persistent data store), 1s read from the data page by the durable
read transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description, 1s better understood when read 1n conjunction

10

15

20

25

30

35

40

45

50

55

60

65

2

with the appended drawings. For the purpose of illustrating
the invention, there 1s shown 1n the drawings exemplary con-
structions of the invention; however, the invention 1s not
limited to the specific methods and instrumentalities dis-
closed. In the drawings:

FIG. 1 1s a block diagram representing a computer system
in which aspects of the present invention may be 1ncorpo-
rated;

FIG. 2 1s a block diagram 1illustrating the metaphorical
framework for one embodiment of a strong ACID-based
transaction manager system employing a “durable commait™
strategy;

FIG. 3 1s a block diagram that 1llustrates an alternative to
the careful write approach using a “lazy commit™ strategy.

FIG. 4 1s a block diagrams that 1llustrates the method of
various embodiments of the present invention to provide a

durable read capability in a system that permits lazy commiut
transactions.

FIG. 5 1s a flowchart 1llustrating the method by which data
pages are marked as “not durable” by a lazy commut transac-
tion.

FIG. 6 1s a tlowchart illustrating the method by which the
log 1s flushed to disk 1n order to provide an application with
the ability to make a durable read of a data page changed by
a lazy commit transaction.

FIG. 7 1s a flowchart illustrating the method by which the
data pages are unmarked 1n one embodiment of this invention.

DETAILED DESCRIPTION

The subject matter 1s described with specificity to meet
statutory requirements. However, the description 1tself 1s not
intended to limit the scope of this patent. Rather, the inventors
have contemplated that the claimed subject matter might also
be embodied 1n other ways, to include different steps or
elements, or combinations thereof, similar to the ones
described 1n this document, 1n conjunction with other present
or future technologies. Moreover, although the term “step”
may be used herein to connote different elements of methods
employed, the term should not be interpreted as implying any
particular order among or between various steps herein dis-
closed unless and except when the order of individual steps 1s
explicitly described.

Computer Environment

Numerous embodiments of the present invention may
execute on a computer. FI1G. 1 and the following discussion 1s
intended to provide a brief general description of a suitable
computing environment in which the invention may be imple-
mented. Although not required, the invention will be
described 1n the general context of computer executable
istructions, such as program modules, being executed by a
computer, such as a client workstation or a server. Generally,
program modules include routines, programs, objects, com-
ponents, data structures and the like that perform particular
tasks or implement particular abstract data types. Moreover,
the invention may be practiced with other computer system
configurations, including hand held devices, multi processor
systems, microprocessor based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters and the like. The mvention may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located 1n both local and
remote memory storage devices.

US 7,801,866 B1

3

As shown 1 FIG. 1, an exemplary general purpose com-
puting system includes a conventional personal computer 20
or the like, including a processing unit 21, a system memory
22, and a system bus 23 that couples various system compo-
nents including the system memory to the processing unit 21.
The system bus 23 may be any of several types of bus struc-
tures including a memory bus or memory controller, a periph-
eral bus, and a local bus using any of a variety of bus archi-

tectures. The system memory includes read only memory
(ROM) 24 and random access memory (RAM) 25. A basic
iput/output system 26 (BIOS), containing the basic routines
that help to transfer information between elements within the
personal computer 20, such as during start up, 1s stored in
ROM 24. The personal computer 20 may further include a
hard disk drive 27 for reading from and writing to a hard disk,
not shown, a magnetic disk drive 28 for reading from or
writing to a removable magnetic disk 29, and an optical disk
drive 30 for reading from or writing to a removable optical
disk 31 such as a CD ROM or other optical media. The hard
disk drive 27, magnetic disk drive 28, and optical disk drive
30 are connected to the system bus 23 by a hard disk drive
interface 32, amagnetic disk drive interface 33, and an optical
drive 1nterface 34, respectively. The drives and their associ-
ated computer readable media provide non volatile storage of
computer readable instructions, data structures, program
modules and other data for the personal computer 20.
Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, other types of computer readable
media which can store data that 1s accessible by a computer,
such as magnetic cassettes, tlash memory cards, digital video
disks, Bernoulli cartridges, random access memories

(RAMs), read only memories (ROMs) and the like may also
be used 1n the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 35, one or more application
programs 36, other program modules 37 and program data 38.
A user may enter commands and information into the per-
sonal computer 20 through 1nput devices such as a keyboard
40 and pointing device 42. Other iput devices (not shown)
may include a microphone, joystick, game pad, satellite disk,
scanner or the like. These and other mnput devices are often
connected to the processing unit 21 through a serial port
interface 46 that 1s coupled to the system bus, but may be
connected by other interfaces, such as a parallel port, game
port or universal serial bus (USB). A monitor 47 or other type
of display device 1s also connected to the system bus 23 via an
interface, such as a video adapter 48. In addition to the moni-
tor 47, personal computers typically include other peripheral
output devices (not shown), such as speakers and printers.
The exemplary system of FIG. 1 also includes a host adapter
55, Small Computer System Interface (SCSI) bus 56, and an
external storage device 62 connected to the SCSI bus 56.

The personal computer 20 may operate 1n a networked
environment using logical connections to one or more remote
computers, such as a remote computer 49. The remote com-
puter 49 may be another personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the personal computer 20, although only a
memory storage device 50 has been illustrated 1n FIG. 1. The
logical connections depicted 1n FIG. 1 include a local area
network (LAN) 51 and a wide area network (WAN) 52. Such
networking environments are commonplace in offices, enter-
prise wide computer networks, intranets and the Internet.

10

15

20

25

30

35

40

45

50

55

60

65

4

When used in a LAN networking environment, the per-
sonal computer 20 1s connected to the LAN 51 through a
network 1nterface or adapter 53. When used in a WAN net-
working environment, the personal computer 20 typically
includes a modem 54 or other means for establishing com-
munications over the wide area network 52, such as the Inter-
net. The modem 54, which may be iternal or external, 1s
connected to the system bus 23 via the serial port interface 46.
In a networked environment, program modules depicted rela-
tive to the personal computer 20, or portions thereof, may be
stored 1n the remote memory storage device. It will be appre-
ciated that the network connections shown are exemplary and
other means of establishing a communications link between
the computers may be used.

While 1t 1s envisioned that numerous embodiments of the
present mvention are particularly well-suited for computer-
1zed systems, nothing in this document 1s intended to limit the
invention to such embodiments. On the contrary, as used
herein the term “computer system” 1s intended to encompass
any and all devices capable of storing and processing infor-
mation and/or capable of using the stored information to
control the behavior or execution of the device 1tself, regard-
less of whether such devices are electronic, mechanical, logi-
cal, or virtual 1n nature.

Transactions

In regard to databases and other information storage struc-
tures, a transaction 1s a sequence of information exchanges
and related work that are treated as a single unit for purposes
of satisiying a request and for ensuring database integrity. In
order to ensure integrity, a transaction 1s deemed complete or
“commuitted” only when the transaction commit 1s recorded 1n
a transaction log that 1s written to a persistent data store. This
commit log record 1s written to the persistent data store prior
to the changed data resulting from the transaction being writ-
ten to the persistent data store. Should something happen after
the transaction 1s committed but before the data resulting
from the transaction 1s successiully recorded to the persistent
data store—that 1s, before the data itself 1s stored in the
persistent data store, but after the commait log has been
recorded to the data store——changes recorded in the log can be
used to bring the data 1 the data store up to date to a state
corresponding to that reflected in the transaction log.

A transaction manager 1s a program/component that man-
ages or oversees the sequence of events that comprise a trans-
action. Transactions are supported by Structured Query Lan-
guage (SQL), the standard user and programming interface
for databases. The four primary attributes for any transaction
made by a transaction manager are atomicity, consistency,
1solation, and durability (ACID). For a transaction imnvolving
two or more discrete pieces of information, atomicity 1s the
requirement that all pieces of information must be commuitted
in order for the transaction itselt to be deemed committed;
otherwise, a transaction 1s deemed uncommitted. To ensure
consistency, a transaction either creates a new and valid state
of data, or, if any failure occurs, returns all data to its state
betore the transaction was started. A transaction 1n process
and not yet committed must remain 1solated from any other
transactions. Finally, committed data must be saved by the
system such that, even in the event of a failure and system
restart, the data 1s available 1n a correct state. The ACID
conceptis described in ISO/IEC 10026-1:1992 Section 4, and
cach of the ACID attributes 1s generally measured against a

benchmark.

FIG. 2 1s a block diagram 1illustrating the metaphorical
framework for one embodiment of a strong ACID-based data-
base system employing a “durable commit” strategy. An

US 7,801,866 B1

S

application 202, which may be just one from among a plural-
ity of applications 212, makes changes 222 to a data page 204
(step 1), which may be one from among a plurality of data
pages 214 1n volatile memory 200. These changes to the data
page 204 are part of a transaction (not shown) that are not
immediately written 224 to the persistent data store 208.
Instead, the updated data pages 204 are written 224 at a later
point, on certain occasions, to the persistent data store 208. Of
course, 11 there 1s a system crash, these changes would be lost
since they are not reflected in the data store 208; therefore, the
data manager also maintains a transaction log (not shown) 1n
the data store 208.

For every change that 1s written to any of the data pages
214, a corresponding log record describing the change is
written 230 to the transaction log butfer 210 (step 2). Every
log record generated 1s given a sequence number referred to as
a Log Sequence Number (LSN). This LSN 1s also written 248
to the data page 204 1n an attribute called Page LSN 250 (step
3). Page LSN means the LSN of the last log record corre-
sponding to the last change made to the page.

When the transaction 1s requested to be committed by the
application 202, a commit log record (not shown) 1s written to
the transaction log bufifer 210. Then the transaction log butier
210 1s then written 232 to the persistent data store 208 (step 4)
before the commit request 1s considered completed. It 1s the
writing of the commit log record to the persistent data store
208 that ensures the durability of the changes made as part of
this transaction. Then, at a later point, the data page 204 1s
itsell written 224 to the persistent data store 208 (step 5).

At any point, should the computer system crash and sub-
sequently reboot, some changes to the data pages may not
have not written to the persistent data store (step 5) atthe time
of the crash although the corresponding commit log entry was
so written (step 4). The data manager, referencing the trans-
action log 1n the persistent data store, can determine the
present state of the durable data by ascertaining which trans-
actions were committed and which were not. After determin-
ing which transactions were committed and which data pages
do not have the changes corresponding to those transactions,
the data manager re-applies the changes described in the
transaction log to those data pages and then writes them to the
persistent data store. This makes sure thatnone of the changes
to data pages performed by an application 1n context of a
committed transaction are lost in case of a crash. Therefore, a
transaction 1s considered to be committed 1f a log entry has
been flushed to the data store regardless of whether the actual
data page 1s actually stored in the data store before a crash or
other such events.

While this approach provides a means for ensuring strong,
data consistency, the required serial and synchronous writes
of transaction log to the persistent data store are extremely
time-consuming and resource costly. The durability of a
transaction 1s achieved by flushing the transaction log butier
210 to the transaction log in the persistent data store 208 at the
time of transaction commit. However, this flushing 1s quite
expensive because most persistent data stores have high
latency and low throughput.

Lazy Commiut

An alternative to the durable commit approach is the “lazy
commit” approach. Applications can achieve significant per-
formance, latency, and throughput improvements by indicat-
ing to the data manager that the immediate durability of the
committed transactions in the event of a crash 1s not a require-
ment for them. This would allow these applications to commuit
a larger number of transactions in a grven amount of time than
would have been otherwise possible.

10

15

20

25

30

35

40

45

50

55

60

65

6

There are many applications where the durability (out of
Atomicity, Consistency, Isolation, Durability) of a transac-
tion 1n the event of a crash 1s not required by an application but
the performance 1s very important. The examples of such
applications include

1. Data Warehousing

2. Queue Processing,

3. Bulk Load

These applications are designed such that, after resuming
from a crash, they can reconstruct the transactions that were
lost due to the use of lazy commit (followed by system crash).
For example, bulk load can store the current location 1n the
input file up to which the data has been loaded into the
database, as part of the transaction that 1s inserting the data. If
some of the transactions were lost because of a system crash,
the file position stored in the database would indicate the
location from which the data should be loaded from the input
file. Hence, for bulk load, “lazy commuit™ provides significant
performance gains and there 1s no loss of data in case of
system crash.

However, while this lazy-commit approach provides a
more elficient means for conducting transactions and ensur-
ing fairly strong data consistency (it provides Atomicity, Con-
sistency, Isolation, and delayed Durability), one serious
shortcoming of this method 1s that 1t allows other applications
to read and operate on data that has been modified by a
committed transaction but which might not yet be durable,
that 1s, where the corresponding commit log record in the
transaction log builer has not yet been flushed to the persis-
tent data store (step 4); consequently, 1f the system crashes
betore the corresponding entry in the transaction log 1s
flushed to the data store, an inconsistency can result 1n certain
specific situations.

For example, and in reference to FIG. 3, one such incon-
sistency that can arise 1s as follows: An application 202 1ndi-
cates to the data manager to perform lazy commuit of a trans-
action, and thus the commit 232 (step 4) does not occur before
other applications are allowed to access the data in the
changed data page 204. Another application 202' then reads
262 the data on the modified data page 202 (step 3a) and
writes 224" that data to a second persistent data store 208' (step
3b). It a system crash occurs at this point (before steps 4 and
5 as shown), the commit log record of the transaction will not
have been written 232 to the transaction log in the persistent
data store, and thus all the changes made as part of transaction
would be lost. However, 1t 1s possible that the transaction for
the second application 202' in the second data store 208' may
have durably committed, and this would lead to an inconsis-
tency where the changes are present 1n the second data store
208' but are missing from the first data store 208.

What 1s missing in the art is an effective and eflicient means
by which an application 1n a system that allows lazy-commits
to make a “durable read” of data (that 1s, read data that 1s both
committed and logged to the data store 208). While certain
inellicient means do exist (such as flushing all commit logs
and/or suspending all lazy commit transactions whenever a
durable read application 1s processing), these techniques are
inadequate and the various embodiments of the present inven-
tion provide an alternative that enables a system to gain most
of the benefits of using a lazy commit approach while also
providing a durable read capability.

Durable Read

In one embodiment of the present invention, and as 1llus-

trated mn FIG. 4, a “lazy commit” application 202 makes
changes 222 to adata page 204 (step 1) and marks 206 the data
page 204 as potentially “not durable” (step 2). This can be

US 7,801,866 B1

7

achieved by, for example, marking a single bit reserved for
this purpose on the page, among other diverse methodologies.
The changed data page 204 1s not immediately written to the
persistent data store 208 but a log entry 230 1s made to the
transaction log butler 210 describing this change (step 3) an

the Page LLSN 210 1s also written 248 to the data page 204
(step 4) as described 1n the background section above. When
the application requests the transaction to be committed, a
commit log record 1s written to the transaction log buffer 210
but the transaction log bufiers 210 are not flushed to the
transaction log in the persistent data store 208 as described in
the Lazy commuit section above. The application 202 contin-
ues 1ts processing under the assumption that the transaction 1s
committed and will become durable at some point in time 1n
tuture (commit log record written to the persistent data store

208).

Given this present state, a second application 202' seecking,
to obtain durable data from the changed data page 204 first
determines 268 if the data page 204 1s marked 206 (step 5)
which, 1n this case, 1t 1s (and therefore potentially has non-
durable data). The application 202' (directly, via the lazy
commit application 202, via the transaction manager, or oth-
erwise) causes the transaction log butiers 210 to immediately
flush 232 to the data store 208 so that the commit log entry that
pertains to the lazy commit transaction becomes a durable log
entry in the data store 208 (step 6) and unmarks the data page
(not shown). The application 204' can then read 262 the data
from the data page 204 (step 7) and store 224' said data in 1ts
data store 208' (step 8). Of course, flushing (step 6) 1s not
required 1f the data on this page has already been guaranteed
durable by another durable read application. The method for
doing that 1s demonstrated 1n FIG. 6 and 1s described later 1n
this document.

In general, 11 the lazy commut transaction that modified this
data page has not yet committed, actions are taken to ensure
that whenever that transaction commits 1t flushes the commait
log record to the transaction log in the persistent data store
(that 1s, 1t performs the durable commit and not the lazy
commit). One of the ways this can be done 1s by increasing a
store-wide variable called “DurableCommitLSN™ to the
PagelLSN of this page. Whenever a lazy commiut transaction 1s
commited, the Beginl SN of that transaction 1s compared to
the DurableCommitLLSN and if the Begin[LSN of this trans-
action 1s less than the DurableCommitLL.SN, then, this trans-
action might have modified the data page in question, and
hence, flushes 1ts commit log record to the transaction log in
the durable data store D. IT a second application 1s reading the
same row that a first application has modified, the second
application has to wait, after setting DurableCommaitLLSN, for
the first application to commit and release locks before it can
read the row.

The modified data page 1s thus guaranteed to have changes
that are durable and the data, now durable, i1s read from the
data page by the durable read application. The data manager
or the applications store the information that this data page
contains durable data so that any application that intends to do
durable read for this page at any time 1n future, does not have
to flush the transaction log butlers. Two of the ways in which
this can be achieved 1s as follows:

1. The bit on the page that 1s used to mark this page as
potentially containing non-durable data can be cleared.
On some systems, doing 1t using the method above
might have some undesirable performance conse-
quences. For example, a reader typically acquires read
latch on the page. If the reader were to clear this bat, 1t
would have to acquire an exclusive latch and mark the

10

15

20

25

30

35

40

45

50

55

60

65

8

page dirty. That would reduce concurrency and increase
the number of I/O’s 1n the system.

2. A value “DurableReadlL.SN” 1s maintained by the sys-
tem. This value indicates that all data pages with
pageL.SN<DurableReadLSN have only durable data.
Whenever a durable read application takes actions to
make data on a data page durable, it can increment the
DurableReadLSN to the pagel. SN of the page that was
made durable. Subsequent durable reads by applications
compare the DurableReadLSN and pagel. SN and take
actions to make the data page durable only 1f the
pageL.SN>DurableReadlLSN. This method has the prob-
lem of the marking bit on the page never getting cleared.
This problem 1s resolved by comparing the pagel.SN of

every page that 1s written to the persistent data store with
the DurableRead LSN. If the

pageL.SN<DurableReadlLSN, then the bit can be cleared
just before writing the data page to the persistent data
store.

In various embodiments of the present invention, any or all
of the actions described herein may be conducted by the
application itself, by another application, by the system man-
ager, or by another means, and nothing herein i1s intended to
limit execution of each step in the methodologies to any
particular component. With this 1n mind, one embodiment of
the present invention where actions are performed by the
transaction manager 1s herein described.

Referring to FIG. 5, a transaction (lazy commit or durable
commit) 1s performed upon entry 500 wherein, at initial step
501, changes are made to the subject data page 1n memory. At
step 504, the transaction manager determines whether the
transaction 1s a lazy commiut transaction and, 11 so, at step 506,
the transaction manager marks the data page (to indicate that
it 1s not durable). The steps 501 to 506 might be repeated
multiple times with different subject data pages within the
same transaction. At step 508, the application requests the
transaction to be committed. The transaction manager deter-
mines whether this 1s a lazy commut transaction 510. If 1t 1s,
the commuit log record 1s written to the transaction log butier
but the buffer i1s not flushed to the persistent data store. If the
transaction manager finds that a durable reader has requested
this transaction to be durably committed 512 or, if the trans-
action 1s not a lazy commit transaction (in which case 1t 1s a
“durable commit™” transaction), the transaction manager
immediately flushes the commit log at step 514 and then
returns at step 516.

Referring to FIG. 6, a read transaction (durable read or
non-durable read) 1s performed upon entry 600 wherein, at
initial step 602, the transaction manager determines 1f the
read 1s to be a durable read and, 11 so, at step 606, the trans-
action manager further determines if the data page to be read
has been marked as potentially not durable. If the data page 1s
marked, then the transaction manager, at step 608, checks
whether the page has already been made durable by another
durable reader. If not, 1t immediately flushes the commit log
to the data store at step 612, and takes steps 610 and 614 to
indicate to other durable readers that this page 1s durable.
Finally, 1t reads the data page at 616 and returns at step 618.
On the other hand, 11 the transaction manager determines the
read 1s not a durable read at step 602, or if 1t 1s a durable read
but the data page 1s not marked at step 606, 1n both cases the
transaction manager allows the application to immediately
read the data page at step 616 and return at step 618.

Referring to FI1G. 7, at a later point 1n time, upon entry 700
the data manager 1s requested 702 that page to be written to
the persistent data store. This request might be triggered by an
application or a background process or by any other means.

US 7,801,866 B1

9

The data manager determines whether the page 1s marked
704. IT 1t 15 not, 1t proceeds to writing the page to the data store
706. 11 the page 1s marked, data manager verifies whether the
page has already been made durable by another durable read
application 708. I1 1t 1s, then 1t clears the bit on the page 710
and writes the page to the data store 706 and then returns 712.

CONCLUSION

The various system, methods, and techniques described
herein may be implemented with hardware or soiftware or,
where appropriate, with a combination of both. Thus, the
methods and apparatus of the present invention, or certain
aspects or portions thereof, may take the form of program
code (1.e., mstructions) embodied in tangible media, such as
floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium, wherein, when the pro-
gram code 1s loaded 1nto and executed by a machine, such as
a computer, the machine becomes an apparatus for practicing
the invention. In the case of program code execution on pro-
grammable computers, the computer will generally include a
processor, a storage medium readable by the processor (in-
cluding volatile and non-volatile memory and/or storage ele-
ments), at least one put device, and at least one output
device. One or more programs may be implemented in a high
level procedural or object oriented programming language to
communicate with a computer system. However, the program
(s) can be implemented 1n assembly or machine language, 11
desired. In any case, the language may be a compiled or
interpreted language, and combined with hardware imple-
mentations.

The methods and apparatus of the present invention may
also be embodied 1n the form of program code that 1s trans-
mitted over some transmission medium, such as over electri-
cal wiring or cabling, through fiber optics, or via any other
form of transmission, wherein, when the program code 1s
received and loaded 1nto and executed by a machine, such as
an EPROM, a gate array, a programmable logic device (PLD),
a client computer, a video recorder or the like, the machine
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code combines with the processor to provide a unique appa-
ratus that operates to perform the indexing functionality of the
present invention.

While the present invention has been described in connec-
tion with the embodiments of the various figures, 1t 1s to be
understood that other embodiments may be used or modifi-
cations and additions may be made to the described embodi-
ment for performing the same function of the present mven-
tion without deviating there from. For example, while
exemplary embodiments of the invention are described in the
context of digital devices emulating the functionality of per-
sonal computers, the present invention 1s not limited to such
digital devices, as described in the present application may
apply to any number of existing or emerging computing
devices or environments, such as a gaming console, handheld
computer, portable computer, etc. whether wired or wireless,
and may be applied to any number of such computing devices
connected via a communications network, and interacting
across the network. Furthermore, 1t should be emphasized
that a variety of computer platforms, including handheld
device operating systems and other application specific hard-
ware/software interface systems, are herein contemplated,
especially as the number of wireless networked devices con-
tinues to proliferate. Theretfore, the present invention should
not be limited to any single embodiment, but rather construed
in breadth and scope 1n accordance with the appended claims.

10

15

20

25

30

35

40

45

50

55

60

65

10

What 1s claimed 1s:

1. A computer-implemented method for reading a changed
data page from a memory of a computer system, said method
comprising;

making a change to a data page 1n the memory as a result of

a transaction performed by the computer system;

storing data associated with the change 1n a transaction log
buffer 1n the memory of the computer system, but not
immediately flushing the transaction log butifer to a per-
sistent data store;

marking the changed data page in the memory to indicate
on the changed data page that the transaction log butfer
has yet to be flushed to the persistent data store;

processing a subsequent transaction 1 which a durable
read of at least a portion of the changed data page 1s to be
performed, and before reading the changed data page:

determining whether the changed data page 1s marked 1ndi-
cating that the transaction log bufler has vet to be flushed
to the persistent data store;

if the changed data page 1s marked indicating that the
transaction log buffer has yet to be flushed to the persis-
tent data store, flushing the transaction log butler to the
persistent data store prior to the changed data page being
read;

unmarking the changed data page when the transaction log
buitfer 1s flushed; and

reading an unmarked data page as part of a read operation
that uses data that has been stored in the persistent data
store, without first flushing said transaction log butfer.

2. The method of claim 1 wherein marking the changed
data page comprises writing a value of a bit associated with
said changed data page.

3. The method of claim 2 wherein the bit 1s stored 1n said
changed data page.

4. The method of claim 2 wherein the bit 1s stored 1n a
reference table.

5. The method of claim 1 wherein marking the changed
data page comprises recording, in a reference location asso-
ciated with said changed data page, a copy of a log sequence
number from said transaction log buffer and corresponding to
the change to the data page.

6. The method of claim 5 wherein said copy of the log
sequence number 1s stored 1n said changed data page.

7. The method of claim 5 wherein said copy of the log
sequence number 1s stored 1n a reference table.

8. The method of claim 5 wherein the copy of the log
sequence number 1s used to 1dentily a transaction 1n order to
cause said transaction to etfect the flushing of the transaction
log buftfer.

9. A computer-readable storage medium having computer-
readable instructions for reading a changed data page 1n a
memory of a computer system, said computer-readable
instructions comprising nstructions for:

making a change to a data page 1n the memory as aresult of
a transaction performed by the computer system;

storing data associated with the change 1n a transaction log
buffer 1n the memory of the computer system, but not
immediately flushing the transaction log butfer to a per-
sistent data store;

marking the changed data page in the memory to indicate
on the changed data page that the transaction log butifer
has yet to be flushed to the persistent data store;

processing a subsequent transaction in which a durable
read of at least a portion of the changed data page 1s to be
performed, and before reading the changed data page:

US 7,801,866 B1

11

determining whether the changed data page 1s marked indi-
cating that the transaction log butfer has vet to be flushed
to the persistent data store;

if the changed data page 1s marked indicating that the

transaction log buffer has yet to be flushed to the persis-
tent data store, flushing the transaction log butler to the
persistent data store prior to the changed data page being
read to ensure data consistency 1n the event of a system
interruption;

unmarking the changed data page when the transaction log

butter 1s flushed; and

reading an unmarked data page as part of a read operation

that uses data that has been stored in the persistent data
store, without first flushing said transaction log buffer.

10. The computer-readable medium of claim 9 wherein the
instructions for marking the changed data page further com-
prises 1structions for changing a value of a bit associated
with said changed data page.

11. The computer-readable medium of claim 10 further
comprising instructions for the bitto be stored 1n said changed
data page.

12. The computer-readable medium of claim 10 further
comprising instructions for the bit to be stored 1n a reference
table.

13. The computer-readable medium of claim 9 wherein the
instructions for marking the changed data page further com-
prises instructions for recording a copy of a log sequence
number, from said transaction log butler and corresponding
to the change to the data page, 1n a reference location associ-
ated with said changed data page.

14. The computer-readable medium of claim 13 further
comprising instructions for said copy of the log sequence
number to be stored 1n said changed data page.

15. The computer-readable medium of claim 13 further
comprising instructions for said copy of the log sequence
number to be stored in a reference table.

16. The computer-readable medium of claim 13 further
comprising instructions for the copy of the log sequence
number to be used to 1dentily a transaction in order to cause
said transaction to effect the flushing of the transaction log
buftfer.

17. A computer system, said computer system comprising:

a processing unit;

a memory;

a persistent data store;

a plurality of data pages stored 1n the memory; and

a transaction log bufler stored in the memory wherein
when the processing unit changes one of the plurality

10

15

20

25

30

35

40

45

12

of data pages while performing a transaction, the pro-
cessing unit stores data associated with the change in
the transaction log butfer, but does not immediately
flush the transaction log buffer to the persistent data
store, and marks the changed data page to indicate on
the changed data page that the transaction log butifer
containing said data associated with the change has
yet to be flushed to the persistent data store;

and wherein when the processing unit thereafter performs

a subsequent transaction in which a durable read of at
least a portion of the changed data page 1s to be per-
formed, the processing unit, before reading the changed
data page:

determines whether the changed data page 1s marked 1ndi-

cating that the transaction log bufler has yet to be flushed
to the persistent data store;

if the changed data page i1s marked indicating that the

transaction log buffer has yet to be flushed to the persis-
tent data store, flushes the transaction log to the persis-
tent data store prior to the changed data page being read
to ensure data consistency in the event of a system inter-
ruption; and

unmarks the changed data page when the transaction log

bufter 1s flushed,

and wherein the processing unit reads an unmarked data

page as part of a read operation that uses data that has
been stored in the persistent data store, without first
flushing said transaction log buifer.

18. The system of claim 17 wherein the plurality of data
pages cach comprise a bit that 1s changed when said respec-
tive data page 1s modified by a transaction.

19. The system of claim 18 wherein each bit 1s stored in
said respective data page.

20. The system of claim 18 wherein each bit 1s stored 1n a
reference table.

21. The system of claim 17, wherein the processing unit
records a copy of a log sequence number, from said transac-
tion log butfer and corresponding to said modification of said
data page by a transaction, 1n a reference location associated
with said data page when said changed data page 1s marked.

22. The system of claim 21 wherein the processing unit
uses the copy of the log sequence number to i1dentity the
transaction 1n order to cause said transaction to effect flushing
of said transaction log buffer and unmarking said changed
data page when said associated transaction log buffer is

flushed.

	Front Page
	Drawings
	Specification
	Claims

