12 United States Patent

Vasudevan et al.

US007797587B2

US 7,797,587 B2
Sep. 14, 2010

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD OF RECOVERING 6,728,896 B1* 4/2004 Forbesetal. 714/4
FROM FAILURES IN A VIRTUAL MACHINE 6,947,957 Bl 9/2005 Langecccoeeeeeeennn 707/200
7,058,629 Bl 6/2006 Colramnetal. 707/8
(75) Inventors: Bharath Vasudevan, Austin, TX (US); ;ﬂgggﬂgzg E;) ii ggg; %ﬂk@r ettali --------------- 72?; 2/3’;
- _ 243, emmetal.
‘é nandisankagfmf%%mﬂ TX.IEUST))’(7.409.577 B2* 82008 Wing etal. woooovovvevrn.... 714/4
aoaiiRamar SImsh, FRUsEvIe, 2003/0167421 Al* 9/2003 Klemmcccocvvrrvernnn. 714/37
(US) 2007/0094659 AL* 4/2007 Singh etal. wovvvvveven.... 718/1
_ 2007/0174658 Al* 7/2007 Takamotoetal. 714/4
(73) Assignee: Dell Products L.P., Round Rock, TX
(US) OTHER PUBLICATIONS
_ _ _ _ _ Compatibility Guide For ESX Server 3 x, vimware, 28 pages, Oct. 10,
(*) Notice: Subject to any disclaimer, the term of this 2007
patent 1s extended or adjusted under 35 . ‘
U.S.C. 154(b) by 407 days. cited by examiner
_ Primary Examiner—Nadeem Igbal
(21) Appl. No.: 11/759,099 (74) Attorney, Agent, or Firm—Baker Botts L.L.P.
(22) Filed: Jun. 6, 2007 (57) ARSTRACT
(65) Prior Publication Data A method and systems for recovering from a failure in a
US 2008/0307259 A1 Dec. 11, 2008 virtual machine are provided. In accordance with one
embodiment of the present disclosure, a method for recover-
P
(51) Int.Cl. ing from failures 1n a virtual machine 1s provided. The method
GOGF 11/00 2006.01 may 1nclude, 1n a first physical host having a host operatin
() y phy 2 perating
(52) USe CLe oo, 714/47 system and a virtual machine running on the host operating
(58) Field of Classification Search 714/2-12, ~ System,monitoring one or more parameters associated with a
714/15. 16. 20-24. 31. 37-39 45 47 48 program running on the virtual machine, each parameter hav-
See application file jfor ; ompl e;:e séarch hi;tor;. j ing a predetermined acceptable range. The method may fur-
ther include determiming 1f the one or more parameters are
(56) References Cited within their respective predetermined acceptable ranges. In

U.S. PATENT DOCUMENTS

4,674,038 A *
5437033 A *
5,805,790 A *
6,625,751 B1*
6,691,250 B1*

6/1987
7/1995
9/1998
9/2003
2/2004

response to determiming that the one or more parameters
associated with the program running on the virtual machine

Brelsford et al. ... 714/15 are not within their respective predetermined acceptable
Inoue et al. ... 714/10 ranges, a management module may cause the application
Notaetal ... 714/10 running on the virtual machine to be restarted.
Starovicetal.oovvnnn.... 714/11
Chandiramani et al. 714/25 9 Claims, 4 Drawing Sheets
) — PHYSICAL —————, PHYSICAL
108a~ LOCAL HOST 108b—~ LOCAL HOST
| STORAGE \ 1353 _STORAGE _ 1 Esn
1043~ procESSOR II MEMORY \ 1040~ proCESSOR | MEMORY |
1108~ MANAGEMENT MODULE | 1100~ mANAGEMENT MODULE |
112 111_3.
e —
AGENT
114 :/15
GUEST 08
LﬂPPLIGﬁﬂTﬂM
7
116
VIHTUAL MAC!‘!T_"IE HOST 0S
118
\ 111b
— —
AGENT
7
114 115
GUEST 0S5
AF'FLIGATIUEJ
7
16
a VIRTUAL MACHINE
HOST GS
o Jaafio) o

124
p
NETWORK
STORAGE | ~ 126

U.S. Patent Sep. 14, 2010 Sheet 1 of 4 US 7,797,587 B2

PHYSICAL] PHYSICAL
108a~| |pcAL HOST 108D LOCAL HOST
STORAGE 1063 STORAGE 106b

/ Vi

104a~J procESSOR | MEMORY 1040 \‘PROCESSORH MEMORY |

110a~t MANAGEMENT MODULE 1100 \l MANAGEMENT MODULE |

112 111a

GUEST 05
APPLICATION l
116
VIRTUAL MACHINE | HOST 0S
111b

GUEST 0S

| APPLICATION I

116 |

VIRTUAL MACHINE |
HOST 0S

— 102b

1024 -
124

FIG. 1 NETWORK 100
STORAGE | 126

U.S. Patent Sep. 14, 2010 Sheet 2 of 4 US 7,797,587 B2
200 -
N START FIG 2
MONITOR ONE OR MORE
207 PARAMETERS ASSOCIATED WITH ATTEMPT TO TERMINATE
~ A PROGRAM RUNNING ON A AND RESTART 214
VIRTUAL MACHINE INSTANTIATED THE PROGRAM ON
ON A FIRST PHYSICAL HOST THE VIRTUAL MACHINE
215
203 DETERMINE IF ANY PARAMETERS VES
™ HAVE NOT BEEN RECEIVED OVER -
A PREDETERMINED TIME PERIOD
. NO
' DETERMINING IF THE ONE OR MORE
HARD RESTART
| 204~ PARAMETERS ARE WITHIN THEIR VIRTUAL MSACHINE 216
- RESPECTIVE PREDETERMINED
ACCEPTABLE RANGE _
RESTART THE PROGRAM | ..
ON THE RESTARTED |
VIRTUAL MACHINE
ARE ALL MONITORED 218
YES RESPECTIVE PREDETERMINED SUCCESSFUL
- ACCEPTABLE RANGE AND HAVE ALL 7
PARAMETERS BEEN RECEIVED NO
DUH'NT?JEE,EEESEMNED RE-INSTANTIATE THE
206 ' VIRTUAL MACHINE ON THE 219
FIRST PHYSICAL HOST

NO

SEND NOTIFICATIGN THAT ONE OR
MORE PARAMETERS NOT WITHIN
THEIR RESPECTIVE PREDETERMINED
ACCEPTABLE RANGES

208

ATTEMPT TO ALLOCATE MORE

210-"| RESOURCES TO THE PROGRAM

RESTART THE PROGRAM
ON THE RE-INSTANTIATED 220
VIRTUAL MACHINE

RESTART

SUCCESSFUL

?
22

RE-INSTANTIATE THE
VIRTUAL MACHINE ON A
SECOND PHYSICAL HOST

l RESTART THE PROGRAM

ON THE RE-INSTANTIATED 296
VIRTUAL MACHINE l

YES

224

U.S. Patent Sep. 14, 2010 Sheet 3 of 4 US 7,797,587 B2

PHYSICAL PHYSICAL
108a~_ | OCAL HOST 108Db HOST
STORAGE 106a 106b

104 1040
110a MANAGEMENT MODULE 1100 \{ MANAGEMENT MODULE |
'
. I
|
|
|
: |
GUEST 0S |
APPLICATION l
L‘;f“““"“l |
116 119 I
VIRTUAL MACHINE |
l
|
|
l
|
: HOST 0S
|
: 111D
|
|
|
|
|
1 130 128 | : |
: r—\‘ ———— L I
:L__ﬁﬂyl__jT'
| T GUESTOS) |
| | po====— 7!
1 | T APPLICATION | 1 |
A
o132 181 111a
B trtatrivtrter o
L _VIRTUAL MACHINE
HOST 0S
1022 102b
FIG. 3 NETWORK 100

STORAGE | —120

U.S. Patent Sep. 14, 2010 Sheet 4 of 4 US 7,797,587 B2

PHYSICAL PHYSICAL
108a~J LocAL HOST 1080~ 1ocAL HOST
STORAGE 1 /063 STORAGE 106b
_ | /
1042~ processor | | memory | 1040~ processor | | mEmoRY |
1108~ MANAGEMENT MODULE 110b~J" MANAGEMENT MODULE
ST R
i |
I S 134 |
| m—————— - |
1 AGENT 1 |
| bm e — |
GUEST 0S | 1 GUESTOS 1 |
|1 F—=———= = 11
APPLICATION | 1 1 APPLICATION 1 1 |
115 : : 138 137
116 — | e 0
VIRTUAL MACHINE | VIRTUAL MACHINE |
|
VIRTUAL MACHINE
111a _ 1110
HOST 0S HOST 0S

1022 w 102b
124
T

FIG. 4 NETWORK 100
STORAGE | 126

US 7,797,587 B2

1

SYSTEM AND METHOD OF RECOVERING
FROM FAILURES IN A VIRTUAL MACHINE

TECHNICAL FIELD

The present disclosure relates 1n general to clustered net-
work environments, and more particularly to a system and
method of recovering from failures 1n a virtual machine.

BACKGROUND

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option available to users 1s infor-
mation handling systems. An iformation handling system
generally processes, compiles, stores, and/or communicates
information or data for business, personal, or other purposes
thereby allowing users to take advantage of the value of the
information. Because technology and information handling
needs and requirements vary between different users or appli-
cations, information handling systems may also vary regard-
ing what information 1s handled, how the information 1is
handled, how much information 1s processed, stored, or com-
municated, and how quickly and efficiently the information
may be processed, stored, or communicated. The variations in
information handling systems allow for information handling
systems to be general or configured for a specific user or
specific use such as financial transaction processing, airline
reservations, enterprise data storage, or global communica-
tions. In addition, information handling systems may include
a variety of hardware and software components that may be
configured to process, store, and communicate mnformation
and may 1nclude one or more computer systems, data storage
systems, and networking systems.

Information handling systems, including servers, worksta-
tions, and other computers, are oiten grouped 1into computer
networks, including networks having a client-server architec-
ture 1n which servers may access storage, including shared
storage, 1n response to request from client computers of the
network. The servers, also known as physical hosts, may
include one or more virtual machines running on the host
operating system and the host software of the physical host.
Each virtual machine may comprise a virtual or “guest” OS.
A single physical host may 1include multiple virtual machines
in which each virtual machine appears as a logical machine on
a computer network. The presence of one or more virtual
machines on a single physical host provides a separation of
the hardware and soitware of a networked computer system.
In certain instances, each virtual machine could be dedicated
to the task of handling a single function. For example, 1n a
particular embodiment, one virtual machine could be a mail
server, while another virtual machine present on the same
physical host could be a file server. In addition, any number of
programs, €.g., operating systems and/or applications, may
run on each virtual machine.

In many computer systems, it 1s often desirable to reduce
downtime or 1naccessibility caused by failure of a physical
host, virtual machine, or a program. However, conventional
approaches to diagnosing and recovering from {failures
address only “hard” failures occurring in the host operating
system of a physical host, or a physical failure of the physical
host. These traditional approaches do not provide automated
methods of diagnosing “soft” failures, such as those failures
occurring 1nside a virtual machine, such as a guest operating
system failure or failure of another program running on the
virtual machine. Accordingly, systems and methods that pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

vide for diagnosis and recovery of software and operating
system failures occurring 1n virtual machines are desired.

SUMMARY

In accordance with the teachings of the present disclosure,
disadvantages and problems associated with diagnosis and
recovery of failures 1n a virtual machine may be substantially
reduced or eliminated. For example, the systems and methods
disclosed herein may be technically advantageous because
they may provide for the recovery of “soit” failures occurring,
in a virtual machine, while conventional approaches gener-
ally provide only for the recovery of “hard” failures of a
physical host machine. In a particular embodiment, a system
may include a management module operable to determine the
occurrence of a program failure in a virtual machine, and
further operable to restart the program in response to the
failure.

In accordance with one embodiment of the present disclo-
sure, a method for recovering from failures in a virtual
machine 1s provided. The method may include, 1n a first
physical host having a host operating system and a virtual
machine running on the host operating system, monitoring
one or more parameters associated with a program running on
the virtual machine, each parameter having a predetermined
acceptable range. The method may further include determin-
ing 11 the one or more parameters are within their respective
predetermined acceptable ranges. In response to determining,
that the one or more parameters associated with the program
running on the virtual machine are not within their respective
predetermined acceptable ranges, a management module
may cause the application running on the virtual machine to
be restarted.

In accordance with another embodiment of the present
disclosure, a system for recovering from failures in a virtual
machine may include a first physical host. The first physical
host may include a host operating system, a management
module 1n communication with the host operating system,
and a virtual machine running on the host operating system
and 1 communication with the management module. The
virtual machine may be operable to run a program and run an
agent. The agent may be operable to communicate to the
management module one or more parameters associated with
the program, each parameter having a predetermined accept-
able range. The management module may be operable to
determine 11 the one or more parameters associated with the
program running on the virtual machine are within their
respective predetermined acceptable ranges, and 1n response
to determining that the one or more parameters are not within
their respective predetermined acceptable ranges, cause the
application running on the virtual machine to be restarted.

In accordance with a further embodiment of the present
disclosure, an information handling system may include a
processor, a memory communicatively coupled to the proces-
sor, a management module communicatively coupled to the
memory and the processor, and a host operating system run-
ning on the information handling system and having a virtual
machine running thereon. The virtual machine may be in
communication with the management module and may be
operable to run a program and run an agent. The agent may be
operable to communicate to the management module one or
more parameters associated with the program, each param-
cter having a predetermined acceptable range. The manage-
ment module may be operable to determine if the one or more
parameters associated with the program running on the vir-
tual machine are within their respective predetermined
acceptable ranges, and 1n response to determining that the one

US 7,797,587 B2

3

or more parameters are not within their respective predeter-
mined acceptable ranges, cause the application running on the
virtual machine to be restarted.

Other technical advantages will be apparent to those of
ordinary skill 1in the art in view of the following specification,
claims, and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodi-
ments and advantages thereof may be acquired by referring to
the following description taken in conjunction with the
accompanying drawings, in which like reference numbers
indicate like features, and wherein:

FIG. 1 i1llustrates a block diagram of an example system for
recovering from failures 1n a virtual machine, 1in accordance
with teachings of the present disclosure;

FI1G. 2 1llustrates a flow chart of a method for recovering
from failures 1n a virtual machine, 1n accordance with teach-
ings of the present disclosure;

FIG. 3 1llustrates the block diagram of the system of FIG. 1,
demonstrating the restarting of a program by re-instantiating
a virtual machine on a physical host, 1n accordance with the
present disclosure; and

FI1G. 4 1llustrates the block diagram of the system of FI1G. 1,
demonstrating the restarting of a program by re-instantiating
a virtual machine on a second physical host, 1n accordance
with the present disclosure.

DETAILED DESCRIPTION

Preferred embodiments and their advantages are best
understood by reference to FIGS. 1 through 4, wherein like
numbers are used to indicate like and corresponding parts.

For purposes of this disclosure, an information handling
system may include any instrumentality or aggregate of
instrumentalities operable to compute, classily, process,
transmit, receive, retrieve, originate, switch, store, display,
manifest, detect, record, reproduce, handle, or utilize any
form of mnformation, intelligence, or data for business, scien-
tific, control, or other purposes. For example, an information
handling system may be a personal computer, a network
storage device, or any other suitable device and may vary 1n
s1ze, shape, performance, functionality, and price. The infor-
mation handling system may include random access memory
(RAM), one or more processing resources such as a central
processing unit (CPU) or hardware or software control logic,
ROM, and/or other types of nonvolatile memory. Additional
components of the information handling system may include
one or more disk drives, one or more network ports for com-
municating with external devices as well as various input and
output (I/0) devices, such as akeyboard, a mouse, and a video
display. The information handling system may also include
one or more buses operable to transmit communications
between the various hardware components.

FIG. 1 1llustrates a block diagram of an example system
100 for recovering from failures in a virtual machine, 1n
accordance with teachings of the present disclosure. As
shown in FIG. 1, system 100 may include physical hosts 1024
and 1025 (which may be referred to generally as hosts 102),
network 124, and network storage 126. Host devices 102 may
include one or more information handling systems, as defined
herein, and may be communicatively coupled to network 124.
Host devices 102 may be any type of processing device and
may provide any type of functionality associated with an
information handling system, including without limitation

5

10

15

20

25

30

35

40

45

50

55

60

65

4

database management, transaction processing, storage, print-
ing, or web server functionality.

Although a specific network 1s illustrated 1n FIG. 1, the
term “network” should be interpreted as generically defining
any network capable of transmitting telecommunication sig-
nals, data and/or messages. Network 124 may be a local area
network (LAN), ametropolitan area network (MAN), storage
area network (SAN), a wide area network (WAN), a wireless
local area network (WLAN), a virtual private network (VPN),
an 1ntranet, the Internet or any other approprate architecture
or system that facilitates the communication of signals, data
and/or messages (generally referred to as media). Network
124 may transmit media using the Fibre Channel (FC) stan-
dard, Frame Relay, Asynchronous Transfer Mode (ATM),
Internet protocol (IP), other packet-based protocol, and/or
any other transmission protocol and/or standard for transmiut-
ting media over a network.

Network storage 126 may be communicatively coupled to
network 124. Network storage 126 may include any system,
device, or apparatus operable to store media transmitted over
network 124. Network storage 126 may include, for example,
network attached storage, one or more direct access storage
devices (e.g. hard disk drives), and/or one or more sequential
access storage devices (e.g. tape drives). In certain embodi-
ments, network storage 126 may be SCSI, 1SCSI, SAS and/or
Fibre Channel based storage.

As depicted 1n FIG. 1, physical hosts 102 may include a
processor 104, a memory 106, local storage 108, a manage-
ment module 110, and a host operating system 111. In addi-
tion, physical hosts 102 may host one or more virtual
machines 112, 118 running on host operating system 111.
Processor 104 may be any suitable system, device or appara-
tus operable to interpret program instructions and process
data 1n an information handling system. Processor 104 may
include, without limitation, a central processing unit, a micro-
processor, a microcontroller, a digital signal processor and/or
an application-specific itegrated circuits (ASICs). Proces-
sors may be suitable for any number of applications, includ-
ing use in personal computers, computer peripherals, hand-
held computing devices, or 1n embedded systems
incorporated into electronic or electromechanical devices
such as cameras, mobile phones, audio-visual equipment,
medical devices, automobiles and home appliances.

Memory 106 may be communicatively coupled to proces-
sor 104. Memory 16 may be any system, device or apparatus
operable to store and maintain media. For example, memory
106 may include (data and/or instructions used by processor
104. Memory 106 may include random access memory
(RAM), electronically erasable programmable read-only
memory (EEPROM), a PCMCIA card, flash memory, and/or
any suitable selection and/or array of volatile or non-volatile
memory.

Local storage 108 may be communicatively coupled to
processor 104. Local storage 108 may include any system,
device, or apparatus operable to store media processed by
processor 104. Local storage 108 may include, for example,
network attached storage, one or more direct access storage
devices (e.g. hard disk drives), and/or one or more sequential
access storage devices (e.g. tape drives).

Management module 110 may be coupled to processor
104, and may be any system, device or apparatus operable to
monitor and/or receive information from virtual machines
112, 118 and/or programs 116, 122 running on virtual
machines 112, 118, as discussed 1n greater detail below. Man-
agement module 110 may also be operable to manage virtual
machines 112 and 118 instantiated on physical hosts 102,
including without limitation terminating and/or creating

US 7,797,587 B2

S

istantiations of virtual machines 112 and 118, as discussed
in greater detail below. Management module 110 may be
implemented using hardware, software, or any combination
thereof. In some embodiments, management module 110
may run on host operating system 111. In other embodiments,
management module 110 may run independently of host
operating system 111.

Generally speaking, virtual machines 112 and 118 may
cach operate as a self-contained operating environment that
behaves as 11 1t 15 a separate computer. Virtual machines 112
and 118 may work 1n conjunction with, yet independent of
host operating system 111 operating on physical host 102. In
certain embodiments, each virtual machine could be dedi-
cated to the task of handling a single function. For example, 1n
a particular embodiment, virtual machine 112 could be a mail
server, while virtual machine 118 present on the same physi-
cal host 102a could be a file server. In the same or alternative
embodiments, virtual machine 112 could operate using a
particular operating system (e.g., Windows®), while virtual
machine 118 present on the same physical host 102 may
operate using a different operating system (e.g. Mac OS®). In
the same or alternative embodiments, the host operating sys-
tem operating on physical host 1024 may operate using a
different operating system than the operating systems oper-
ating on virtual machines 112, 118 present on physical host
102a. For example, physical host 102a may operate using
UNIX®, while virtual machine 112 may operate using Win-
dows®, and virtual machine 118 may operate using Mac
OS®.

Each virtual machine 112, 118 may include an agent 114,
and programs including a guest operating system 115, and
one or more applications 116. As used 1n this disclosure, the
term “program’ may be used to refer to any set of instructions
embodied 1n a computer-readable medium and executable by
an information handling system, and may include, without
limitation, operating systems and applications. As used 1n this
disclosure, “guest operating system” may be any program
that manages other programs of a virtual machine, and inter-
faces with a host operating system running on a physical host
102. As used 1n this disclosure, “application” refers to any
program operable to run on a guest operating system that may
be written to perform one or more particular tasks or functions
(e.g., word processing, database management, spreadsheets,
desktop publishing, graphics, finance, education, telecom-
munication, mventory control, payroll management, Internet
browsing and/or others).

Agent 114 may be any system, device or apparatus oper-
able to monitor one or programs 115, 116 running on a virtual
machine 112, 118, and/or send messages to a management
module 110, as described 1n greater detail below. Agent 114
may be implemented using hardware, software, or any com-
bination thereof.

In operation, management module 110, along with agents
114 associated with each virtual machine 112, 118 instanti-
ated on a physical host may monitor one or more parameters
associated with a program 115, 116 running on a virtual
machine 112, 118. For instance, agent 114 associated with
cach virtual machine 112, 118 may monitor parameters
indicative of the resource utilization of a program 115, 116,
such as processor utilization, memory utilization, disk utili-
zation, and/or network utilization, for example. Inthe same or
alternative embodiments, agent 114 may monitor parameters
related to the “health” of a program 115, 116, such as whether
the program i1s running and/or whether the program has
access 1o required resources and/or services.

Each agent 114 may communicate to 1ts associated man-
agement module 110 regarding the momtored parameters. In

10

15

20

25

30

35

40

45

50

55

60

65

6

addition, management module 110 may also monitor any
number parameters related to a virtual machine 112, 118 or a
program 114, 115 running thereon, including those program
parameters monitored by agents 114. For example, manage-
ment module may monitor whether or not an agent 114 1s
running on a virtual machine 112, 118. If management mod-
ule 110 determines an agent 114 1s not running on a virtual
machine 112, 118, this may indicate a problem or failure
associated with the particular virtual machine 112, 118.

Management module 110 may be further operable to deter-
mine 1f the one or more monitored parameters are within a
respective predetermined acceptable range. A respective pre-
determined acceptable range for a particular parameter may
be any suitable range of numerical or logical values. For
example, a predetermined acceptable range for processor uti-
lization of a particular program 115, 116, may be a range of
percentage values. As another example, another parameter
may indicate whether a particular program 115, 116 1s run-
ning on a virtual machine 112, 118, and may have a logical
value of “yes” or “true” or to indicate the program 1s running,
and a logical value of “no™ or “false” to otherwise indicate
that the program 1s not running. In such a case, the predeter-
mined acceptable range for the parameter may be the logical
value “ves”™ or “true.”

A predetermined acceptable range for a parameter may be
set automatically or manually. In certain embodiments, one or
more predetermined acceptable ranges may be determined by
a manufacturer. In the same or alternative embodiments, one
or more predetermined acceptable ranges may be determined
by a user and/or system administrator. In the same or alterna-
tive embodiments, one or more predetermined acceptable
ranges may be based on the types of computing resources
comprising system 100. For example, one or more predeter-
mined ranges may be based on processing capacity, storage
capacity, type of storage, memory capacity, network capacity,
type of network, operating system, application, and/or any
other number of suitable factors.

The existence of a parameter associated with a program
talling outside of the parameter’s respective predetermined
acceptable range may indicate a failure of the program. For
instance, a determination that processor usage by a particular
program 1s excessive may indicate a failure 1in such program.
As used 1n this disclosure, the term “failure” includes actual
failures, potential failures, impending failures and/or any
other similar event.

In response to determining that one or more parameters
associated with a program are not within their predetermined
acceptable ranges, management module 110 may trigger an
event. An event may include any action and/or response
within system 100 that may cure a failure indicated by a
parameter not falling within 1ts predetermined acceptable
range. For example, an event may comprise management
module 110 or another component of system 100 1ssuing
notification to a user and/or system administrator, such as an
alert and/or e-mail message, for example. In addition, an
event may comprise the allocation of more computing
resources (€.g. processor capacity, memory capacity, storage
capacity and/or network capacity) to a virtual machine 112,
118 and/or a program 115, 116 running thereon. For example,
in response to a determination that a parameter related to
memory usage ol a program 115, 116 1s outside of 1ts respec-
tive predetermined acceptable range, management module
110 may cause host 1024 to allocate more memory to pro-
gram 113, 116.

An event may also comprise the instantiation of a new
virtual machine 112, 118 and/or program 1135, 116. In the
same or alternative embodiments, an event may comprise

US 7,797,587 B2

7

restarting a program 115, 116. For example, 1f management
module 110 detects a failure of a program 115, 116 running on
virtual machine 112, it may cause the program 115, 116 to be
terminated and restarted on the same virtual machine 112.
Alternatively, 11 a management module 110 detects a failure
of aprogram 115, 116 running on virtual machine 112, 1t may
cause the re-instantiation of the virtual machine 112 on host
102a, and cause the program 115, 116 to be restarted on the
re-mstantiated virtual machine 112 (as depicted 1in FIG. 3).
Alternatively, 11 a management module 110 detects a failure
of aprogram 115, 116 running on virtual machine 112, 1t may
cause the re-instantiation of the virtual machine 112 on host
10256, and cause the program 115, 116 to be restarted on the
re-mstantiated virtual machine 112 (as depicted 1n FIG. 4).

Although FIG. 1 depicts a system 100 comprising two
hosts 102a and 1025, 1t 1s understood that system 100 may
comprise any number of hosts 102. In addition, although FIG.
1 depicts host 102a comprising virtual machines 112 and 118,
it 1s understood that hosts 102 may comprise any number of
virtual machines. Moreover, although FIG. 1 depicts one
guest operating system 1135 and one application 116 running
on each of virtual machines 112 and 118, it 1s understood that
any number of programs 115, 116 may run on virtual
machines 112, 118.

Although virtual machines 112 and 118 are depicted as
comprising agents 114, it 1s understood that agents 114 may
be implemented independently of virtual machines 112, 118.
Similarly, although application 116 1s depicted as running on
guest operating system 114, 1t 1s understood that application
116 may run independently of guest operating system 115.

FI1G. 2 illustrates a flow chart of an example method 200 for
recovering from failures in a virtual machine environment. In
one embodiment, method 200 includes monitoring one or
more parameters associated with a program 115, 116 runming,
on a virtual machine 112, 118 and triggering an event if the
one or more ol the monitored parameters fall outside the
predetermined acceptable range.

According to one embodiment, method 200 preferably
begins at step 202. Teachings of the present disclosure may be
implemented 1n a variety of configurations of system 100. As
such, the preferred initialization point for method 200 and the
order and 1dentity of the steps 202-226 comprising method
200 may depend on the implementation chosen.

At step 202, agent 114, management module 110, or
another component system 100 may momitor one or more
parameters associated with a program 115, 116 running on a
virtual machine 118 instantiated on physical host 102qa. At
step 203, management module 110 or another component of
system 100 may determine if any of the one or more moni-
tored parameters has not been recerved over a predetermined
time period. For example, management module 110 may
determine whether or not agent 114 has failed to communi-
cate a particular parameter value to the management module
for a predetermined time period. The predetermined time
period or “timeout” period, may be any suitable length of
time, and may be automatically or manually determined.
Failure of management module 110 to receive a particular
parameter value may indicate a failure of virtual machine 118
or a program 115, 116 running thereon.

At step 204, management module 110 or another compo-
nent of system 100 may determine 11 the one or more param-
cters are within their respective predetermined acceptable
ranges, as discussed 1n greater detail above with respect to
FIG. 1. If 1t 1s determined that all of the parameters are being
received are and are within their respective predetermined
acceptable ranges, method 200 may, at step 206, proceed
again to step 202, in which case the loop of steps 202-206 may

10

15

20

25

30

35

40

45

50

55

60

65

8

repeat until a parameter 1s determined to be outside of its
respective predetermined acceptable range. Alternatively, 1T
one or more monitored parameters are not within their pre-
determined acceptable ranges, method 200 may, at step 206,
proceed to step 208.

At steps 208-226, management module 110 or another
component of system 100 may trigger and/or execute one or
more events 1 response to a determination that a parameter 1s
not within its respective predetermined acceptable range. For
example, at step 208, management module 110 or another
component of system 100 may send a notification (such as an
alert or email, for example) to a user and/or system adminis-
trator that one or more parameters are not within their respec-
tive predetermined acceptable ranges. At step 210, manage-
ment module 110 or another component of system 100 may
attempt to allocate more computing resources to the program
115, 116. For example, more processor capacity, memory
capacity, storage capacity, network capacity and/or other
resource may be allocated to program 115, 116.

At step 212, management module 110 or another compo-
nent of system 100 may make a determination of whether the
allocation of more resources to program 115, 116 was suc-
cessiul 1 bringing all monitored parameters within their
respective predetermined acceptable ranges. If successiul,
method 200 may proceed again to step 202 where the param-
cters may continue to be monitored. On the other hand, if the
allocation of additional resources 115, 116 was not success-
tul, method 200 may proceed to step 214.

At step 214, management module 110 or another compo-
nent of system 100 may attempt to terminate program 115,
116 and restart 1t on the same virtual machine 118. If the
attempt 1s successiul 1n bringing all monitored parameters
within their respective predetermined acceptable ranges,
method 200 may, at step 215, proceed again to step 202 where
the parameters may continue to be monitored. Otherwise,
method 200 may, at step 2135, proceed to step 216.

At step 216, management module 110 or another compo-
nent of system 100 may perform a hard restart of virtual
machine 118 on the same host 102a. A hard restart of virtual
machine 118 may comprise shutting down virtual machine
and powering 1t up again. At step 217, management module
110 or another component of system 100 may restart program
115, 116 on the restarted virtual machine 118. If this restart of
program 115, 116 1s successiul 1n bringing all monitored
parameters within their respective predetermined acceptable
ranges, method 200 may, at step 218, proceed again to step
202 where the parameters may continue to be monitored.
Otherwise, method 200 may, at step 218, proceed to step 219.

At step 219, management module 110 or another compo-
nent of system 100 may re-instantiate virtual machine 118 as
virtual machine 128 on the same host 102a, as depicted 1n
FIG. 3. At step 220, management module 110 or another
component of system 100 may restart program 115, 116 as
program 131, 132 on the re-1nstantiated virtual machine 128.
IT this restart of program 115, 116 as program 131, 132 is
successiul 1n bringing all monitored parameters within their
respective predetermined acceptable ranges, method 200
may, at step 222, proceed again to step 202 where the param-
cters may continue to be monitored. Otherwise, method 200
may, at step 222, proceed to step 224.

At step 224, management module 110 or another compo-
nent of system 100 may re-instantiate virtual machine 118 as
virtual machine 132 on a second host 1025, as depicted in
FIG. 4. At step 226, management module 110 or another
component of system 100 may restart program 1135, 116 as
program 137, 138 on the re-instantiated virtual machine 132.

US 7,797,587 B2

9

Although FIG. 2 discloses a particular number of steps to
be taken with respect to method 200, 1t 1s understood that
method 200 may be executed with greater or lesser steps than
those depicted 1n FIG. 2. For example, 1n certain embodi-
ments ol method 200, steps 208-212 may not be executed.
Method 200 may be implemented using system 100 or any
other system operable to implement method 200. In certain
embodiments, method 200 may be implemented 1n software
embodied 1n tangible computer readable media.

Although the present disclosure has been described 1n
detail, 1t should be understood that various changes, substi-
tutions, and alterations can be made hereto without departing,
from the spirit and the scope of the invention as defined by the
appended claims.

What 1s claimed 1s:

1. A method of recovering from {failures in a virtual
machine, comprising:

in a {irst physical host having a host operating system and
a virtual machine running on the host operating system,
monitoring one or more parameters associated with a
program running on the virtual machine, each parameter
having a predetermined acceptable range;

determining if the one or more parameters are within their
respective predetermined acceptable ranges;

in response to determining that the one or more parameters
associated with the program running on the virtual
machine are not within their respective predetermined
acceptable ranges, a management module causing the
application running on the virtual machine to be
restarted; wherein restarting the program comprises re-
instantiating the virtual machine on a second physical
host, and restarting the program on the re-instantiated
virtual machine.

2. A method according to claim 1, wherein the one or more
parameters are selected from the group consisting of proces-
sor utilization, memory utilization, disk utilization, network
utilization.

3. A method according to claim 1, wherein the one or more
parameters are indicative of the program’s health and the
program’s health may be indicated by at least one of a deter-
mination of whether the program 1s running and a determi-
nation of whether adequate services and resources are avail-
able to the program.

4. A system for recovering from failures in a virtual
machine, comprising: a first physical host, the first physical
host comprising;:

a host operating system;

a management module 1n communication with the host

operating system;

a virtual machine running on the host operating system and
in communication with the management module, the
virtual machine operable to:
run a program; and
run an agent operable to communicate to the manage-

ment module one or more parameters associated with
the program, each parameter having a predetermined
acceptable range; and

the management module operable to:

10

15

20

25

30

35

40

45

50

55

10

determine 11 the one or more parameters associated with
the program running on the virtual machine are within
their respective predetermined acceptable ranges; and
in response to determining that the one or more
parameters are not within their respective predeter-
mined acceptable ranges, cause the application
running on the virtual machine to be restarted;
wherein restarting the program comprises re-in-
stantiating the virtual machine on a second physical
host, and restarting the program on the re-instanti-

ated virtual machine.

5. A system according to claim 4, wherein the one or more
parameters are selected from the group consisting of proces-
sor utilization, memory utilization, disk utilization, network
utilization.

6. A system according to claim 4, wherein the one or more
parameters are indicative of the program’s health, wherein
the program’s health may be indicated by at least one of a
determination of whether the program is running and a deter-
mination ol whether adequate services and resources are
available to the program.

7. An mnformation handling system comprising:

a Processor;

a memory communicatively coupled to the processor;

a management module communicatively coupled to the

memory and the processor; and

a host operating system running on the information han-

dling system and having a virtual machine running
thereon, the virtual machine 1n communication with the
management module and operable to:

run a program; and

run an agent operable to communicate to the management

module one or more parameters associated with the pro-
gram, each parameter having a predetermined accept-
able range; and
the management module 1s operable to:
determine if the one or more parameters associated with
the program runmng on the virtual machine are within
their respective predetermined acceptable ranges; and

in response to determining that the one or more parameters
are not within their respective predetermined acceptable
ranges, cause the application runming on the virtual
machine to be restarted; wherein restarting the program
comprises re-nstantiating the virtual machine on a sec-
ond physical host, and restarting the program on the
re-instantiated virtual machine.

8. An information handling system according to claim 7,
wherein the one or more parameters are selected from the
group consisting of processor utilization, memory utilization,
disk utilization, network utilization.

9. A mformation system according to claim 7, wherein the
one or more parameters are indicative of the program’s
health, wherein the program’s health may be indicated by at
least one of a determination of whether the program 1s run-
ning and a determination of whether adequate services and
resources are available to the program.

	Front Page
	Drawings
	Specification
	Claims

