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PROCESSOR HAVING PARALLEL VECTOR
MULTIPLY AND REDUCE OPERATIONS
WITH SEQUENTIAL SEMANTICS

RELATED APPLICATION(S)

The present application claims the priority of U.S. Provi-

sional Application Ser. No. 60/560,198, filed Apr. 7, 2004 and
entitled “Parallel Vector Multiply and Reduce Operations
with Sequential Semantics,” which 1s incorporated by refer-
ence herein.

The present application 1s a continuation-in-part of U.S.

patent application Ser. No. 10/841,261, filed May 7, 2004 and
entitled “Processor Reduction Unit for Accumulation of Mul-

tiple Operands With or Without Saturation,” now U.S. Pat.
No. 7,593,978 which 1s incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to the field of digi-
tal data processors, and more particularly to arithmetic pro-
cessing operations and associated processing circuitry foruse
in a digital signal processor (DSP) or other type of digital data
Processor.

BACKGROUND OF THE INVENTION

Many digital data processors, including most DSPs and
multimedia processors, use binary fixed-point arithmetic, in
which operations are performed on integers, fractions, or
mixed numbers 1n unsigned or two’s complement binary
format. DSP and multimedia applications often require that
the processor be configured to perform saturating arithmetic
or wrap-around arithmetic on binary numbers.

In saturating arithmetic, computation results that are too
large to be represented 1 a specified number format are
saturated to the most positive or most negative number. When
a result 1s too large to represent, overflow occurs. For
example, 1n a decimal number system with 3-digit unsigned
numbers, the addition 733+444 produces a saturated result of
999, since the true result of 1177 cannot be represented with
just three decimal digits. The saturated result, 999, corre-
sponds to the most positive number that can be represented
with three decimal digits. Saturation i1s useful because it
reduces the errors that occur when results cannot be correctly
represented, and 1t preserves sign information.

In wrap-around arithmetic, results that overtlow are
wrapped around, such that any digits that cannot fit into the
specified number representation are simply discarded. For
example, 1n a decimal number system with 3-digit unsigned
numbers, the addition 733+444 produces a wrap-around
result of 177. Since the true result of 1177 1s too large to
represent, the leading 1 1s discarded and a result of 177 1s
produced. Wrap-around arithmetic 1s useful because, 11 the
true final result of several wrap-around operations can be
represented 1n the specified format, the final result will be
correct, even 1 intermediate operations overtlow.

As indicated above, saturating arithmetic and wrap-around
arithmetic are often utilized 1n binary number systems. For
example, 1n a two’s complement fractional number system
with 4-bit numbers, the two’s complement addition 0.101+
0.100 (0.625+0.500) produces a saturated result of 0.111
(0.875), which corresponds to the most positive two’s
complement number that can be represented with four bits. If

wrap-around arithmetic 1s used, the two’s complement addi-
tion 0.101+0.100 (0.625+0.500), produces the result 1.001

(-0.875).
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2

Additional details regarding these and other conventional
aspects of digital data processor arithmetic can be found 1n,
for example, B. Parhami, “Computer Arithmetic: Algorithms
and Hardware Designs,” Oxford University Press, New York,
2000 (ISBN 0-19-312583-5), which 1s incorporated by refer-
ence herein.

Since DSP and multimedia applications typically require
both saturating arithmetic and wrap-around arithmetic, 1t 1s
usetul for a given processor to support both of these types of
arithmetic.

The above-cited U.S. patent application Ser. No. 10/841,
261 discloses an efficient mechanism for controllable selec-
tion of saturating or wrap-around arithmetic i a digital data
Processor.

It may also be desirable in many applications to configure
a given DSP, multimedia processor or other type of digital
data processor for the performance of dot products or other
types of vector multiply and reduce operations. Such opera-
tions frequently occur in digital signal processing and multi-
media applications. By way of example, second and third
generation cellular telephones that support GSM (Global
System for Mobile communications) or EDGE (Enhanced
Data rates for Global Evolution) standards make extensive
use of vector multiply and reduce operations, usually with
saturation after each individual multiplication and addition.
However, since saturating addition 1s not associative, the indi-
vidual multiplications and additions needed for the vector
multiply and reduce operation are typically performed in
sequential order using respective individual instructions,
which reduces performance and increases code size.

A number of techniques have been proposed to facilitate
vector multiply and reduce operations 1n a digital data pro-
cessor. These include, for example, the parallel multiply add
(PMADD) operation provided in MMX technology, as
described in A. Peleg and U. Weiser, “MMX Technology
Extension to the Intel Architecture,” IEEE Micro, Vol. 16, No.
4, pp. 42-50, 1996, and the multiply-sum (VMSUM) opera-
tion 1n Altivec Technology, as described 1n K. Diefendortt et
al., “AltiVec Extension to PowerPC Accelerates Media Pro-
cessmg:’ IEEE Micro, Vol. 20, No. 2, pp. 85-95, March 2000.
These operations, however, fail to provide the tull range of
functionality that 1s desirable 1n DSP and multimedia proces-
sors. Moreover, these operations do not guarantee sequential
semantics, that 1s, do not guarantee that the computational
result will be the same as that which would be produced using
a corresponding sequence of idividual multiplication and
addition 1nstructions.

Accordingly, techniques are needed which can provide
improved vector multiply and reduce operations, with guar-
anteed sequential semantics, 1n a digital data processor.

SUMMARY OF THE INVENTION

The present mvention in accordance with one aspect
thereof provides a processor having a plurality of arithmetic
unmits, an accumulator unit, and a reduction unit coupled
between the plurality of arithmetic units and the accumulator
unmit. The reduction unit recetves products of vector elements
from the artthmetic units and a first accumulator value from
the accumulator unit, and processes the products and the first
accumulator value to generate a second accumulator value for
delivery to the accumulator unit. The processor implements a
plurality of vector multiply and reduce operations having
guaranteed sequential semantics, that 1s, operations which
guarantee that the computational result will be the same as
that which would be produced using a corresponding
sequence of individual 1nstructions.
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In an illustrative embodiment, the plurality of vector mul-
tiply and reduce operations comprises the following set of
operations:

1. A vector multiply and reduce add with wrap-around
which multiplies pairs of vector elements and adds the result-
ing products to the first accumulator value 1n sequential order
with wrap-around arithmetic.

2. A vector multiply and reduce add with saturation which
multiplies pairs of vector elements and adds the resulting
products to the first accumulator value 1n sequential order
with saturation after each multiplication and each addition.

3. A vector multiply and reduce subtract with wrap-around
which multiplies pairs of vector elements and subtracts the
resulting products from the first accumulator value 1n sequen-
tial order with wrap-around arithmetic.

4. A vector multiply and reduce subtract with saturation
which multiplies pairs of vector elements and subtracts the
resulting products from the first accumulator value in sequen-
t1al order with saturation after each multiplication and each
subtraction.

The 1llustrative embodiment advantageously overcomes
the drawbacks associated with conventional vector multiply
and reduce operations, by providing a wider range of func-
tionality, particularly in DSP and multimedia processor appli-
cations, while also ensuring sequential semantics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a portion of an exemplary processor suitable
for use 1n performing parallel vector multiply and reduce
operations 1n accordance with an 1llustrative embodiment of
the invention.

FI1G. 2 shows a more detailed view of the FIG. 1 reduction
unit as 1mplemented for a case of m=4 in the illustrative
embodiment.

FIG. 3 shows a more detailed view of a reduction adder
utilized 1n the FIG. 2 reduction unit.

FIG. 4 shows an example of a multithreaded processor
incorporating the FIG. 2 reduction unit.

FIG. 3§ shows an exemplary format for a vector-reduce
instruction suitable for execution 1n the FI1G. 4 multithreaded
Processor.

FI1G. 6 illustrates pipelined execution of two vector-reduce

instructions from the same thread, utilizing an instruction
format of the type shown in FIG. S.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be described 1n the context of an
exemplary reduction umt, accumulator unit, and arithmetic
units, and a multithreaded processor which incorporates such
units. It should be understood, however, that the invention
does not require the particular arrangements shown, and can
be implemented using other types of digital data processors
and associated processing circuitry.

A given processor as described herein may be implemented
in the form of one or more integrated circuits.

FIG. 1 shows a portion of a processor 100 configured in
accordance with an 1llustrative embodiment of the mvention.
The processor 100 includes an (m+1)-mnput reduction unit
102 coupled between m parallel multipliers, denoted 104-1,
104-2, . . . 104-m, and an accumulator register file 106. The
operation ol the processor 100 will imitially be described
below 1n the context of the computation of a dot product, but
the processor may be used to perform other types of parallel
vector multiply and reduce operations.
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4
Each of the multipliers 104-i computes P[1]=X[1]*Y]1],
1 =1=m, with or without saturation. The m multiplier outputs
are then fed as mput operands to the (m+1)-input reduction
umt 102, along with an accumulator value, denoted P[O],
from the accumulator register file 106. The reduction unit 102
computes

Acc=P[0]+P[1J+P[2]+ .. . +P[m],

where P[0] 1s set to zero for an initial iteration. In the next
iteration, m new elements of X and 'Y are multiplied, and P[O]
1s set to the accumulator value, Acc, from the previous itera-
tion. This process continues until the entire dot product 1s
computed. Thus, a k-element dot product can be computed
using [k/m] iterations, where each iteration includes m par-
allel multiplies and an (m+1 )-input addition. When used 1n a
saturation mode, the reduction unit performs saturation after
cach addition, and each multiplier saturates 1ts result when
overflow occurs.

The accumulator register file 106 may be viewed as an
example of what 1s more generally referred to herein as an
“accumulator unit.” Other types of accumulator units may be
used 1n alternative embodiments, as will be appreciated by
those skilled 1n the art. Moreover, the term “unit” as used
herein 1s mtended to be construed generally, such that ele-
ments of a given unit may but need not be co-located with one
another or otherwise have a particular physical relationship to
one another. For example, elements of a given unit could be
distributed throughout an integrated circuit, rather than co-
located at one site 1n such a circuat.

The accumulator register file 106 can be used to store
intermediate accumulator values, which 1s especially usetul
in a multi-threaded processor implementation, 1n which sev-
eral dot products from individual threads may be computed
simultaneously.

The reduction unit 102 1n the 1llustrative embodiment of
FIG. 1 also recetves two 1-bit control signal inputs, Invert and
Satf. When Invert 1s high, the input operands to the reduction
unit are nverted, so that the unit computes

Ace=P[0]-P[1]-P[2]- ... -P[m].

This inverted addition 1s also referred to herein as subtraction,
but 1s generally considered a type of addition, as will be
appreciated by those skilled in the art. When Invert 1s low, the
input operands to the reduction unit are not 1nverted, so the
unit computes

Acc=P[0J+P[11+P2]+ . .. +P[m].

When Satf 1s high, the reduction unit 1s 1n saturation mode.
This means that after each intermediate addition 1n the reduc-
tion unit a check 1s made to determine if the result has
incurred overtlows. If 1t has, the result 1s saturated to the most
positive or most negative number in the specified format.
When Satf 1s low, the reduction unit 1s 1n wrap-around mode,
which means that results that overflow are not saturated.

The use of multipliers 104 1n the i1llustrative embodiment 1s
by way of example only. Other embodiments may use, for
example, multiply-accumulate (MAC) units. The term “mul-
tiplier” as used herein 1s intended to include an arithmetic
unit, such as a MAC unit, which performs multiplication as
well as one or more other functions.

FIG. 2 shows an exemplary reduction unit 102' suitable for
use 1n the processor 100 and more specifically configured for
the case of m=4. This reduction unit 1s operative to sum four
input operands, P[1] to P[4], plus an accumulator value, P[0].
Although the figure shows an (m+1)-mput reduction unit for
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the specific case of m=4, the design can easily be extended to
other values of m, as will be apparent to those skilled 1n the
art.

The reduction unit 102" uses four 2-1nput reduction adders,
denoted 200-1, 200-2, 200-3 and 200-4, which are connected
in series as shown. Each reduction adder 1s able to add 1ts
input operands with or without saturation. The term “reduc-
tion adder” as used herein 1s intended to include, by way of
example, a saturating adder.

The first reduction adder 200-1, also 1dentified as Reduc-
tion Adder 1, takes operands P[0] and P[1], and adds them to
produce Z[1]=P[0]+P[1], when the input control signal Invert
1s low. Each remaining reduction adder 200-(i+1), also 1den-
tified as Reduction Adder 1+1, takes two input operands, Z[1]
and P[1+1], and adds them to produce a sum, Z[1+1]=Z[1]+P
[1+1], when the mnput control signal Invert 1s low. Thus, when
Invert 1s low, the output of the reduction unit 1s

Acc=ZfA]=P[0]+P[1]+P[2]+P[3]+P[4].

When the input control signal Invert 1s high, the second 1nput
to each reduction adder 1s bit-wise inverted and the carry-
input to each reduction adder 1s setto one. This causes Reduc-
tion Adder 1 to compute Z[1]=P[0]-P[1] and the remaiming,
reduction adders to compute Z[1+1|=Z[1]-P[1+1]. In this case,
the output of the reduction unit 1s

Acc=Z[4]=P[0]-P[1]-P[2]-P[3]-P[4].

When the input control signal Satf1s high, the result of each
addition (or subtraction) 1s saturated when overtlow occurs.
When Satt 1s low, the result of each addition (or subtraction)
1s wrapped around.

The reduction unit 102' 1s pipelined to decrease 1ts worst
case delay. More specifically, the reduction unit 102' uses a
tour-stage pipeline to perform four additions (or four subtrac-
tions), where the result of each intermediate addition (or
subtraction), Z[1], 1s stored 1n a pipeline register 202-i. To
have the P[1] operands arrive at the same time as the corre-
sponding Z[1—1] operands, the P[1] operand into Reduction
Adder 1 passes through (1-1) pipeline registers 204. Thus,
operand P[1] passes through no pipeline registers 204, oper-
and P[2] passes through one pipeline register 204-2 ,, operand
P[3] passes through two pipeline registers 204-3, and 204-3.,,
and operand P[4] passes through three pipeline registers 204-
4., 204-4, and 204-4,, in reaching their respective reduction
adders.

FIG. 3 shows one possible implementation of a given one
of the reduction adders 200-i of the reduction unmit 102'. The
reduction adder 200-i uses a 2-input adder 300 to add two
input operands, A and B, plus a carry-in bit, ¢, , to compute
T=A+B+c,_ . If Satf and the signs of A and B, sa and sb, are
high, and the sign of the temporary result, st, 1s low, the
output, Z, 1s saturated to the most negative number 1n the
specified number format, such that Z=MIN_NEG. If Satf and
st are high and sa and sb are low, Z 1s saturated to the most
positive number 1n the specified number format, such that

/=—MAX POS. In all other cases the result {from the adder 300
1s used as the result, such that Z=T.

It should be understood that the particular reduction adder
design shown 1n FIG. 3 1s presented by way of illustrative
example only. Numerous alternative reduction adder designs
may be used, and the particular adder selected for use 1n a
given implementation may vary based on application-specific
factors such as the format of the input operands.

In the pipelined reduction unit, 1t 1s possible for m elements
of a dot product to be accumulated every clock cycle, through
the use of multithreading as described below.
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It should be noted that, in non-multithreaded processor
implementations, pipelining the reduction unit can cause a
large increase 1n the number of cycles needed to compute
cach dot product. For example, using a conventional m-stage
pipeline without multithreading increases the number of
cycles to compute each dot product by roughly a factor of m.

The illustrative embodiment of the present invention
addresses this 1ssue by utilizing an approach known as token
triggered threading. Token triggered threading 1s described in
U.S. Pat. No. 6,842,848, which 1s commonly assigned here-
with and incorporated by reference herein. The token trig-
gered threading typically assigns different tokens to each of a
plurality of threads of a multithreaded processor. For
example, the token triggered threading may utilize a token to
identify 1n association with a current processor clock cycle a
particular one of the threads of the processor that will be
permitted to 1ssue an 1nstruction for a subsequent clock cycle.
Although token triggered threading is used in the illustrative
embodiment, the mvention does not require this particular
type of multithreading, and other types of multithreading
techniques can be used.

In the 1llustrative embodiment, the above-noted increase in
cycle count attributable to pipelining may be effectively hid-
den by the processing of other threads, since the multiplica-
tions and reductions for one dot product are executed concur-
rently with operations from other threads. In order to
completely hide the increase 1n cycle count by concurrent
execution of threads, the number of cycles between execution
ol 1instructions from a given thread should be greater than or
equal to the number of pipeline stages in the reduction unit
plus any additional cycles needed to write to and read from the
accumulator register file 106.

As 1ndicated previously, the present invention can be
advantageously implemented in a multithreaded processor. A
more particular example of a multithreaded processor in
which the invention may be implemented 1s described 1n U.S.
Pat. No. 6,968,445 (heremafter “the “445 Patent”), which 1s
commonly assigned herewith and incorporated by reference
herein. This multithreaded processor may be configured to
execute RISC-based control code, DSP code, Java code and
network processing code. It includes a single mstruction mul-
tiple data (SIMD) vector processing unit, a reduction unit, and
long 1nstruction word (LIW) compounded instruction execus-
tion. Examples of threading and pipelining techniques suit-
able for use with this exemplary multithreaded processor are
described 1n the above-cited 445 Patent.

The reduction umt 102 or 102' as described herein may be
utilized as the reduction unit 1n such a multithreaded proces-
sor, as will be 1llustrated 1n conjunction with FIG. 4. Of
course, the invention can be implemented in other multi-
threaded processors, or more generally other types of digital
data processors.

FIG. 4 shows an example of a multithreaded processor 400
incorporating the FIG. 2 reduction unit 102'. The processor
400 1s generally similar to that described 1n the 445 Patent,
but incorporates reduction unit 102' and accumulator register
file 106' configured as described herein.

The multithreaded processor 400 includes, among other
clements, a multithreaded cache memory 410, a multi-
threaded data memory 412, an instruction buffer 414, an
instruction decoder 416, a register file 418, and a memory
management unit (MMU) 420. The multithreaded cache 410
includes a plurality of thread caches 410-1, 410-2, . . . 410-N,
where N generally denotes the number of threads supported
by the multithreaded processor 400, and 1n this particular
example1s given by N=4. Of course, other values of N may be
used, as will be readily apparent to those skilled 1n the art.
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Each thread thus has a corresponding thread cache associ-
ated therewith 1n the multithreaded cache 410. Similarly, the

data memory 412 includes N distinct data memory instances,
denoted data memories 412-1, 412-2, ... 412-N as shown.

The multithreaded cache 410 interfaces with a main
memory (not shown) external to the processor 400 via the
MMU 420. The MMU 420, like the cache 410, includes a
separate instance for the each of the N threads supported by
the processor. The MMU 420 ensures that the appropriate

instructions from main memory are loaded into the multi-
threaded cache 410.

The data memory 412 1s also typically directly connected
to the above-noted external main memory, although this con-
nection 1s also not explicitly shown 1n the figure. Also asso-
ciated with the data memory 412 1s a data butler 430.

In general, the multithreaded cache 410 1s used to store
instructions to be executed by the multithreaded processor
400, while the data memory 412 stores data that1s operated on
by the instructions. Instructions are fetched from the multi-
threaded cache 410 by the instruction decoder 416 and
decoded. Depending upon the instruction type, the instruction
decoder 416 may forward a given instruction or associated
information to various other units within the processor, as will
be described below.

The processor 400 includes a branch instruction queue (1Q)
440 and program counter (PC) registers 442. The program
counter registers 442 include one instance for each of the
threads. The branch instruction queue 440 receives nstruc-
tions from the instruction decoder 416, and in conjunction
with the program counter registers 442 provides mput to an
adder block 444, which illustratively comprises a carry-
propagate adder (CPA). Elements 440, 442 and 444 collec-
tively comprise a branch unit of the processor 400. Although
not shown in the figure, auxiliary registers may also be
included in the processor 400.

The register file 418 provides temporary storage of integer
results. Instructions forwarded from the instruction decoder
416 to an integer mstruction queue (1Q) 450 are decoded and
the proper hardware thread unit 1s selected through the use of
an oifset unit 452 which 1s shown as including a separate
instance for each of the threads. The ofifset unit 452 inserts
explicit bits 1nto register file addresses so that independent
thread data 1s not corrupted. For a given thread, these explicit
bits may comprise, €.g., a corresponding thread 1dentifier.

As shown 1n the figure, the register file 418 1s coupled to
input registers RA and RB, the outputs of which are coupled
to an ALU block 454, which may comprise an adder. The
input registers RA and RB are used in implementing instruc-
tion pipelining. The output of the ALU block 454 1s coupled
to the data memory 412.

The register file 418, integer istruction queue 450, offset
unit 452, elements RA and RB, and ALU block 454 collec-
tively comprise an exemplary integer unit.

Instruction types executable in the processor 400 include
Branch, Load, Store, Integer and Vector/SIMD 1nstruction
types. If a given instruction does not specity a Branch, Load,
Store or Integer operation, 1t 1s a Vector/SIMD 1nstruction.
Other mstruction types can also or alternatively be used. The
Integer and Vector/SIMD 1nstruction types are examples of
what are more generally referred to herein as integer and
vector 1nstruction types, respectively.

A vector 1Q) 456 receives Vector/SIMD instructions for-
warded from the instruction decoder 416. A corresponding,
offset unit 4358, shown as including a separate instance for
cach of the threads, serves to mnsert the appropriate bits to
ensure that independent thread data 1s not corrupted.
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A vector unit 460 of the processor 400 1s separated into N
distinct parallel portions, and includes a vector file 462 which
1s similarly divided. The vector file 462 includes thirty-two
registers, denoted VRO00 through VR31. The vector file 462
serves substantially the same purpose as the register file 418
except that the former operates on Vector/SIMD 1nstruction

types.
The vector unit 460 illustratively comprises the vector

instruction queue 456, the offset unit 438, the vector file 462,
and the arithmetic and storage elements associated therewith.

The operation of the vector unit 460 1s as follows. A Vector/
SIMD block encoded either as a fractional or integer data type
1s read from the vector file 462 and 1s stored into architectur-
ally visible registers VRA, VRB, VRC. From there, the flow
proceeds through multipliers (MPY) that perform parallel
concurrent multiplication of the Vector/SIMD data. Adder
units comprising carry-skip adders (CSAs) and CPAs may
perform additional arithmetic operations. For example, one
or more of the CSAs may be used to add 1n an accumulator
value from a vector register file, and one or more of the CPAs
may be used to perform a final addition for completion of a
multiplication operation, as will be appreciated by those
skilled 1n the art. Computation results are stored in Result
registers 464, and are provided as input operands to the reduc-
tion unit 102'. The reduction unit 102' sums the mput oper-
ands 1n such a way that the summation result produced 1s the
same as that which would be obtained 1f each operation were
executed 1n series. The reduced sum 1s stored in the accumu-
lator register file 106' for further processing.

When performing vector dot products, the MPY blocks
perform four multiplies 1 parallel, the CSA and CPA units
perform additional operations or simply pass along the mul-
tiplication results for storage in the Result registers 464, and
the reduction unmit 102' sums the multiplication results, along
with an accumulator value stored 1n the accumulator register
file 106'. The result generated by the reduction unit 1s then
stored 1 the accumulator register file for use 1n the next
iteration, 1n the manner previously described.

The four parallel multipliers MPY of the vector unit 460
may be viewed as corresponding generally to the multipliers
104 of processor 100 of FIG. 1.

The accumulator register file 106’ 1n this example includes
a total of sixteen accumulator registers denoted ACCO0
through ACC 15.

The multithreaded processor 400 may make use of tech-
niques for thread-based access to register files, as described in
U.S. Pat. No. 6,904,511, which 1s commonly assigned here-
with and 1incorporated by reference herein.

FIG. 5 shows an exemplary format for a vector-reduce
instruction suitable for execution 1n the multithreaded pro-
cessor 400 of FIG. 4. This mstruction 1s used to specily
vector-reduce operations performed by the parallel multipli-
ers and the reduction unit. Such vector-reduce instructions are
also referred to herein as vector multiply and reduce opera-
tions.

In the figure, OPCODE specifies the operation to be per-
tormed, ACCD specifies the accumulator register file location
of the accumulator destination register, ACCS specifies the
accumulator register file location of the accumulator source
register, VRSA specifies the vector register file locations of
one set of vector source operands, and VRSB specifies the
vector register file locations of the other set of vector source
operands.

Using the imstruction format shown 1 FIG. 5, a SIMD
vector processing umt with m parallel multipliers and an
(m+1)-mnput reduction unit can perform a vector-multiply-
and-reduce-add (vmulredadd) instruction, which computes
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ACCD=ACCS+VRSA[1]*VRSB[1]+VSRA[2]*VSRB
2]+ ... +VSRA[m]*VSRB [m].

More specifically, with reference to the exemplary multi-
threaded processor 400, this istruction can be executed for
m=4 by reading the values corresponding to VSRA[1] and
VSRBJ1] from the vector register files 462, using the four
parallel multipliers MPY to compute VSRA[1]*VSRBJ1],
reading ACCS from the accumulator register file 106', using
the reduction unit 102' to add the products to ACCS, and
writing the result from the reduction unit to back to the accu-
mulator register file, using the address specified by ACCD.

Similarly, a vector-multiply-and-reduce-subtract (vmul-
redsub) instruction can perform the computation

ACCD=ACCS-VRSA[1]*VRSB[1]-VSRA[2]*VSRB
2]— ... VSRA[m]*VSRB[m]

Each of these vector-reduce instructions can also be per-
formed with saturation after each operation. Other vector-
reduce 1instructions, such as vector-add-reduce-add, which
performs the operation

ACCD=ACCS+VRSA[1]+VRSB/1]+VSRA[2J+VSRE
2]+ ... +VSRA[m]+VSRB[m],

can also be defined, as will be apparent to those skilled 1n the
art.

FI1G. 6 illustrates pipelined execution of two vector-reduce
instructions from the same thread, utilizing an instruction
format of the type shown i FIG. 5. In this example, 1t 1s
assumed without limitation that there are a total of eight
threads, and that token triggered threading i1s used, with
round-robin scheduling. The instructions 1ssued by the other
threads are not shown 1n this figure. The pipeline 1n this
example includes 13 stages: instruction fetch (IFE), mstruc-
tion decode (DEC), read vector register file (RVFE), two mul-
tiply stages (ML1 and ML2), two adder stages (AD1 and
AD2), four reduce stages (RE1 through RE4), result transier
(XFR), and write accumulator file (WAF). In the same cycle
with the second adder stage (AD2), the processor also reads
the accumulator register file (RAF). Thus, a given one of the
vector-reduce nstructions takes 13 cycles to execute.

It 1s important to note with regard to this example that if two
vector-reduce instruction 1ssue one after the other from the
same thread, the first vector-reduce mstruction has already
written 1ts destination accumulator result back to the accu-
mulator register file (1in stage WAF) before the next vector-
reduce mstruction needs to read 1ts accumulator source reg-
ister from the register file. Thus two 1nstructions, such as

vmulredadd acc0, accO, vrl, vr2

vmulredadd acc0, acc0, vr3, vrd

which use the instruction format shown in FIG. 5, can be
1ssued as consecutive 1nstructions, without causing the pro-
cessor to stall due to data dependencies. This type of feature
can be provided 1n alternative embodiments using different
multithreaded processor, pipeline and reduction unit configu-
rations, as well as different instruction formats.

Another example set of vector multiply and reduce opera-
tions will now be described. It should be noted that certain of
these operations are similar to or substantially the same as
corresponding operations described 1 the previous
examples.

This example set of vector multiply and reduce operations
comprises four main types of operations: vector multiply and
reduce add with wrap-around (vmredadd), vector multiply
and reduce add with saturation (vmredadds), vector multiply
and reduce subtract with wrap-around (vmredsub), and vector
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multiply and reduce subtract with saturation (vmredsubs).
These operations take a source accumulator value, ACCS,
and two k-element vectors,

A=[A[1],A[2],. ..
Bk]]

, Alk]] and B=[B[1],B[2], .. .,

and compute the value of a destination accumulator ACCD.
An 1mportant aspect of these operations 1s that they produce
the same result as when all operations are performed in
sequential order as individual operations, that 1s, they provide
guaranteed sequential semantics. Generally, the computation
result in such an arrangement 1s exactly the same as that
which would be produced using a corresponding sequence of
individual instructions, although the invention can be 1mple-
mented using other types of guaranteed sequential semantics.

The vmredadd operation performs the computation

ACCD={ ... {{ACCS+{A]J*B1 ] +{A2]*B[2]
Pt ALK B

where {T} denotes that T is computed using wrap-around
arithmetic. This operation corresponds to multiplying k pairs
of vector elements and adding the resulting products to an
accumulator i sequential order with wrap-around arithmetic.

The vmredadds operation performs the computation

ACCD=< ..  <<ACCS+<A[1]*Bf1]>>+<A4[2]*Bf2]
>34 +<AfK]EB k] >>,

where <> denotes that T 1s computed using saturating arith-
metic. This operation corresponds multiplying k pairs of vec-
tor elements and adding their products to an accumulator in
sequential order, with saturation after each multiplication and
cach addition.

The vmredsub operation performs the computation

ACCD={ ... {{4CCS-{A[1J*B[1 ]\~ {A2]*B[2]
ti= o AR *B K]} )

This operation corresponds to multiplying k pairs of vector
clements and subtracting the resulting products from an accu-
mulator 1 sequential order with wrap-around arithmetic.

The vmredsubs operation performs the computation

ACCD=< .| <<ACCS+<A[1]*Bf1]>>+<4[2]*B[2]
>>4 .. +<AfK]EB k] >>.

This operation corresponds to multiplying k pairs of vector
clements and subtracting their products from an accumulator
in sequential order, with saturation aiter each multiplication
and each subtraction.

Variations of the above operations are also possible based
on factors such as the format of the input operands, whether or
not rounding 1s performed, and so on. For example, the above
operations can be implemented for operands in unsigned,
one’s complement, two’s complement, or sign-magnitude
format. Operands can also be 1n fixed-point format (1n which
the number’s radix point 1s fixed) or floating-point format (in
which the number’s radix point depends on an exponent).
Results from operations can either be rounded (using a variety
of rounding modes) or kept to full precision.

Further vanations of these operations are possible. For
example, 1f ACCS 1s zero, then the vmredadd and vmredadds
istructions correspond to computing the dot product of two
k-element vectors with wrap-around or saturating arithmetic.
If each element of the A vector 1s one, then the vimredadd and
vmredadds instructions correspond to adding the elements of
the B vector to the accumulator with wrap-around or saturat-
ing arithmetic.
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These example operations are particularly well suited for
implementation on a SIMD processor, as described previ-
ously herein. With SIMD processing, a single instruction
simultaneously performs the same operation on multiple data
clements. With the vector multiply and reduce operations
described herein, multiplication of the vector elements can be
performed 1n parallel in SIMD fashion, followed by multiple
operand additions, with the computational result being the
same at that which would be produced is the individual mul-
tiplications and additions were performed 1n sequential order.
Providing vector multiply and reduce operations that obtain
the same result as when each 1ndividual multiplication and
addition 1s performed in sequential order 1s usetul, since this
allows code that 1s developed for one processor to be ported to
another processor and still produce the same results.

The format of FIG. 5 can be used to perform the parallel
vector multiply and reduce operations of the previous

[ 1

example. As indicated previously, in this figure OPCODE
specifies the operation to be performed (e.g., vmredadd,
vmredadds, vmredsub, vmredsubs, etc.). ACCD specifies the
accumulator register to be used for the destination of result.
ACCS specifies the accumulator register to be used for the
source accumulator. VRSA specifies the vector register to be
used for the k-element source vector, A. VRSB specifies the

vector register to be used for the k-element source vector, B.
Based on the OPCODE, the elements 1n the vector registers
specified by VSRA and VSRB are multiplied together and the
resulting products are added to or subtracted from the accu-
mulator register specified by ACCS, and the result 1s stored in
the accumulator register specified by ACCD.

A number of more specific examples illustrating the per-
formance of the above-described set of vector multiply and
reduce operations (vmredadd, vmredadds, vmredsub and
vmredsubs) for different input operand values will now be
described. In these specific examples, ACCS, ACCD, and all
intermediate values are 8-bit two’s complement integers,
which can take values from —128 to 127. A and B are 4-¢le-
ment vectors (k=4), where each vector element 1s a 4-bit two’s
complement integer, which can take values from -8 to 7.
When performing wrap-around arithmetic, i a result is
greater than 127, 1ts sign bit changes from 0 to 1, which 1s
equivalent to subtracting 256 from the result. If aresult is less
than —128, 1ts sign bit changes from 1 to O, which 1s equivalent
to adding 256 to the result. When performing saturating arith-
metic, 1T a result 1s greater than 127, the result 1s saturated to
127. If a result 1s less than —128, 1t 1s saturated to —128.

For the vmredadd operation, the addition {113+64} causes
the result to wrap around to 113+64-256=-79 and the addi-
tion {-114+-36} causes the result to wrap around to —114+-

36+4256=106.

For the vmredadds operation, the addition <113+64>
causes the result to saturate to 127.

For the vmredsub operation, the subtraction {-113-64}
causes the result to wrap around to —113-64+256=-79 and
the addition {114+36} causes the result to wrap around to

114+36-256=-106.

For the vmredsubs operation, the subtraction <-113-64>
causes the result to saturate to —128.

Example 1

ACCS=64,
A[1]=7, A[2]=-8, A[3]=-7. A[4]=—6
B[1]=7, B[2]=-8, B[3]=5, B[4]=6
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vmredadd: ACCD = {{{{64 +{7+7}} +{—8 % —-8}} +
{—6%6}} +{-5=7}}
= {{{{64 + 49} + 64} + —35} + —36}
={{{113 + 64} + =35} + -36}
= {{-79 + =335} + - 36}
={-114 + =36}
= 106

ACCD = ({64 + (T +T)H + (-8 —-8) +
(=6%6)) + =57
= ({{{64 +49) + 64) + —35) + =36)
= ({113 +64) + =35) + =36)
= ({127 + =35) + =36)
= (92 + -36)
=56

vimredadds:

Example 2

ACCS=-64,
A[1]=7, A[2]=-8. A[3]=-7. A[4]=-6
B[1]=7. B[2]=-8, B[3]=5, B[4]=6

vmredsub. ACCD = {{{{64 +{7+7}} —{—-8 % —8}} —
{—6 %6} —{=5%7}}
= {{{{-64 — 49} — 64} + 35} — 36}
= {{{—113 - 64} + 35} + 36}
= {{79 + 35} + 36}
= {114 + 36}
= —-106

ACCD = {{({(—64 - (T+T)) — (=8 —8)) —
(=6#6)) —(=J=1))
= ({({({(—64 —49) — 64) + 35) + 36)
= {(({—113-64) + 35) + 36)
= (=128 + 35) + 36}
={-93 + 36)
=57

vimredsubs:

An advantage of the example set of vector multiply and
reduce operations (vmredadd, vmredadds, vmredsub and
vmredsubs) described above 1s that they guarantee sequential
semantics. That 1s, these operations guarantee that the com-
putational result will be the same as that which would be
produced using a corresponding sequence of individual
instructions.

A wide variety of other types of vector multiply and reduce
operations may be 1mplemented using the techniques
described herein.

It should be noted that the particular circuitry arrangements
shown 1n FIGS. 1 through 4 are presented by way of illustra-
tive example only, and additional or alternative elements not
explicitly shown may be included, as will be apparent to those
skilled 1n the art.

It should also be emphasized that the present mvention
does not require the particular multithreaded processor con-
figuration shown in FIG. 4. The mvention can be imple-
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mented 1n a wide variety of other multithreaded or non-
multithreaded processor configurations.

Thus, the above-described embodiments of the invention
are intended to be illustrative only, and numerous alternative
embodiments within the scope of the appended claims will be
apparent to those skilled 1n the art. For example, the particular
arithmetic unit, reduction unit and accumulator unit configu-
rations shown may be altered in other embodiments. Also, as
noted above, pipeline configurations, threading types and
instruction formats may be varied to accommodate the par-
ticular needs of a given application.

What 1s claimed 1s:

1. A multi-threaded vector processor comprising:

a plurality of vector arithmetic units for performing paral-
lel concurrent vector operations on vectors comprising
vector elements;

a vector accumulator unit; and

a vector reduction unit coupled between the plurality of
vector arithmetic units and the vector accumulator unait,
the vector reduction unit receiving products of vector
clements from the vector arithmetic units and a first
accumulator value from the vector accumulator unait;

wherein the vector reduction unit 1s pipelined and operative
to process the products and the first accumulator value,
and to generate a second accumulator value for delivery
to the vector accumulator unit;

wherein the multi-threaded vector processor implements a
plurality of vector multiply and reduce instructions hav-

ing guaranteed sequential semantics such that computa-
tion results of a vector multiply and reduce instruction 1s

the same as that which i1s produced using a correspond-
ing sequence of individual 1nstructions; and

wherein a vector multiply and reduce instruction computed
for a given thread 1s executed concurrently with opera-
tions from other threads, the number of cycles between
execution of the vector multiply and reduce instruction
from the given thread being greater than or equal to a
number of pipeline stages in the vector reduction unit
plus any additional cycles needed to write to and read
from the vector accumulator unit.

2. The processor of claim 1 wherein the vector multiply and

reduce add with wrap-around performs the computation:

ACCD={ ... {{ACCS+{A[1J*B[1 ]\ +{A2]*B[2]
P+ H{ AR *BIE]
where A and B are k-bit input vectors, ACCS denotes the first
accumulator value, ACCD denotes the second accumulator

value, and {T} denotes that T is computed using wrap-around
arithmetic.

3. The processor of claim 1 wherein the vector multiply and
reduce add with saturation performs the computation:

ACCD=< ... <<ACCS+<A[1]*Bf1]>>+<A4[2]*Bf2]
>>4 L +<AfE]FB K] >,

where A and B are k-bit input vectors, ACCS denotes the first
accumulator value, ACCD denotes the second accumulator
value, and <I> denotes that T 1s computed using saturating,

arithmetic.

4. The processor of claim 1 wherein the plurality of vector
multiply and reduce operations comprises a vector multiply
and reduce subtract with wrap-around which multiplies pairs
of vector elements and subtracts the resulting products from
the first accumulator value 1n sequential order with wrap-
around arithmetic.

5. The processor of claim 4 wherein the vector multiply and
reduce subtract with wrap-around performs the computation:
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ACCD={ ... {{4CCS-{A[1J*B[1 ]\ ~{A2]*B[2]
= —4/K]*BlK] T ],
where A and B are k-bit input vectors, ACCS denotes the first
accumulator value, ACCD denotes the second accumulator
value, and { T} denotes that T is computed using wrap-around
arithmetic.

6. The processor of claim 1 wherein the plurality of vector
multiply and reduce operations comprises a vector multiply
and reduce subtract with saturation which multiplies pairs of
vector elements and subtracts the resulting products from the
first accumulator value 1 sequential order with saturation
alter each multiplication and each subtraction.

7. The processor of claim 6 wherein the vector multiply and
reduce subtract with saturation performs the computation:

ACCD=< ... <<ACCS-<{Af1]J*B[1]>>-<A4[2]*B
[2]>>= ... ~<A[k]*B[k]>>

where A and B are k-bit input vectors, ACCS denotes the first
accumulator value, ACCD denotes the second accumulator
value, and <I> denotes that T 1s computed using saturating
arithmetic.

8. The processor of claim 1 wherein input vectors to which
a grven one of the vector multiply and reduce operations 1s
applied are 1n one of an unsigned format, a one’s complement
format, a two’s complement format, and a sign-magnitude
format.

9. The processor of claim 1 wherein input vectors to which
a given one of the vector multiply and reduce operations 1s
applied are 1n one of a fixed-point format and a floating-point
format.

10. The processor of claim 1 wherein results of a given one
of the vector multiply and reduce operations are rounded.

11. The processor of claim 1 wherein results of a given one
of the vector multiply and reduce operations are maintained at
tull precision.

12. The processor of claim 1 wherein the first accumulator
value 1s zero, and a given one of the vector multiply and
reduce operations comprises a dot product.

13. The processor of claim 1 wherein each element of a first
input vector has a value of one, and a given one of the vector
multiply and reduce operations comprises adding elements of
a second 1nput vector to the first accumulator value.

14. The processor of claim 1 wherein the processor com-
prises a single instruction multiple data (SIMD) processor, a
given one of the vector multiply and reduce operations per-
forming parallel multiplications of vector elements.

15. The processor of claim 1 wherein the plurality of arith-
metic units comprises a plurality of multipliers arranged in
parallel with one another.

16. The processor of claim 1 wherein the reduction unit 1s
configured to provide controllable selection between at least
a first type of computation with saturation after each of a
plurality of addition or subtraction operations and a second
type ol computation with wrapping around of results of the
addition or subtraction operations, responsive to an applied
control signal.

17. The processor of claim 1, wherein the plurality of
vector multiply and reduce 1nstructions comprises a vector
multiply and reduce add with wrap-around which multiplies
pairs of vector elements and adds the resulting products to the
first accumulator value with wrap-around after each multipli-
cation and each addition and a reduce add with saturation
which multiplies pairs of vector elements and adds the result-
ing products to the first accumulator value with saturation
alter each multiplication and each addition, wherein the order
of adding the resulting products to the first accumulator value
and selection by the vector processor of one of wrap around
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arithmetic and saturation arithmetic are specified by the type
of vector multiply and reduce 1nstruction.

18. An mtegrated circuit comprising at least one multi-
threaded vector processor, the multi-threaded vector proces-
SOr comprising; 5

a plurality of vector arithmetic units for performing paral-

lel concurrent vector operations on vectors comprising
vector elements;

a vector accumulator unit; and 0

a vector reduction unit coupled between the plurality of
vector arithmetic units and the vector accumulator unat,
the vector reduction unit being pipelined and configured
to recerve products of vector elements from the vector
arithmetic units and a first accumulator value from the

: 15
vector accumulator unit;

wherein the vector reduction unit 1s operative to process the
products and the first accumulator value, and to generate
a second accumulator value for delivery to the vector

accumulator unit; 20

wherein the multi-threaded vector processor implements a
plurality of vector multiply and reduce instructions hav-
ing guaranteed sequential semantics such that computa-
tion results of a vector multiply and reduce mstruction 1s
the same as that which i1s produced using a correspond-
ing sequence of individual 1nstructions; and

25

wherein a vector multiply and reduce instruction computed
for a given thread 1s executed concurrently with opera-
tions from other threads, the number of cycles between
execution of the vector multiply and reduce instruction
from the given thread being greater than or equal to a
number of pipeline stages in the vector reduction unit
plus any additional cycles needed to write to and read
from the vector accumulator unit.

30

19. An apparatus for use in a multi-threaded vector proces- >

sor comprising a plurality of vector arithmetic units for per-
forming parallel concurrent vector operations on vectors
comprising vector elements and a vector accumulator unit,

the apparatus comprising:

. . . 40
a vector reduction unit coupled between the plurality of

vector arithmetic units and the vector accumulator unait,
the vector reduction unit being configured to receive
products of vector elements from the arithmetic units
and a first accumulator value from the vector accumula-
tor unit;

16

wherein the vector reduction unit 1s pipelined and operative
to process the products and the first accumulator value,
and to generate a second accumulator value for delivery
to the vector accumulator unat;

wherein the multi-threaded vector processor implements a

plurality of vector multiply and reduce instructions hav-
ing guaranteed sequential semantics such that computa-
tion results of a vector multiply and reduce 1nstruction 1s
the same as that which 1s produced using a correspond-
ing sequence of mdividual nstructions; and

wherein a vector multiply and reduce instruction computed

for a given thread 1s executed concurrently with opera-
tions from other threads, the number of cycles between
execution of the vector multiply and reduce instruction
from the given thread being greater than or equal to a
number of pipeline stages in the vector reduction unit
plus any additional cycles needed to write to and read
from the vector accumulator unit.

20. The apparatus of claim 19, wherein the plurality of
vector multiply and reduce 1nstructions comprises a vector
multiply and reduce add with wrap-around which multiplies
pairs of vector elements and adds the resulting products to the
first accumulator value with wrap-around after each multipli-
cation and each addition and a reduce add with saturation
which multiplies pairs of vector elements and adds the result-
ing products to the first accumulator value with saturation
alter each multiplication and each addition, wherein the order
of adding the resulting products to the first accumulator value
and selection by the vector processor of one of wrap around
arithmetic and saturation arithmetic are specified by the type
of vector multiply and reduce 1nstruction.

21. The integrated circuit of claim 18, wherein the plurality
of vector multiply and reduce instructions comprises a vector
multiply and reduce add with wrap-around which multiplies
pairs of vector elements and adds the resulting products to the
first accumulator value with wrap-around after each multipli-
cation and each addition and a reduce add with saturation
which multiplies pairs of vector elements and adds the result-
ing products to the first accumulator value with saturation
alter each multiplication and each addition, wherein the order
of adding the resulting products to the first accumulator value
and selection by the vector processor of one of wrap around
arithmetic and saturation arithmetic are specified by the type
of vector multiply and reduce 1nstruction.

G o e = x
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