US007793296B2
a2 United States Patent (10) Patent No.: US 7,793,296 B2
Di Gregorio 45) Date of Patent: Sep. 7, 2010
(54) SYSTEM AND METHOD FOR SCHEDULING OTHER PUBLICATIONS

A MULTI-THREADED PROCESSOR

(75) Inventor: Lorenzo Di Gregorio, Pescara (IT)

(73) Assignee: Infineon Technologies AG, Munich
(DE)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1296 days.

(21) Appl. No.: 11/305,336

(22) Filed: Dec. 19, 2005
(65) Prior Publication Data
US 2006/0161924 Al Jul. 20, 2006
(30) Foreign Application Priority Data

Dec. 20,2004 (DE)

....................... 10 2004 061 339

(51) Int.CL

GO6F 9/46 (2006.01)
GO6F 7/38 (2006.01)
GO6F 13/26 (2006.01)

(52) US.CL ..., 718/103; 718/108; 708/290;

710/265

(58) Field of Classification Search 718/103,

718/108; 708/290; 710/265
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,061,709 A 5/2000 Bronte
2007/0198971 Al* 8/2007 Dasuetal. 717/140

Kuacharoen, P.; Shalan, M; Mooney III, V.; “A configurable hardware
scheduler for real-time systems™; Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algo-
rithms, pp. 96-101, Jun. 2003 .*

Noguera, J.; Badia, R; “Dynamic run-time HW/SW scheduling tech-
niques for reconfigurable architectures”; Proceedings of the tenth
international symposium on Hardware/software codesign table of

contents, Session: System design methods: scheduling advances
table of contents; pp. 205-210; Year of Publication: 2002 .*

Aydin, H.; Melhem, R.; Mosse, D.; Mejfa-Alvarez, P.; “Optimal
reward-based scheduling of periodic real-time tasks™; Real-Time
Systems Symposium, 1999. Proceedings. The 20th IEEE; Dec. 1-3,
1999 pp. 79-89.%

Yang, L.; Yuan, J.; “A Single-Stage Direct Interpolation Multiphase
Clock Generator with Phase Error Averaging”; Analog Integrated
Circuits and Signal Processing archive; vol. 38, Issue 1 (Jan. 2004);
pp. 17-26; Year of Publication: 2004; ISSN:0925-1030.*

(Continued)

Primary Examiner—Meng-A1 An
Assistant Examiner—Nikhil Krishnan
(74) Attorney, Agent, or Firm—Slater & Matsil, L.L.P.

(57) ABSTRACT

The mvention relates to a device to be used with a scheduling
method, and to a scheduling method, 1n particular a context
scheduling method, comprising the steps of performing a
scheduling for threads to be executed by a multithreaded
processor, wherein the scheduling 1s performed as a function
of index variables assigned to the threads. That thread whose
index variable has the highest, or—in an alternative—the
lowest value may be selected as the respective thread to be
executed by the processor.

20 Claims, 3 Drawing Sheets

destination contexlﬂ

context switch indication

other dat?

ob

US 7,793,296 B2
Page 2

OTHER PUBLICATIONS

Hildebrandt, J.; Timmermann, D.; “An FPGA Based Scheduling
Coprocessor for Dynamic Priority Scheduling in Hard Real-Time
Systems”; R.W. Hartenstein and H. Grunbacher (Eds.): FPL 2000,
LNCS 1896, pp. 777-780, 2000.*

Kalogeraki, V.; Melliar-Smith, P.M.; Moser, L.E.; “Dynamic Sched-
uling of Distributed Method Invocations™; Real-Time Systems Sym-
posium, 2000. Proceedings. The 21st IEEE Nov. 27-30, 2000 pp.
57-66.*

Banks, J. S. et al. (1994). “Switching Costs and the Gittins Index,”
FEconometrica 62(3):687-694.

Bertsekas, D. P. (1995). “Stochastic Scheduling and the Multiarmed
Bandit,” Chapter 1 In Dynamic Programming and Optimal Control.
Volume Two, pp. 54-65, Athena Scientific ISBN 1-886529-13-2.

Gittins, J. C. (1979). “Bandit Processes and Dynamic Allocation
Indices,” Journal of the Royal Statistical Society Series B, 41(2):148-
177.

Gittins, J. C. et al. (1974). “A Dynamic Allocation Index for the
Sequential Allocation of Experiments,” In Progress in Statistics. J.
Gani et al. Eds., North-Holland: Amsterdam, pp. 241-266.

Kuacharoen, P. et al. (2006). “A Configurable Hardware Scheduler
for Real-time Systems,” Center for Research on Embedded Systems

and Technology, School of Electrical and Computer Engineering,

Georgia Institute of Technology: Atlanta, pp. 1-7. Located at <http://
www.ece.gatech.edu/research/codesign/publications/pramote/pa-
per/chs-ERSAQ3.pdf>.

Mickova, J. (2000). “Stochastic Scheduling with Multi Armed Ban-
dits,” MSEE Master Thesis, Department of Electrical and Electronic
Engineering, University of Melbourne, Australia.

Puterman, M. L. (1994). “Markov Decision Processes—Discrete
Stochastic Dynamic Programming,” Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons. Inc., pp. 348-371, ISBN
0-471-61977-9,

Sundaram, R. K. (2003). “Generalized Bandit Problems,” Depart-
ment of Finance, Stern School of Business, New York University:
New York, pp. 1-30. Located at <http://pages.stern.nyu.edu/
~rsundara/pdf/Bandits.pdf>.

Weber, R. R. et al. (1990). “On an Index Policy for Restless Bandits,”
Journal of Applied Probability 27:637-648.

Whittle, P. (1980). “Multi-armed Bandits and the Gittins Index,”
Journal of the Royal Statistical Society Series B, 42(2):143-149.
Whittle, P. (1982). “Sequential Scheduling and the Multi-armed Ban-
dit,” Chapter 14 In Optimization over Time—Dynamic Programming
and Stechastic Control.vol. 1, John Wiley and Sons Ltd, pp. 210-219.
Whittle, P. (1988). “Restless Bandits: Activity Allocation in a Chang-
ing World,” Journal of Applied Probability 25A:297-298.

* cited by examiner

U.S. Patent Sep. 7, 2010 Sheet 1 of 3 US 7,793,296 B2

FIG 1 ’/10
11
15
Core
18 12 system

bus
External Memory \ 16
Memory Controller 17
Local
Memory

FlG 2
6
Current Context
57
Push Indication
58
1 Indication
CPU 13 Context
11 Core ExeCted ReWard Soheduler 3
14
Stopping Time
| 19
Interpolation Type
.
Context Switch Indication

8
Destination Context

U.S. Patent Sep. 7, 2010 Sheet 2 of 3 US 7,793,296 B2

FIG 3

destination context
- -

- - other data

Interpolator o Interpolator
Context 0 53 Context O 5b

20 21

I h
ab
= :
~ .
>:

e

destination context

context switch indication

U.S. Patent Sep. 7, 2010 Sheet 3 of 3 US 7,793,296 B2

FIG 4 19
Interpolation type / Current context _
13 %
\ Expected reward _ - 6
14 o this
| otopping time | context 30
28 35 34

flush I = Flush indication

Con:;uration registeBrBC ‘ ?8
FIFO push | Push indication

Default| Default y ‘ '

33 57
40)
38a 38b 97
41 36 31
N 0A
42 I"'— - —
‘-r \
32D 32¢C |
32
[|
32a wrleenabe
46
52b 153
- EI l 15
594 45¢
(™
50a 20b i
- N/
* 56
51

20

US 7,793,296 B2

1

SYSTEM AND METHOD FOR SCHEDULING
A MULTI-THREADED PROCESSOR

CLAIM FOR PRIORITY

This application claims the benefit of priority to German
Application No. 10 2004 061 339.7, filed in the German

language on Dec. 20, 2004, the contents of which are hereby
incorporated by reference.

TECHNICAL FIELD OF THE INVENTION

The mvention relates to a scheduling method, 1n particular
a context scheduling method, and to a device to be used with
a scheduling method.

BACKGROUND OF THE INVENTION

Conventional digital computing circuits (e.g. correspond-
ing microcontroller or microprocessor systems arranged on a
microchip) comprise one or a plurality of (central) control or
processing units (Central Processing Units (CPUs), or CPU
“cores™).

The CPU or the CPUs are—via a system bus (and possibly
one or a plurality of further bus systems)—connected with
one or a plurality of (external or internal) memories, €.g. a
program and a data memory (“program memory” and “data
memory”’).

The “program memory” comprises in particular the
sequence ol the commands to be processed by the CPU core
(s),1.€. the program (and possibly additionally corresponding
data constants to be used by the CPU core(s)).

The program memory may, for instance, be an EPROM
(Erasable PROM) or an EEPROM (Electrically Erasable
PROM), 1n particular a flash EEPROM device.

Thus, 1t can be achieved that the program remains stored on
the corresponding memory even 1f the current supply 1s inter-
rupted.

For programs that are to be changed frequently, RAMSs
(RAM=Random Access Memory or read-write memory), 1n
particular DRAMs, may, for instance, also be—alterna-
tively—used as program memories that are adapted to be
loaded from an external mass storage.

In the above-mentioned “data memory”, the variables
which are possibly to be modified 1n particular by the CPU
core(s) during the execution of the program may be stored.

The data memory may, for instance, be composed of one or

a plurality of RAM devices, 1n particular e.g. an appropriate
DRAM device (DRAM=Dynamic Random Access Memory)

or SRAM device (SRAM=Static Random Access Memory).

A software program (or several such programs) to be pro-
cessed by the CPU core may be subdivided 1into a plurality of
appropriate software tasks (threads).

This has, for instance, the advantage that—in particular
¢.g. 1n the case of so-called multithreaded (MT) microcon-
troller or microprocessor systems—a plurality of different
threads each may be loaded competitively into one and the
same CPU core and be processed there.

By means of multithreaded (MT) microcontroller or
microprocessor systems, particular resources—in particular
¢.g. the execution pipeline (processing pipeline)—can be uti-
lized more efficiently.

Clock times 1n which there 1s a delay 1n a particular thread
loaded 1nto the CPU core for certain reasons, may be used for
processing a further thread also loaded into the CPU core.

For storing the status or “context”, respectively, ol—pos-
sibly a plurality of—threads loaded into the CPU core, ele-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

ments such as program counter (PC), execution status regis-
ter, register file, etc., etc. are possibly present several times
over 1 a multithreaded (MT) microcontroller or micropro-
CESSOr system.

Thus, a plurality of different threads can be kept simulta-
neously 1 one and the same CPU core, and approprate
switching between the threads can be performed.

Usually, only a small portion of the respective threads to be
executed 1s kept simultaneously 1in the CPU core; the remain-
ing threads to be executed are latched outside the CPU core
until they are loaded into the CPU core.

The scheduling of the threads thus takes place in two steps:
In a first scheduling step 1t 1s decided when which threads
(that are latched outside the CPU core and) that are scheduled
for execution are loaded 1into the CPU core and are assigned to
a corresponding “context” (“‘off-core thread scheduling” or
“thread scheduling). In a second subordinated step it is
decided when which of the threads that have been loaded mto
the CPU core and have been assigned to a context has to be
executed (“on-core thread scheduling”™ or “context schedul-
ng’’).

In the case of conventional multithreaded (MT) microcon-
troller or microprocessor systems, the “context scheduling™ 1s
usually controlled by hardware and the “thread scheduling”™
by software.

For both scheduling steps, respectively different schedul-
ing strategies may be used. Generally speaking, the object of
the “context scheduling” (and possibly also of the ““thread
scheduling™) 1s the optimization of a corresponding cost func-
tion, 1n particular e.g. the achieving of a throughput that 1s as
high as possible, the so-called tolerance of corresponding
latencies, or a use of the processor resources that 1s as optimal
as possible, respectively, etc., etc., and the object of the
“thread scheduling” 1s e.g. the determination of a contlict-free
succession of program tlows, or the prioritization of program
flows by means of real time requirements, etc.

Conventional context scheduling methods or context
scheduling strategies, respectively, are based on (“quasi

static) priorities (that are definitely allocated and are assigned
to the individual threads to be executed).

A consequence of this 1s that, as a rule—in the meaning of
the above-mentioned and/or corresponding further objects of
the respective scheduling (1.e. 1n the meaning of the optimi-
zation of a corresponding cost function)—no optimum con-
text scheduling, or a context scheduling that 1s relatively far
from an optimum scheduling, respectively, 1s achieved.

SUMMARY OF THE INVENTION

It1s an object of the invention to provide a novel scheduling
method, 1n particular a context scheduling method, and a
novel device to be used with a scheduling method.

This and further objects are achieved by the subject matters
of claims 1 and 11.

Advantageous further developments of the invention are
indicated 1n the subclaims.

In accordance with a first aspect of the invention there 1s
provided a scheduling method, in particular a context sched-
uling method, comprising the steps of:

performing a scheduling for threads to be executed by a
multithreaded (MT) processor,

wherein the scheduling 1s performed as a function of index
variables assigned to the threads.

In a particularly advantageous embodiment of the inven-
tion that thread i1s chosen as the thread to be executed by the

US 7,793,296 B2

3

processor whose index variable has the highest (or—in a
turther, alternative, advantageous embodiment—the lowest)
value.

In a preferred further development of the mvention, the
value of the index variable of a thread being in the active
status can be changed during the active thread status; 1n par-
ticular can the value of the index variable of the respectively
executed thread be changed 1n the course of thread execution.

Advantageously, a hardware circuit, in particular a hard-
ware 1nterpolator circuit, can be used to change the value of
the index variable.

In accordance with a further aspect of the invention there 1s
provided a device, in particular a context scheduler, to be used
with a scheduling method, wherein a scheduling 1s performed
for threads to be executed by a multithreaded (MT) processor,

Wherein the device comprises a device for comparing
index variables assigned to the threads.

In an advantageous embodiment, the comparing device 1s
designed and equipped such that 1t determines the thread
whose index variable has the highest (or, alternatively, e.g. the
lowest) value.

Advantageously, the device comprises a device for gener-
ating a thread change signal (or a context switch indication
signal, respectively) 1f the comparing device determines that
a change has been performed with the thread with the highest
(or, alternatively: the lowest) index variable value. The execu-
tion of the last executed thread then may be interrupted, and
the execution of the thread with the (then) highest imndex
variable value may be started instead.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, the imvention will be explained 1n more
detail by means of embodiments and the enclosed drawing.
The drawing shows:

FIG. 1 a schematic, simplified representation of a micro-
controller or microprocessor system according to an embodi-
ment of the present invention;

FIG. 2 a schematic representation of the context scheduler
used for context scheduling with the microcontroller or

microprocessor system illustrated in FIG. 1, and of the CPU
illustrated 1n FIG. 1;

FIG. 3 a schematic detailed representation of the context
scheduler illustrated 1n FIG. 2;

FIG. 4 a schematic detailed representation of one of the

interpolators used in the context scheduler illustrated in FIG.
3.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shows a schematic representation of a microcon-
troller or microprocessor system 10 according to an embodi-
ment of the mvention.

The microcontroller or microprocessor system 10 may, for
instance, be an 8 bit microcontroller or microprocessor sys-
tem 10, or any other microcontroller or microprocessor sys-
tem, €.g. an appropriate 16 bit, 32 bit, or 64 bit microcontrol-
ler or microprocessor system, etc., 1 particular a
multithreaded (M'T) microcontroller or microprocessor sys-
tem, e.g. a microcontroller or microprocessor system based
on a “fine grain” multithreaded processor microarchitecture
protocol of the company Infineon.

The microcontroller or microprocessor system 10 com-

prises one or a plurality of (central) control or processing,
units 11 (Central Processing Units (CPUs) or CPU *“cores”,
respectively) arranged on a corresponding microchip 15.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The CPU 11 1s or the CPUs are—vi1a a system bus 16 (and
possibly one or a plurality of further bus systems)—con-
nected with one or a plurality of internal memories 17 (pro-
vided on the same microchip 15 as the CPU 11), and——e.g. via
the system bus 16 and one or a plurality of corresponding
memory controllers 12—with one or a plurality of external
memories 18 (provided on a different microchip than the CPU
11).

The memones 17, 18 may, for instance, act as “program
memory”” and/or “data memory”.

The “program memory” contains 1in particular the
sequence of the commands to be executed by the CPU(s) 11,
1.¢. the program (and possibly additional corresponding data
constants to be used by the CPU(s) 11).

The program memory—that 1s e.g. formed by the memory
17—may, for instance, be an EPROM (Erasable PROM) or an
EEPROM (FElectrically Erasable PROM), 1n particular a flash
EEPROM device.

Thus, 1t can be achieved that the program remains stored on
the corresponding memory even if the current supply 1s inter-
rupted.

For programs that are to be changed frequently, RAMS
(RAM=Random Access Memory or read-write memory), in
particular DRAMS, may, for instance, also be—alterna-
tively—used as program memories that are adapted to be
loaded from an external mass storage.

In the above-mentioned “data memory”—that 1s e.g.
formed by the memory 18—the variables—which possibly
have to be modified in particular by the CPU(s) 11 during the
execution of the program—may, for instance, be stored.

The data memory may e.g. be composed of one or a plu-
rality of RAM devices, 1 particular e.g. by an appropnate

DRAM device (DRAM=Dynamic Random Access Memory)
or SRAM device (SRAM=Static Random Access Memory).

A software program (or a plurality of such programs)—to
be executed by the CPU or the CPU core 11—may be subdi-
vided mto a plurality of corresponding software tasks

(threads).

This, for instance, has the advantage that—in particular 1n
the case of the multithreaded (M) microcontroller or micro-
processor system 10 1llustrated here—a plurality of different
tasks each can be loaded simultaneously 1into the CPU core 11
in parallel and can be processed there.

For storing the status or “context” ofl—possibly several—
threads loaded into the CPU core 11, particular elements such
as program counter (PC), execution status register, stack
pointer, register file, etc., etc. are possibly present several
times with the CPU core 11 (e.g. twice, three times, four
times, or {ive times, etc.).

A set of status elements referred to as thread context i1s
assigned to each thread. By this, and by the multiple provid-
ing of the above-mentioned elements, a plurality of different
threads (e.g. two, three, four, or five threads, etc.) can be
loaded simultaneously 1nto the CPU core 11, and appropriate
switching can be performed between the threads (1n particular
such that only few cycles, or—particularly advantageously—
no cycle gets lost during switching.

This way, particular processor resources—in particular
¢.g. the execution pipeline (processing pipeline)—can be
used more efficiently; the execution pipeline 1s adapted to
simultaneously process commands assigned to different

threads.

For instance, clock times 1n which there 1s a delay 1n a
particular thread loaded into the CPU core 11 for certain
reasons, may be used for processing a further thread loaded
into the CPU core 1n parallel.

b

US 7,793,296 B2

S

As will be explained in more detail 1n the following, only a
(small) part of the respective threads to be executed 1s, as a
rule, loaded simultaneously into the CPU core 11; the remain-
ing threads to be executed are latched outside the CPU core 11
until they are loaded into the CPU core 11 (and are, to this end,
for 1nstance, read out from the memory 17 and stored—{tor
latching—in a (further) memory provided 1n the vicinity of
the CPU core 11).

The scheduling of the threads 1s thus performed 1n two
steps: In a first scheduling step 1t 1s decided when which
threads (that are latched outside the CPU core 11 1n the
above-mentioned further memory and) that are scheduled for
execution are loaded into the CPU core 11 and are assigned to
a corresponding “context” (“‘oif-core thread scheduling” or
“thread scheduling”).

In a second, subordinated step 1t 1s decided when which of
the threads that have been loaded into the CPU core 11 has to
be executed (“on-core thread scheduling” or “context sched-
uling”, e.g. by means of a context scheduler 3 implemented in
hardware and illustrated in FI1G. 2).

The thread scheduling may, for instance—as convention-
ally—be controlled by software (or, alternatively, e.g. also by
hardware).

The context scheduler 3 responsible for the “on-core thread
scheduling” or “context scheduling” needs—ifor every on-
core thread loaded into the CPU core 11—information
regarding the current context status, and attribute information
(e.g. regarding the thread index value or the default thread
index value (or regarding corresponding interpolation type
default values and expected reward default values (cf.
below))).

This information may be stored 1n an appropriate context
status array memory.

The context status array memory may contain a plurality of
context status elements (CSE) each comprising—related to
one respective context—the above-mentioned information
concerning the current context status and the above-men-
tioned attribute information.

Each context status element may comprise two registers,
namely a first register for storing the context status informa-
tion, and a second register for storing the attribute informa-
tion.

The first register comprises at least one bit which indicates
whether the respective context status element (or the corre-
sponding context) 1s “free” or occupied (“not free”) (i.e.
occupied by a corresponding thread or not) (“occupied” bit).

If, during the above-mentioned thread scheduling, it 1s
determined that a context status element (or the correspond-
ing context) 1s “Iree” (1.e. 1f the “occupied™ bit 1s 1n a status
indicating such a status (e.g. a non-set status), one out of a
plurality of candidate threads scheduled for execution and
latched 1n the above-mentioned further memory may (corre-
sponding to the scheduling strategy used with thread sched-
uling (e.g. corresponding to conventional methods, the
respectively first out of a plurality of threads contained 1n a
candidate thread list and being 1n a ready status)) be loaded
into the CPU core 11, the thread may be linked with the
corresponding context, and the “occupied” bitmay be set then
(and e.g. a further status bit characterizing the thread as being
in the status “idle’ then).

Furthermore, the corresponding attribute information
(thread index value or default thread index value (or interpo-
lation type default value and expected reward default value
(cf. below))) which 1s e.g. stored 1in the above-mentioned
program memory 17 with an assignment to the respective
thread (and 1s latched 1n the above-mentioned further memory
during the loading of the thread) may be stored for the newly

10

15

20

25

30

35

40

45

50

55

60

65

6

loaded thread 1n the context status array memory, 1n particular
in the (second) register of the corresponding context status
clement, and the starting address of the newly loaded thread
may be written into the corresponding program counter (PC)
of the CPU core 11.

A thread to be executed by the CPU core 11 may—{rom an
on-core view (1.e. for the context scheduler 3)—in particular
be 1n an active, or a non-active status:

“non active” (e.g. “1dle”: thread is ready for starting or for
continuing the execution, respectively, but 1s not executed (at
the moment))

“active” or “running’’: thread 1s executed at the moment 1n
that corresponding commands are possibly fetched and are
executed by the execution pipeline or the processing pipeline.

In the CPU core 11, only one single thread each can be 1n
the status “running’.

The status of the above-mentioned “idle” bit that 1s stored
in the context status array memory 1s queried by the context
scheduler 3. The context scheduler 3 selects—it a context or
thread being 1n execution by the CPU core 11, 1.¢. in the status
“running’”’, 1s to be replaced by anew thread to be executed (or
a new thread 1s to be taken to a status “running”, respec-
tively)—the next, running context or thread, or the next con-
text or thread to be executed by the CPU core 11 (1.e. to be
taken to a status “running”), respectively, among those con-
texts or threads that are characterized as being in the status
“1dle” by an *“1dle” bait set.

As 1s shown 1n FIG. 2, the context scheduler 3 1s perma-
nently informed by the CPU core 11—e.g. by means of a
signal “current context” transmitted via a line 6—about the
context or thread that 1s currently 1n a status “running”, 1.€. for
which thread the execution pipeline or processing pipeline 1s
just fetching and executing corresponding commands (e.g. by
transmitting a context ID (*“running context number) char-
acterizing the respectively executed or running thread).

In accordance with FIG. 3, the context scheduler 3 com-
prises a plurality of interpolators 5a, 5b, etc. corresponding,
for instance, to the number of (maximally) available contexts
and respectively assigned thereto.

A first mterpolator (e.g. the interpolator Sa) may, 1n the
present embodiment, be assigned (temporarily or perma-
nently) e.g. to a first one out of the plurality of contexts, e.g.
to a currently running thread or context (being 1n a status
“running’), and one or a plurality of further interpolators (e.g.
the interpolator 55, etc.) may be assigned (temporarily or
permanently) e.g. to one or a plurality of further threads or
contexts, e¢.g. to threads or contexts that are currently ready,
but not running (that are 1n particular in a status “i1dle™), etc.

As will be explained 1n more detail 1n the following, 1n the
present embodiment the respective interpolator (e.g. the inter-
polator 5a) assigned to the currently runming thread or context
(being 1n a status “runmng’) (and possibly additionally also
interpolators that have been assigned to currently newly
loaded thread during the above-mentioned thread scheduling)
1s/are taken to an “activated” status (status “interpolator run-
ning”), and the interpolator(s) (e.g. the interpolator 56) of the
remaining—currently ready, but not running—threads or
contexts 1s/are taken to a “deactivated” status (status “inter-
polator 1dle™).

In the activated status—as will also be explained 1n more
detail further below—the corresponding interpolator 5a cal-
culates a respectively new, updated, modified thread index
value, and the respectively (newly) calculated index value 1s
transmitted to a comparing device 1 by means of a corre-
sponding signal output at a line 20.

In contrast to this, the respectively deactivated interpola-
tors 36 (continue to) output—without modification—the

US 7,793,296 B2

7

respectively last calculated thread index value which 1s also
supplied to the comparing device 1 by means of correspond-
ing signals transmitted via corresponding lines 21.

The comparing device 1 determines which interpolator Sa,
5b supplies the respectively greatest thread index value (1.e.
for which thread or context the respectively greatest thread
index value exists).

As results from FI1G. 3, the comparing device 1 provides at
a line 8 a signal “destination context” characterizing the
thread or context with the respectively greatest thread index
value (e.g. a signal containing the context ID of the thread or
context with the respectively greatest thread index value).

In accordance with FIG. 2, the signal “destination context™
output by the comparing device 1 at the line 8 1s transmitted to
the CPU core 11, and—as 1s shown in FIG. 3—vi1a a line 22 to
a first input of a comparator 2, and via a line 23 to a latch 4.

The latch 4 transmits the signal “destination context™
present at the line 23 and indicating the context ID of the
thread with the respectively greatest thread index value with
a certain delay via a line 24 to a second 1nput of the compara-
tor 2.

If there 1s a change with the thread or context with the
respectively greatest thread index value—and thus also a
change with the signal “destination context” indicating the
context 1D of the thread with the respectively greatest thread
index value—there 1s—temporarily—a signal “destination
context 7 characterizing the new context ID already
present at the lines 8, 22, 23, but—due to the above-men-
tioned delay effect of the latch 4—there 1s still a signal “des-
tination context _, ”” characterizing the old context ID present
at the line 24.

Due to the—temporary—difference of the signals applied
to the first and second 1nputs of the comparator 2 via the line
22 and the line 24, the comparator 2 will—temporarily—
output a signal “context switch indication™ at a line 7, char-
acterizing a change that has occurred with the thread or con-
text with the respectively greatest thread index wvalue,
which—as results from FIG. 2—will be transmitted to the
CPU core 11.

The CPU core 11 may then perform a corresponding con-
text change, wherein the context indicated by the signal “des-
tination context” output at the lines 8 1s then taken to a running
status (status “running’), and the last running context or the
context being 1n a status “running’”’, respectively, 1s taken to a
non-running status (1n particular e.g. to a status “idle™).

As has already been explained briefly above, the interpo-
lator (e.g. the interpolator 5a), 1 particular the respective
interpolator assigned to the currently running thread or con-
text (being 1n a status “running”) 1s taken to an activated
status.

To this end—as results from FIG. 4—in each interpolator
5a the context ID transmitted by the CPU core 11 at the line
6 by means of the signal “current context” and characterizing
the respectively executed or running thread 1s compared, 1n a
comparing device 30, with the context ID—that 1s e.g. stored
in the comparing device 30—of the context assigned to the
respective iterpolator 5a.

If the context ID characterizing the respectively executed
or running thread 1s identical to the context ID of the context
assigned to the respective interpolator 5a, the comparing
device 30 outputs an activate or enable signal, 1n particular a
signal “write enable”, at a line 31.

The s1gnal “write enable™ 1s transmitted to an enable input
ol a register set 32 and to respective first inputs of correspond-
ing AND elements 33, 34.

By this—as will be explained 1n more detail in the follow-
ing—the register set 32 1s enabled to be (newly) written with

10

15

20

25

30

35

40

45

50

55

60

65

8

appropriate values, and the AND elements 33, 34 are enabled
to transmit corresponding signals “flush indication™ or “push
indication” present at the lines 57, 58 to corresponding con-
trol inputs of a FIFO memory 35 (FIFO=First-In-First-Out).

As results from FIG. 2, and as will be explained 1n more
detail 1n the following, the CPU core 11 provides, via corre-
sponding lines 13, 14, 19 that are connected with the context
scheduler 3, signals “interpolation type”, “expected reward”,
and “stopping time” relating to the respectively running
thread or context (or—ior the respectively running thread or
context—corresponding variable values for corresponding
variables characterizing the respective interpolation type, the
expected reward, and the stopping time (c1. below)).

As will be explained 1n more detail below, the correspond-
ing “interpolation type”, “expected reward”, and “‘stopping
time” variable values are loaded mto the FIFO memory 35
that 1s assigned to the respectively running thread or context.

As long as no corresponding variable values have been
stored 1n the FIFO memory 35, 1.e. as long as the FIFO
memory 35 1s an “empty’ status, a signal “empty” character-
1zing the “empty” status of the FIFO memory 35 1s output at
a line 36.

The line 36 1s connected with a control 1input of a first
multiplexer 37.

The signal “empty” supplied to the control input of the first
multiplexer 37 at the line 36 results in that corresponding
output lines 39 of the first multiplexer 37 are logically con-
nected with corresponding input lines 40 that are connected to
a default register set 38, and that the output lines 39 of the first
multiplexer 37 are logically disconnected from correspond-
ing input lines 41 that are connected with the FIFO memory
35.

Consequently, default values for the above-mentioned
variables “interpolation type”, “expected reward”, and “stop-
ping time” stored in the default register set 38 (1n particular
variable values stored 1n an interpolation type default register
38a, an expected reward default register 385, and a stopping
time default register 38) are transmitted to the multiplexer
output lines 39 via the multiplexer input lines 40 and the first
multiplexer 37.

As mterpolation type default values and expected reward
default values, e.g. the values that are assigned to the respec-
tive context or thread and that are stored 1n the above-men-
tioned context status array memory may be stored in the
corresponding registers 38a, 385. Furthermore, e.g. the value
“1” may—definitely—be stored as stopping time default
value 1n the corresponding register 38¢.

As results from the above explanations and the represen-
tation according to FIG. 4, a signal “stopping time=0"" 1s first
of all present at a line 43 that 1s connected with a control input
of a second multiplexer 42, said signal resulting in that cor-
responding output lines 44 of the second multiplexer 42 are
logically connected with the above-mentioned output lines 39
of the first multiplexer 37, and that the output lines 44 of the
second multiplexer 42 are logically disconnected from fur-
ther lines 45—that will be explained in more detail in the
following.

The consequence of this 1s that the above-mentioned
default values for the above-mentioned variables “interpola-
tion type”, “expected reward”, and “stopping time” that are
stored 1n the default register set 38 and that are present at the
lines 39 are output at the output lines 44 of the second mul-
tiplexer 42 and are written into the register set 32 (in particular
the value of the vaniable “default interpolation type” stored in
the interpolation type default register 38a 1nto a first register
32a, the value of the variable “default expected reward”

stored 1n the expected reward default register 385 1nto a

US 7,793,296 B2

9

second register 325, and the value of the vanable “default
stopping time” stored 1n the stopping time default register 38¢
into a third register 32¢).

As results further from FIG. 4, a signal representing the
(interpolation type) value written 1nto the register 32a 1s sup-
plied to a control input of a third multiplexer 50 via a line 46
and a line 47, and—also via the line 46 and a line 48—to a
control input of a fourth multiplexer 51.

Furthermore—as also results from FIG. 4—the signal rep-
resenting the (interpolation type) value written into the reg-
ister 32a and present at the line 46 1s supplied to the second
multiplexer 42 via a first line 45a of the above-mentioned
lines 45.

A signal representing the (expected reward) value written
into the register 325 1s supplied, via a line 49, to respectively
corresponding inputs of corresponding expected reward vari-
able post calculators 52a, 52b, and to respectively corre-
sponding {irst inputs of corresponding thread index calcula-
tors 53a, 535.

Furthermore, a signal representing the (stopping time)
value written 1nto the register 32¢ 1s supplied to respectively
corresponding second inputs of the corresponding thread
index calculators 53a, 536 via a line 54, and—via a line
54a—to an mput of a stopping time decrementor 55.

Each of the thread index calculators 334, 335 calculates, by
means of appropriate methods—in particular e.g. by means of
appropriate, conventional Gittin’s index calculating meth-
ods—, and based on the expected reward value and stopping
time value stored 1n the register 325 or 32¢, respectively, the
respectively current thread index value that is to be assigned
to the respective thread or context and to be output at the line
20.

By means of the signal representing the (interpolation
type) value and being present at the lines 46, 48 and being
supplied to the control input of the fourth multiplexer 51, 1t
may be selected which of the thread index values calculated
by the different thread index calculators 53a, 33b6—=each cal-
culated on the basis of different methods and output at ditfer-
ent lines 51a, 515—1s to be transmitted to the line 20.

As results further from FIG. 4, each of the expected reward
variable post calculators 52a, 52b calculates—consistent
with the respective thread index values calculated by the
thread index calculators 53a, 535 on the basis of appropriate
interpolation methods—by means of appropriate methods (1n
particular e.g. by means of appropriate methods applied with
conventional Gittin’s index calculating methods), and based
on the expected reward value stored in the register 325,
respectively corresponding, adapted values for the above-
mentioned expected reward vanable.

By means of the signal representing the (interpolation
type) value and being present at the lines 46, 47 and being
supplied to the control input of the third multiplexer 50, itmay
be selected which of the adapted expected reward variable
values calculated by the different expected reward variable
post calculators 52a, 526 on the basis of different methods
and output at different lines 50qa, 505, 1s to be transmitted to a
second line 4556 of the above-mentioned lines 45, 1.e. to the
second multiplexer 42.

By means of the stopping time decrementor 35, the respec-
tive (stopping time) value supplied thereto via the line 54a 1s
decremented (in particular in that the value *“1” 1s subtracted
from the stopping time value), and a signal representing the
decremented stopping time value 1s transmitted to a compar-
ing device 56 via a line 55a, and via a third line 45¢ of the
above-mentioned lines 45 to the second multiplexer 42.

As soon as—as explamned above—the corresponding

“interpolation type”, “expected reward” and ““stopping time”

10

15

20

25

30

35

40

45

50

55

60

65

10

variable values have been loaded, via the lines 13, 14, 19, into
the FIFO memory 35 assigned to the respectively running
thread or context, 1.e. the FIFO memory 35 1s no longer 1n an

“empty’” status, no more signal “empty’ 1s output at the line
36.

Consequently, the above-mentioned output lines 39 of the
first multiplexer 37 are then logically connected with the
corresponding input lines 41 that are connected with the FIFO
memory 35 (and are logically disconnected from the input
lines 40 that are connected with the default register set 38).

Due to the thitherto unchanged status of the signal that 1s
present at the control mput of the second multiplexer 42, the
output lines 44 of the second multiplexer 42 remain logically
connected with the above-mentioned output lines 39 of the
first multiplexer 37, and the output lines 44 of the second
multiplexer 42 remain logically disconnected from the above-
mentioned further lines 45.

Consequently, the above-mentioned values for the above-
mentioned variables “interpolation type”, “expected reward”,
and “stopping time” that are stored in the FIFO memory and
supplied by the CPU core 11 are transmitted via the multi-
plexers 37, 42 to the output lines 44 of the second multiplexer
42, and are—newly—written 1nto the register set 32 (1n par-
ticular the interpolation type value stored in the FIFO
memory 35 into the first register 32q, the expected reward
value stored 1n the FIFO memory 35 into the second register
325, and the stopping time value stored 1n the FIFO memory

35 1nto the third register 32¢).

On the basis of the changed expected reward and stopping
time values stored 1in the registers 326 or 32¢, respectively, the
above-mentioned thread index calculators 53a, 535 calculate
correspondingly changed, updated thread index values, and
one of these values 1s——corresponding to the selection made
via the fourth multiplexer 51—output at the line 20 as a
changed thread index value that 1s to be assigned to the
respective thread or context.

Correspondingly similar, the expected reward variable post
calculators 52a, 52b calculate, on the basis of the changed
expected reward value stored 1n the register 325, correspond-
ingly changed, adapted expected reward variable values, and
one of these values 1s—corresponding to the selection made
via the third multiplexer 50—supplied to the second multi-
plexer 42 via the line 455.

Due to the above-mentioned change of the value of the
stopping time variable stored in the register 32¢ (in particular
since this 1s no longer corresponding to the above-mentioned
stopping time default value=1, or, after an effected decre-
menting=0), there 1s—{irst of all-—no more signal “stopping
time=0" present at the line 43 that 1s connected with the
control mput of the second multiplexer 42. Consequently,
corresponding output lines 44 of the second multiplexer 42
are no longer logically connected with the above-mentioned
output lines 39 of the first multiplexer 37, but with the above-
mentioned lines 45.

Consequently, the variable value that 1s present at the
above-mentioned line 45¢—and that 1s correspondingly dec-
remented by the stopping time decrementor 55 vis-a-vis the
stopping time variable value present at the line 54q and stored
in the third register 32¢—1s supplied via the second multi-
plexer 42 to the third register 32¢ and 1s stored there.

Correspondingly similar, the adapted expected reward
variable value that is present at the above-mentioned line 43556
and that 1s supplied by the expected reward variable post
calculator 52a, 5256 seclected by the third multiplexer 30, 1s
supplied via the second multiplexer 42 to the second register
32b6 and 1s stored there, and the value of the “interpolation

US 7,793,296 B2

11

type” variable 1s supplied (back) via the multiplexer 42 to the
first register 32a and 1s (again) stored there.

Due to the—again—changed expected reward and stop-
ping time values stored 1n the registers 326 or 32¢, respec-
tively, the above-mentioned thread index calculators 53a, 535
again calculate correspondingly changed, updated thread
index values, and one of these values 1s—corresponding to
the selection made via the fourth multiplexer S1—output at
the line 20 as changed thread index value that 1s to be assigned
to the respective thread or context.

Correspondingly similar, correspondingly changed,
adapted expected reward variable values are—again——calcu-
lated by the expected reward variable post calculators 52a,
52b on the basis of the newly changed expected reward value
stored 1n the register 325, and so on.

In so doing—as results from FIG. 4—the stopping time
decrementor 55 continues to decrement the (stopping time)
value that 1s respectively supplied thereto via the line 54qa (in
particular in that the value “1” 1s subtracted from the last valid
stopping time value), until the comparing device 56 deter-
mines that the stopping time value has reached the value Zero.

Subsequently, the comparing device 56 (again) applies a
signal “stopping time=0" at the line 43 that 1s connected with
the control input of the second multiplexer 42, which results
in that the output lines 44 of the second multiplexer 42 are
(again) logically connected with the above-mentioned output
lines 39 of the first multiplexer 37, and that the output lines 44
of the second multiplexer 42 are (again) logically discon-
nected from the lines 45.

Consequently, the above-mentioned values for the above-
mentioned variables “interpolation type”, “expected reward”,
and “stopping time” which are stored (or newly stored,
respectively) in the FIFO memory and are (possibly newly)
supplied by the CPU core 11, can be transmitted via the first
multiplexer 37 and the second multiplexer 42 to the register
set 32, and can be stored 1n the corresponding registers 324,
32b, 32c.

The above-mentioned variable “expected reward” repre-
sents—corresponding to the theory of the Gittin’s 1ndices
(known from “multi-armed bandit problem™)}—the quality of
the success achieved by the execution of the respective thread,
¢.g. the size of the memory space cleared after the execution
of the thread (1.e. the respective size to be optimized), and the
above-mentioned variable “stopping time” represents a
(weighting) parameter resulting from the theory of the Git-
tin’s indices.

For the loading of corresponding values for the above-
mentioned variables “interpolation type”, “expected reward”,
and “‘stopping time” into the FIFO memory 35, the CPU core
11 may—as 1s illustrated in FIGS. 2 and 4—output the above-
mentioned signal “push indication” at the line 57 (whereupon
the corresponding variable values that are present at the lines
13, 14, 19 are stored 1n the FIFO memory 35).

I “qumps” have to be performed—e.g. on occurrence of an
error 1n the CPU core 11—the values for the above-men-
tioned variables “interpolation type”, “expected reward”, and
“stopping time” that have hitherto been stored in the FIFO
memory 35 may, by means of a signal “flush indication” that
1s output at the line 58 by the CPU core 11, be (completely)
erased again, whereupon, by means of a signal “push 1ndica-
tion” that 1s output at the line 57, corresponding values for the
variables “interpolation type”, “expected reward”, and *“stop-
ping time” can again—corresponding to the signals then
present at the lines 13, 14, 19—be stored 1in the FIFO memory
35. The above-mentioned thread index values correspond to
values which are used for the optimization of the respective

cost function and which are calculated 1n correspondence

10

15

20

25

30

35

40

45

50

55

60

65

12

with the “multi-armed bandit theory™ (wherein—as indicated
above—a thread switching without a loss of cycles 1s postu-
lated for the solution of the optimization problem). If this
condition 1s—slightly—violated, values that are correspond-
ingly deviating—in most cases slightly—{rom an optimal
solution will result.

What 1s claimed 1s:

1. A context scheduling method, the method comprising:

scheduling threads to be executed by a multithreaded (MT)
processor, wherein the scheduling i1s performed as a
function of index variables assigned to the threads;

calculating a new 1ndex value for an index variable associ-
ated with a first thread using an interpolator;

changing the index variable associated with the first thread
to the new index value during execution of the first
thread;

comparing the new index value with at least one other
index value associated with at least one other thread:

determining a resultant index value based on the compar-
ing; and

switching execution of the processor to a thread associated
with the resultant index value 11 the thread associated
with the resultant index value 1s different from the first
thread.

2. The scheduling method according to claim 1, wherein a
thread whose index variable has a highest value based on the
comparing 1s selected as a thread to be executed by the pro-
CESSOT.

3. The scheduling method according to claim 1, wherein a
thread whose index variable has a lowest value based on the
comparing 1s selected as a thread to be executed by the pro-
CESSOT.

4. The scheduling method according to claim 2, wherein
execution of the selected thread by the processor 1s inter-
rupted 11 the index variable of the selected thread no longer
has the highest value or a lowest value.

5. The scheduling method according to claim 4, wherein,
instead of the selected thread whose execution was inter-
rupted, a new thread 1s selected as the thread to be executed by
the processor, wherein the new thread comprises an index
variable having a highest or lowest value.

6. The scheduling method according to claim 1, wherein
the first thread comprises an active status during the changing.

7. The scheduling method according to claim 1, wherein
the interpolator comprises a hardware circuit.

8. The scheduling method according to claim 1, wherein
the index variable associated with the first thread comprises
an expected reward variable representing a quality of success
achieved by execution of the first thread.

9. The scheduling method according to claim 1, wherein
the index variable associated with the first thread comprises a
stopping time variable representing a stopping time of the first
thread.

10. The scheduling method according to claim 1, wherein
a thread change with the processor does not result 1n a loss of
cycles.

11. A system for scheduling threads to be executed by a
multithreaded (MT) processor, the system comprising;:

an nterpolator for calculating new i1ndex values for the
index variables assigned to the threads;

a device for comparing index variables assigned to the
threads, the device providing a resultant index variable;
and

a device for generating a thread change signal 1f a thread
associated with the resultant index variable 1s different
from a currently executing thread, wherein the system
schedules threads as a function of the index variables

US 7,793,296 B2

13 14
assigned to the threads and switches execution to the a latch coupled to an output of the comparing device, the
thread associated with the resultant index value in latch storing a previous context value; and
response to the thread change signal. a comparator comprising a first input coupled to the output
12. The system according to claim 11, wherein the com- of the comparing device, and a second inpu_t ?011}31‘3(1 to
paring device determines a thread whose index variable has a 3 all outp.ut Of th? laFch,.the comparator PfOVldl_ﬂg a4 con-
highest value. text switch indication 1f a contextﬁvalue associated with

the greatest new 1mdex value 1s different from the previ-
ous context value.

17. The circuit of claim 16, wherein the interpolator com-

10 prises a plurality of thread index calculators and a plurality of

expected reward calculators.

13. The system according to claim 11, wherein the com-
paring device determines a thread whose index variable has a
lowest value.

14. The system according to claim 12, wherein the thread

change signal comprises a context switch indication. 18. The circuit of claim 17, wherein the plurality of thread
15. The system according to claim 11, wherein the inter- index calculators uses Gittin’s index calculating methods.
polator comprises a hardware circuit that changes a value of 19. The circuit of claim 17, further comprising:
an index variable assigned to a thread having an active status. 15 an expected reward register having an output coupled to
16. A context scheduling circuit comprising: inputs of the plurality of expected reward calculators;
a plurality of interpolators, each interpolator assigned to a and o _ _ _
context of a multithreaded (MT) processor, wherein a stopping time register having an output coupled to inputs
each interpolator calculates new index variables for its of the plurality of thread index calculators.

assigned context: 20 20. The circuit of claim 16, further comprising the multi-
’ threaded (MT) processor, the MT processor coupled to the

a comparing device coupled to outputs of the plurality of plurality of interpolators.

interpolators, the comparing device determining a great-
est new 1ndex value from the plurality of interpolators; %k % k%

	Front Page
	Drawings
	Specification
	Claims

