12 United States Patent

US007792055B2

(10) Patent No.: US 7,792,055 B2

Chitale 45) Date of Patent: Sep. 7, 2010
(54) METHOD AND SYSTEM FOR DETERMINING (56) References Cited
THE TOPOLOGY OF A NETWORK
U.S. PATENT DOCUMENTS
(75) Inventor: ~Ajay Shrikant Chitale, Bangalore (IN) 7,146,630 B2* 12/2006 Dravidaetal. 725/111
7,383,574 B2* 6/2008 Burrowsetal. 726/13
(73) Assignee: Hewlett-Packard Development 7.440,573 B2* 10/2008 Toretal. ..ooooeeevvvvnnn.... 380/270
Company, L.P., Houston, TX (US) 7,516,201 B2* 4/2009 Kovacsetal. 709/223
7,548,946 B1* 6/2009 Saulpaugh et al. 709/203
(o) Noftice: Subjec‘[to any disclainlerj the term of this 2007/0097991 Al* 5/2007 Tatman 370/395.53
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 375 days. * cited by examiner
_ Primary Examiner—Chirag G Shah
(21) Appl.- No.: 11/688,015 Assistant Examiner—Nima Mahmoudzadeh
(22) Filed: Mar. 19, 2007 (57) ABSTRACT
(65) Prior Publication Data
US 2007/0230367 Al Oct. 4. 2007 The present invention relates to a method tor determining the
_ o j_ _ topology of a network. The method, including the step of a
(30) Foreign Application Priority Data generic agent communicating with a plurality of network
Mar. 30,2006 (IN) oo, 579/CHE/2006 devices, using a network management protocol, in order to
extract data about the network; wherein the generic agent
(51) Int.Cl. includes a communication algorithm and wherein each net-
HO4L 12/28 (2006.01) work device corresponds to one of a plurality of network
HO04J 3/24 (2006.01) device types and the algorithm 1s adjusted for each network
HO4L 12/50 (2006.01) device using a configuration schema based on the correspond-
(52) US.Cl oo 370/254; 370/349; 370/359 ing network device type.
(58) Field of Classification Search None

See application file for complete search history.

13 Claims, 3 Drawing Sheets

Switch configuration files

Swilch type A //———- 1

| —

S
7

1

Generic switch

User defined
funcltionz

9

canfiguration file

L L il L. ., ﬁ
3 |
sw'n:h/’"_
Mig< — 4 I
Pruprht;v 5
M . I
Switch switch
Bridge MIB |
M B! MiIB|
Proprietory : "I Proprmetiory I
MIB : 6 MiB
Bridge MiB_] : Srugemia | l |
- 13
I ! Switch /
| Mgt |
l rop Y f
MiB
Bridge MIB |

[— — -

Nelwork

U.S. Patent Sep. 7, 2010 Sheet 1 of 3 US 7,792,055 B2

Switch configuration files

Switch type A //— 1

Switch Switch
2

Genearic discovery agent

i&
F £ s, .r’";/’:: ."";'I :
f/’//ﬂ' User defined
VALY, funcllons

! AL AN 9
Genaric switch LI anene tunett
configuration file unctions
3
4
5
Switch Switch

Propnietory
MIB

l Bndge MIB

U.S. Patent Sep. 7, 2010 Sheet 2 of 3 US 7,792,055 B2

Figure 2

12

VLAN
Names

VLAN Ids

Mames
<bridge
port>
Ifindex Card Port

11

¢ ainbi4

90lA8p
abeio}g

&e

US 7,792,055 B2

¢C
AH4OMLAN
|
_ juswbag
e | _
= | |
en | |
g | _
Qs
m_.\ﬂu _ 83IA3(] _
| |
_ asinaQg |
_ , AVIAB(] _
—
= | |
Q | |
> | |
5 | |
2, _ IS4 B i i Y3HMG —
|_._.__.., juswbag
| T NV |
edIneQ |
— _n_- ...!._..l.._ _
_ EmE.mﬁw juewbag _
| NV NV _

U.S. Patent

0¢

US 7,792,055 B2

1

METHOD AND SYSTEM FOR DETERMINING
THE TOPOLOGY OF A NETWORK

This application claims priority from Indian patent appli-
cation S79/CHE/2006, filed on Mar. 30, 2006. The entire
content of the aforementioned application 1s incorporated
herein by reference.

BACKGROUND TO THE INVENTION

In networks, such as Local Area Networks (LANs), 1t can
be necessary to determine the topology of the network. The
topology of the network 1s the devices attached to the network
and the interconnectivity of the devices. Devices on the net-
work include switches, routers, servers, and any other net-
work capable device.

There are numerous products for determining network
topology. One of these products 1s HP Openview NNM-ET.
This product operates by discovering device existence, the
devices’ configurations, IP connectivity, Layer 2 (LL.2) con-
nectivity, VLAN configurations, and other protocol configu-
rations (such as OSPF, HSRP). This discovery process 1s
carried out using various software modules focussed on each
of the above aspects.

SUMMARY OF THE INVENTION

In brief, this mnvention provides a method for determining
the topology of a network, including the step of: a generic
agent communicating with a plurality of network devices,
using a network management protocol, 1n order to extract data
about the network; wherein the generic agent includes a com-
munication algorithm and wherein each network device cor-
responds to one of a plurality of network device types and the
algorithm 1s adjusted for each network device using a con-
figuration schema based on the corresponding network
device type.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way ol example only, with reference to the accompanying,
drawings in which:

FIG. 1 shows a diagram 1illustrating how devices are inter-
rogated to determine VLAN topology;

FIG. 2 shows tables 1llustrating how the data acquired 1s
constructed;

FIG. 3 shows a block diagram illustrating how the tech-
niques could be deployed on hardware.

DETAILED DESCRIPTION OF EMBODIMENTS

A network switch can be configured at Layer 2 to define

connectivity between the switches. The connectivity may also
establish a virtual LAN (VLAN). In order to discover the

topology of a VLAN 1n a network the switches must be
queried about their Layer 2 connectivity.

Known topology discovery mechamisms involve establish-
ing .2 connectivity and VL AN discovery by using a discov-
ery agent to communicate with the Stmple Network Manage-
ment Protocol (SNMP) agent of the devices being discovered.

Each of the discovery agents talks with the switch SNMP
agent and makes use of Management Information Base
(MIB) tables within the switch to extract the L2 connectivity
and VLAN information, using the following steps:

10

15

20

25

30

35

40

45

50

55

60

65

2

1) Extracting interface details from the MIB-II table

11) Extracting further interface details, such as card and port
no., from proprictary MIB tables

111) Extracting VLAN configuration details from propri-
ctary MIB tables

1v) Extracting 1.2 connectivity from the Bridge MIB and
constructing a forwarding database table

Once a network device 1s discovered, the record 1s sent to
the dispatch table of an agent called the Details Agent. The
Details Agent retrieves the basic device information such as
system details and whether SNMP 1s supported, and puts the
updated device record into its returns table. Based on the
system object 1d, these device records are sent to the dispatch
tables of the Discovery agents. The discovery agents use the
standard and proprietary MIBs from the switch and generate
the Layer 2 connectivity and VLAN configuration informa-
tion. All the above agents make use of other software modules
(such as a Helper Server) to talk to the actual network.

As an example, one ol the ways VL AN configuration infor-
mation can be retrieved from a Foundry Biglron switch (a
product of Foundry Networks Inc.) 1s given below:

For every snVLanByPortVLanld
Get corresponding SnVLanByPortVILanlndex (required because the table
is indexed by this field
Retrieve the snVLanByPortVLanName at the above index value
Retrieve the snVLanByPortPortList at the above index value
For every octet in snVLanByPortPortList
Combine every two octets to get a 16-bit integer.
Use this value as a index into the snSWPortInfoTable and get the
snSWPortlfIndex
Add/Append snVLanByPortVLanld, snVLanByPortVLanName
to the final output table, indexed by snSwPortlflndex.
End For
End For

Using this existing model, a new discovery agent must be
coded and added for at least every switch vendor that 1s being
supported. In some cases a new discovery agent must be
added for each switch family from vendor 11 the switch fami-
lies differ sigmificantly.

Thus, 1n such systems the number of device agents grows
with each release of the products concerned. This loads the
discovery engine in terms of numbers of processes. More-
over, there 1s a lot of duplicate code between agents (at least
40%-50%) and all the agents must be modified to respond to
any changes in the discovery inirastructure. All the agents
must be patched 1f a defect 1s found 1n the code that 1s common
across all the agents or to support any common enhancement,
¢.g. Tagged VLAN support. Finally, field trial of these agents
becomes diflicult, as 1t requires a code change, recompilation
and transier of binary for every problem encountered.

-

There will be described a method for providing a multi-
faceted discovery agent capable of adjusting 1ts .2 connec-
tivity and VLAN discovery algorithms based on the MIB
organisation of the network switch that 1t 1s communicating
with.

It will be appreciated that the method may be used 1n
relation to other network devices.

There will also be described how the MIB organisation of
the particular switch type can be captured within an XML
representation and then converted to the required algorithm in
the form of inter-linked steps within a tree structure.

In the following description the abbreviation MFDA
means Multi-Faceted Discovery Agent, .2 means Layer 2 in
the TCP/IP protocol stack, MIB means SNMP Management

US 7,792,055 B2

3

Information Base, NNM-ET means HP Openview Network
Node Manager-Extended Topology, and VLAN means Vir-
tual Local Area Network.

A typical discovery algorithm 1s comprised of several
smaller steps that include retrieving SNMP values from a
table (either @index—where a specific value 1s retrieved
from the table using the supplied index—or the entire list—
where all values are retrieved from the table), calculating
values, looping, some decision-making and sometimes spe-
cial processing, such as bit manipulation.

Each of the steps may depend on one or more earlier steps.
For example, a value retrieved from one table could be used as
a cross-index into another table.

Though the actual steps and sequencing of these steps vary
for each type of the switch, the types of steps that have to be
executed remain, 1n essence, the same.

Referring to FIG. 1, a method of an embodiment will now
be described.

The first step of the method 1s to encapsulate the steps and
sequencing information for a switch type within a configura-
tion file 1 (configuration schema) such that the algorithm of a
generic discovery agent program 2 can use the configuration
file to interrogate a switch 3 to extract information required to
determine the topology of one or more VLANSs 13 within a
network. It will be appreciated that the term network imncludes
internetworks.

The information retrieved as part of the discovery proce-
dure (interrogation) for a switch has three parts:

1) Interface details of the switch being processed. These
details assist the generation of the local neighbour details.

11) VLAN configuration details on the switch being pro-
cessed. These details assist the generation of the local neigh-
bour details.

111) A device whose IP address matches one of the entries in
the forwarding database table. These details are used to gen-
erate the remote neighbour details.

Local neighbours are other switches which are directly
connected to the switch that 1s being interrogated.

Remote neighbours are switches that are indirectly con-
nected (such as via another switch or another network device)
to the switch that 1s being interrogated.

The tables (MIB-II 4, Proprietary MIB 3, Bridge MIB 6)
that are accessed and the steps that are used to retrieve data
vary for each of the above three parts. The configuration file
for each switch type permits the specification of specific
scripts for each of the above parts.

There can be multiple approaches to retrieve the informa-
tion from a single switch type depending on the switch type
(for example, presently there are three ways to retrieve this
information from Foundry switches). The configuration file
can include all the approaches for capturing information from
a single switch type.

Much of the interface details information 1s extracted from
the MIB-II table 4 and hence 1s standard across all switches.
A generic configuration file 7 defines a set of generic steps to
retrieve this information.

Depending on the switch being processed, a configuration
file 1s selected and converted 1nto processing logic, 1€ a com-
munications algorithm. The logic 1s then used within the
generic agent 2 to extract the required data and provide 1t to a
network topology tool such as NNM-ET to determine the
topology of VL ANSs within the network.

The generic agent 2 includes a set of generic functions 8
that can be specified for use within the configuration file 1.

If, to obtain the necessary mformation from a switch, the
use of special data processing, not provided by the set of
generic functions, 1s required then the function 9 to perform

5

10

15

20

25

30

35

40

45

50

55

60

65

4

the processing can be coded by a user and added to the list of
functions available to the agent.

The user functions can be coded 1n a language such as C++
or any other suitable programming language.

EXAMPLE GENERIC FUNCTIONS

IsValueNull ()
IsValueNonNull()

EXAMPLE SPECIFIC FUNCTIONS FOR A
FOUNDRY SWITCH

MaskBits ()—Certain switches such as Foundry switches
make use of individual bits in a byte to represent information.
Thus, at times 1t becomes necessary to retrieve individual bat
values. The MaskBits function can be used to mask unwanted
bits and retrieve only the bits that are required.

The configuration file will now be described.

As explained above, there will be a generic configuration
file 7 used for all switches. This will be used for extracting
local neighbour details. The switch specific configuration will
be captured 1n a ditferent file 1 (named using the sys object1d)

and will consist of one or more approaches to mine the switch
MIB data.

The MIB tag 1dentifies all of the MIB OIDs (Object 1Ds)
that may be used during the discovery of this type of switch.
The Approach tag 1dentifies one way to discover the infor-
mation required to build local and remote neighbours. This 1s
further divided into Local, VLAN and Remote information
for easy categorization. There can be multiple approaches for

a given switch type.

An approach to discover Local (or VLAN or Remote)
details consists of several steps that need to be evaluated one
or more times. A given step consists of three key parts—

1) Identification of the step (a variable name)

2) What pre-conditions must be met 1f the step 1s to be
evaluated.

3) How to evaluate the step:

Using the data retrieved from a MIB OID.

Using a value from previous step (an assignment)

Using an external function; a step evaluation may need
special data processing capabilities (for example, bit
manipulation)

The configuration file 1s stored 1n XML format. It will be
appreciated that the file may be stored 1n any other suitable
format, such as a CSV file.

An example of the format of a configuration file 1n XML
format 1s provided below:

//List of all MIB Variables that will be used for this switch discovery.
/o (d) MIB variable name
// (List) Is this a list or a single var bind
//
<MIB>
<Q1d>
<ID></1d>
<List></List>
</O1d>

</MIB>
// One approach for computing the required information for a
switch. There could be multiple such approaches.
//
<Approach>
//

//Processing sequence for manipulating the MIB variables (For

US 7,792,055 B2

S

-continued

local nbrs, Vlan information and Remote nbrs
// (Name) External identification of the step. Sort of a variable
name In a program. S
// (Match) What conditions must satisfy before evaluating
this step. Use MatchFunc to call the function and pass values of all
the steps 1dentified by Input.
// (UsingMIB) Evaluate using a MIB variable.
If AtIndex or AtValue 1s present, use the 1dentified
step’s value to fetch a particular instance (matching with 1dex or value). 10
If AtIndex or AtValue 1s not present, then retrieve entire list. All
children must be evaluated for all such values.
How tells what to get from the MIB variable? Index (at which
pos) or value.
// (UsingFunction) Evaluate using Function identified by EvalFunc. Pass
values from all the steps 1dentified by input. 15
// (UsingStep) Evaluate using a step. Used for assignment.
<Local>.

The processing logic for the creation of the configuration
files will now be described. 20
In one implementation the configuration file can be gener-
ated using a GUI to create processing steps and the depen-
dencies between them. The GUI generator can be integrated

with a MIB browser to drag-and-drop OIDs.

Therelore the processing steps will be interlinked and will 25
form a tree structure.

If a processing step 1s not dependent on any other step, 1t
forms the starting of one execution scope.

The evaluation of a processing step can provide one or
more results. For example an “add_iflndex™ evaluation will 30
return a set of values and an “add_type” evaluation will return
single value at the given index.

If the evaluation provides more than one result, all children
processing steps, 1n the tree structure, for that step will be
evaluated multiple times, for every result value. 35

Data 1s provided to a topology tool such as the HP Open-
view NNM-ET tool from this system via a single data struc-
ture, such as a table. This data structure 1s the mediation store.

After evaluation of a step, and as illustrated 1n FIG. 2, the

output will be added to an output row 11 if applicable. Once Y
an output row 11 1s filled, it will be added to the set 12 of

output values within the mediation store.

Execution of the processing logic within a configuration
file by the generic discovery agent will now be described.

The processing logic for a switch type 1s built only once.
Every invocation to interrogate a switch creates an instance of
the build as it requires storage to keep the evaluated values. It
also required storage to create the final output (the mediation
store) that will go to the network topology tool.

The DownloadlLocalNeighbours entry point execution
sequence 1s as follows:

1) Extract the OID from the input device record.

11) Find the appropriate configuration and read 1t 11 not
already read.

111) Create the processing logic 1n the form of interlinked
steps 1n a tree structure 1f not already created.

1v) Execute the generic steps and creates output rows (one
per 1flndex on the switch).

v) Execute the local steps that update each output row’s
card and port information.

v1) Execute the VLAN steps that update the above output
with VL AN details.

vi1) Builds local neighbour records of the output rows and
puts mto the mediation store. 65

The Download Fdb Table entry point execution sequence 1s
as follows:

45

50

55

6

1) Extract the OID from the mput device record

11) Execute the remote steps

111) Use this data and the local neighbours from the media-
tion store and creates remote neighbours.

1v) Add the remote neighbour to the mediation store.

Referring to FIG. 3, an implementation of the mmvention
will be described.

In this implementation, the generic discovery agent pro-
gram 1s coded 1 C++. It will be appreciated that any other
suitable language may be used, such as Java.

The program 1s deployed on a server 20 connected, directly
or indirectly, to a network device 21 such as a switch. The
server has access to a storage device 22. The storage device 22
contains the user functions and the configuration files.

The program interrogates the network 23 to obtain infor-
mation about the network devices residing thereon. The infor-
mation 1s used by a network topology tool to establish the
topology of the network particularly in relation to the VL AN
within the network. One advantage of the present invention 1s
that only a single discovery agent 1s required. However, 1t will
be appreciated that more than one instantiation of the single
agent could be used 1f required.

There has thus been described a method for determining
the topology of a network, including the step of: a generic
agent communicating with a plurality of network devices,
using a network management protocol, in order to extract data
about the network; wherein the generic agent includes a com-
munication algorithm and wherein each network device cor-
responds to one of a plurality of network device types and the
algorithm 1s adjusted for each network device using a con-
figuration schema based on the corresponding network
device type.

The data extracted from the network can relate to one or
more virtual local area networks within the network. At least
one of the network devices can be a switch.

A network topology tool may use the extracted data to
determine one or more virtual local networks within the net-
work.

The data extracted may include interface details of the
network device, VL AN configuration details of the network
device, and/or details of a second network device where the
Internet Protocol address of the second device matches an
entry within a forwarding database on the network device.

One or more network device types may be associated with
two or more different configuration schema.

The communication algorithm may be adjusted for each
network device using a configuration schema based on the
corresponding network device type and a generic configura-
tion schema. The generic configuration schema may include
steps to extract the interface details. The interface details may
be extracted from a Management Information Base table on
the network device.

A user may create at least one of the configuration sche-
mas. The user may utilise a GUI engine to create the configu-
ration schemas and wherein the GUI i1s arranged to create
processing steps and dependencies between processing steps.
The GUI engine may be integrated within a Management
Information Base browser such that the user drag-and-drops
Object IDs from the browser 1nto the GUI to assist within the
creation of the configuration schema.

A system has also been described for determining the
topology of a network, including:

a processor arranged for communicating with a plurality of
network devices, using a network management protocol, in
order to extract data about the network; and

a storage device arranged for storing a plurality of configu-
ration schema.

US 7,792,055 B2

7

wherein the processor communicate using a communica-
tion algorithm and wherein the algorithm 1s adjusted for a
network device using a configuration schema based on the
network device type.

While the present invention has been illustrated by the
description of the embodiments thereof, and while the
embodiments have been described 1n considerable detail, it 1s
not the mtention of the applicant to restrict or in any way limit
the scope of the appended claims to such detail. Additional
advantages and modifications will readily appear to those
skilled in the art. Therefore, the invention in its broader
aspects 1s not limited to the specific details representative
apparatus and method, and 1illustrative examples shown and
described. Accordingly, departures may be made from such
details without departure from the spirit or scope of appli-
cant’s general inventive concept.

The invention claimed 1s:

1. A method for determining the topology of a network,
comprising;
determining, at a computing device, a particular network

device among a plurality of network devices from which
information 1s sought;

adjusting, by the computer device, a discovery algorithm
based on a device type of the particular network device
wherein the discovery algorithm 1s adjusted based on a
configuration schema associated with the device type of
the particular network device and wherein the configu-
ration schema comprises a generic configuration file and
a device specific configuration file;

communicating, by the computing device, in accordance
with the discovery algorithm to extract information from
the particular network device, wherein the extracted

information 1s from a Management Information Base
(MIB) table, a proprietary MIB table and a Bridge MIB
table located 1n the particular network device; and

determining, by the computing device, at least part of the
topology of the network based on the information
extracted from the particular network device.

2. A method as claimed 1in claim 1, wherein the information
extracted from the particular network device includes virtual
local area network (VLAN) configuration details of the par-
ticular network device.

3. A method as claimed in claim 1, wherein the information
extracted from the particular network device includes details
of a second network device, where the Internet Protocol
address of the second network device matches an entry within
a Torwarding database of the particular network device.

4. A method as claimed 1in claim 1, wherein the information
extracted from the particular network device includes inter-
face details of the particular network device.

5. A method as claimed in claim 1, wherein the configura-
tion schema 1s 1n extensible markup language (XML) format.

6. A method as claimed 1n claim 1, wherein the configura-
tion schema 1s created 1n part by a user.

7. A method as claimed 1n claim 1, wherein the configura-
tion schema 1s created 1n part through the use of a GUI engine
that 1s configured to create processing steps and dependencies
between processing steps.

8. A method as claimed 1n claim 7, wherein the GUI engine
1s integrated within a Management Information Base browser

5

10

15

20

25

30

35

40

45

50

55

60

8

such that Object IDs can be dragged-and-dropped from the
browser into the GUI engine to assist within the creation of
the configuration schema.

9. A device for determining the topology of a network,
comprising;

a communication interface configured to communicate

with a plurality of network devices;

a processor; and

a storage device including computer-readable 1nstruction

stored therein that, upon execution by the processor,
cause the device to:
determine a particular network device among the plurality
of network devices from which information 1s sought;

adjust a discovery algorithm based on a device type of the
particular network device, wherein the discovery algo-
rithm 1s adjusted based on a configuration schema asso-
ciated with the device type of the particular network
device and wherein the configuration schema comprises
a generic configuration file and a device specific con-
figuration file;

communicate, via the communication interface, in accor-

dance with the discovery algorithm to extract informa-
tion from the particular network device, wherein the
extracted mformation i1s from a Management Informa-
tion Base (MIB) table, a propriectary MIB table and a
Bridge MIB table located in the particular network
device; and

determine at least part of the topology of the network based

on the information extracted from the particular network
device.

10. A storage device having stored thereon, computer-
executable instructions that, if executed by a device, cause the
device to perform a method comprising:

determining, at the device, a particular network device

among a plurality of network devices from which infor-
mation 1s sought;

adjusting a discovery algorithm based on a device type of

the particular network device wherein the discovery
algorithm 1s adjusted based on a configuration schema
associated with the device type of the particular network
device and wherein the configuration schema comprises
a generic configuration file and a device specific con-
figuration {ile;

communicating 1n accordance with the discovery algo-

rithm to extract information from the particular network
device, wherein the extracted information 1s from a
Management Information Base (MIB) table, a propri-
ctary MIB table and a Bridge MIB table located in the
particular network device; and

determining at least part of the topology of the network

based on the information extracted from the particular
network device.

11. A storage device as claimed 1n claim 10, wherein the
configuration schema 1s created 1n part by a user.

12. A device as claimed in claim 9, wherein the information
extracted from the particular network device includes details
of a second network device, where the Internet Protocol
address of the second network device matches an entry within
a forwarding database of the particular network device.

13. A device as claimed 1n claim 9, wherein the configura-
tion schema 1s created 1n part by a user.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

