US007788459B2
a2 United States Patent (10) Patent No.: US 7.788.459 B2
Kodama et al. 45) Date of Patent: *Aug. 31, 2010
(54) DIRECT ACCESS STORAGE SYSTEM WITH 5,983,317 A 11/1999 Kanda et al.
COMBINED BLOCK INTERFACE AND FILE 6,000,020 A 12/1999 Chin et al.
INTERFACE ACCESS 6,108,750 A 82000 Yamamoto et al.
6,115,797 A 9/2000 Kanda et al.
(75) Inventors: Shoji Kodama, San Jose, CA (US); 6,145,006 A 11/2000 Vishlitsky et al.
Akira Yamamoto, Sagamihara (JP) 6,195,703 Bl 2/2001 Blumenau et al.
. : _ 6,230,200 Bl 5/2001 Forecastetal. 7009/226
(73) Assignee: Hitachi, Ltd., Tokyo (IP) 6.233.660 Bl 52001 Vishlitzky
(*) Notice: Subject to any disclaimer, the term of this 6,272,571 B 8/ 200{“ BﬂChn_lat
patent is extended or adjusted under 35 6,301,605 B1 10/2001 Napolitano et al. 709/201
U.S.C. 154(b) by 24 days. 6,304,940 B1 10/2001 Beardsley
6,324,581 B1 11/2001 Xu et al.
This patent is subject to a terminal dis- 6,425,051 B1 ~ 7/2002 Burton et al.
claimer. 6,430,660 Bl 8/2002 Kemp et al.
6,446,141 Bl 9/2002 Nolan et al.
(21) Appl. No.: 12/155,965 6,505,273 B2 1/2003 Taroda et al.
(22) Filed: Tun. 12. 2008 6,516,351 B2 2/2003 Borr
(65) Prior Publication Data
US 2008/0270688 Al Oct. 30, 2008 (Continued)
Related U.S. Application Data FOREIGN PATENT DOCUMENTS
(63) Continuation of application No. 11/637,063, filed on Jp 10-78851 A 3/1998
Dec. 12, 2006, now Pat. No. 7,404,053, which 1s a
continuation of application No. 10/688,277, filed on
Oct. 17, 2003, now Pat. No. 7,167,960, which 1s a
continuation-in-part of application No. 09/829,470, (Continued)
filed on Apr. 9, 2001 Pat. No. 6,779,063,
- ORAPE 7, HOW TR 0D, 07 Primary Examiner—Gary] Portka
(51) Int.CL (74) Attorney, Agent, or Firm—Mattingly & Malur, P.C.
GO6F 12/16 (2006.01)
(52) US.CL ... 711/162; 710/74; 707/705 (57) ABSTRACT
(58) Field of Classification Search None
See application file for complete search history. .
A storage system includes a storage controller and storage
(56) References Cited media for reading data from or writing data to the storage

U.S. PATENT DOCUMENTS

5,680,537 A 10/1997 Byersetal. 714/5
5,828,823 A 10/1998 Byersetal. 714/24
5,838,950 A 11/1998 Youngetal. 703/21

5,920,893 A 7/1999 Nakayama et al.

or Sit

179-1

Host System
180-1

W o [w
177-1 178-1
SAN
173-1 174-1
AN
F] IF
175-1 176-1

S

171-1 172-1

Replication

media 1 response to block-level and file-level 110 requests.
The storage controller includes suitable interfaces for receiv-
ing the read/write requests and effecting the reading of data to
or the writing of data to the storage media.

11 Claims, 13 Drawing Sheets

180-2

177-2

173-2

T %4
178-2
LAN
174-2
AN pad
K NRING
175.2 p— 176-2
NAS

171-2

Replication

172-2

US 7,788,459 B2
Page 2

0,549,988
0,574,667
0,598,129
0,606,690
0,808,417
6,948,012
6,978,324
2001/0037406
2002/0095547

U.S. PATENT DOCUMENTS

Bl
Bl
B2
B2
B2
B
B
A
A

4/2003
6/2003
7/2003
8/2003
3/2005
9/2005
12/2005
11/2001
7/2002

Gertner

Blumenau et al. 709/229
Kanda et al.

Padovano 711/148
Kazar et al.

Valin et al.

Black

Philbrick et al. 709/250
Watanabe et al.

2002/0156984 Al 10/2002
2002/0161855 Al 10/2002
2003/0046357 Al 3/2003
2003/0110237 Al 6/2003
2003/0120743 Al 6/2003
2003/0126523 Al 7/2003

Padovano
Manczak et al.

Doyle et al.

Kitamura et al.

Coatney et al.

Corbett et al.

FOREIGN PATENT DOCUMENTS

JP 2000-148651
JP 2000-293316 A

5/2000
10/2000

711/148

U.S. Patent Aug. 31, 2010 Sheet 1 of 13 US 7,788,459 B2

e ———

12 HOST SYSTEM

10
/423 - 12b
BACKUP CONNN |/
UTILITY SYSTEM
14 |
16
STORAGE 26 28 0 32
CONTROLLER
’ r O l) IF _
I e | L -
. scsl | s | CIFS HTTP
INTERFACE INTERFACE INTERFACE INTERFACE I
|| ADAPTER ADAPTER ADAPTER ADAPTER
........... cmrw] ',,-._._._‘-...,-._._.

)

o) B 6A 40 (
Y (TERMINAL l
CACHE MEMORY | »COF%'IESRNG*— — » INTERFACE
(ADMINISTRATOR)
. |
1 36B
_——// I
| I |
l 461 462 (‘463
g —o
| DRIVE | DRIVE | / ~—T DRIVE
INTERFACE | |INTERFACE INTERFACE |
| | ADAPTER | ADAPTER | ADAPTER
| 50
90, ~ ‘

a8 F\
20, N— g 4

U.S. Patent Aug. 31, 2010 Sheet 2 of 13 US 7,788,459 B2

16b
162 >
| SCSI INTERFACE TCP/P
26 - - | INTERFACE
k ’ //— | 1 "
LOGICAL k " 72\ NFS (CIFS/HTTP) |
VOLUME PROCESS BLOCK
ACCESS BLOCK)
- COMMON FILE SYSTEM
Ks . BLOCK 74

66
78 COMMAND
\ [PROCESS

DIAINTERFACE_J —
— ' LOGICAL
LOCK VOLUME
CACHE MANAGER ADDRESS
68— MANAGER CONVERTER
SCSI—— '
INTERFACE \75
ADAPTER - —
FIG_2 - LOGICAL VOLUME
ACCESS BLOCK |
O
CACHE MANAGER
84
— — ~ 86 — -
1 30 “<| DIAINTERFACE
HIA - — I _
INTERFACE - NFS INTERFACE
| B ADAPTER
N |
i
LOGICAL/ CACHE | FIG 3
PHYSICAL | MANAGE
ADDRESS || R |
CONVERSION | |
(AND RAID
CONTROL) B |
READ/WRITE | \ 0
| CONTROL ~ 6 | 46
DRIVE INTERFACE 104
| ADAPTER B

FIG_4

U.S. Patent Aug. 31, 2010 Sheet 3 of 13 US 7,788,459 B2

LOGICAL y~
VOLUME TABLE -
1

VOLUME 1
| (BLOCK INTERFACE)

1 VOLUME 2
122, I—(FILE INTERFACE)

122,

VOLUME M
(FILE INTERFACE)

- N FIG_5

130 S
Y VOLUME 1

-FILE SYSTEM-
(UNACCESSIBLE TO
BLOCK SYSTEM ACCESS) 132
2

| VOLUME 2

-FILE SYSTEM-
(ACCESSIBLE TO BLOCK

L SYSTEM ACCESS) _J

VOLUME J
L -BLOCK SYSTEM-

132,,

VOLUME M
-FILE SYSTEM-
(ACCESSSIBLE TO BLOCK
SYSTEM ACCESS)

FIG 6

U.S. Patent Aug. 31, 2010 Sheet 4 of 13 US 7,788,459 B2
16D
I 142
|~TCP/IP INTERFACE f—/
140
| 144 148
i - _| [
' NFS l CIFS | HTTP
| | PROCESS PROCESS PROCESS
BLOCK BLOCK | BLOCK
| | ' S
\146
S
l 152
* ~~— COMMAND l
| PROCESS | 154
TN)Y
J
| l l | 150 j
| FILE TO |
' | oo | voruwe
ADDRESS |
| | CONVERSION
| L - 158
LOGICAL VOLUME |
' ACCESS FUNCTION
160
\—‘ CACHE MANAGER
| — — e :
— — 162
DIA INTERFACE 7 |
I

FILE SYSTEM INTERFACE ADAPTER
—

N

36A

S —

FIG 7

U.S. Patent

Aug. 31, 2010 Sheet 5 of 13

16a

SCSI INTERFACE

60

LOGICAL VOLUME
ACCESS BLOCK

68 64

CACHE
MANAGER

LOGICAL/PHYSICAL
ADDRESS
CONVERSION/RAID
CONTROL

102’

66

DIA INTERFACE

SCSI INTERFACE
ADAPTER

36A

US 7,788,459 B2

US 7,788,459 B2

Sheet 6 0of 13

Aug. 31, 2010

U.S. Patent

¢-CLL

V6 Ol

uonesljday

YA

uoneoljday

AN L=LLL

'W<Z 'Z<w
el — | vsu

V-¥.L1 L-EL1

US 7,788,459 B2

Sheet 70f 13

Aug. 31, 2010

U.S. Patent

00

(vv)

d6 Ol4d

(eV)

US 7,788,459 B2

Sheet 8 0f 13

Aug. 31, 2010

U.S. Patent

ad

VOl Ol

(e9)

161

L-¥1

= a0l ‘Ol

<

v o

= (cg)

T~

% vl 161 L-p1

e, § 1)
- 2-9L1 cratl T TECEEEE . - | Vs
= 4/ 4/
W’
e
7
rém JA) étll
= e %
y—
—
g
— ¢-8.1) Ll
e,
A T[T N
1-181 1-081
o-6.1 G-6.1

Z-061 .\

U.S. Patent

U.S. Patent Aug. 31, 2010 Sheet 10 of 13 US 7,788,459 B2

190 - 1
179 -3 179 -4
180 -1 ‘81 -1
N ow [w ¥
177 -1 178 -1
173 -1 174 -1
175 -1 T T T TS TS m - 176 -1
e =
|
SAN
]
e e o
AV
14 -1 191

20
S0

FIG. 10C

U.S. Patent Aug. 31, 2010 Sheet 11 of 13 US 7,788,459 B2

180

177 178

14

203

------------_-J

U.S. Patent Aug. 31, 2010 Sheet 12 of 13 US 7,788,459 B2

Provide a first pair of P-NAS VOL and S-NAS VOL and a 1201
second pair of P-SAN VOL and S-SAN VOL in a
consistency group

1202
Copy data on P-NAS VOL and P-SAN-VOL to S-NAS
VOL and S-SAN-VOL respectively.

1203
Receive a split request to the consistency group

1204
Split the first pair and second pair by the split command.

FIG. 12A

1211
Provide a first pair of P-NAS VOL and S-NAS VOL and a
second pair of P-SAN VOL and S-SAN VOL.
| 1212
Copy data on P-NAS VOL and P-SAN-VOL to S-NAS
VOL and S-SAN-VOL respectively.

_ 1213

Receive a split request to the consistency group

1214
Flush any pending write data on a local cache memory of
file system interface adaptor to cache memory 42

1215
Split the first pair and second pair by the split command.

FIG. 12B

US 7,788,459 B2

Sheet 13 0of 13

Aug. 31, 2010

U.S. Patent

218

Backup Server

Q
0
1

Backup

177

174

173

IF

I/F

219

14

FIG. 13

US 7,788,459 B2

1

DIRECT ACCESS STORAGE SYSTEM WITH
COMBINED BLOCK INTERFACE AND FILE
INTERFACE ACCESS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present invention 1s a continuation application of U.S.
Ser. No. 11/637,063, filed Dec. 12, 2006 (now U.S. Pat. No.

7,404,053), which 1s a continuation application of U.S. Ser.
No. 10/688,277, filed Oct. 17, 2003 (now U.S. Pat. No. 7,167,
960), which 1s a continuation-in-part of U.S. application Ser.
No. 09/829,4770, filed Apr. 9, 2001, (now U.S. Pat. No. 6,779,
063) and 1s herein incorporated 1n its entirety by reference for

all purposes.
BACKGROUND OF THE INVENTION

The present mnvention relates generally to data processing,
systems, and particularly to a direct access storage system
with a combined block interface and {file interface access.

Interconnecting the various elements of a processing sys-
tem (e.g., processor units and peripheral equipment such as
direct access storage devices) permits the resources of the
system to be distributed so that they are available to all ele-
ments of the system. For example, multiple processor units
may be connected to a storage system for sharing not only the
afforded storage space, but the files that are stored there.
Typically, a network architecture of one type or another will
be used to implement the interconnection, which may dictate
the particular of interface structure between the elements of a
system, €.g., a processor unit and a data storage system. For
example, 1t has been popular to connect stand-alone processor
units to a direct access storage devices using a small computer
standard interface (SCSI). SCSI connections use block trans-
fer protocols 1n which a logical unit number (LUN) 1dentifies
the logical volume for access.

Network protocols, on the other hand, are different. Proto-
cols of choice for networked and distributed processing sys-
tems 1ncluded Network File System (“NFS;” an open oper-
ating system developed by Sun Microsystems), a Common
Internet File System protocol (“CIFS;” a remote file access
protocol), or a HyperText Transport Protocol, more popularly
known as “HTTP.”” These protocols use what 1s known as a
“file system 1nterface,” and while the file interface structures
used to implement the different file system interface proto-
cols, they use a common file system structure. Thus, data
stored on a storage system using a file system interface of two
or more types are available to all host systems. For example,
a storage system capable of handling input/output requests of
both NFS and CIFS protocols, 1.e., an NFS protocol interface
and a CIFS protocol interface, can store data files that are
accessible to host processors having either of the NFES 1nter-
faces. That 1s, a host system with only an NFS interface can
access and open files stored by a host system with a CIFS
interface, and the host system with a CIFS interface can
access and open files stored by the system via the NFS 1nter-
face—provided the storage system has both interfaces.

Storage systems having one or more of the file system
interfaces of the types described above provide access
through an I/0 read or write request that includes a file name,
and an lock request that seeks a right to access the particular
file of the 1I/O request.

Most direct access storage systems have either a block
interface or a {ile interface, and host systems using a block
interface protocol cannot access storage systems employing
file interface protocols. Further, because of the differences

10

15

20

25

30

35

40

45

50

55

60

65

2

between block and file interface structures and the way data 1s
stored and accessed, a storage system 1s structured for a block
system or a file system, but not both.

Remote replication 1s a backup technique that 1s used for
data recovery scenarios such as disaster recovery. As a typical
example, considers a RAID based storage configuration. A
primary data side will have a first RAID controller for data
access 1n a first RAID storage component. A second RAID
controller at a secondary data site 1s provided for data backup
in a second RAID storage component. The two RAID con-
trollers are typically connected to each other via a communi-
cation network. Data 1n a primary volume in the first RAID
storage component presented by the RAID controller at pri-
mary site can be replicated to a secondary volume in the
second RAID storage component presented by the RAID
controller at secondary site. When a write request to the
primary volume 1s recetved by the first RAID controller, 1t
sends the data update directly to the second RAID controller
with no server involvement. This replication functionality 1s
also referred to as “remote copy.” e.g., Hitachi TrueCopy™.
Conventional RAID controllers have block system interfaces
such as Fibre Channel and so are connectable to a storage area
network (SAN). However, such controllers cannot connect to
a network attached storage (NAS) device since they do not
support file system 1/0O. Hereinatter, a storage system that 1s
attachable to a SAN and which does not have a file system 1s
referred to a SAN device.

Some NAS devices also provide replication capability for
disaster recovery or other purpose. For instance, Network
Appliance™ SnapMirror® software replicates data on one or
more network filers over a LAN or WAN and continuously
updates the replicated data.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a storage system with direct
access to physical storage devices that can be shared between
a block interface and a file interface. An aspect of the mnven-
tion provides for a volume accessed by block-level 1/O
requests (block volume) and a volume accessed by file-level
I/O requests (file volume) to be maintained 1n a consistency
group. Another aspect ol the invention mirroring 1s performed
on the block volume and the file volume. In still another
aspect of the mnvention, mirrored volumes can be provided by
accessing another storage subsystem.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustration of processing system
that includes a storage system constructed according to the
teachings of the present invention;

FIG. 2 1s a block diagram broadly depicting the SCSI
interface adaptor shown 1n FIG. 1;

FIG. 3 1s a block diagram broadly depicting a files system
interface adaptor as shown in FIG. 1;

FIG. 4 15 a block diagram that illustrates a drive interface
adaptor as shown 1n FIG. 1;

FIGS. 5 and 6 illustrate two types of logical volume status
tables as used 1n connection with the present invention;

FIG. 7 1illustrates a file interface adaptor according to an
alternate embodiment of the invention;

FIG. 8 1s an alternate embodiment of a SCSI interface
adapter for use 1n the storage controller of FIG. 1;

FIG. 9A shows a SAN and NAS configuration with remote
copying capability;

US 7,788,459 B2

3

FIG. 9B shows 1llustrates time inconsistent remote copying,
between the SAN device and the NAS device shown 1n FIG.

9A;

FIG. 10A shows an 1llustrative embodiment according to
another aspect of the present invention;

FIG. 10B shows an alternative illustrative embodiment of
the present invention;

FIG. 10C shows the embodiment of FIG. 10A with physi-
cal storage;

FI1G. 11 illustrates an embodiment of another aspect of the
present invention;

FIG. 12A highlights the processing that takes place 1n the
storage system shown 1n FIG. 11;

FIG. 12B highlights alternative processing that takes place
in the storage system shown in FIG. 11; and

FIG. 13 shows an embodiment of vet another aspect of the
present invention.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

Turning now to the figures, and first to FIG. 1, there 1s
illustrated a processing system 10 that includes a host system
12 coupled to a storage system comprising a storage control-
ler 14 and a plurality of physical disk units 20 (20,, 20, . . .,
20,) that are managed by the storage controller 14.

Although not specifically shown, the host system 12 most
likely will comprise a plurality of processor units, although 1t
could also comprise a single processor unit with multiple I/O
interfaces, including a block system interface and at least one
file system interface. It should be understood, therefore, that
the host system however implemented will include at least
one SCSI protocol type interface (for block system file trans-
ters with the storage controller 14) and at least one file system
interface, such as an interface or interfaces that operation
according to NFS, CIFS, and/or HI'TP protocols. Accord-
ingly, the host system may comprise multiple processor units,
one having an SCSI interface, another with an NFS 1nterface,
still another with a CIFS interface, and so on. Alternatively,
the host system may be implemented by a single processor
unit having all four (SCSI, NFS, CIFS, and HTTP) type
interfaces.

As FIG. 1 shows, the host system will include, according to
an aspect ol the present invention, a backup utility 124, shown
in phantom 1n FIG. 1, a common library system library data
structure 1256. These programmatic elements are included 1n
that portion of the host system 12 having the SCSI type
interface to implement said aspect of the invention. They are
described more fully below.

The host system 12 1s coupled to the storage controller 14
by a bus structure 16. For reasons that will become clearer
below, the bus system 16 may be multiple bus structures to
connect the host system to corresponding ones of four inter-
face adaptors 26-32 of the storage controller 14.

As FIG. 1 shows, the storage controller 14 includes four
types of interface adaptors: a SCSI interface adaptor 26, a
NFE'S interface adaptor 28, a CIFS interface adaptor 30, and a
HTTP interface adaptor 32. Each 1s configured to handle a
specific protocol. Accordingly, the SCSI interface adaptor 26
1s configured to receive, from the host system 12, SCSI or
block system protocol type input/output requests. As 1s con-
ventional, a block system protocol request will include a
logical unit number, a block identification (ID) within the
specified logical unit, and data link. File system protocol
requests, depending upon type, are received by the NFS,
CIFS, and/or HT'TP interface adaptors 28, 30, 32. File system

protocol requests will typically utilize an upper layer protocol

5

10

15

20

25

30

35

40

45

50

55

60

65

4

of TCP/IP that includes an identification of a specific file
name rather than a logical unit number.

The storage system 14 may have any number of any type of
the interface adapters 28-32. For example, a storage control-
ler 14 configuration may include two (2) SCSI interface adap-
tors 26, one (1) NFS interface adaptor 28, three (3) CIFS
interface adaptors 30, and two (2) HI'TP interface adaptors
32. Alternatively, another storage controller 14 configuration
may have just four interface adapters, one of each type, with
the capability of having more adapters of any type added. As
can be seen, a variety of other alternative storage controller
configurations are possible. By providing the storage control-
ler 14 with such a flexible architecture, high scalable pertor-
mance and high availability 1s achieved. This, 1n turn, pro-
vides a storage system controller 14 with the capability of
increasing, for example, the number of NFS interface type
adapters according to performance demands placed upon the
storage system by the host system 12. Moreover, by providing
the storage controller 14 with multiple interface adapters of
the same type (e.g., NFS interface adapters) a failure of one
still leaves the other or others of that same type to execute the
requested processing from the host system.

Continuing with FIG. 1, the various adaptors 26, ...,32 of
the storage controller 14 connect to drive interface adaptors
46, one for each physical disk unit 20, through a system bus
36A, 368, and a connecting facility 40. The connecting facil-
ity 1s basically an arbiter that functions to arbitrate commu-
nicative access between the various interface adaptors
26, . .., 32 and the drive interface adaptors 46. In addition the
connecting facility 40 will also arbitrate access for the inter-
face adaptors 26, . . ., 32 to the cache memory 42.

Although FIG. 1 shows only one drive interface adapter 46
for each physical disk unit 20, in order to provide fault toler-
ant capability, as well as increased performance, the physical
disk units 20, or any of them, may have two or more drive
interface adapters 46 servicing them.

The storage controller 14 also includes a terminal interface
adaptor 43 to provide a system admimstrator with access to
the storage controller for configuration purposes, as will be
discussed more fully below.

Retferring now to FIG. 2, there 1s illustrated 1n block dia-
gram form the SCSI interface adaptor 26. The SCSI interface
adaptor 26, as are the file system and drive interface adaptors
28, 46 (FIGS. 3 and 4), are 1llustrated 1n terms of the major
functions performed by each. It will be evident to those
skilled 1n this art that the functional aspects of the adaptors 26,
28, and 46 may be implemented 1n a variety of known ways
such as, for example, with programmed microprocessors and
associated support circuitry, state machines, or a combination
of such construction with or without additional circuitry.

As FIG. 2 shows, the SCSI interface adaptor 26 will
include an SCSI interface function and circuitry configured to
be coupled to a compatible SCSI interface of the host system
12. The SCSI interface adaptor 26 operates to receive I/O read
or write requests from the host system 12, and to communi-
cate responses back to the host system 12. For that purpose,
the SCSI interface adaptor 26 includes a SCSI interface func-
tion 60 for handling the protocol needed for SCSI data com-
munication.

As will be seen, the storage controller 14 employs a logical
volume management 1n order to share the resources of the
physical disk units 20 between block system and file system
interfaces. Accordingly, the SCSI interface adaptor includes a
logical disk access block function 64 that i1s configured to
convert the LUN of a I/O read or write request to a logical
volume access. Also included in the SCSI interface adapter 26
1s a drive interface adaptor (DIA) interface function 66 to

US 7,788,459 B2

S

handle the communication colloquy with the drive interface
adaptors 46 inresponse to information provided by the logical
disk access block 64. A conventional cache manager function
68 manages data access of the SCSI interface adapter 26 to the
cache memory 42 by the SCSI interface adaptor 26.

The NFS interface adaptor 28 is functionally illustrated in
FIG. 3. The other file system interface adapters, 1.e., the CIFS
and HTTP interface adapters are functionally equivalent to
the NFS interface adapter, with the exception of the process
block 72, so that the description of the NFS interface adapter
28 will apply equally to the CIFS and HTTP interface adapt-
ers 30 and 32 unless otherwise noted. As FIG. 3 shows, the
NFES mterface adaptor includes a TCP/IP interface function
70 for handling I/O requests and responses thereto between
the storage controller 14 and an NFS interface of the host
system 12 according to the communications protocols incor-
porated 1n TCP/IP. A process block 72 operates to interpret the
NFES features of an I/O read or write request, and formulates
the responses thereto for communication to the host system
12 (FI1G. 1). For a CIFS or HT'TP interface adapter, the pro-
cess block function 72 would need to be configured to accom-
modate the particular protocol. A common file system func-
tion block 73 includes a command process function 74, a
logical volume address converter function 76, and a lock
manager function 78. The common file system function block
73 will receive an 1/O read or write request from the TCP/IP
interface function 70, convert the file interface information of
the request to block interface information, and pass the block
interface information to a logical disk access function 82
(which 1s substantially the same as that of the SCSI interface
adapter 26). Then, the logical disk access function 82 for-
wards that request to a logical volume that maps to a portion
of the physical storage space implemented by the physical
disk units 20.

As did the SCSI interface adaptor 26, the NFS 1interface
adaptor 28 includes a cache manager function 84 for manag-
ing accesses to the cache memory 42 (FIG. 1) and a drive
interface adapter (DIA) function 86 for handling data com-
munication with a drive interface adaptor 46.

FI1G. 4 1llustrates the functional features of a drive interface
adaptor 46. As FIG. 4 shows, the drive interface adaptor 46
will include a host interface adapter (HIA) interface function
100 to handle communication with a particular interface
adaptor 26, 28, ..., 32. A logical/physical address conversion
function 102 converts logical addresses received from the
logical volume access block functions of the interface adapt-
ers (e.g., logical volume access block 64 of the SCSI interface
adaptor 26, or the logical disk access blocks 64 1n either of the
NFES, CIFS, or HT'TP interface adaptors 28, 30, 32). If a
redundant array of mexpensive disk (RAID) architecture 1s
implemented, the logical/physical address conversion func-
tion 102 will operate to manage that architecture, handling the
mirroring of data in the case of a RAID 1 architecture, for
example, or controlling the data striping employed in a RAID
S architecture.

A cache manager function 106 of the drive interface adap-
tor 46 manages data accesses with the cache memory 42. A
Read/Write control function 104 handles the actual data flow,
pursuant to a read or a write request, between the drive inter-
face adaptor 46 and the associated physical disk umit 20.

Operation of the system of FIG. 1 in connection with a
block system 1/O request 1s generally as follows. Block sys-
tem I/O read or write requests will be received by the SCSI
interface adaptor 26 on a SCSI bus 16a (FIG. 2). Such
requests, as indicated above, will have a LUN which includes
a block ID 1n the specified LUN and a data length as is

conventional. The request will be received by the SCSI inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

face tunction 60 and passed to the logical volume access
block function 64. If the request 1s an 1I/O read request, the
logical volume access function will first check, through the
cache manager 68, to see 11 the requested data resides in the
cache memory 42 (e.g., from a prior read request for the data,
or {rom a prior write of the data to the physical disk units 20).
If so, the logical volume access block function 64 will access
the cache memory 42 for the block identified 1n the I/O read
request, and forward 1t to the SCSI interface function 60. The
SCSIinterface function 60, 1n turn, will forward the requested
data to the host system 12. If, however, the requested block
does not exist in the cache memory 42, the logical volume
access block will send a request, through the DIA interface
66, to the HIA interface 100 of the drive interface adaptor 46
for the physical storage 20 whereat the requested data block
resides. The SCSI interface adaptor will then wait for a
response, performing other processing as necessary.

I1, on the other hand, the I/O request received from the host
system 12 1s a write request, the logical volume access func-
tion 64 will send the data block receirved with the request to
the cache memory 42. Then, the logical volume access func-
tion 64 will, through the DIA interface function 66, send a
write request to appropriate the drive interface adaptor 46,
identifying the location in the cache memory 42 at which the
data block to be written resides. The drive interface 46 will
then access the cache memory 42 for the data block, and write
it to physical storage 20.

File system requests are recerved by one of the file system
interfaces: either the NFS, the CIFS, or the HTTP interface
adapter, depending upon whether the source 1s a NFS, CIFS,
or HI'TP interface of the host system 12 and, therefore, one of
the three protocols file system protocols: that 1s, NFS, CIFS,
or HITP. File system I/O requests may be accompanied by
lock/unlock requests. A lock request seeks access to a specific
data block within a specific file, or the file itself. An unlock
request releases access to the block/file previously obtained.
As 1s conventional, an lock or unlock request will include
either the file name of the file sought to be accessed, ora block
number 1n the specified file, and a block length. Alternatively,
the request may include a file name and additional informa-
tion 1dentifying the right to access the file.

Control information for lock/unlock processing 1s stored 1n
the cache memory 42 for the each of the protocols used by the
file system 1interface adaptors 28, 30, 32, although other
shared memory can be used 1 available.

File system I/O requests 1ssued by the host system 12 are
received by the TCP/IP interface function of the file system
interface adaptor to which the request i1s directed. (That 1s, 1f
an NFS host interface 1ssues the request, the request will be
received by the NFS interface adaptor 28. Similarly, for CIFS
or HI'TP host interfaces, the requests will be received by the
CIFS or HT'TP interface adaptors 30, 32. The requests will all,
thereafter be handled 1n basically the same way as described
heremnafter.) The TCP/IP interface function 70 will receive
the request and pass it to the appropriate process function
block 72 for further processing.

The process function block 72 will convert the received
request to one for a common file system, and pass the con-
verted request to the common file system function block 73
where 1t 1s recerved by a command process function 74 and
transierred to a logical volume address converter function 76.

If the request 1s a lock request, 1t will also be passed to the
lock manager function 78, which checks to determine
whether or not access to the requested file 1s available. IT
access 1s available, the lock manager function 78 will initiate
a reply (*‘access granted™) to the process function block 72.
The process function block 72 will then notify the host system

US 7,788,459 B2

7

12 of the access grant via the TCP/IP interface tunction 70.
Generally, the locking protocol 1s specified in NFS, CIFS, or
HTTP level. I, on the other hand, access 1s not available, for

example being locked by another request, the lock manager
tfunction 78 will so notily the process tunction 72, which will
send a request to host system 12 to pend the lock request.
When the lock request 1s subsequently made available by
release of the lock by the other request, the lock manager 78
will notify the host system 12 that access 1s granted.

I/0 read or write requests from a file system interface of the
host system 12 will include a file name, a block number 1n the
specified file, and a block link. Read and write requests travel
through the TCP/IP iterface function 70, the process func-
tion block 72 and the command process function 74, to the
logical volume address converter 76. There, the information
in the request 1s converted to a logical volume unit number, a
block number in the logical volume, and a logical block
length. The logical address converter 76 will then pass this
information to the logical volume access function block 64
which, as did the logical volume access function block 64 of
the SCSI interface adaptor 26, will handle the data transfer in
the same way ; that 1s, 11 1t 1s a read request, the logical volume
access Tunction block 82 will check to see if the requested
information resides 1n the cache memory 42 and 11 so, retrieve
the information and return it to the host system 12 in response
to the request. If the requested information 1s not reside in the
cache memory 42, the logical volume access function block
82 will 1ssue a request to the appropriate drive interface adap-
tor 46, requesting that the information be retrieved from the
physical storage 20. Write requests are also handled 1n the

same manner as described above respecting the logical vol-
ume access block 64 of the SCSI interface adapter.

The drive interface adapters 46 will operated in the same
manner when responding to read or write requests, regardless
of the mterface adapter 1ssuing the request. It will execute
read/write operations to and from the physical storage 20 in
response to requests received from the interface adapters
26, ...,32. Thednve interface adapters 46 preferably have the
capability of performing write alter processing ifrom cache
memory 42. (Write after processing 1s typically used, fo
example, 1n connection with mirrored storage. A write
request will be processed by writing the data of the request to
a specific physical storage unit 20. Subsequently, the same
data, which may be stored in the cache memory 42, can be
written to Whatever disk storage unit (or units) 20 used for
mirroring the data.)

Referring to FIG. 4, requests are received at the drive
interface adapter 46 through the HIA (host interface adapter)
interface function 100. Requests will include a logical-physi-
cal address that maps to an address 1n the physical storage 20
managed by the drive interface adapter 46. Conversion of the
received logical-physical address to an address of physical
storage 20 1s performed by the logical/physical address con-
version function 102, which may also be structured to execute
write after processing if, for example, RAID architecture that
implements mirroring 1s used, e.g., RAID 1.

The configuration of logical volumes may be established
by a system administrator through a work station (not shown)
connected to the storage controller 14 (FIG. 1) through the
terminal 1nterface 43. The system administrator may create
data structures, for example in the form of the table 120
illustrated 1n FIG. §. Each entry 122, .. ., 122, of the table
120 corresponds to a logical volume established by the sys-
tem administrator. And, each entry 122 contains information
describing the logical volume, including the mapping to the
physical storage space 20. In addition, each entry 122 may

5

10

15

20

25

30

35

40

45

50

55

60

65

8

contain an i1dentification as to whether or not 1t 1s for a block
system 1nterface or a file system interface.

Logical volumes allow the physical storage 20 to be allo-
cated between a block system and a file system as needed. For
example, a first portion of the physical storage 20, say, one-
third of the storage, may be allocated to block system data
storage. Then, the remaining physical storage may be allo-
cated to storing data for file system protocols. Later, 1t may be
determined that less block system storage 1s actually needed
so that the allocation could be changed, for example, some-
thing less than originally allocated, say one-fourth of the
physical storage 20. The remaining physical storage 20 dedi-
cated to file system storage 1s concomitantly increased.

Typically, logical volumes for a file system interface (e.g.,
the NFS or CIES interface adapters 28, 30) will include file
management information required by the common file system
function block 73. This file management information pro-
vides the basis for the logical volume address conversion
performed by the logical volume address converter 76 of the
common file system block 73. Logical volume information
for block system interface, 1.e. the SCSI interface adapter 26,
typically do not have such information, making it very difi-
cultto access a logical volume for a block interface from a file
interface. Therelfore, 1n order to preclude unnecessary errors,
status 1nformation can be included 1n each entry 122 for the
logical volume, i1dentifying whether that volume 1s a file
system or a block system logical volume. Thus, as FIG. 5
illustrates, the entry 122, for logical volume 1 contains infor-
mation to identify i1t as a block system logical volume,
whereas the entry 122, for logical volume 2 contains infor-
mation 1dentifying it as a file system logical volume.

There 1s, however, a way, according to the present inven-
tion, of accessing a logical volume for a file system from a
block system interface, such as the SCSI interface adaptor 26.
According to this aspect of the invention, that portion of the
host system 12 having a SCSI interface 1s provided with a
backup utility 12a (FIG. 1) that, when running, can 1ssue a
volume backup request to the SCSIinterface adaptor 26 of the
storage controller 14. This will cause the entire logical vol-
ume 1dentified in the request to be read from the physical
storage 20, from the first address to the last address of the
logical volume, without consideration of management infor-
mation. The same portion of the host system 12 1s also pro-
vided with the common file system library 1254, which pro-
vides the ability to recognize the file management
information of the common file system function 73. Thereby,
the host system 12 can access an arbitrary file on a logical
volume for a file system from an interface of a block system.
(Thus, by using a common file system library, the host system
12 to access a file on a logical volume for a file interface
through a block system interface (e.g., a SCSI interface, since
a common file system library can recognize the file manage-
ment information of the common file system function 73)

In order to provide at least a modicum protection against
inadvertent or other access of file system data from a block
system 1nterface or adapter, the logical volume table infor-
mation could include information respecting whether or not
the particular logical volume 1s accessible to certain types of
access. For example, a file system logical volume would
include information that 1t was or was not accessible from a
block system access. Thus, as indicated 1n FIG. 6, the logical
volume table entry 132, for logical volume 1 contains infor-
mation identifying 1t as a file system volume, inaccessible to
a block system access. Conversely, the entry 1322 indicates
that logical volume 2 1s also a file system volume, but 1t 1s
accessible to a block system access. Similarly, the entry 132, ,
for volume M 1s also a file system logical volume, accessible

US 7,788,459 B2

9

to a block system access. The entry 132 ,1s, on the other hand,
a block system logical volume.

Turning now to FIG. 7, there 1s illustrated an alternate
embodiment of the ivention. The storage controller 14 of
FIG. 1 1s illustrated as having three separate file system inter-
face adapters 28, 30, and 32, one eachto NFS, CIFS, OR CIFS
type protocols. However, as FIG. 7 illustrates, the storage
controller 14 may alternatively have a common file system
adapter 140 for handling all three file system protocols (i.e.,
NFES, CIFS, or HT'TP) 1n a single interface adapter 140. As
shown, I/O and other requests from the host system 12,
whether NFS, CIFS or HI'TP, are received by a TCP/IP inter-
face function 142. The TCP/IP interface determines the par-
ticular communication protocol and passes the request to the
appropriate one of the process function blocks 144, 146, 148.
From there, processing proceeds as described above. Further,
for enhanced reliability and faster access to the physical disk
units 20, the storage system 14 may include multiple interface
adapters 140.

Turning now to FIG. 8, there 1s a further embodiment of the
invention 1llustrated. In this embodiment, the SCSI interface
adapter, designated with the reference numeral 26', includes
the logical/physical address conversion/RAID control 102",
that was contained in the drive interface adapter 46 (F1G. 4) of
the embodiment illustrated 1n FIG. 1. Sumilarly, the NFS,
CIFS, and HTTP interface adapters 28, 30, 32 could also have
the lo glcal/physwal address conversion 102 included 1n them,
thereby removing that function from the drive interface
adapters 46. Alternatively, 11 the file system interface adapter
140 shown 1n FIG. 7 1s used, that could also include the
logical/physical address conversion 102"

As discussed above 1n connection with FIG. 1, the storage
controller 14 according to the present invention can present
logical volumes for a block system interface and for a file
system 1nterface. Also, as discussed above, a block data
access protocol such as SCSI can be used to provide access to
a Storage Area Network (SAN) based storage system. Simi-
larly, a Network File System (NFS) protocol or Common
Internet File System (CIFS) protocol transported on Ethernet
and TCP/CIP can be used to provide access to a Network
Attached Storage (NAS). In accordance with another
embodiment of the invention, the Fibre Channel protocol can
also be used to provide access to a SAN.

For purposes of discussion, a volume that 1s accessed via a
block system interface will be referred to as a SAN volume.
Likewise, a volume that 1s accessed via a file system interface
will be referred to as a NAS volume. Accordingly then, stor-

age controller 14 can be said to present both a SAN volume
and a NAS volume to a host device.

Turning now to FIGS. 9A and 9B, another aspect of the
invention will be discussed 1n the context of the shortcomings
of the architecture shown 1n the figures. FIG. 9A shows an
example of a storage system 1n which the storage devices are
equipped with a remote replication function. Host systems
170-1 and 170-2 reside at primary site and secondary site,
respectively. The “-1" and “-2” designations distinguish the
primary and secondary sites. In the following discussion,
where the reference numerals do not include the “-1 and
“-2” designations 1t will be understood that the description
applies to each site.

The primary site and the secondary site each have a host
system 170. A typical host system will run a number of
applications, some requiring a block-level I/O and others
requiring file-level 1/0. The host, therefore 1s likely to be

equipped with an interface 180 for block IO and an interface
181 for file I/O. The block I/O 1nterface 1s connectable to SAN

177, while the file I/O interface 1s connectable to LAN 178

5

10

15

20

25

30

35

40

45

50

55

60

65

10

(local area network). A Fibre Channel 1s typically used top
connect to SAN 177. Typically, an Ethernet connection 1s
used to connect to LAN 178. It can be appreciated that other

suitable communication protocols can be used to connect to
SAN 177 and to LAN 178.

SAN device 171 has an mterface 173 for block I/O and
presents a logical volume for block system interface; that 1s,
the mterface provides access to a SAN volume 1735 defined 1n
the SAN device. NAS device 172 has an interface 174 for file
I/O and presents a logical volume for file system interface;

that 1s the interface provides access to a NAS volume 176
defined 1n the NAS device.

As can be seen 1n FIG. 9A, SAN devices 171-1 and 171-2
are data communication with each other via a suitable com-
munication network. The network typically can be a Fibre
Channel, ESCON, UP, and 1SCSI; but 1t can be appreciated
that other suitable communication protocols can be used.
Replication (remote copying) between SAN devices 1s per-
formed over the network. The NAS devices 172-1 and 172-2
are also 1n data communication with each other via a com-
munication network, which is typically, but not limited to,
Ethernet. Replication (remote copying) between NAS
devices 1s performed over the network. SAN replication 1s
performed asynchronously with respect to NAS replication.
In the embodiment shown in the figure, SAN volume 175-2
and NAS volume 176-2 are mirrored volumes of SAN volume
175-1 and NAS volume 176-1 respectively.

What may become a problem with the system shown 1n
FIG. 9A will be discussed with reference to FIG. 9B. Assume
that at ttme A1 NAS device 172-1 recerves a write request to
NAS Volume 176-1 with write data W1, from host system
179-1. Assume further that at a subsequent time A2 SAN
device 171-1 recerves a write request to SAN volume 175-1
with write data W2, from host system 179-1. Since replication
(remote copying) processing by SAN device 171-1 1s per-
formed independently of replication processing by NAS
device 172-1, then 1t 1s possible that at time A3 data W2 will
be replicated to SAN volume 175-2, while data W1 1s repli-
cated to NAS volume 176-2 at time A4 that 1s subsequent to
time A3.

In a given situation, 1t may be important to maintain time
consistency of the data that 1s written to the SAN device 171-1
and NAS device 172-1 when the data 1s mirrored to the
respective devices, namely, SAN device 171-2 and NAS
device 172-2. For example, in terms of the write operations
shown 1 FIG. 9A, 1t may be desirable that the data W1 be
replicated to NAS volume 176-2 prior to replicating the data
W2 to SAN volume 175-2, since the data W1 was written
betore the data W2. For example, a database application in the
host 179-1 may access both the SAN device 171-1 and the
NAS device 172-1, and expect that the time consistency of the
data write operations be preserved in the SAN device 171-2
and the NAS device 172-1 at the secondary site. As can be
seen the architecture shown 1n FIG. 9A cannot ensure such
time consistency.

FIG. 10 A shows an embodiment of an aspect of the present
invention which exhibits an ability to preserve time consis-
tency. At a primary data site, a host system 179-1 can be
configured with an interface 180-1 for block I/O (such as
Fibre Channel or SCSI) and an interface 181-1 for file I/O
(such as NFS or CIFS). The host 1s connected to a SAN 177-1
via the interface 180-1 and to a LAN 178-1 via the interface
181-1.

A storage controller 14-1 according to the invention
includes an interface 173-1 configured for block-level I/O and
an mterface 174-1 configured for file-level 1/0. The storage
controller 1s discussed 1n further detail above. In this particu-

US 7,788,459 B2

11

lar embodiment, the interface 173-1 1s further configured for
connection to the SAN 177-1, and can be a Fibre Channel
interface or SCSI. The mterface 173-1 1s configured to receive
I/0 requests directed to a SAN device. The interface 174-1 1s
turther configured for connection to the LAN 178-1, and can
implement a file I/O protocol such as NFS or CIFS. The
interface 174-1 1s configured to receive I/0 requests directed
to a NAS device. The controller 14-1 of the present invention
as shown in FIG. 10A, therefore, serves as a SAN device to
service block-level 1/0O requests from host 179-1 via SAN
177-1, and at the same time to serve as a NAS device to

service lile I/O requests from the host via LAN 178-1. Other
aspects of the storage controller 14-1 are shown 1n FIG. 1.

FIG. 10A also shows a secondary data site having a host
system 179-2. The host can be configured with an interface
180-2 for block I/O (such as Fibre Channel or SCSI) and an
interface 181-2 for file I/O (such as NFS or CIFS). The host 1s
connected to a SAN 177-2 via the interface 180-2 and to a
LLAN 178-2 via the interface 181-2.

A storage controller 14-2 according to the invention
includes an intertace 173-2 configured for block-level I'O and
an 1nterface 174-2 configured for file-level I/O. As with stor-
age controller 14-1, the interface 173-2 of the storage con-
troller 14-2 1s further configured for connection to the SAN
177-2, and can be a Fibre Channel interface or SCSI. The
interface 174-2 1s further configured for connection to the
LAN 178-2, and can implement a file IO protocol such a
NFES or CIFS. The controller 14-2 serves as a SAN device to
service block-level I/O requests from host 179-2 via SAN
177-2, and at the same time to serve as a NAS device to
service file I/0 requests from the host via LAN 178-2.

As can be seen 1n FIG. 10A, the storage controller 14-1 1s
in communication with the storage controller 14-2 via a suit-
able communication connection. Each storage controller 1s
turther configured to provide replication functionality such as
remote copying. Logical volumes 1n the primary site that are
managed by the storage controller 14-1 can therefore be rep-
licated to the secondary site in corresponding logical volumes
managed by the storage controller 14-2. Conventional repli-
cation techniques can be readily adapted and incorporated
into the storage controllers 14-1 and 14-2 of the present
invention to provide data replication (e.g., remote copy, data
mirroring, etc). An example sampling of storage systems
which provide data replication processing are shown in
Appendix A titled “Hitachi Freedom Storage™ Software”™
and Appendix B “Integrating Sybase Adaptive Server Enter-
prise (ASE) with SnapMirror® to Provide Disaster Recov-
ery’.

In accordance with the particular embodiment of the inven-
tion shown 1n FI1G. 10A, the storage controller 14-1 defines a
SAN volume 175-1 and a NAS volume 176-1. Since the SAN
volume and the NAS volume are logical volumes, they are
shown 1n the figure within the bounds of the storage controller
to indicate the fact that the storage controller defines, man-
ages, and accesses the storage as logical volumes. Depending
on specific implementations, 1t 1s understood that the SAN
volume can comprise one or physical storage devices that are
connected to the storage controller 14-1. Likewise, the NAS
volume can comprise one or more physical storage devices
that are connected to the storage controller 14-1. Block 1/O
requests from the SAN 177-1 are recerved at the interface
173-1. The mterface 173-1 exchanges data with the SAN
volume 175-1 to service the block I/O requests. Similarly, file
I/0 requests from the LAN 178-1 are received at the interface
174-1, which then exchanges data with the NAS volume
176-1 to service the file I/O request. This 1s schematically

10

15

20

25

30

35

40

45

50

55

60

65

12

shown 1 FIG. 10C, where storage controller 14-1 1s con-
nected via a suitable data communication path 50 to a plural-
ity of physical storage 20.

The storage controller 14-1 can define a consistency group
191 comprising the SAN volume 175-1 and the NAS volume
176-1. In the context of data replication such as remote copy,
a “‘consistency group” comprises normally separate storage
elements that are treated 1n an atomic fashion. Thus, 1f one
storage element fails to be replicated then the group will fail
to bereplicated. A consistency group can be treated as a single
entity for data replication (e.g., remote copy) purposes. The
idea of “time consistency” refers to the order 1n time 1n which
data 1s written to the storage elements 1n a consistency group.
Thus, data replication 1s “time consistent™ if the data 1s rep-
licated to the secondary 1n the order 1n which 1t was originally
received by the primary.

The embodiment shown 1n FIG. 10A exhibits time consis-
tency of data write operations that are made to the volumes
175-1 and 176-1 which constitute the consistency group 191.
Thus, for instance, at time B1 suppose storage controller 14-1
receives a write request to NAS volume 176-1 with write data
W1' from host system 179-1. Then at a subsequent time B2,
suppose storage controller 14-1 recetves a write request to
SAN volume 175-1 with write data W2' 1s recerved from the
host system. The storage controller 14-1 can ensure time
consistency of the data write requests when the data 1s repli-
cated to the secondary site since it recerves write requests
directed to the SAN volume and write requests directed to the
NAS volume. Thus at a time B3, the storage controller 14-1
will communicate data W1' to the storage controller 14-2 in
order to mirror the data in NAS volume 176-2. At a time
subsequent to time B3, the data W2' will be similarly repli-

cated to SAN volume 175-2. Thus the write order of the data
W1'and W2'1s maintained in the secondary site.

There 1s another way to maintain the write order of the data
W1' and W2' according to an alternate embodiment of this
aspect of the invention. When the storage controller 14-1
receives data write requests directed to the SAN volume and
data write requests directed to the NAS volumes, the storage
controller 14-1 can associate time stamps with these write
requests. The time that 1s associated with the write requests 1s
the time when the storage controller 14-1 receives the request.
The storage controller can communicate the data W1' and
W2', along with their associated time stamps, to the storage
controller 14-2 1n any order. Then, the storage controller 14-2
writes the received data W1' and W2' to the SAN volume
175-2 and the NAS volume 176-2 1n the order based on the

time stamps associated with the data.

The storage system 14-1 and the storage system 14-2 can
have multiple different types of communication paths. For
example, the write requests for a SAN volume are sent via a
Fibre Channel network and the write requests for a NAS
volume are sent via a Fthernet network. Thus, even for this
configuration, the write order 1s ensured by using the above
described embodiments of the present invention.

FIG. 10B shows that the storage controller 14-1 can have
different host systems 179-3, 179-4 communicating with it.
There 1s no restriction as to the configuration of the host
systems that communicate with the storage controller 14-1.
Since the storage controller only “sees™ requests coming from
the SAN 177-1 or the LAN 178-1, the source(s) of the those
requests 1s irrelevant. As noted 1n connection with the discus-
s1on of the embodiment shown 1n FIG. 1, the storage control-
ler 14-1 can have any number of interfaces 173-1,174-1. Two
or more SAN volumes can be defined and managed by the
storage controller. Two or more NAS volumes can be defined

US 7,788,459 B2

13

and managed by the storage controller. The secondary site
likewise can be configured similarly.

FIG. 11 shows an illustrative embodiment of yet another
aspect of the present invention. Conventional RAID systems
provide local replication functionality. The RAID controller
of a RAID storage system can make a mirrored volume of a
logical volume defined and managed by the storage system.
The logical volume for which the mirrored volume 1s pro-
duced s typically referred to as the primary volume, while the
mirrored volume is referred to as the secondary volume. The
primary volume and secondary volume can be referred to as a
“patred volume,” or a “volume pair.”” When a write request to
the primary volume 1s received, the RAID controller updates
the secondary volume by performing the same requested
write operation.

A volume pair can be “split” (also referred to as “breaking
a pair’). This 1n eflect takes the secondary volume offline.
When the volume pair 1s split, the effect 1s that the secondary
volume 1s frozen (1.e., data from the primary volume 1s no
longer mirrored to the secondary volume). This make the
secondary volume available for offline processing such as
backup, data analysis, and so on. At some point, the secondary
volume needs to be re-paired with 1ts primary volume. Thus,
at some point 1n time a Re-SYNC command may be received.
In response, the volume pair 1s resynchronized. This conven-
tional technique basically ivolves copying data from the
primary volume to the secondary volume 1n a manner that
results in the secondary volume once again mirroring the
primary volume. After resynchronization 1s complete, then
data replication between the primary volume and the second-
ary volume can resume once again.

FIG. 11 shows an illustrative embodiment of a controller
according to an aspect of the present invention which incor-
porates the foregoing features of RAID systems. A controller
14 1s configured with a first interface 173 suitable for block-
level I/O and a second interface 174 suitable for file-level 1/0.
In the particular embodiment shown, the first interface is
configured to communicate over a SAN 177 and the second
interface 1s configured to communicate over a LAN 178.

The storage controller 14 defines and manages one or more
logical volumes. In the particular embodiment shown 1n FIG.
11, the logical volumes include SAN volumes 201-1 and
201-2, and NAS volumes 202-1 and 202-2. It can be appre-
ciated that the storage controller 1s connected to physical
storage volumes (not shown) on which the SAN and NAS
logical volumes are defined.

In accordance with this aspect of the invention, the storage
controller 14 provides local replication functionality. SAN
volumes 201-1 and 201-2 are configured as a volume pair
204, where logical volume 201-2 serves as a primary SAN
volume (P-SAN) and logical volume 201-2 serves as a sec-
ondary SAN volume (S-SAN). NAS volumes 202-1 and
202-2 are likewise configured as a volume pair 205, where
logical volume 202-1 serves as a primary NAS volume
(P-NAS) and logical volume 202-2 serves as a secondary
NAS volume (S-NAS).

FIG. 11 further shows that a consistency group 203 1s
defined and managed by the storage controller 14. The con-
sistency group encompasses volume pair 204 and volume pair
205. When the storage controller receives a “split” command
directed to the consistency group 203, each volume pair in the
group (namely, volume pairs 204 and 203) 1s split. The split
command can be received over the SAN 177 or over the LAN
178. Thus, a host system that has a connection to the SAN 177
can 1ssue a split command. Similarly, a host system having a
connection to the LAN 178 can 1ssue a split command.
Though FIG. 11 shows a single host 179 having interfaces

10

15

20

25

30

35

40

45

50

55

60

65

14

180 and 181 for connection respectively to the SAN and to the
LLAN, 1t can be appreciated that different hosts can be con-
nected to the SAN and to the LAN (e.g., FIG. 10B). Alterna-
tively, the split command can be recerved over a terminal
interface 43; for example, by a system administrator.

A re-sync command can be sent to the storage controller 14
to re-establish the volume pairs. Volume pairs 1n a consistency
group are re-¢stablished at the same time. Thus, volume pair
204 and volume pair 205 would be re-established upon
receiving a re-sync command directed to the consistency
group 203.

In a further aspect of the embodiment shown 1n FIG. 11, the
storage controller 14 can recerve a split command directed to
a particular volume pair. For example, a host system that 1s
connected only to the LAN 178, will “know” about the vol-
ume pair 205, but 1s not likely to have information about the
volume pair 204. That host system would 1ssue a split com-
mand that specifies only the NAS volume pair 205. However,
the storage controller 14 would execute the split operation on
the SAN volume pair 204, in addition to the NAS volume pair
203 because 1t 1s aware of the consistency group 203. Like-
wise, a split command directed to the SAN volume pair 204
would result in the NAS volume pair being split as well.
Similarly, a re-sync command directed to one of the volume
pairs, will cause all volume pairs in the same consistency
group to be re-established.

FIG. 12 A highlights processing 1n the storage controller 14
that involves split processing. At some 1nitial time, the storage
controller defines one or more volume pairs and one or more
consistency groups, step 1201. For example, the configura-
tion of FIG. 11 shows a single consistency group 203 that
contains two volume pairs, 204, 205. During normal process-
ing of I/O requests, write requests to a primary volume (e.g.,
P-SAN or P-NAS) will cause a mirror operation to be per-
formed to the corresponding secondary volume (e.g., S-SAN
or S-NAS), step 1202. At some later time, a split command 1s
received at step 1203. In response to the split command, the
storage controller 14 will reconfigure 1tself to cease mirroring
operations for subsequent write requests, step 1204.

FIG. 12B highlights alternative processing in the storage
controller 14. FIG. 1 shows a cache memory 42 1n the storage
controller. When a split command 1s 1ssued, 1t can be appre-
ciated that the cache will be flushed before splitting a volume
pair to ensure that the volumes contain the most recent data.
Referring to FI1G. 11, the file-level I/O iterface 174 might be
configured with 1ts own local cache (not shown). The process-
ing shown in FIG. 12B includes a cache flushing step to
accommodate a local cache.

Thus, at some 1n1tial time, the storage controller 14 defines
one or more volume pairs and one or more consistency
groups, step 1211. During normal processing of 1/0O requests,
write requests to a primary volume (e.g., P-SAN or P-NAS)
will cause a mirror operation to be performed to the corre-
sponding secondary volume (e.g., S-SAN or S-NAS), step
1212. At some later time, a split command 1s received at step
1213. In response to the split command, the local cache in the
interface 174 1s tlushed (Step 1214) to the cache memory 42.
It 1s noted that i1f interface 173 1s configured with a local
cache, 1t too would be flushed to cache memory 42. The
storage controller 14 will then reconfigure 1itself to cease
mirroring operations for subsequent write requests, step
1215. It 1s understood that this includes flushing the cache
memory 42 to ensure that any data cached therein 1s written to
the physical storage devices.

FIG. 13 shows an 1illustrative embodiment of yet another
aspect of the present invention. A controller 14 1s configured
with a first interface 173 suitable for block-level 1/0O and a

US 7,788,459 B2

15

second interface 174 suitable for file-level I/O. In the particu-
lar embodiment shown, the first iterface 1s configured to
communicate over a SAN 177 and the second interface is
configured to communicate over a LAN 178.

The storage controller 14 defines and manages one or more
logical volumes. In the particular embodiment shown in FIG.
13, the logical volumes include SAN volumes 211-1 and
211-2, and NAS volumes 212-1 and 212-2. It 1s understood
that the storage controller 1s connected to physical storage
volumes (not shown) on which the SAN volume 211-1 and
the NAS volume 212-1 are defined.

The storage controller 14 shown 1n FIG. 13 includes a third
interface 214 configured for communication with a storage
subsystem 215. The storage subsystem can be provided by
any vendor of storage systems. The storage subsystem 2135
includes an iterface 216. A suitable communication link can
be provided between interface 214 1n the storage controller 14
and the interface 216; for example, Fibre Channel, SCSI, and
SO On.

The storage subsystem 215 presents one or more logical
units (LUs) 217-1 to 217-6 to the outside. In accordance with
this aspect of the invention, the storage controller 14 can
access one or more of the logical units in the storage sub-
system 215 to define one or more logical volumes in the
storage controller. In the embodiment shown 1n FIG. 13, the
storage controller defines logical volumes 211-2 and 212-2
based on the logical units 219 (comprising LUs 217-2 and
217-4) provided in the storage subsystem 215.

In accordance with this aspect of the invention, the storage
controller 14 provides local replication functionality. SAN
volumes 211-1 and 211-2 are configured as a volume pair,
where logical volume 211-2 serves as a primary SAN volume
(P-SAN) and logical volume 211-2 serves as a secondary
SAN volume (S-SAN). NAS volumes 212-1 and 212-2 are
likewise configured as a volume pair, where logical volume
212-1 serves as a primary NAS volume (P-NAS) and logical
volume 212-2 serves as a secondary NAS volume (S-NAS).
When the storage controller 14 mirrors a write operation
directed to P-SAN 211-1, 1t will communicate over the com-
munication link provided between the interface 214 and the
interface 216 to mirror the data in the appropriate LUN 217-2,
217-4.

FIG. 13 shows that the volume pair comprising logical
volumes 211-1 and 211-2 and the volume pair comprising
logical volumes 212-1 and 212-2 are not defined as a consis-
tency group, as compared to FIG. 11. Thus, a split command
can be directed to split only the SAN volume pair, or to split
only the NAS volume pair.

A backup server 218 can be connected to the storage sub-
system to perform backups of the secondary volumes 211-2,
212-2. For example, a split command can be directed to the
NAS volume pair, 212-1, 212-2. When the pair 1s split, the
backup server 218 can perform a backup or other offline
processing on the LU associated with the secondary NAS
volume 212-2. Similarly, a split command can be directed to
the SAN volume pair, 211-1, 211-2. When the pair 1s split, the
backup server 218 can perform a backup or other ofiline
processing on the LU associated with the secondary SAN
volume 211-2.

What 1s claimed 1s:

1. A storage system comprising:

a first storage controller;

a plurality of first physical disk drives connected to the first

storage controller;

a second storage controller; and

a plurality of second physical disk drives connected to the

second storage controller;

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein the first storage controller includes a first interface
configured to receive block-level I/O requests, a second
interface configured to receive file-level 1/O requests
and a third interface configured for communication with
a second storage controller,

wherein the second storage controller includes a fourth
interface configured to receive block-level I/0 requests
and a fifth interface configured to recerve file-level 1I/O
requests,
wherein the first storage controller presents a first logical
volume by using a first storage area of the first physical
disk drives, and a second logical volume by using a
second storage area of the first physical disk drives,

wherein the first storage controller receives a block-level
write request to the first logical volume at the first inter-
face and then a file-level write request to the second
logical volume at the second interface,

wherein the second storage controller presents a third logi-

cal volume by using a first storage area of the second
physical disk drives, and a fourth logical volume by
using a second storage area of the second physical disk
drives,

wherein the first storage controller performs a write opera-

tion to the first logical volume and a write operation to
the second logical volume,

wherein the first storage controller copies, through the third

intertace, write data corresponding to the block-level
write request to the third logical volume and then write
data corresponding to the file-level write request to the
fourth logical volume,

wherein the first storage controller controls the first logical

volume and the second logical volume which belong to
a consistency group, and maintains information of the
third logical volume and the fourth logical volume
which form pairs with the first logical volume and the
second logical volume, respectively, and

wherein upon receiving a split command from the host, the

first storage controller controls to execute a split opera-
tion on both the first and second logical volumes 11 the
split command 1s directed to one of the first or second
logical volumes.

2. The storage system of claim 1, further comprising: a
cache memory coupled to the first and the second interfaces,
for temporarily storing data in response to the block-level I/O
requests and the file level 1/O requests.

3. The storage system of claim 1, wherein time consistency
ol write operations made to the first logical volume and the
second logical volume, respectively, 1s maintained at the third
logical volume and the fourth logical volume, respectively.

4. The storage system of claim 1, wherein the first interface
1s configured for communication with a SAN and the second
interface 1s configured for commumication with a LAN.

5. The storage system of claim 1, wherein the fourth inter-
face 1s configured for communication with a SAN and the
fifth mterface 1s configured for communication with a LAN.

6. A storage system comprising:

a first storage controller;

a plurality of first physical disk drives connected to the first

storage controller,

a second storage controller; and

a plurality of second physical disk drives connected to the

second storage controller;

wherein the first storage controller includes a first interface

configured to recerve block-level 1/O requests, a second
interface configured to receive file-level 1/O requests
and a third interface configured for communication with
a second storage controller,

US 7,788,459 B2

17

wherein the second storage controller icludes a fourth
interface configured to receive block-level 1/0O requests
and a fifth interface configured to recerve file-level 1/O
requests,

wherein the first storage controller presents a first logical
volume by using a first storage area of the first physical
disk drives, and a second logical volume by using a
second storage area of the first physical disk drives,

wherein the first storage controller recerves a first file-level
write request to the second logical volume at the second
interface and then a first block-level write request to the
first logical volume at the first intertace,

wherein the second storage controller presents a third logi-
cal volume by using a first storage area of the second
physical disk drives, and a fourth logical volume by
using a second storage area of the second physical disk
drives,

wherein the second storage controller recerves a second
file-level write request to the fourth logical volume at the
fiftth interface and then a second block-level write
request to the third logical volume at the fourth interface,

wherein the first storage controller sends the first file-level
write request via the third interface to the second storage
controller, the second storage controller processes the
first file-level write request to the fourth logical volume,
then the first storage controller sends the first block-level
write request via the third interface to the second storage
controller, and the second storage controller processes
the first block-level write request to the third logical
volume so that time consistency of write operations
made to the first logical volume and the second logical
volume, respectively, 1s maintained at the third logical
volume and the fourth logical volume, respectively.

10

15

20

25

30

18

7. The storage system of claim 6, further comprising: a
cache memory coupled to the first and the second interfaces,
for temporarily storing data in response to the block-level I/O
requests and the file level 1/0 requests.
8. The storage system of claim 6, wherein upon receiving a
split command directed to one of the first and second logical
volumes, the first storage controller controls to execute a split
operation on both the first and second logical volumes.
9. The storage system of claim 6, wherein the first interface
1s configured for communication with a SAN and the second
interface 1s configured for commumication with a LAN.
10. The storage system of claim 6, wherein the fourth
interface 1s configured for communication with a SAN and
the fifth interface 1s configured for communication with a
LLAN.
11. The storage system of claim 3,
wherein said first storage controller associates a time stamp
with each received block-level or file-level write request,
said time stamp 1ncluding information of the time when
the first storage controller recerved the block-level or
file-level write request,
wherein when the first storage controller sends the block-
level or file-level write request via the third interface to
the second storage controller, the first storage controller
sends the time stamp associated with the block-level or
file-level write request to the second storage controller,

wherein said second storage controller receives a plurality
of the block-level or file-level write requests with their
corresponding time stamps and processes the plurality
of block-level or file-level write requests to the third and
fourth logical volumes, respectively, 1n the order of the
time stamps.

	Front Page
	Drawings
	Specification
	Claims

