US007788452B2
a2 United States Patent (10) Patent No.: US 7.788.452 B2
Averill et al. 45) Date of Patent: Aug. 31, 2010
(54) METHOD AND APPARATUS FOR TRACKING 6,108,764 A * 8/2000 Baumgartner et al. 712/28
CACHED ADDRESSES FOR MAINTAINING 6,115,804 A * 9/2000 Carpenteretal. 712/28
CACHYE COHERENCY INA COMPUILR 6,141,692 A * 10/2000 Loewenstein et al. 709/234
SYSTEM HAVING MULTIPLE CACHES 6,374,331 Bl 4/2002 Janakiraman et al.
(75) Inventors: Duane Arlyn Averill, Rochester, MN 0,574,703 B2 6/2003 Hayter etal
(US); Russell Dean Hoover, Rochester, 2002/0174299 A'_‘ 1172002 Ha_yt‘?r fet al
MN (US); David Alan Shedivy, 2003/0009643 Al* 1/2003 Armmilhietal. 711/155
ROCh@SteL MN (IJS),, Martha Ellen 2003/0191894 Al 10/2003 H&Yt@f et al.
Voytovich, Rochester, MN (US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examfner—Mar@ochee Chery
patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm—Roy W. Truelson
U.S.C. 154(b) by 1552 days. (57) ABSTRACT
(21) Appl. No.: 10/760,431
(22) Filed: Jan. 20, 2004 A computer system includes multiple caches and a cache line
state directory structure, having at least a portion dedicated to
(65) Prior Publication Data a particular device cache within a particular device, and con-
tains a fixed number of entries having a one-to-one correspon-
US 2005/0160226 Al Jul. 21,2005 dence to the cache lines of the cache to which 1t corresponds.
(51) Int.ClI The cache line state directory 1s used to determine whether 1t
G OESF 1 300 (2006.01) 1s necessary to send an invalidation message to the device
COGF 15776 (200 6' 01) cache. In the preferred embodiment, a dedicated portion of
) US. Cl 7 17141 711/119: 712/98 the cache line state directory structure corresponds to an I/O
(52) e e e ’ ’ bridge device cache. Preferably, the cache line state directory
(58) Field of ‘Cla‘smﬁcatlon Search s None also maintains state for one or more processor caches in a
See application file for complete search history. different format. The computer system preferably uses a
(56) References Cited NUMA architecture, the directories being maintained by

U.S. PATENT DOCUMENTS
0/1999 Wood et al.

5,951,657 A

node servers 1n each node.

17 Claims, 9 Drawing Sheets

,,.-101
J02A 1028 102¢C 102D
CPU CPU CPU CPU
203A | 204A 2038 | 2048 2036 | 204C 203D | 204D
L1l L1-D L1l Lt-D L1l L1-D L1-] L1-D
205A 2058 205C 205D
L2 Cache L2 Cache L2 Cache L2 Cache
2068 2068 | [206C 206D
L3 Cache L3 Cache L3 Cache L3 Cache

i

L7

L 211A

11O =<_L_

Bridge

s

Bridge

~211B

f{m
Bus

JL ‘202
201
To/From
Node <:> Other
Server Nodes
~~ 209
N2

Mamory

U.S. Patent

Aug. 31, 2010
101A
102A | [1028 || 102¢c || 102D
CPU CPU CPU CPU
NODE 1

MEMORY 1034

101C

1021 102J 102K || 102L
CPU CPU CPU CPU

NODE 3

MEMORY 103C

Sheet 1 0of 9

SYSTEM
INTERCONNECT
NETWORK

101B

102E 102F | | 102G 102H
CPU CPU CPU CPU

NODE 2

MEMORY 1038

105

101D

102M | | 102N || 1020 | | 102P
CPU CPU CPU CPU

NODE 4

MEMORY 103D

FIG. 1

US 7,788,452 B2

U.S. Patent Aug. 31, 2010 Sheet 2 of 9 US 7.788.452 B2

k202

To/From
Node Other

] 209

Memory

FIG. 2

U.S. Patent Aug. 31, 2010 Sheet 3 of 9 US 7,788,452 B2

Processorl/F —

Memory llF —

FIG. 3

U.S. Patent Aug. 31, 2010 Sheet 4 of 9 US 7.788.452 B2

404 405 406

o Jsun] w] |

01

403

na }

407

Sel

EEn
N
o0

US 7,788,452 B2

Sheet S of 9

Aug. 31, 2010

U.S. Patent

903

> 503

505

502

A
~ J

o aaee B R R R B B I B

FIG. 5

U.S. Patent Aug. 31, 2010 Sheet 6 of 9 US 7,788,452 B2

603

Read Local Mem

(Fig.7)

605
604

Read

Remote Mem Read Remote Mem

Y (Fig.8)

N 607

Write Local Mem
(F1g.9)

609

Xmit to Home
Node

611 612

Xmit to Invalidate

Devices Entries

613

Handle Other Req
as Appropriate

U.S. Patent Aug. 31, 2010 Sheet 7 of 9 US 7,788,452 B2

START
Search all Dirs 701

a 702
N
Y

703 704

Exclusive Grant
States Y R};Jq N
? 4
N Y 705

Send Invalidate

Messages as
Access Data Required
from Memory

Xmit to Requestor Invalidate Dir Entries

706

712

Sel Entry
N for Invalidation
Y 713
" Xmit Invalidation
el Inv En
Update I/0 Message
Bridge Dir/SDir
Add Entry r16
to Dir/SDir

FIG. 7

Invalid
Entry Avail
?

U.S. Patent Aug. 31, 2010 Sheet 8 of 9 US 7,788,452 B2

START

~ B 7L L
R Pid Datal N | Request Data |
\\LC'C??I Dir 7y , from Local Proc |
. 7 —_— e — —_— e o
/ T
N v
_____ —_— — — —] /\\/313
| J Data
— —<
N. ~ Ay?all //'
N !

801 4,_ @14
Xmit Req to | Receive Data
Remote Node | from Proc '

L__j———l

Receive Data

306 808
Invalid - Sel Entry
Entry Avail A for Invalidation
809
807 .
= Xmit Invalidation
el inv ent

Bridge Dir

Add Entry 510
to Dir

U.S. Patent Aug. 31, 2010 Sheet 9 of 9 US 7,788,452 B2

START
Search all Dirs 901

902
a 903
Y Grant
Re
> N
Y 904
9

908

Send invalidate

Messages as
Required

06
Write Data to
Local Mem Invalidate Dir Entries

Y
Invalidate
Dir/SDir Entry
DONE

905
909
T
910

FIG. 9

US 7,788,452 B2

1

METHOD AND APPARATUS FOR TRACKING
CACHED ADDRESSES FOR MAINTAINING
CACHE COHERENCY IN A COMPUTER
SYSTEM HAVING MULTIPLE CACHES

FIELD OF THE INVENTION

The present mvention relates to digital data processing
hardware, and 1n particular to the design and operation of

mechanisms for enforcing cache coherency 1n a digital data
processing device having multiple caches.

BACKGROUND OF THE

INVENTION

In the latter half of the twentieth century, there began a
phenomenon known as the information revolution. While the
information revolution 1s a historical development broader 1n
scope than any one event or machine, no single device has
come to represent the information revolution more than the
digital electronic computer. The development of computer
systems has surely been a revolution. Fach year, computer
systems grow faster, store more data, and provide more appli-
cations to their users.

A modern computer system typically comprises one or
more central processing units (CPUs) and supporting hard-
ware necessary to store, retrieve and transier information,
such as communications buses and memory. It also includes
hardware necessary to communicate with the outside world,
such as 1put/output controllers or storage controllers, and
devices attached thereto such as keyboards, monitors, tape
drives, disk drives, communication lines coupled to a net-
work, etc. The CPU 1s the heart of the system. It executes the
instructions which comprise a computer program and directs
the operation of the other system components.

From the standpoint of the computer’s hardware, most
systems operate 1n fundamentally the same manner. Proces-
sors are capable of performing a limited set of very simple
operations, such as arithmetic, logical comparisons, and
movement ol data from one location to another. But each
operation 1s performed very quickly. Programs which direct a
computer to perform massive numbers of these simple opera-
tions give the 1llusion that the computer 1s doing something,
sophisticated. What 1s perceived by the user as a new or
improved capability of a computer system 1s made possible
by performing essentially the same set of very simple opera-
tions, but doing 1t much faster. Therefore continuing improve-
ments to computer systems require that these systems be
made ever faster.

The overall speed of a computer system (also called the
“throughput”) may be crudely measured as the number of
operations performed per unit of time. Conceptually, the sim-
plest of all possible improvements to system speed 1s to
increase the clock speeds of the various components, and
particularly the clock speed of the processor. E.g., if every-
thing runs twice as fast but otherwise works 1n exactly the
same manner, the system will perform a given task in half the
time. Early computer processors, which were constructed
from many discrete components, were susceptible to signifi-
cant clock speed improvements by shrinking and combining
components, eventually packaging the entire processor as an
integrated circuit on a single chip. In addition to increasing
clock speeds, many design improvements to processors have
made 1t possible to increase the throughput of an individual
CPU by increasing the average number of operations
executed per clock cycle within each processor.

Independently of all the improvements to the individual
processor, 1t 1s further possible to increase system throughput

10

15

20

25

30

35

40

45

50

55

60

65

2

by using multiple processors. The modest cost of individual
processors packaged on integrated circuit chips has made this
approach practical, and integrated circuit technology has
even progressed to the point where it 1s possible to construct
multiple processors on a single integrated circuit chip. How-
ever, one does not simply double a system’s throughput by
going from one processor to two. The introduction of multiple
processors to a system creates numerous architectural prob-
lems. Each processor puts additional demands on the other
components of the system such as storage, I/O, memory, and
particularly, the communications buses that connect various
components. As more processors are introduced, these archi-
tectural 1ssues become increasingly complex, scalability
becomes more difficult, and there 1s greater likelihood that
processors will spend significant time waiting for some
resource being used by another processor.

All of these 1ssues and more are known by system design-
ers, and have been addressed 1in one form or another. While
perfect solutions are not available, improvements 1n this field
continue to be made.

One architectural approach that has gained some favor in
recent years 1s the design of computer systems having discrete
nodes of processors and associated memory, also known as
distributed shared memory computer systems or non-uniform
memory access (NUMA) computer systems. In a conven-
tional symmetrical multi-processor system, main memory 1s
designed as a single large data storage entity, which i1s equally
accessible to all CPUs 1n the system. As the number of CPUs
increases, there are greater bottlenecks in the buses and
accessing mechanisms to such main memory. A NUMA sys-
tem addresses this problem by dividing main memory into
discrete subsets, each of which 1s physically associated with
a respective CPU, or more typically, a respective group of
CPUs. A subset of memory and associated CPUs and other
hardware 1s sometimes called a “node”. A node typically has
an internal memory bus providing direct access from a CPU
to a local memory within the node. Indirect mechanisms,
which are slower, exist to access memory across node bound-
aries. Thus, while any CPU can still access any arbitrary
memory location, a CPU can access addresses 1n its own node
faster than 1t can access addresses outside 1ts node (hence, the
term “non-uniform memory access”). By limiting the number
of devices on the internal memory bus of a node, bus arbitra-
tion mechanisms and bus traific can be held to manageable
levels even 1n a system having a large number of CPUSs, since
most of these CPUs will be in different nodes. From a hard-
ware standpoint, this means that a NUMA system architec-
ture has the potential advantage of increased scalability.

A typical computer system can store a vast amount of data,
and a CPU may be called upon to use any part of this data. The
devices typically used for storing mass data (e.g., rotating
magnetic hard disk drive storage units) require relatively long,
latency time to access data stored thereon. If a processor were
to access data directly from such a mass storage device every
time 1t performed an operation, it would spend nearly all of its
time waiting for the storage device to return the data, and its
throughput would be very low indeed. As a result, computer
systems store data in a hierarchy of memory or storage
devices, each succeeding level having faster access, but stor-
ing less data. At the lowest level 1s the mass storage unit or
units, which store all the data on relatively slow devices.
Moving up the hierarchy i1s a main memory, which 1s gener-
ally semiconductor memory. Main memory has a much
smaller data capacity than the storage units, but a much faster
access. Higher still are caches, which may be at a single level,
or multiple levels (level 1 being the highest), of the hierarchy.
Caches are also semiconductor memory, but are faster than

US 7,788,452 B2

3

main memory, and again have a smaller data capacity. Rela-
tively small units of data from memory, called “cache lines”,
are stored in cache when needed and deleted when not
needed, according to any of various algorithms. In a multi-
processor system, cache memory 1s typically associated with
particular processors or groups of processors. For example, a
level 1 cache i1s usually physically constructed on the same
integrated circuit chip as the processor, and 1s used only by a
single processor. A lower level cache might be used by a
single processor, or shared by a subset of the processors on the
system.

Where a computer system contains multiple processors,
whether of a NUMA architecture or some other form of
multi-processor design, an 1ssue of cache coherency arises.
Cache coherency refers to the fact that multiple copies of the
same data may exist simultaneously in different caches, asso-
ciated with different processors or groups of processors. If
multiple processors were to alter different copies of the same
data stored in different caches, there would be a possibility of
data corruption. Accordingly, multi-processor systems
employ cache coherency techniques to prevent this from hap-
pening. Conventional cache coherency techniques involve the
association of a respective coherency state with each cache
line 1n a cache. For example, data may be 1n a “shared” state,
meaning copies of the data may exist elsewhere, or 1n an
“exclusive” state, meaning no other copies are permitted. If
data 1n a “shared” state 1s altered, then all other copies of the
same data 1n other caches are changed to an “invalid” state,
indicating that the copy 1s no longer reliable, and can not be
saved to main memory or storage. Additional states may be
defined.

When cached data 1n a “shared” state 1s altered, some
technique must exist for invalidating other copies of the same
data 1n other caches. In some designs, an invalidation message
1s simply broadcast to all other caches, allowing appropriate
hardware at the recerving end to determine whether any
action 1s required. This simple approach may be appropriate
for certain architectures, but it will be observed that 1n many
cases no other copies of the data will exist. Broadcasting
therefore causes a large number of unnecessary nvalidation
messages to be sent. For many computer architectures, and
particularly NUMA architectures, 1t 1s undesirable to clog the
available hardware communications channels with a large
number of 1nvalidation messages.

In order to reduce the number of invalidation messages, the
system may maintain one or more directories of cache line
state information. Particularly, in a NUMA system, each node
may contain one or more directories storing cache informa-
tion for local caches as well as remote caches. I.e., a remote
directory lists those cache lines which are stored 1n caches of
other nodes, and state information for those cache lines. In
order to avoid duplicating information and have a single point
of reference, the remote directory in each node lists only those
cache lines which are contained 1n main memory associated
with the node. Conventionally, such directories are arranged
as set-associative indexes. The associativity of such a direc-
tory must be sufliciently large to accommodate the combined
capacity of the caches. I.e., the index must be sulficiently
large that there will be available space for an index entry any
time data from the node 1s stored 1n a cache.

Cache lines are constantly being moved in and out of
caches. For many system architectures, it 1s impractical to
keep track of all cache activity 1n such a directory. In particu-
lar, in a NUMA architecture, 1t 1s generally impractical for a
given node to keep track of all the cache activity taking place
in other nodes. If a cache line from a node’s memory 1s stored
in a remote cache, the node will not recerve any notification

5

10

15

20

25

30

35

40

45

50

55

60

65

4

when the cache line 1s removed from the remote cache. As a
result, information 1n the remote cache directory of a NUMA
node 1s overly inclusive. 1.e., in typical operation, the remote
cache directory contains a large number of entries for cache
lines which have already been deleted from or invalidated 1n
remote caches. The consequence of these extraneous entries
1s that unnecessary invalidation messages are often sent.
Unnecessary invalidation messages will not corrupt system
data, but they will reduce performance. It would be desirable
to have more accurate information 1n the directory to reduce
or eliminate these unnecessary invalidation messages, but
transmitting messages to track all the cache activity, and
particularly transmitting inter-nodal messages in a NUMA
system, would generate more communications traific than it
would eliminate. A need therefore exists for improved tech-
niques to reduce unnecessary bus tratfic, and 1n particular to
reduce unnecessary cache line invalidation messages.

SUMMARY OF THE INVENTION

A computer system includes a main memory, at least one
processor, multiple caches, and a cache line state directory
structure. The cache line state directory structure includes at
least one portion dedicated to a particular device cache within
a particular device, and containing a fixed number of entries
having a one-to-one correspondence to the cache lines of the
device cache to which 1t corresponds. The cache line state
directory 1s used to determine whether 1t 1s necessary to send
an invalidation message to the device cache.

In the preferred embodiment, the dedicated portion of the
cache line state directory structure corresponds to an 1/0
bridge cache, for caching data passing through an I/O bridge
device, 1t being understood that the particular device could be
something other than an I/O bridge device, and could be a
processor. An I/0O bridge device forms an interface between
an I/0 bus, generally operating at a relatively lower speed.,
and a system internal bus such as a memory bus, generally
operating at a higher speed.

A cache line state directory structure might contain one or
more portions, and in the preferred embodiment, the cache
line state directory structure contains multiple portions, a first
of which 1s dedicated to a particular device as stated above,
and a second of which contains entries for one or more pro-
cessor caches i one or more processors. The cache line state
directory 1s located external to the processor(s) and external
to the device(s), and 1s used to determine whether it 1s neces-
sary to send mvalidation messages to either device(s) or pro-
cessor(s).

In the preferred embodiment, the computer system 1s con-
structed according to a NUMA architecture, having multiple
nodes, each node accessing a portion of main memory,
although alternatively other architectures could be used. Each
node maintains cache line state information for the portion of
main memory allocated to the node. Cache line state infor-
mation ncludes a local cache directory and a remote cache
directory, which are conventional set-associative directories
maintaining state mformation for processor caches. Fach
node further includes a separate local I/O cache directory and
remote I/O cache directory, maintaining state information for
local and remote I/O bridge device caches. The 1/O cache
directories contain a single entry for each cache line of the
corresponding bridge device caches.

I/0 bridge devices have relatively small caches with high
turnover, 1.e., any particular cache line of data typically
resides 1n the cache for only a short time. As a result, the
loading of cache lines to I/0O bridge devices can generate a
disproportionately large number of entries in a conventional

US 7,788,452 B2

S

set-associative cache line state directory. When such a cache
line 1s removed from the cache by the I/O bridge device, this
fact 1s not propagated to the cache line state directory, causing
an accumulation of such entries 1n the state directory. For
example, the state directory may accumulate 1000 entries or
more for an I/O bridge cache. By establishing a separate
directory portion having one entry for each line in the I/O
bridge cache, the number of such entries in the state directory
1s limited to the number of entries 1n the bridge cache, which
1s typically a much smaller number (e.g., 16). Although it 1s
still possible to send an unnecessary invalidation message
based on an entry 1n the state directory, reducing the number
of such entries will generally reduce the number of unneces-
sary mvalidation messages.

The details of the present invention, both as to 1ts structure
and operation, can best be understood 1n reference to the
accompanying drawings, in which like reference numerals
refer to like parts, and in which:

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1s a high-level block diagram of the major hardware
components of a multi-node, multi-processor computer sys-
tem, according to the preferred embodiment of the present
invention.

FI1G. 2 1s a high-level block diagram of the major hardware
components of a typical node of a multi-node computer sys-
tem of the preferred embodiment.

FIG. 3 1s a block diagram showing 1n greater detail the
major components of a node server, according to the preterred
embodiment.

FIG. 4 represents the structure of a local processor direc-
tory portion or a remote processor directory portion (both
being similar) of a cache line state directory structure within
a node server, according to the preferred embodiment.

FIG. 5 represents the structure of a local 1I/O bridge direc-
tory portion or a remote I/O bridge directory portion (both
being similar) of a cache line state directory structure within
a node server, according to the preferred embodiment.

FI1G. 6 1s a high-level decision flow diagram of the function
ol a node server, according to the preferred embodiment.

FIG. 7 1s a flow diagram showing in greater detail the
handling of a read local memory request by a node server,
according to the preferred embodiment.

FIG. 8 1s a flow diagram showing in greater detail the
handling of a read remote memory request by a node server,
according to the preferred embodiment.

FIG. 9 1s a flow diagram showing in greater detail the
handling of a write local memory request by a node server,
according to the preferred embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to the Drawing, wherein like numbers denote
like parts throughout the several views, FIG. 1 1s a high-level
block diagram of the major hardware components of a multi-
node, multiprocessor computer system 100 in accordance
with the preferred embodiment of the present mvention.
Computer system 100 1s designed according to a NUMA
architecture, it being understood that a computer system 1n
accordance with the present invention need not necessarily be
a NUMA system. Computer system 100 comprises multiple
nodes 101A-101D (herein generically referred to as feature
101), of which four are shown in the exemplary system of
FIG. 1, 1t being understood that the number of nodes may
vary. Each node includes multiple general-purpose program-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

mable central processing units (CPUs) 102A-102P (herein
generically referred to as feature 102) and a respective local
portion of main memory 103A-103D (herein generically
referred to as feature 103).

Computer system 100 utilizes a distributed main memory,
comprising a separate local memory 103A-103D 1n each
respective node 101 A-101D. Collectively, local memory por-
tions 103A-103D constitute the main memory of computer
system 100. The total addressable main memory within sys-
tem 100 1s the sum of the addressable local memory 103 in
cach respective node. The main memory 1s addressable using
a single common real address space, which 1s shared by all
CPUs throughout the system. A respective portion of the real
address space 1s allocated to each local memory portion
103A-103D 1n a persistent, fixed manner. I.e., the address
space allocation does not change with each task, process,
user, or similar parameter, although 1t may be possible to
change the allocation by reconfiguring the system. Thus, the
real address space of main memory 1s constant across the
entire system, and any memory location 1n a local memory
103 has a unique real address which 1s the same for all pro-
cessors and all nodes.

The nodes are connected to one another by an inter-node
communications network 105 that permits any node to com-
municate with any other node. The purpose of inter-node
communications network 1s to allow devices to communicate
across node boundaries, and in particular, to allow a processor
in any node to access the memory resident 1n any other node.
Inter-node communications network 105 may employ any
technique, now known or hereatter developed, for supporting
communication among multiple nodes 1 a computer system.
Ideally, the inter-node communications medium should pro-
vide high bandwidth and low latency, and be scalable to allow
for the addition of more nodes. Network 105 may be arranged
as a set of point-to-point interconnection links, as a ring
topology, as a common multi-drop bus topology, or 1n some
other manner. Connections may be wired or wireless (e.g,
optical), depending on system performance needs. As just one
example, network 105 may be a switch-based network that
uses the Scalable Coherent Interface (SCI) interconnection
mechanism conforming to the IEEE 1596-1992 or subse-
quent standard. SCI 1s a high-bandwidth interconnection net-
work implemented by a pumped bus that sends packets on
cach mdividual point-to-point interconnect.

FIG. 2 1s a block diagram of the major hardware compo-
nents of a typical node 101 of computer system 100 1n accor-
dance with the preferred embodiment. Node 101 includes
multiple central processing units (CPUs) 102, a local portion
of main memory 103, a node server 201. A node may option-
ally include one or more I/O bridge interface units 207 A-
207B (herein generically referred to as feature 207), of which
two are shown in FIG. 2. A local processor bus 202 connects
the CPUs 102 with node server 201. A local IO bridge bus
connects I/0 bridge interface units 207 with node server 201.
A local memory bus 209 connects memory 103 with node
server 201. Physically, node 201 1s preferably implemented as
multiple integrated circuit chips mounted on as single circuit
card, having embedded printed circuit connections running
among the various chips.

Each CPU 102 performs basic machine processing func-
tions on 1nstructions and other data from the distributed main
memory. Each CPU contains or controls a respective set of
caches for temporary storage of data and instructions. As
represented 1n FIG. 2, each CPU contains or controls arespec-
tive level 1 instruction cache (L1 I-cache) 203 A-203D (herein
generically referred to as feature 203), a respective level 1
data cache (L1 D-cache) 204A-204D (herein generically

US 7,788,452 B2

7

referred to as feature 204), a respective level 2 cache (1.2
cache) 205A-205D (herein generically referred to as feature
205), and a respective level 3 cache (L3 cache) 206 A-206D

(herein generically referred to as feature 206). L1 caches 203,
204 store mstructions and non-instruction data, respectively,
while L2 cache 205 and L3 cache 206 are common caches
which do not distinguish between instructions and other data.
In the preferred embodiment, a processor 102 and 1ts associ-
ated caches 203-206 are constructed on a single semiconduc-
tor mtegrated circuit “chip”, sometimes called a “processor
chip”, each processor being on a separate chip. The caches are
therefore sometimes considered an integral part of the CPU,
and sometimes considered separate entities. Although each
CPU 1s shown with a set of four caches 203-206 1n FIG. 2, it
will be appreciated that the number and configuration of
caches may vary. Specifically, there may be more than or
fewer than three levels of cache, and some caches (usually
lower level caches) may be shared by multiple CPUs. L2
caches are typically inclusive of the L1 caches, 1.e., all datain
the L1 caches 1s also contained in the corresponding 1.2
caches. However, the L3 caches may or may not be inclusive
of the L2 caches, depending on processor design.

Local processor bus 202 couples the CPUs 102 and their
associated caches to node server 201. Although represented 1in
FIG. 2 as a simple multi-drop bus, local processor bus 202
may be constructed according to any of various architectures,
now known or hereafter developed, and may be constructed as
multiple separate buses.

Node server 201 provides a central point of control for data
flowing into and out of node 101, and between certain func-
tional units within node 101. The function of node server 201
1s explained 1n further detail herein, with reference to FIG. 3.

Local memory portion 103 1s coupled to node server 201
via local memory bus 209. Local memory portion 103, while
represented as a single monolithic entity 1n FIGS. 1 and 2, 1s
typically constructed as a bank of discrete integrated circuit
chips, as 1s known 1n the art. Local memory bus 209 accord-
ingly 1s a communications bus coupled to all such chips, and
may be constructed according to any conventional technique
or any technique hereafter developed.

Each I/0 bridge mterface unit 207 provides an interface to
a respective I/O bus 211 A-211B (herein generically referred
to as feature 211), and 1s coupled to node server via local I/O
bridge bus 208. Each I/O bridge contains a respective cache
210A-210B (herein generically referred to as feature 210) for
temporary storage ol data moving across the interface, each
cache 210 containing multiple slots 212, each slot for storing
a single cache line of data. Each I/O bus 211 connects one or
more 1/0 devices (not shown) to node 101. I/O devices may
include any of various devices, such as direct access storage
devices, tape drives, workstations, printers, and remote com-
munications adapters for communications with remote
devices or with other computer systems through dedicated
communications lines or networks. The number and range of
I/0 devices may vary considerably, and may include devices
hereafter developed. I/O bridge unit 207 provides an interface
between two different buses, and in particular, 1s able to
temporarily store data being transierred from a bus operating
at one speed to another bus operating at a different speed 1n
cache 210. I/O buses 211 may be of any suitable type for
communication with I/O devices. For example, I/O bus 211
may be an industry standard PCI bus. Typically, I/O bus 211
operates at a significantly slower speed than local 1/O bridge
bus 208. Although two I/0 bridge units 207 and two I/0O buses
211 are shown 1n FIG. 2, 1t should be understood that the
number of such bridge units and buses and devices may vary,

10

15

20

25

30

35

40

45

50

55

60

65

8

and further that 1t 1s not necessary that all nodes 101 contain
I/O bridge units 207 or attached I/O devices.

While a system having four nodes 1s shown in FIG. 1, and
a typical node having four CPUs and various other devices 1s
shown 1n FIG. 2, it should be understood that FIGS. 1 and 2
are mtended only as a simplified example of one possible
configuration of a system for illustrative purposes, that the
number and types of possible devices in such a configuration
may vary, and that the system often includes additional
devices not shown. It should further be understood that 1t 1s
not required that all nodes be 1dentical, that all nodes have the
same number of CPUs or the same amount of addressable
local memory, or that all nodes have attached I/O buses and
I/O devices. Finally, although the system of the preferred
embodiment 1s a multi-node system employing a NUMA
architecture, the present invention might be utilized 1n sys-
tems designed according to different architectural principles,
or 1n a system having only a single node. While various
system components have been described and shown at a high
level, 1t should be understood that a typical computer system
contains many other components not shown, which are not
essential to an understanding of the present invention.

FIG. 3 1s a block diagram showing in greater detail the
major components of node server 201, according to the pre-
terred embodiment. Node server 201 includes local processor
bus intertace 301, I/O bridge bus intertace 302, local memory
interface 303, and inter-node network interface 304, for com-
municating with various other system components. Node
server 201 further includes a cache line state directory struc-
ture 305, which includes local processor directory 306,
remote processor directory 307, local I/O bridge directory
308, and remote I/O bridge directory 309, the functions of
which are explained further herein. Node server further
includes cache coherence logic 310 necessary for maintain-
ing the cache line state directory 305, and for generating and
responding to cache coherency messages, as Ilurther
explained herein. Node server further includes various other
logic and memory structures for supporting intra-nodal and
inter-nodal data communications, maintaining state imnforma-
tion, buffering data, and so forth, which are not essential to an
understanding of the present invention, and which have been
omitted from FIG. 3 for clarity of representation.

Among other things, node server 201 provides communi-
cation means among the various components of node 101,
and between components of node 101 and devices (particu-
larly, other nodes) external to node 101. In particular, node
server 201 transfers data between local memory 103 and
caches 203-206 of local CPUs 102 responsive to memory
accesses 1ssued by the CPUs. In the case where a requested
memory access references data in the memory of a remote
node, node server transmits the request to the remote node
through inter-node interface 304 and network 1035, receives
the data responsive to the request, and forwards 1t to the
requesting CPU (1.e., typically a cache of the requesting
CPU). Similarly, node server 201 receives requests from
other nodes (i.e., requests originating in a CPU of another
node, and forwarded by the node server of that other node) for
data residing in local memory portion 103 of node 101,
retrieves the requested data from local memory, and forwards
it to the requesting node over network 105. It will be observed
that a memory access to a real address within local memory
103 will cross node server 201 within the same node and
return 1n a relatively short number of machine cycles, while a
memory access to a real address within the local memory of a
remote node will cross node server 201 1n the originating
node, network 105, and a corresponding node server 201 1n a
remote node containing the requested data, to reach the local

US 7,788,452 B2

9

memory of the remote node 1n which the data resides. (This
operation may in some cases be shortened 11 the requested
data 1s 1n a cache 1n the local node.) As a result, a memory
access to a remote node generally requires a relatively greater
number of cycles.

Similarly, node server 201 serves as a conduit for data
being transierred to or from an I/O device via an I/O bridge
interface unit 207 on the one hand, and local memory 103, a
local processor 102, or a remote node (through network 105),
on the other hand.

The node servers 201 in the various nodes further maintain
cache state information and enforce cache coherency. Cache
line state directory structure 305 carries the required state
information. Briefly, each node maintains the state of cache
lines originating from the node’s local memory, and the state
of cache lines for caches in the node. When a processor or /0O
bridge unit requests data from memory for 1ts cache, an entry
1s made 1n the directory structure of the node 1n which the
processor or bridge unit resides, and in the node contaiming,
the memory address of the cache line 1n real memory (if this
1s a different node). Where the request 1s a non-exclusive
request for data (meaning that copies of the data may concur-
rently reside 1n other caches, generally the case for data to be
read and not written), the corresponding directory structures
in the applicable node or nodes indicate that the data has a
shared state. Where the request 1s an exclusive request, or
where data 1s being written, as an I/O device performing a
direct memory access (DMA) write, an invalidation message
will be sent to all caches having a copy, causing the caches to
invalidate the corresponding cache line.

The major function of the cache line state directory struc-
ture 3035 1s determine whether and whither to send an invali-
dation message. I.e., 1t would be possible to simply send
invalidation messages to all caches every time an event occurs
which might invalidate data in a cache, and let each the cache
determine whether the invalidation message 1s applicable. In
fact, some computer systems use such a technique, and gen-
erally provide special hardware supporting the transmission
of invalidation messages. However, for many systems, and
particularly a NUMA system according to the preferred
embodiment, invalidation messages pass through the general
inter-node communication network, I/O bridge bus, and so
forth. A large number of such messages can clog the commu-
nications channels. In most cases, data which 1s the subject of
a write or an exclusive read request will not be 1n any other
cache, and invalidation messages are unnecessary. Cache line
state directory structure 305 reduces, although 1t does not
entirely eliminate, the number of unnecessary invalidation
messages by recording cache line allocations and state.

In the preferred embodiment, directory structure 303 con-
tains four major components: local processor directory 306,
remote processor directory 307, local I/O bridge directory
308, and remote 1/O bridge directory 309. Local processor
directory 306 contains cache line state for cache lines 1n any
of the caches associated with a local processor within the
same node as the node server containing the directory.
Remote processor directory 307 contains cache line state for
cached lines of local memory (stored 1n memory portion 103
within the same node as the node server containing the direc-
tory), which are cached 1n any of the caches associated with a
remote processor, 1.€., a processor 1n a different node. Local
I/0 bridge directory 308 contains cache line state for cache
lines 1n any of the local I/O bridge units. Remote I/O bridge
directory contains cache line state for cached lines of local
memory, which are cached 1n any of the caches of a remote
I/0 bridge unit, 1.e., an I/O bridge unit 1n a remote node.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

FIGS. 4 and 5 represent the structure of the four major
components of the cache line state directory 305 and certain
associated hardware. In the preferred embodiment, local pro-
cessor directory 306 and remote processor directory 307 have
similar structure, and both are represented by FIG. 4. Local
I/O bridge directory 308 and remote I/O bridge directory 309
likewise have similar structure, and both are represented by
FIG. 5.

Referring to FIG. 4, local processor directory 306 (or
remote processor directory 307) includes a set associative
array 401 of cache line status entries 402, the array being
arranged 1n multiple rows 403, each row having multiple
entries. Each entry 402 contains an address field 404, a state
field 405, and some miscellaneous bits 406 used for main-
taining the directory or other purposes, specifically an age
value which can be used to determine which entry to remove
from array 401, when 1t 1s necessary to remove an entry.

A row of array 401 1s accessed using a hash function of the
real address of a data reference. The hash function 1s typically
several low order bits of real address, above the bits which
determine an oifset address within a cache line. E.g., 1f a
cache line holds 128 bytes of data (requuring 7 address bits),
then the hash function is typically the taken from the low
order address bits immediately above the 7 lowest order bits
of offset address. The number of real address bits N used for
the hash function depends on the number of rows 1n array 401,
array 401 having 2" rows. Each entry 402 corresponds to a
cache line of memory having the same N real address bits of
the hash function used to select the row. Therefore, address
ficld 404 contains only the real address bits other than those
used as the hash function to select the row (and other than the
offset address bits).

When a row 1s selected using a portion of a real address, the
address ficlds 404 of each entry 402 1n the selected row are
input to respective comparators 407, which compare the
address fields with the corresponding real address bits of the
data reference. If any of the addresses match, then OR gate
408 outputs a corresponding match signal. In this case, the
referenced data may exist 1n one of the caches to which the
directory array 401 corresponds. The output of the corre-
sponding comparators controls selector logic 409, which
receives as mput the state fields 406 of the various entries. I
there 1s an address match, this state 1s output by selector 409.
If there 1s no match, then the referenced data 1s not 1n any
cache to which directory array 401 corresponds, and the
match signal from OR gate 408 1s accordingly shut off.

Each entry 403 1n array 401 represents a cache line of data
which may be stored 1n one or more caches, and therefore the
entry corresponds to the cache line address 1n memory, not to
any particular cache or cache location. The number of entries
in array 401 1s preferably significantly larger than the number
of cache lines in the corresponding caches, meaning that array
401 typically holds entries for cache lines which are no longer
in the caches. Array 401 1s designed with a larger number of
entries to avoid the need for precise tracking of the contents of
the caches, which would be difficult. When a new cache line
1s to be loaded to a processor cache, requiring a new entry 1n
array 401, 1t 1s not necessary to determine which cache line 1s
being removed from the cache; 1t 1s only necessary to find a
cache line which 1s no longer used. The fact that array 401
may contain supertluous entries only means that some unnec-
essary invalidation messages may be sent for data which 1s
referenced by an entry in array 401, but 1s in fact no longer in
the cache, or 1f 1n the cache, has already been invalidated.

Although row 403 is represented in FIG. 4 with eight
entries 402, this number 1s chosen for simplicity of 1llustra-
tion, and 1s not necessarily mtended to represent an actual

US 7,788,452 B2

11

number of entries. The actual number of entries may vary, and
this number could be a fixed amount, or could be program-
matically variable to allocate a portion of each row to the local
directory 306 and another portion to the remote directory 307.

I/O bridge cache directories are organized differently, to
support the different character of I/O bridge caches. 1/0O
bridge caches 210 are typically used to support different

transmission speeds on the I/O buses. Unlike a processor
cache, outbound data 1n an I/O bridge cache (a DMA read) 1s

usually read only once before being removed from cache.
Inbound data (a DMA write), which 1s written to memory
once and not further referenced by the I/O device, 1s not

placed 1n the cache (although 1t may be stored temporarily in
a butter in the I/O bridge device). Therefore I/O bridge caches
are typically small caches characterized by a high rate of data
turnover. For example, 1n the preferred embodiment a typical
I/0O bridge cache contains 16 slots 212 for storing up to 16
cache lines.

In contrast to local processor directory 306 and remote
processor directory 307, the local I/O bridge directory 308
and remote 1/O bridge directory 309 contain entries which
correspond to actual cache locations (slots). The I/O bridge
unit informs the node server where a cache line will be placed
in 1ts cache when 1t requests data. Since only one entry exists
for any particular cache location, each new data request auto-
matically overwrites old data in the I/O bridge directory.
Theretfore, bridge directory entries are limited to the small
number of cache line slots in the corresponding 1/O bridge
caches, and are automatically maintained by overwriting the
old entries when a new cache line 1s loaded to the cache,
without the need to invalidate data corresponding to existing,
entries 1n the bridge directory.

Referring to FIG. 5, local I/O bnidge directory 308 (or
remote 10 bridge directory 309) 1s divided into one or more
sections 501A-501C (herein generically referred to as feature
501), each section corresponding to a respective 1/O bridge
cache 210. Each section 501 includes a bank 502 of cache line
status entries 503, the number of entries 503 1in each bank
being the same as the number of cache line slots 212 1n the
corresponding I/O bridge cache 210. Each entry 503 contains
an address field 504 and a state field 505. Detail 1s omitted
from sections 501B and 501C {for clarty.

Address field 504 contains a full real address of the cache
line (without the lowest order bits used to determine an offset
location within a cache line). The address field 504 of each
entry 503 1n bank 502 i1s compared with the corresponding
address bits of a data reference by respective comparators
506. If any address field address matches the real address of
the data reference, then OR gate 507 outputs a corresponding
match signal. In this case, the referenced data may exist in the
I/0O bridge cache to which the directory section 501 corre-
sponds. The output of the corresponding comparators 506
controls selector logic 508, which receives as imput the state
fields 505 of the various entries. I there 1s an address match,
this state 1s output by selector 508. If there 1s no match, then
the referenced data 1s not in the cache to which directory
section 501 corresponds, and the match signal from OR gate
507 1s accordingly shut off.

Various cache line states stored within state fields 4035 and
505 may be supported, for example, according to a known
MESI state protocol (“modified”, “exclusive”, “shared” and
“immvalid” states). However, 1n the preferred embodiment, the
only states supported for the I/O bridge cache directories 308,
309 are “shared”, “invalid”, and, 1n the case of remote direc-
tory 309, a transitional state “R” for a brief time when data 1s

10

15

20

25

30

35

40

45

50

55

60

65

12

being transmitted to a remote node. An I/O bridge cache does
not acquire exclusive ownership of data, as a processor cache
might.

Node server 201 functions as a data conduit and maintains
cache line state directory information. FIGS. 6-9 are flow
diagrams representing certain aspects of the function of a
node server in response to various cache access requests,
according to the preferred embodiment. Although the func-
tions of the node server are represented 1 a set of flow
diagrams for illustrative purposes, the fact that tlow diagrams
are used 1s not meant to imply that certain operations are
actually performed sequentially or 1n the order represented. In
many cases, multiple functions and decisions will be per-
formed concurrently by different hardware elements.

Retferring to FIG. 6, which 1s a high-level decision tlow
diagram of node server function, node server waits at block
601 for incoming requests of various types, which may come
from local processors, I/O devices attached to local I/O bridge
units, or processors or I/0 devices attached to remote nodes.
I a request to read local memory 1s recerved (block 602),
local memory 1s read 1n response to the request (block 603), as
explained 1n greater detail in FIG. 7. If a request to read
memory 1n a remote node 1s recerved (block 604), remote
memory 1s read in response to the request (block 603), as
explained 1n greater detail in FIG. 8. If a request to write to
local memory 1s recerved (block 606), local memory 1s writ-
ten to 1n response to the request (block 607), as explained in
greater detail 1n FI1G. 9. If a request to write to remote memory
1s recerved (block 608), the request 1s transmitted to the node
server 1n the home node for appropriate action, 1.e., the
request 1s transmitted to the node 1n which the real memory
address of the write request 1s contained. (block 609). If a
request to mnvalidate a cache line 1s recerved (block 610), 1.¢.,
a request Irom a node server in another node to ivalidate a
cache line of a memory address 1n that other node, the node
server responds by invalidating the corresponding entry or
entries 1n 1ts local processor directory 306 or local I/O bridge
directory 308 (block 612); the node server also transmits the
invalidation message to the corresponding device(s) (proces-
sor or I/O bridge) (block 611). In all other types of requests,
not essential to understanding the present invention, the node
server handles the request as appropnate (block 612).

FIG. 7 1s a flow diagram showing 1n greater detail the
handling of a read local memory request by a node server, 1.¢.,
a request from any source to read memory from the local
memory portion 103 of the node server’s node. In response to
receiving the request, the node server checks all directories
306, 307, 308, 309 of the cache line state directory structure
305 for an address which matches the address of the requested
data (block 701). If a matching address 1s found (°Y” branch
from block 702), the node server determines whether the state
of the existing cache line and the requested data are mutually
exclusive, 1.e. can not co-exist together (block 703). If the
states are mutually exclusive (the °Y’ branch from block 703),
the node server determines whether to grant the request
(block 704). The request may be granted or denied, based on
certain pre-defined state priorities, process priorities, or other
factors. I1 the request 1s denied, a message to that effect 1s
generated to the requester (step 707), and servicing the
request ends. IT the request 1s granted, the node server trans-
mits an invalidation message or messages as required (block
705). The invalidation messages are transmuitted to those enti-
ties possibly having cache line data conflicting with the
request. I.e., 11 the conflicting cache line was 1n the local
processor directory 306, the mvalidation message 1s broad-
cast to all local processors on the local processor bus 202; 1f
the contlicting cache line was 1n the local IO bridge directory

US 7,788,452 B2

13

308, the invalidation message 1s sent to the appropriate 1/0
bridge unit over local I/O bridge bus 208; if the contlicting,
cache line was in the remote processor directory 307, the
invalidation message 1s broadcast to all remote nodes via
network 105; and 1 the conflicting cache line was 1n the
remote I/0 bridge directory, the invalidation message 1s sent
to the node(s) containing the I/O bridge unit(s) with the con-
flicting cache line. The state field 405 or 505 of the corre-

sponding directory entries are then set to ‘mvalid” (block
706).

If no contlicting cache line was found at blocks 702 or 703,
or aiter a contlict has been resolved by invalidating cache
lines at blocks 704-706, the node server reads the requested
data from local memory 103 over local memory bus 209
(block 708). The data 1s then transmitted to the requesting
entity (block 709), which may be a local entity or a remote
node. If the requestor was an 1I/O bridge device (block 710),
the node server updates the local 1/O bridge directory 308 or
remote I/O bridge directory 309, as the case may be, with the
new cache line address (block 711). A data read request from
an 1/0 bridge unit will include the cache slot 1n which the
cache line to be read will be placed. The node server therefore
knows where the cache line will be placed, and updates the
cache line entry 503 which corresponds to the cache line slot
indicated 1n the read request.

If the requestor was a processor (the ‘N’ branch from block
710), then the node server must find an available entry 1n the
local processor directory 306 or remote processor directory
307, as the case may be, for entering the address and state of
the requested cache line. If an invalid entry having the same
address hash bits exists (block 712), this entry i1s selected
(block 713). I not, an entry 1s selected for 1nvalidation (block
714), and an mvalidation message 1s sent to the local proces-
sors or remote node, as the case may be (block 715). The entry
selected for mvalidation at block 714 1s generally the oldest
entry, based on information 1n M field 406, although other
algorithms could be used. Because the directories contain
substantially more entries than there are cache slots available,
the entry selected will usually 1dentify a cache line which has
already been removed from the cache (although the directory
information, which 1s not always current, indicates other-
wise). An invalidation message 1s necessary to be certain that
the cache line 1s removed from cache, although 1n most cases
the receiving processor will simply 1gnore it because the
cache line 1s no longer there. In either case, the applicable
directory 1s then updated with the new entry (block 716).

FIG. 8 1s a flow diagram showing in greater detail the
handling of a read remote memory request by a node server,
1.e., a request from a local source to read memory from
another node. In response to recetving the request, the node
server forwards the request to the remote node (block 801). It
waits to recerve the requested data in response, and when the
data 1s recerved (block 802), 1t 1s forwarded to the requesting
entity (block 803). The remote node then updates the local
processor directory 306 or local I/O bridge unit directory 308,
as the case may be (blocks 804-810), 1n the manner described
above with respect to blocks 710-716, respectively.

The local processor directory might optionally be used to
obtain cache data locally where possible, as indicated by
optional blocks 811-814. 1.¢., the node server may check local
processor directory 306 for the requested data (block 811),
and 1f valid, non-exclusive data at the same address as the
requested data 1s indicated i1n the directory, the data 1s
requested from a cache 1n a local processor (block 812). If the
data 1s 1n fact available (block 813), the data 1s recerved from
the local processor (block 814), and the node server continues

10

15

20

25

30

35

40

45

50

55

60

65

14

at block 803. If the data 1s 1n fact unavailable (the ‘N’ branch
from block 813), the node server requests the data from
another node (block 801).

FIG. 9 1s a flow diagram showing 1n greater detail the
handling of a write local memory request by a node server,
1.€., a request from either a local or remote source to write a
cache line to memory of the local node of the node server. In
response to receiving the request, the node server checks all
directories 306, 307, 308, 309 for an address which matches
the address of the requested data (block 901). If a matching
address 1s found (°Y’ branch from block 902), the node server
determines whether to grant the request (block 903). Typi-
cally, awrite request 1s granted, although there may be special
cases where this 1s not so. If the request 1s denied, a message
to that effect 1s generated to the requester (block 908), and
servicing the request ends. If the request 1s granted, the node
server transmits an invalidation message or messages as
required (block 904). The invalidation messages are transmit-
ted to those entities possibly having cache line data invali-
dated by the write. I.e., 1f the matching cache line was 1n the
local processor directory 306, the mvalidation message 1s
broadcast to all local processors on the local processor bus
202, and so forth for the remaining directories. The state field
403 or 505 of the corresponding directory entries are then set
to ‘mnvalid’ (block 905), except for the directory applicable to
the requesting processor. It will be noted, for example, that in
the case of a cache line of data 1n a processor directory, there
could be multiple processor caches holding the same cache
line. Block 904 assures that any processor other than the
requesting processor will invalidate 1ts cache line 1in response
to the message. The requesting processor may or may not
invalidate its cache line, depending on the nature of the write
operation. As explained herein with respect to blocks 909-
910, the corresponding entry 1n a local processor directory
306 or remote processor directory 307 may be invalidated,
depending on the write operation.

It no match was found at block 902, or it a match was found
and the request was granted at block 903, followed by blocks
904 and 905, the node server writes the cache line of data to
local memory 103 over local memory bus 209 (block 906). If
the write request was from an I/O bridge device (a DMA
write) (the Y’ branch from block 907), no further action 1s
required by the node server. Since DMA write data 1s not
stored 1n a cache of an I/0 bridge device, 1t 1s not necessary to
further invalidate anything. If the write request was not from
an I/O bridge device, 1.e., was from a processor (the ‘N’
branch from block 907) and data 1s being cast out of the cache
(the °Y’ branch from block 909), then the corresponding entry
in the local processor directory 306 or remote processor
directory 307, as the case may be, 1s mnvalidated (block 910).
If the data 1s not being cast out of cache (the ‘N’ branch from
block 909), the status in the directory remains unchanged.

In the preferred embodiment as described above, a com-
puter system contains multiple nodes and a main memory
which 1s distributed among the various nodes, resulting in
non-uniform memory access. However, a method and appa-
ratus for tracking cached addresses in accordance with the
present invention 1s not necessarily limited to use in a NUMA
architecture, and in an alternative embodiment, different sys-
tem architectures may be used. Furthermore, a system may be
similar to that described herein, but contain only a single
node.

In the preferred embodiment described above, a separate
device directory section 1s maintained for each I/O bridge
device, in which each directory entry corresponds to a physi-
cal cache slot. Although the exemplary device 1s an I/O bridge
device, 1t will be appreciated that other devices may also

US 7,788,452 B2

15

contain caches, for which such a technique would be usetul,
and a device need not be an I/O bridge device. For example, an
external network interface or similar communications inter-
face may contain a such a cache. Such a device could even be
one of the processors.

In the preferred embodiment described above, a cache line
state directory structure includes separate processor portions
and I/O bridge device portions, which are differently orga-
nized, the processor portion be organized as a conventional
set-associative directory. However, a cache line state direc-
tory which maintains device cache state information (prefer-
ably for an I/O bridge device) 1n accordance with the present
invention may include a processor portion which 1s organized
differently from a conventional set-associative directory, and
need not include a processor portion at all. Specifically, the
cache line state directory may exist only for maintaining
cache line state for, and determining whether to send 1nvali-
dation messages to, one or more devices, which are prefer-
ably, although not necessarily, I/O bridge units.

Although a specific embodiment of the invention has been
disclosed along with certain alternatives, 1t will be recognized
by those skilled 1n the art that additional variations in form
and detaill may be made within the scope of the following
claims:

What is claimed 1s:

1. A digital data processing system, comprising:

a memory;

at least one processor having at least one associated cache
for temporarily caching data from said memory;

at least one device having a device cache, said device cache
having a fixed number of slots for caching data, said

fixed number being greater than one, each slot caching a

cache line of data; and
a cache coherency mechanism, said cache coherency

mechanism including a cache line state directory struc-
ture, said cache coherency mechanism selectively deter-
mining whether to send cache line invalidation messages
to said at least one device using state information in said
cache line state directory structure, wherein at least a
portion of said cache line state directory structure asso-
ciated with said at least one device contains exactly said
fixed number of cache line entries, each entry having a
fixed correspondence to a unique respective one of said
fixed number of slots for caching data of said device
cache.

2. The digital data processing system of claim 1, wherein
said device 1s an I/O bridge device.

3. The digital data processing system of claim 1, wherein a
processor portion of said cache line state directory structure
contains cache line state for at least one said cache associated
with a processor, said processor portion being separate from
said at least a portion of said cache line state directory struc-
ture associated with said at least one device, said processor
portion containing a plurality of cache line entries, each entry
having a fixed correspondence to a respective set of real
addresses, said cache coherency mechanism further selec-
tively determining whether to send cache line invalidation
messages to the processor with which the cache 1s associated
using state information in said processor portion of said cache
line directory structure.

4. The digital data processing system of claim 3, wherein
said processor portion of said cache line state directory struc-
ture contains cache line state for a plurality of caches associ-
ated with a plurality of processors, said cache coherency
mechanism further selectively determining whether to send

cache line invalidation messages to any of said plurality of

10

15

20

25

30

35

40

45

50

55

60

65

16

processors using state information in said processor portion
of said cache line directory structure.

5. The digital data processing system of claim 1, wherein
said digital data processing system comprises a plurality of
nodes, each node containing at least one processor, a respec-
tive portion of said memory, and a respective portion of said
cache coherency mechanism.

6. The digital data processing system of claim 5, wherein
cach said respective portion of said cache coherency mecha-
nism in each respective node maintains cache line state infor-
mation for cached data having a real address 1n the respective
portion of said memory contained 1n the node.

7. The digital data processing system of claim 5, wherein
cach said respective portion of said cache coherency mecha-
nism in each respective node maintains cache line state infor-
mation for data cached 1n devices contained in the node.

8. The digital data processing system of claim 1,

wherein said digital data processing system comprises a

plurality of devices having respective device caches,
cach said device cache having a respective fixed number
of slots for caching data, each slot caching a cache line of
data; and

wherein said cache line state directory structure includes a

plurality of portions, each portion corresponding to a
respective one of said plurality of devices, each portion
containing a respective fixed number of cache line
entries equal to said respective fixed number of slots for
caching data of the device cache to which the respective
portion corresponds, each entry corresponding to a
unique respective one of the respective fixed number of
slots for caching data of the device cache to which the
respective portion corresponds.

9. A method for maintaining cache coherency 1n a digital
data processing system, comprising the steps of:

maintaining a cache line state directory structure, said

cache line state directory structure having at least a
portion corresponding to a device cache 1n a device of
said digital data processing system, said portion contain-
ing exactly N cache line entries, wherein N 1s a fixed
number greater than one, each entry having a fixed cor-
respondence to a unique respective one of N slots for
caching lines of data 1n said device cache, said device
cache containing exactly N slots for caching N lines of
data;

responsive to each of a plurality of data access requests,

accessing said cache line state directory structure to
determine whether data having a data address referenced
by the request 1s contained 1n said device cache;

tor each of said plurality of data access requests, determin-

ing whether to send an invalidation message to said
device based on whether said step of accessing said
cache line state directory determines that data having a
data address referenced by the request 1s contained 1n
said device cache; and

for each of said plurality of data access requests, sending an

invalidation message to said device responsive to the
determination made by said step of determining whether
to send an 1nvalidation message.

10. The method of claim 9, wherein said device 1s an 1/O
bridge device.

11. The method of claim 9, further comprising the steps of:

recerving a plurality of data access requests for cache lines

of data from said device, each data access request from
said device including data identifying a slot of said
device cache 1in which the cache line will be stored; and
responsive to recerving each said data access request from
said device, updating said cache line state directory

US 7,788,452 B2

17

structure by writing cache line identifying information
corresponding to the data access request at the entry
corresponding to the slot in which the cache line
requested by the data access request will be stored.
12. The method of claim 9, wherein said step of maintain-
ing a cache line state directory structure comprises maintain-
ing a first portion of said cache line state directory structure
corresponding to said device cache, and a second portion of
said cache line state directory structure corresponding to a
plurality of caches associated with a plurality of processors,
said method further comprising the steps of:
responsive to each of said plurality of data access requests,
accessing said cache line state directory structure to
determine whether data having a data address referenced
by the request 1s contained 1n any of said plurality of
ProCessors;

for each of said plurality of data access requests, determin-
ing whether to send an invalidation message to any of
said plurality of processors based on whether said step of
accessing said cache line state directory structure deter-
mines that data having a data address referenced by the
request 1s contamned 1n any of said plurality of proces-
sors; and

for each of said plurality of data access requests, sending an

invalidation message to at least one of said plurality of
processors responsive to the determination made by said
step of determining whether to send an 1nvalidation mes-
sage to any of said plurality of processors.

13. The method of claim 9, wherein said digital data pro-
cessing system comprises a plurality of nodes, each node
containing at least one processor, a respective portion of said
memory, and a respective portion of said cache coherency
mechanism.

14. A cache coherency apparatus for a digital data process-
Ing system:

a communications mterface for communicating with a plu-

rality of devices;

10

15

20

25

30

35

18

a cache line state directory structure, wherein at least a
portion of said cache line state directory structure cor-
responds to a cache having exactly N slots for caching
data in a first device of said plurality of devices, wherein
N 1s a fixed number greater than one, said at least a
portion containing exactly N cache line entries, each
entry having a fixed correspondence to a unique respec-
tive one of said N slots for caching data of said cache in
said first device; and

cache coherence control logic which selectively generates
invalidation messages responsive to events affecting the
validity of cached data, said cache coherence control
logic determining whether to send cache line invalida-
tion messages to said first device using state information
in said at least a portion of said cache line state directory
structure corresponding to said cache 1n said first device.

15. The cache coherency apparatus of claim 14, wherein
said first device 1s an I/O bridge device.

16. The cache coherency apparatus of claim 14, wherein
said cache line state directory structure contains a plurality of
discrete portions, including a first portion corresponding to
said cache 1n said first device, and a second portion corre-
sponding to at least one cache associated with a processor,
said second portion containing a plurality of cache line
entries, each entry having a fixed correspondence to a respec-
tive set of real addresses, said cache coherence control logic
turther selectively determining whether to send cache line
invalidation messages to said processor using state informa-
tion 1n said second portion of said cache line state directory
structure.

17. The cache coherency apparatus of claim 14, wherein
said cache coherency apparatus 1s embodied 1n a single inte-
grated circuit chip, said integrated circuit chip being separate
from said first device.

	Front Page
	Drawings
	Specification
	Claims

