12 United States Patent

US007787694B2

(10) Patent No.: US 7.787,694 B2

Fux et al. 45) Date of Patent: Aug. 31, 2010
(54) SCALABLE STROKE FONT SYSTEM AND 5,583.978 A 12/1996 Collins et al.
METHOD 5,606,649 A 2/1997 Tai
(75) | t Vadim F Water] (CA) Denis N 5,771,034 A 6/1998 (Gibson
nventors: Vadim Fux, Waterloo : Denis N. .
Fedotenko, Waterloo (CA) 5,781,714 A 7/1998 Collins et al.
5,859,648 A 1/1999 Moore et al.
(73) Assignee: Research In Motion Limited, Waterloo 5,917,501 A 6/1999 Muller et al.
(CA) 5,920,324 A 7/1999 Hasegawa et al.
5,982,387 A 11/1999 Hellmann

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 228 days.

(21) Appl. No.: 12/054,029
(22) Filed: Mar. 24, 2008

(65) Prior Publication Data
US 2008/0218522 Al Sep. 11, 2008

Related U.S. Application Data

(63) Continuation of application No. 11/828,588, filed on
Jul. 26, 2007, now Pat. No. 7,362,898, which 1s a
continuation of application No. 10/610,227, filed on

Jun. 30, 2003, now Pat. No. 7,251,365.

(60) Provisional application No. 60/400,3773, filed on Jul.
31, 2002, provisional application No. 60/393,793,
filed on Jul. 3, 2002.

(51) Int.CL

GO6K 9/18 (2006.01)

GO6T 11/00 (2006.01)
(52) US.CL ., 382/185; 345/4677
(58) Field of Classification Search 382/185-190,

382/202-203, 224, 298, 313; 345/467, 469,

345/471-472; 715/269
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,404,436 A 4/1995 Hamilton
54127771 A 5/1995 Fenwick
5,577,177 A 11/1996 Collins et al.

(Continued)
FOREIGN PATENT DOCUMENTS

CN 1234564 A 11/1999

(Continued)
OTHER PUBLICATIONS

Letter from China Science (email dated Jun. 25, 2009) reporting
Office Action dated Jun. 19, 2009 for Chinese Pat. Appln. No.
200710096770.0 (2 pgs).

(Continued)

Primary Examiner—Daniel G Mariam

(74) Attorney, Agent, or Firm—IJones Day; Krishna K.
Pathiyal; Robert C. Liang

(57) ABSTRACT

A method of creating font format data from source font data
includes analyzing the source font data to obtain glyph data
for a plurality of glyphs, dissecting the glyph data, extracting
midline data from the dissected glyph data, classitying the
midline data as unique element data and common element
data, associating unique element data and common element
data to each glyph of the plurality of glyphs.

10 Claims, 13 Drawing Sheets

020~ L 56T PROCESS THRESHOLDS

;

3022
A SELECT STARTING POINTS

0eI~{ __PRIDRITIZE STARTING POINTS BASED ON

FONT PATTERN, CLEAN PAIRS, AMD DIRTY PAIRS

3 L
026 ™~ SELECT RIGHEST PRICRITT FAIR

MR
- DEF INE STROKE SIDES

30]0*7

A
INCREMENT FIRST
AND SECOND S1OES

SELECT vaLlD
HOVE-TO FO[NT
BASED ON VECTOR| yrs
GF HOVEMENT.
STORE EVENT 45
SINGLE EVENT OR
MUTUAL EYENT

¥

a2

CANDTOATE
FD%HT

(-3034

SELECT VALIOD MOVE-TO POINT
+— BASLD QN 'CAM SEE", WAITING
AMGLE. ANO NON-CANDIDRTE CRETERIA

3036

STREGKE
ELQ?ED

3038

BLYPH
POINTS REKAINING

SELECT NEW
START NG
POINTS

EDlJB

US 7,787,694 B2

Page 2

U.S. PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS
6,043,826 A 3/2000 Manning EP 0192929 Al 9/1986
6,151,032 A 11/2000 Cheng
6.288.725 Bl 07001 Fu OTHER PUBLICATIONS
6,288,726 B1* 9/2001 Ballard 345/468 Chinese Office Action dated Jun. 19, 2009 for Chinese Pat. Appln.
6,426,751 B1 7/2002 Patel et al. No. 200710096770.0 (in Chinese) (3 pgs).
6,501,475 Bl 12/2002 Cheng English translation of Chinese Office Action dated Jun. 19, 2009 for
6661417 Bl 12/2003 Cheng Chinese Pat. Appln. No. 200710096770.0 (5 pgs).
7,251,365 B2 7/2007 Fux etal. * cited by examiner

U.S. Patent Aug. 31, 2010 Sheet 1 of 13 US 7,787,694 B2

—

e
10g

100
DISPLAY
102
106
RENDERING
APPLICATION EThE
104
<l
108
STORAGE

Fig. I

U.S. Patent Aug. 31, 2010 Sheet 2 of 13 US 7,787,694 B2

210

30‘2 204 206 208
COMMON

20¢

N/

4

UNIQUE

ELEMENT | [BESCRIPTION]
UNIQUL

ELEMENT n [DESCRIPTION

]
214 216
250
|

18
COMMON
ELEMENT [0 DESCRIPTICN

12 9

020

420

US 7,787,694 B2

Sheet 3 01 13

Aug. 31, 2010

U.S. Patent

& .mi

MMMEM—M$§
e

EEQ_EEAE@
e S\

c0t

U.S. Patent Aug. 31, 2010 Sheet 4 of 13 US 7,787,694 B2

™ -

US 7,787,694 B2

Sheet So0f 13

Aug. 31, 2010

U.S. Patent

90%c

ve b

NO1S¥3ANOD
0009

SISATTYNY
INIOd ¥NOLNOJ 00b 2

SISATVNY

SYOGHIIIN INIOd NOILYDI I TdWIS IN3IW313
0L T¥A INIWY3L130 N09A710d 0005
90le STSATYNY
INIWNIVINOJ
00ec NOT1IVHLX3
X37434 30 X3IANOD NC113010 34 INI 0N
SV SINIOd AJISSY1 Jyv d3[Z38 b012 000
qU 2 SISATVNY
4NoLN0 0022 NOI12J3SSIa
SILYNIC¥003] TYAOW3Y HdA19
INIOd NIVLIE0 20p2 431SN12 2012 000§
NOILYII 4TI 1dWIS
HdA 19
0012 SISATVNY
HdA 19
0002

U.S. Patent Aug. 31, 2010 Sheet 6 of 13 US 7,787,694 B2

SELECT STARTING POINTS 300e
INCREMENT FIRST AND SECOND 3004
SIDES FROM STARTING POINTS

3006

YES

NO
3012

SELECT VALID
MOVE-TO POINT

3008

CANDIDATE

POINT
?

SO10™N | SELECT VALID MOVE-TO POINT

BASED ON VECTOR MOVEMENT,
STORE EVENT AS SINGLE
EVENT OR MUTUAL EVENT

3014

ALL POINTS
PROCESSED FOR
STROKE/STROKE
CLQ?ED

NO

YES

3018
3016

SELELT | yfS EVENTS OR

POINTS REMAINING
?

STARTING
POINTS

" Fig. 5E

END

U.S. Patent Aug. 31, 2010 Sheet 7 of 13 US 7,787,694 B2

00 SeT PROCESS THRESHOLOS
1022
SELECT STARTING POINTS

3024 PRIORITIZE STARTING POINTS BASED ON

FONT PATTERN, CLEAN PAIRS, AND DIRTY PAIRS

3
et SELECT HIGHEST PRIORITY PAIR
3028
DEF INE STROKE SIDES
3030

[INCREMENT FIRST
3010 AND SECOND SIDES

SELECT VALID
MOVE-TO POINT
BASED ON VECTOR
OF MOVEMENT,
STORE EVENT AS
SINGLE EVENT OR
MUTUAL EVENT

3032

CANDIDATE

POINT
7

NO

SELECT VALID MOVE-TO POINT

BASED ON "CAN SEE"., WAITING
ANGLE, AND NON-CANDIDATE CRITERIA

3036
3038

GLYPH

YES | SELECT NEW
POINTS REMAINING
?

STARTING
POINTS

NO

Flg 5F 3040

END

U.S. Patent Aug. 31, 2010 Sheet 8 of 13 US 7,787,694 B2

¢ 616 *

614
e 616 ¢
° %\ blc
e O
S

D

_/

?608

U.S. Patent Aug. 31, 2010 Sheet 9 of 13 US 7,787,694 B2

106

U.S. Patent Aug. 31, 2010 Sheet 10 of 13 US 7,787,694 B2

900
902 5

906

914

G308
904 912
910
916 916

.

916
916

.
°

Fig. 9

U.S. Patent Aug. 31, 2010 Sheet 11 of 13 US 7,787,694 B2

1002
c 1010

1006

NG

22 27 24 1012 25 25 C27

Fig. 10

U.S. Patent Aug. 31, 2010 Sheet 12 of 13 US 7,787,694 B2

d d/2 d/2 d
2
E : 3
| Al a3 T\ S
‘ d
a2 o4 . e\.
J 8
d d d
Fig. 11
1020
.
Ii il
1022
’i LV
1 4 | 3 g] b
12 9
1] 10

Fig. 13

U.S. Patent Aug. 31, 2010 Sheet 13 of 13 US 7,787,694 B2

PICKING POINT, oo 6 ——————-r
Printing dissected siroke infeee
Dissected stroke O token from sireke § —————————————————————— Ordinal index of dissected stroke

Nusber of evenls: one side | opposite side 0 mutual sequents events () Number of points 14 ——
One sides stacts ot index & ends at index 36 [nformation about siroke s

Opposite side: storts ot index 5 encs at index | EVENLS
Printing one Side events g
Number of seqments 2 InFormation about stroke's

TEPE 0 —— -_ stort ond end points For
39 3 32 each side

Printing dissecled stroke outline points' indexes qe

b 5 3¢ 3 30 9 8] b S 4 3 ¢ I
Finished dissected 5trokeyee

Marting routine picks a pair of points

Printing dissected stroke infogeee Inforaation about events
Dissected stiroke | token frem siroke 0 For each side and mutual
Number of events: one side | opposite side | mutual segments events | Number of points [2 events

One side: starts at index 32 ends a? index |3
Opposite sides starts ot index 35 ends at index 14
Printing one side events e

Number of segments | Array of indexes of
Tﬁpe 0

10 33 paints, the stroke contains

3 - of
Printing opposile Side evenlsqes

Nunber of segments |
T;pe 0
17 34
Printing mutual segments evenls e,
Number of segmenls 2

Type 0

KAIKL 10 17

Prinlin? dissected stroke outline poinls’ indexes ¢ee

|3 ¢ w83 ¥ ¥ H o nwow 1 M
Finished dissected stroke qq4

Printing dissected stroke info gqe

Jissected stroke 2 taken From stroke 0

Number of events: one side | opposite side | mutual segments events | Number of paints 8
One side: starts at index 9 ends ot index B

Opposile side: starts at index 30 ends a1t index 37

Frinting one Side evenls qqe

Nunber of seqments |

lgpe {
1710
Printing opposile Side events e e
Kurber of segments |

Type 1)

34 33

Printing sutual segments events ,q,
Number of segments 4

fype 0
TE 33 17 34 |7 34 18 37

Printing dissected stroke outling points’ indexes s oo
18 ?T e 9 330 I H# I
Finished dissected stroke o e

PICKING POINT, 4021 22 — ——ee ————————— Ntarting routine picks o pair of
Printing dissecled stroke info,q points ogain [Some events are
Dissected stroke 3 taken from stroke 0 left in queue, but thez are

For strokes 11 {1016) ond & 2 {10}4)
siariing routine was not

wed but use the “events’

from steoke B0 [1010} instead

Number of events: one side 0 opposite side | mutual Segeents events O Nusber of points 1b not processed., since the points
One side: starts a1 index 22 ends ot index 2B arcund them are afready owned,
pposite side: starts at index ¢1 ends at index &9 therefore these events canngt be
Printing opposite side events,,, used for storting points)

Nunber of seqments ¢

Igpe (

J1 18 | 3

Priming dissecied siroke outling points' indexeseqa
i

’B b ¢ 24 23 ¢ dl ¢l 9 18 37 3 I g &
Finished dissecled $1roke pqe

AlT points processed OR can tolerate the unmarked points number!)!

Fig. 17

US 7,787,694 B2

1

SCALABLE STROKE FONT SYSTEM AND
METHOD

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 11/828,588, filed on Jul. 26, 2007 now U.S. Pat.
No. 7,362,898, which 1s a continuation of application Ser. No.
10/610,227, now U.S. Pat. No. 7,251,363, filed on Jun. 30,
2003, which claims the benefit of U.S. Provisional Applica-
tion Ser. Nos. 60/393,795, filed Jul. 3, 2002, and 60/400,373,
filed Jul. 31, 2002, the entire disclosures of which are incor-
porated herein by reference.

BACKGROUND

1. Field of the Invention

This 1invention generally relates to scalable stroke fonts,
and 1n particular relates to a system and method for creating
scalable stroke font data and storing scalable stroke font data
on a mobile computing device (“mobile device™).

2. Background

Text data, such as font data, 1s typically stored 1n a memory
in a mobile device. Because the mobile device typically has
relatively limited memory and processing resources, the
amount of text data stored on the mobile device and the text
rendering capability of the mobile device 1s often limited.

There are three basic font types: Bitmap, Outline and
Stroke. Bitmap fonts are stored as graphic images of charac-
ters with each point s1ze of a typetace stored as a separate font.
Each character 1s stored as an array of pixels (a bitmap).
Bitmap fonts require a relatively large amount of storage
space, and it 1s relatively difficult to scale or apply effects to
this type of font.

Outline fonts, such as TrueType™ fonts, are produced
from information about the shape, or outline, of the glyphs.
The outline 1s defined as a set of lines and curves. Outline
fonts facilitate scaling and other effects better than bitmap
fonts, and require less storage space than bitmap fonts. Many
mobile devices, however, typically do not have the storage
space and processing requirements to adequately facilitate
the use of outline fonts.

Stroke fonts are those 1n which the shapes of the characters,
as represented by glyphs, are represented by strokes. A stroke
1s typically defined by a line and curves. The storage space
required for stroke font data for a given set of glyphs 1s
typically much smaller than required for corresponding out-
line font data. Stroke fonts, however, typically produce
glyphs with impaired quality as compared to outline fonts.
Thus, existing rendering engines that render stroke-based
fonts produce glyphs of relatively limited quality.

SUMMARY

A method of creating font format data from source font
data includes analyzing the source font data to obtain glyph
data for a plurality of glyphs, dissecting the glyph data,
extracting midline data from the dissected glyph data, classi-
tying the midline data as unique element data and common
clement data, and associating unique element data and com-
mon element data to each glyph of the plurality of glyphs.

A system for creating font format data from source font
data includes a glyph analysis software module, a glyph dis-
section software module, a midline extraction software mod-
ule, and an element analysis soitware module. The glyph
analysis software module 1s operable to analyze the source
font data and obtain glyph data for a plurality of glyphs from
the source font data. The glyph dissection software module 1s
operable to dissect the glyph data for each glyph 1nto stroke

10

15

20

25

30

35

40

45

50

55

60

65

2

data. The midline extraction soitware module 1s operable to
extract midline data from the stroke data. The element analy-
s1s software module 1s operable to classify the midline data as
unmique element data and common element data and associate
the unique element data and the common element data to each
glyph of the plurality of glyphs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an exemplary mobile device;

FIG. 2 1s a block diagram of a compact font format data
structure;

FIG. 3 illustrates repetitive usage of a common element 1n
different glyphs;

FIG. 4 1llustrates shifting and scaling of a common ele-
ment,

FIG. 5A 1s a flowchart of a method of creating a stroke font
from an outline font:

FIG. 5B 1s a more detailed tlowchart of a glyph analysis
process;

FIG. 5C 1s a flowchart of an exemplary simplification pro-
CEesS.

FIG. 5D 1s a more detailed flowchart of a containment
analysis process;

FIG. SE 1s a flowchart of an exemplary glyph dissection
Process;

FIG. SF 1s amore detailed tlowchart of the glyph dissection
process;

FIG. 6 illustrates a glyph 1n a non-simplified form and in a
simplified form;

FIG. 7 1llustrates a glyph having an inner contour and an
outer contour;

FIG. 8 illustrates a glyph having valid and non-valid neigh-
bors of a point;

FIG. 9 1llustrates a glyph dissected into strokes;
FIG. 10 1llustrates a dissected glyph:;
FIG. 11 illustrates a waiting angle for several points;

FIG. 12 1s an exemplary log from processing the exemplary
glyph of FIG. 10; and

FIG. 13 1llustrates an explicitly connected stroke.

DETAILED DESCRIPTION

Font data 1s typically stored on a computing device and 1s
used to render text as glyphs. A font 1s a set of characters of a
particular typeface design and size. The typeface 1s the par-
ticular design of a set of printed characters, such as Courier,
Helvetica or Times Roman. Related characters typically com-
prise a script, such as Latin, Greek, Hiragana, Katakana or
Han, subsets of which are used to write a particular language.

Glyphs are the visual element used to represent the char-
acters; glyphs are the actual shape of a character 1mage.
Aspects of text presentation such as font and style apply to
glyphs. For example, an 1talic Times font of the character *“c”
and a bold Times font of the character “c” each have corre-
sponding glyphs.

A typical computing device that 1s operable to store text
data for use in rendering text may be a personal computer or
a mobile communication device. FI1G. 1 1s a block diagram of
an exemplary mobile device 100 that 1s operable to display
text on a display 102. The mobile device 100 includes an
application program 104, usually stored in the storage 108,
which 1s operable to request text to be displayed on the dis-
play 102. A rendering engine 106 1s operable to receive the
request from the application program 104 and, 1n response,

US 7,787,694 B2

3

retrieve the font data of the text from the storage 108 and
render the font data into glyphs that are displayed on the
display 102.

The mobile device 100 may be realized by a cellular tele-
phone, a pager, a personal digital assistant, or other mobile
computing device. IT the mobile device 100 includes commu-
nication circuitry and functions, then the mobile device 100 1s
typically operable to communicate with a wireless network
110. The storage 108 1s operable to store data in one or more
formats, and may comprise a database, a file,a ROM or RAM
memory, a network storage space, or even a memory storage
for the rendering engine, such as a Flash memory module.
The display 102 may be a CRT monitor, an LCD monitor, or
other stmilar display device. One such exemplary mobile
device 100 may be of the type disclosed 1n U.S. Pat. No.
6,278,442, entitled “HAND-HELD ELECTRONIC
DEVICE WITH A KEYBOARD OPTIMIZED FOR USE
WITH THE THUMBS,” the entire disclosure of which 1is
incorporated herein by reference

The font data of the text may be stored as a stroke font that
1s defined by a “skeleton” of the characters. The skeleton
comprises elements that may be common with other glyphs,
and unmique elements that may be unique to a particular glyph.
The rendering engine 106 renders the skeletons of characters
to produce glyphs for displaying on the display 102.

FIG. 2 shows a block diagram of a compact font format
data structure 200 operable to store a skeleton of an exem-
plary glyph. A plurality of data structures 200 may be stored
to represent a corresponding plurality of glyphs. The data
structure 200 may be stored in the storage 108 on the mobile
device 100.

The data structure 200 1illustratively comprises common
clements 202 and unique elements 212. Each common ele-
ment 202 comprises an element 1dentifier 204, a shift X value
206, a shift Y value 208, and a scaling value 210. A common
clement identifier 204 corresponds to an element that may be
common to two or more glyphs. Fach unique element 212
comprises a umque element identifier 214 and an element
description 216. A umique element identifier 214 1s an element
that 1s unique to a particular glyph. A particular glyph may be
represented by common elements 202, unique elements 212,
or a combination of common elements 202 and unique ele-
ments 212.

An element database 250 stores description data 218 for
the common elements 202 identified by common element
identifiers 204. The description data 218 1s a set of points in an
X-Y coordinate system that defines the lines and curves of the
clement. Other description data may also be used, however.

The particular glyph represented by the illustrative data
structure 200 of FIG. 2 comprises common elements 202
identified by common element 1dentifiers 001, 020, and 420.
Because the description data 218 1n the element database only
describes the shape of the common elements 202, however,
the common elements 202 are typically shifted in the X-Y
coordinate system and scaled, as required by each particular
glyph having such common elements 202. Accordingly, a
shift X value 206 includes data relating to the shifting of the
common element 202 along an x-axis on the X-Y coordinate
system, and a shiit Y value 208 includes data relating to the
shifting of the common element 202 along a y-axis on the
X-Y coordinate system. Scaling data 210 includes data relat-
ing to the scaling of the common element according to the
particular glyph. Scaling of the element may increase or
decrease the size of the element 212.

The unique elements 212 are elements that are unique to
the particular glyph, and thus are not stored in the element
database 250. Each unique element 212 1s represented by a

10

15

20

25

30

35

40

45

50

55

60

65

4

unmique element identifier 214 and description data 216. The
description data 1s a set of points 1n a X-Y coordinate system
that defines the lines and curves of the unique element.

In another embodiment, the unique elements 212 may be
stored 1n the element database 250 and identified by their
corresponding unique element identifiers 214. The data struc-
ture 200 may thus store only the unique element identifiers
214 for the unique elements 212.

The rendering engine 106, 1n response to a request for the
particular glyph, accesses the corresponding data structure
200 stored in the storage 108 and constructs a skeleton
according to the elements 202 and 212. The skeleton 1s then
utilized as the font data for rendering by the rendering engine
106, which then applies style, thickness of lines, and other
characteristics of a typeface during rendering. In another
embodiment, the skeleton according to the elements 202 and
212 may be constructed by another application or process
external to the rendering engine 106, and then provided to the
rendering engine 106.

If a plurality of fonts are to be used at the mobile device
100, separate element databases 250 may be stored 1n the
storage 108. Each separate database 250 may correspond to a
particular font. Alternatively, all font data may be stored 1n a
single database 250.

FIG. 3 illustrates repetitive usage of a common element
302 and 306 1n different glyphs of Chinese Japanese Korean
(“CJK”) 1deographs 304 and in different glyphs of European
glyphs 308, respectively. The common element 302 1s shown
in different glyphs of CIK 1deographs 304, and the common
clement 306 1s shown in the different FEuropean glyphs 308.
For each particular glyph, the common elements 302 and 306
are shifted and scaled accordingly.

FIG. 4 1llustrates shifting and scaling of a common element
402 used in three Korean glyphs 404, 406, 408. A first Korean
glyph 404 shows the common element 402 1n static form
where 1t has not been shifted or scaled. A second Korean
glyph 406 shows the common element 402 shifted towards
one side. A third Korean glyph 408 shows the common ele-
ment 402 scaled to a larger size.

FIG. 5A provides a flowchart of a method for creating
stroke font data from source font data. In one embodiment,
the source font data i1s outline font data. One example of
outline font data 1s font data according to the TrueType™ font
specification and as stored in the TrueType™ font file “glyph”
table. Other outline font information may also be used.

For each glyph, the steps of glyph analysis 2000, glyph
dissection 3000, midline extraction 4000, element analysis
5000, and conversion 6000 are performed. The process of
FIG. 5A 1s typically executed on a computing device such as
a server or personal computer to prepare the font data struc-
ture 200 and the element database 250 for storage on a mobile
device 100. The process of FIG. 5A may, for example, com-
prise an exemplary structure of a soltware application pro-
gram or set of instructions that cause a computing device to
perform the processes. The process may be implemented on a
single computing device, or may be distributed over several
computing devices, such as several computers 1n communi-
cation over a computer network.

FIG. 5B provides a more detailed flowchart of the glyph
analysis step 2000. During the glyph analysis step 2000,
information about a given glyph is collected and the shape of
the glyph 1s simplified. The glyph analysis step 2000 includes
the steps of glyph simplification 2100, contour analysis 2200,
containment analysis 2300, and contour point analysis 2400.
Unless otherwise stated, a contour 1s a polygon shape of a
particular glyph, and a point 1s a vertex. A glyph may com-
prise a single contour, such as the following glyph for the

US 7,787,694 B2

S

letter “1”, or maybe comprise a plurality of contours, such as
the following glyph for the symbol “®”.

During the step of glyph simplification, the outlines of a
given glyph are simplified. During the step of contour analy-
s1s 2200, the contours of the given glyph are sorted 1nto 1inner
and outer contour groups. During the step of containment
analysis 2300, the contours of the given glyph are processed
to determine containment of the contours. During the step of
contour point analysis 2400, data related to each contour
point 1s collected. This data may include Cartesian coordi-
nates, angles of the point with respect to other points, valid
neighboring points, etc.

FIG. 6 illustrates a line diagram of a glyph 1in non-simpli-
fied form 600 and 1n a simplified form 602 after the glyph
simplification step 2100. As shown, the glyph 600 has con-
tours 612, 614, and 616 comprising straight segments and
Bezier arcs. The contours 612, 614 and 616 of the glyph 600
are simplified 1n the circled regions to simplily processing 1n
later steps. The glyph simplification step 2100 may be omiut-
ted 11 processing reduction i1s not required or not of particular
concern.

The simplification 1s accomplished by removing redundant
points 1n the shape of the given glyph. FIG. 3C shows an
exemplary simplification process. The simplification process
may comprise a cluster removal process 2102, a Bezier arc
degree reduction process 2104, and a polygon simplification
process 2106. Other simplification processes may also be
used.

During the cluster removal process 2102, groups of points
(“clusters”) where the points are proximate such that the
points are unable to define a significant segment 1n the con-
tour are sumplified to new segments by removing points or
segments. Typically, these are relatively short segments or
points that may be removed from a glyph definition while
causing minimal or no distortions to the shape of the given
glyph.

For segment removal, a maxim length and/or angle for a
redundant segment 1s defined. The specified value for the
maxim length and/or angle may be user defined, or deter-
mined automatically based on simplification criteria. Typi-
cally, a larger maxim length and/or angle results 1n additional
simplification, but may also result in additional visible dis-
tortion. The maxim length 1s typically determined by the
desired quality of the result stroke font desired.

A straight segment, whose length and/or angle 1s less than
or equal to the specified values 1s simplified or removed by
removing one or more of the points from the outline of the
glyph. The removal process may be implemented by an itera-
tion through the points of all the contours and determining the
length of each segment defined by a pair of n,-n,_, vertices
and removing the segments that satisfy the condition length
and/or angle conditions. Each contour i1s processed repeti-
tively until the number of removed segments 1s zero. This
iteration process 1s repeated for each of the contours of the
outlines of the glyph.

During the Bezier arc degree reduction process 2104,
Bezier arcs are simplified. Bezier arcs are defined by polyno-
mials of 2nd (quadratic Bezier) or 3rd (cubic Bezier) degree.
Quadratic Bezier arcs are defined as sequences of three
points: on-curve—oll-curve—on-curve. Cubic Bezier arcs
are defined as sequences ol four points: on-curve—oll-
curve—oll-curve—on-curve. “Degree reduction” 1s a pro-
cess of reducing a cubic arc into a conic arc, thus reducing the
degree of polynomial from 3 to 2. Degree reduction finds an
intersection point ol two segments of the cubic arc. For
example, 1f the cubic arc 1s defined by four vertices: n,, n__ ,
n. ., 0., then the intersection pomt ot n.—n, , andn, ,-n, ,

I+33

10

15

20

25

30

35

40

45

50

55

60

65

6

segments 1s determined. The intersection point 1s then defined
as a new oll-curve point of the arc and the arc’s definition 1s

further defined as:

n—new control/off-curve pomt-n., 5,

where the vertices n,_, and n,_, are replaced by the single
point new control/ofi-curve point. The start and end points of
the arc are preserved, and the number of 1nsignificant points
in the contour 1s thus reduced. Of course, other arc simplifi-
cation routines may also be used.

During the polygon simplification process 2106, contour
points that lie at a certain distance from the line defined by its
two 1mmediate neighbors on either side are removed. For
example, a point 1s removed when a difference between the
straight angle and the angle defined by the point and two
neighbors 1s less than a constant value or “maximal angle.”
The maximal angle may be user defined, or determined auto-
matically based on the desired amount of glyph simplifica-
tion.

To 1illustrate, given triple vertices n,_,, n, n,_ ,, the angle
n,_,—-n.-n._, 1s calculated. When the difference between this
angle and the straight angle 1s less than the maximal angle,
then the n, point 1s discarded. There may exist two thresholds
for off-curve and on-curve points, respectively. For example,
if the n, point of the triple n,_,, n, n,_, 1s on-curve, then one
maximal angle value s; may be used; when the n, point 1s
off-curve, another maximal angle value s, may be used.

After simplification, the contours of the given glyph are
sorted 1into 1nner and outer contour groups during the contour
analysis 2200 step. FIG. 7 shows an outline shape 700 of a
glyph 702 having an inner contour 704 and an outer contour
706. The inner contour 704 illustratively defines bound
spaces within the outer contour 706. Such a shape may be
described as a polygon with “holes” 1n which the outer con-
tour 706 1s a polygon outer boundary and the imner contour
704 defines the “hole” mside the polygon.

According to Truelype™ conventions, inner and outer
contours are defined to be ordered 1n opposite directions. For
example, the outer contour direction 1s clockwise and 1nner
contour direction 1s counter-clockwise, or vice-versa. In order
to determine the direction of the contours, the points of each
ol the contours are 1terated through, and the signed area of the
contour 1s computed according to the formula of polygon’s
area:

poly_area=05%[(Vo-x*xV,-v—-V| - x=xVy-y) +
A (Viexx Vi -y = Vi - xx V- y) +

e+ (Vo o x2V, -y =V, xxV,_1 - V)],

where V., 1s a polygon’s vertex and n 1s the total number of
vertices 1n the polygon. The resulting value of the poly_area
1s a signed value that determines whether the contour is
ordered clockwise or counter-clockwise. A positive value
corresponds to counter-clockwise direction, and a negative
s1gn corresponds to clockwise direction. If the area 1s zero, the
direction 1s generally undefined and thus may be set as a
default clockwise or counter-clockwise direction. In one
embodiment, the contour 1s defined to be of counter-clock-
wise direction 1f the area 1s zero.

After sorting, the contours of the given glyph are processed
to determine containment during the containment analysis
step 2300. Each outer contour 1s analyzed to determine 11 an
inner contour 1s contained within it. Each of the contours 1s

US 7,787,694 B2

7

then classified accordingly. The classification determines
separate shapes for each glyph, and thus the glyph may be
defined as a collection of separate shapes. Each of the sepa-
rate shapes comprises one or more contours, the first contour
being the outer contour and any other contours being inner 53
contours.

Containment may be determined by a simple brute-force
algorithm that takes every inner contour and 1terates through
its points. Other containment algorithms may also be used. In
the brute-force algorithm, every point of each inner contour 1s
iterated and checked to determine whether 1t 1s inside an outer
contour for all outer contours. It all of the points of an 1nner
contour are inside one of the outer contours, then the inner
contour 1s completely contained 1n the outer contour. In one
embodiment, the outer contour 1s defined as a containing
contour, and the inner contour 1s defined as a contained con-
tour. Once all of the outer and 1nner contours are classified,
the given glyph may be represented as a sequence of separate
shape data structures. Each data structure contains areference
to the given glyph, and imnformation about the glyph’s con-
taining and contained contours.

The points of the contours are then processed during the
contour point analysis step 2400. Outline information about
cach remaining point corresponding to the raw glyph data 1s
analyzed. Point coordinates are obtained from the analysis, as
shown 1n step 2402 of FIG. 3D. In the Truelype™ font
example, the information 1s obtained from TrueType™ file.
This mmformation includes the coordinates of the points and
specified 1n font units, the type of point (e.g., on-curve or
off-curve point), and the index of the points mto an array of
points of the raw glyph data from the TrueType™ file.

The points of each of the separate shapes are classified to
provide additional information about each point. The inner
angle of each point 1s determined and, based on the value, the
point 1s assigned to be of convex or retlex type as shown in
step 2404, and valid neighbors of each of the points are
determined, as shown 1n step 2406.

During the classification of each point as convex or retlex,
two angles at vertex n, are determined. One angle 1s classified
as an inner angle and the other angle as an outer angle. The
inner angle refers to an angle defined by the point and two of
its 1mmediate neighbors and belonging to the interior or
bounded region of the polygon (given the vertex n, of the
polygon, there exists the triangle defined byn,_,,n,n, ;). The
outer angle refers to an angle defined by the point and two of 45
its 1immediate neighbors and belonging to the exterior or
unbounded region of the polygon (again, given the vertex n, of
the polygon, there exists the triangle definedbyn,_,,n,n).

The two angles at vertex n, sum to 360 degrees. The vertex
n, pointi1s acommon point in the setof pointsn, _1,n,,n, ,.To 50
define an angle, it 1s determined whether the vertexn, _, lieson
a first side or a second side of the line defined by then,_,-n
segment. The formula for determining the signed area of a
triangle 1s used, where the triangle 1s defined by a triple of
n, ,,n,n, , vertices. For clockwise-oriented contours, a posi- 55
tive value for the triangle area corresponds to the n,, , vertex
being on the first of the line defined by n,_, —n, pair of vertices.
The n, vertex 1s thus a reflex type. Conversely, a negative or
zero value corresponds to the n, vertex being on the right of
the line defined by n,_,—n, pair of vertices, and thus the n, 60
vertex 1s a convex type. For the counter-clockwise-oriented
contours, the definition 1s reversed.

The values of angles 1n degrees may be determined by law
ol cosines. Any point having an obtuse 1mnner angle i1s thus
classified as a reflex point, and any point having an acute inner 65
angle 1s classified as a convex point. When the inner angle 1s
straight, the point may be defined as a convex point according

10

15

20

30

35

40

25

8

to one embodiment of the present invention. In another
embodiment, when the inner angle 1s straight, the point 1s
defined as a reflex point.

Valid neighboring points (“valid neighbors™) are also
determined for each point, as shown in step 2406. Any point
of the contours of the given glyph 1s a valid neighbor of any
other given point 1f: (1) both points belong to the same sepa-
rate shape, e.g., both points belong to either to the outer
contour or to any contained inner contours; and (2) a line
segment defined by the two points does not cross any other
segment of any contour of the separate shape, e.g., the line
segment defined by the two points 1s completely contained
inside the separate shape. If any point satisfies the above two
conditions, 1t 1s added to the list of valid neighbors of the point
in question. Valid neighbors are then sorted by their distances

from the given point and ranked such that the closest neighbor
1s ranked first.

The area of the separate shape 1s defined by the conjunction
of its outer and inner contours:

=(AUB+AUB,, + ... +AUB,,,)-(A NB+ANB,, +

ﬂIF"EE,I I+77
.. +AMNB,_), where S 1s the separate shape area, A, 1s the
are

area of an outer contour of the separate shape S, andB,
areas of mner contours of the separate shape S.

Valid neighbors of a given point may be characterized
seen”” points from the given point. A straight line segment 1s
drawn to connect a point to the given point and represents a
visual path between the two points. If the straight line seg-
ment 1s not interfered by a separate shape or another line
segment of the contour, then the point 1s a valid neighbor of
the given point, 1.€., the point 15 “seen” from the given point.

FIG. 8 shows a line diagram of a glyph shape with lines
between points to provide a pictorial explanation of valid and
non-valid neighbors of a point 800. The lines between point
800 and other points 802, 804, 806, and 808 illustrate that the
other points 802, 804, 806, and 808 are valid neighbors of the
point 800. The other points 802, 804, 806, and 808 are “seen”
from the point 800 without crossing any segment of the glyph
shape and belong to the same separate shape as the point 800.
The lines between point 800 and points 810 and 812 1llustrate
that the first points 810 and 820 are not valid neighbors of
point 800, because the point 800 and the first points 810 and
812 do not belong to the same separate shape. The lines
between point 800 and the points 814 and 816 illustrate that
the second points 814 and 816 are not valid neighbors of point
800, because these lines cross segments of the glyph shape.

During the glyph dissection step 3000, the glyph 1s dis-
sected/decomposed 1nto a series of “strokes”. The strokes do
not necessarily have a correspondence to each of the separate
shapes of the given glyph. One separate shape may be dis-
sected/decomposed into a number of strokes. Unless stated
otherwise, the terms “dissection” and “decomposition™ are
used interchangeably.

FIG. 9 shows a line diagram of an example of a sample

glyph 900 dissected 1nto strokes as indicated by numbers 902,
904, 906, 908, 910, and 912. As also shown, separate shape

914 has three strokes 1indicated by the numbers 906, 908, and
910.

A stroke may correspond to the method by which charac-
ters are drawn with a pen or painted with a paintbrush. Some
characters may be drawn with just one stroke, for example,
while others may require several strokes. A “vector of move-
ment” may thus be derived from the concept of the natural
movement of a pen. The vector of movement corresponds to
the points of a stroke that lie along the same path that
resembles the natural movement of a pen. Because not all the
points of the outline may lie along the same path, the vector of

US 7,787,694 B2

9

movement 1s applied only to certain sets of points in order to
define the movement of a stroke.

FIG. 5E provides a flowchart of an exemplary glyph dis-
section process. Fach extracted stroke 1s geometrically
defined as a closed polygon or contour. Each stroke has two
sides, a first side of the stroke and a second side of the stroke.
Each side has a pair of start and end points, denoting the
points where the side starts and ends. All the points of both
sides may be stored 1n sequential order to facilitate sequen-
tially incrementing from a first point of the first side to a last
point of the second side.

In one embodiment, each contour may be represented by
points 1 an array data structure, and each point may be
referenced by the index of i1ts entry 1n the array. Starting points
are determined by selecting a pair of points to define the first
and second sides, as shown 1n step 3002, and incrementing
through the points on the first and second sides, as shown in
step 3004. The first side of the stroke moves to the next entry
in the array, and the opposite side moves to the previous entry
in the array. For example, 1f a current point on the first side 1s
point 3, then the next point to be mncremented to 1s point 4.
Likewise, if the current point on the second side 1s point 11,
then the next point to be incremented to 1s point 10.

As the points are traversed, the paths defining the first and
second sides of the contour move from point to point. The
traversed path 1s stored as a set of point increments, and after
cach point increment, the system determines 1f a stroke 1s
closed, as shown 1n step 3006. The stroke process 1s com-
pleted when the first and second sides meet at the same point.
Other conditions may alternatively be satisfied for a stroke to
be completed.

I1 the stroke 1s not closed, then for each incremented point,
it 1s determined whether the incremented point 1s a candidate
point, as shown 1n step 3008. A candidate point corresponds
to a turn or angle 1n the outline where two or more strokes
possibly intersect each other. Accordingly, the next point to be
incremented to may not be a next point along the path. Rather,
the next point to be incremented to may be a point corre-
sponding to the vector of movement. In one embodiment,
candidate points are reflex points having inner angles that are
obtuse.

This next valid point to be incremented to 1s a “move-to”™
point. The move-to point may not necessarily be the imme-
diate neighbor of the candidate point; rather, the move-to
point corresponds to the vector of movement such that the
current stroke receives a natural continuation corresponding
to the notion of a natural movement of a pen used to draw the
stroke. Thus, moving from the candidate point to next point
along the path that 1s not a move-to point violates the notion
of a natural continuation of a stroke. Theretore, the valid
move-to point for a candidate point 1s selected based on the
vector of movement, and the valid move-to point 1s stored as
an “occurrence” or “event,” as shown 1n step 3010.

Conversely, 1f the current point of the side 1s not a candidate
point, then vector ol movement determination need not be
applied. In this case, the valid move-to point may be selected
independent of the vector of movement, as shown 1n step

3012.

A “move-to” point on a side lies proximate to a line formed
by the side’s previous point and the side’s current point.
Whether a point 1s proximate 1s determined based on the
difference between a flat angle and an angle defined by the
triple of vertices comprising the previous point (side_previ-
ous_point), the current point (side_current_point), and the
proposed “move-to” point. The difference 1s preferably less
than a specified flatness threshold value. For each particular

10

15

20

25

30

35

40

45

50

55

60

65

10

font the flatness threshold value may differ, and typically
ranges between 10 to 25 degrees.

In one embodiment, where there are several proposed
move-to points to be evaluated, the point selected as the valid
move-to point 1s the point closest to the current point of the
side 1n terms of distance between them. In another embodi-
ment, where there are several proposed move-to points to be
evaluated, the point selected as the valid move-to point 1s the
point for which the difference 1s most below the flatness
threshold. Other evaluation criteria may also be used.

If a valid move-to point 1s found, the movement continues
to the valid move-to point. The movement from a candidate
point to a valid move-to point is stored as an “occurrence’ or
“event,” as shown 1n step 3012. Events may be further clas-
sified for each side, and as mutual events. Mutual events are
recorded when the events happen at both sides simulta-
neously. The mutual event 1s stored as pairs of candidate
points of both sides and their corresponding move-to points.
Events may connect two strokes together and may serve as
potential starting points for other strokes.

Step 3014 determunes 11 all of the points for a given stroke
have been processed, or 1t the stroke 1s closed. If points
remain to be processed or 11 the stroke 1s not closed, then steps
3004-3012 are repeated. Otherwise, step 3016 determines 1f
any events or points for the glyph remain to be processed. If
s0, then a new set of points 1s selected, as shown 1n step 3018,
and steps 3004-3016 are repeated. Otherwise, the process 1s
complete.

FIG. 10 shows a line diagram of an exemplary glyph 1000
dissected 1n accordance with the glyph dissection process
3000. The exemplary glyph 1000 has an outline shape defined

by points 1 to 37. Pairs of start points enclosed 1n rectangles
1002, 1004,1006, 1008 are start points of strokes 1010, 1012,

1014, 1016. The points 9, 30 and 32, 35 denoted by the
rectangles 1006, 1008 are also events that are start points of
strokes 1014 and 1016. Encircled points 9, 33, 18, 32, and 36
are candidate points and their corresponding move-to points
are 30,10, 37, 35, and 1, respectively, according to the direc-
tion of each stroke as indicated by the central arrows of
strokes 1010, 1012, 1014 and 1016. Candidate point 33 1s
common to strokes 1014 and 1016 and thus 1s associated with
move-to point 10 for stroke 1014 and move-to point 34 for
stroke 1016. Each of the strokes 1010, 1012, 1014, 1016 1s
denoted with an arrow that indicates the vector of moment.

FIG. SF provides a more detailed flowchart of the glyph
dissection process 3000. Step 3020 sets various processing
values. In one embodiment, the various processing values
include, a flatness threshold value, a starting threshold value,
a starting span depth value, an unmarked points tolerance
value, and an unmarked segments tolerance value.

The flatness threshold value 1s used to evaluate a potential
move-to point. The starting threshold value starting span
depth value 1s used to determine starting points. The
unmarked points tolerance value 1s used to specily how many
unprocessed points may be tolerated for a given shape. The
unmarked segments tolerance value 1s used to specilty how
many unprocessed segments may be tolerated for one shape.

A pair of starting points 1s then selected, as shown 1n step
3022. In one embodiment, the start points are selected accord-
ing to their position on the x-y axis, €.g., the leit most pairs of
points, such as points 5, 6, 21 and 22 of FIG. 10, are selected
as start points. Other methods of selecting start points may
also be used.

The starting threshold value 1s used to define a point as a
candidate. If the angles at the vertices 1n question are less than
the starting threshold value, the points are a valid pair of
starting points and are defined as clean starting points. If both

US 7,787,694 B2

11

angles are greater than the starting threshold value, the pair 1s
discarded and another pair 1s picked. I one of the angles 1s
greater than the starting threshold value, then an angle that 1s
the difference between the one of the angles and 360 degrees
1s compared to the starting threshold value. If the compared
value 1s less than the starting threshold value, the pair of
points 1s a valid pair of starting points and defined as dirty
starting points.

Pairs are not immediate neighbors; there 1s typically at least
one point between them. The depth of the distance, 1n amount
of points, 1s defined by the starting span depth value.

The process of selecting starting points may be simplified
by utilizing a font pattern. In one embodiment, 1f a font
pattern 1s used, pairs of starting points selected according to
the font pattern have priority over other pairs. Likewise, clean
pairs have priority over dirty pairs. After determining all the
possible pairs, the pairs are prioritized 1 step 3024 and
selected based on the priority in step 3026. Within each pri-
ority group a pair with the smallest distance between the
points 1s selected.

After picking a pair of starting points, the two sides of the
stroke are defined, as shown 1n step 3028. Each side has a
starting point and 1s incremented along a path from this start-
ing point, as shown 1n step 3030. In one embodiment, the
points of each shape are stored in an array data structure, and
incrementing along a path results 1n iterating through the
array from the array cells storing the starting points.

The point 1s then evaluated to determine whether 1t 1s a
candidate point, as shown 1n step 3032. When a candidate
point 1s encountered, valid move-to points are determined as
described above 1n steps 3010 and 3012. If the point 1s not a
candidate point, the system 1increments to the next point along
the path, as shown 1n step 3034. For non-candidate points, the
instant point 1s imcremented to the next point 1f the mstant
points on both sides are valid neighbors, satisfy a waiting,
angle evaluation, and the next point 1s not owned by another
already created stroke. These conditions are typically valid
only for points that are not candidate points, since candidate
points may be co-owned by several strokes due to stroke
intersections.

A “can-see” rule 1s used to determine if the instant points
on both sides are valid neighbors. The can-see rule 1s satisfied
if, at each increment, both sides’ instant points “see” each
other, 1.¢., the instant point of a first side has the 1nstant point
of the second side among 1ts valid neighbors. Violation of the
can-seerule may result either from a wrongly chosen move-to
point during an occurrence or from the layout of the shape of
the glyph.

During the determination of a valid move-to point for the
given candidate point, a violation of the can-see rule results 1n
the proposed move-to point being discarded. If the violation
1s caused by the layout of the shape of the glyph, then the
instant point 1s discarded and the point closest to the mstant
point from the list of valid neighbors of the other side 1s
selected. For example, 11 a violation of the can-see rule results
while moving along one side of the stroke, the instant point of
that side 1s discarded and replaced by the first available point
from the list of neighbors of the other sides’ instant point.

The waiting angle value 1s used to prevent possible “can-
se¢” rule violations by normalizing the increment rate of
movement along both sides of the stroke. For example, a first
side may increment quickly ifthere are fewer points along the
first side’s path and the distances between the points are
relatively large as compared to the points of the second side.
The second side may thus comprise more points and lag the
first side for an equal number of increments. To facilitate the
current points of both sides being proximate, the angles

5

10

15

20

25

30

35

40

45

50

55

60

65

12

defined by the current points and relative to the two sides are
compared for each side to a waiting angle. If the angle of a
side 1s less than the waiting angle, then the current point for
that side 1s not incremented, while the current point for the
other side 1s incremented.

FIG. 11 illustrates a waiting angle for several points. A
rectangle 1s defined by points 1-9 and having start points 1 and
9. The path 1s incremented from start points 1 and 9 to points
2 and 8, respectively. Waiting angles o, and ., are compared
to a threshold waiting angle (e.g., 66 degrees). Since both
welghing angles o, and o, exceed 66 degrees, both paths are
incremented. Waiting angles o, and o, are compared to the
threshold waiting angle. Because waiting angle a,, which 1s
45 degrees, 1s less than the waiting angle of 66 degrees, the
path from point 7 will not be incremented to point 6, while the
path from point 3 will be incremented to point 4.

Each time both sides perform a move to their correspond-
ing next points or after an occurrence or event occurs, the
system determines whether a currently processed stroke may
be closed, as shown 1n step 3036 of FIG. 5F. The closing of a
stroke defines a data structure that stores all the points defin-
ing the two sides, pairs of start and end points of each side, and
events. Every processed point 1s classified as owned, except
for candidate points, as candidate points may be common to
several strokes. The number of strokes the candidate point 1s
common to may be stored 1n the data structure.

Upon closing a stroke, the system determines whether any
of the points of the shape of the glyph have been left unproc-
essed, as shown 1n step 3038. For example, 1f any point 1s not
owned or not a candidate point, then the point has not been
processed. Events are evaluated to determine whether there
are remaining events to process. Events may be stored 1n a
queue, and the first event in the queue 1s processed as a
starting pair of points for a next stroke. If the event queue 1s
empty, then new starting points are picked and a pair of
starting points 1s chosen, as shown in step 3040. Point pro-
cessing 1s complete when there are no remaiming points to
process or the number of unprocessed points 1s within a
user-defined value.

FIG. 12 shows an exemplary log from processing the glyph
of F1G. 10. The log lists the processing steps of dissection and
the information that each stroke contains. All of the separate
shapes of the exemplary glyph are iterated through to dissect
cach one of them into strokes.

The last step of glyph dissection 3000 1s the merging of
strokes, as shown 1n step 3042. To reduce redundancy, certain
strokes may be unified 1nto one so that the number of lines 1n
the glyph under the compact font format 1s reduced. The
merging process searches for completely contained strokes,
and explicitly connected and implicitly connected strokes.

A completely contained stroke 1s a stroke that 1s completely
contained in another stroke.

In one embodiment, the determination of whether a stroke
1s completely contained includes the step of determining
whether all of the points of a first stroke are contained within
the bounds defined by the points of a second stroke. It a stroke
1s completely contained, 1t 1s discarded.

An explicitly connected stroke 1s a stroke that 1s defined, 1n
part, by mutual events. When events occur on both sides of a
shape, the events define a mutual event. The mutual event
defines two pairs of points, one pair for each side of the shape.
Each pair subsequently defines a pair of starting points for
another stroke when events are processed from the event
queue. Thus, one mutual event may be a source for two
strokes. These strokes may be merged together to form a
single stroke.

US 7,787,694 B2

13

FIG. 13 shows an explicitly connected stroke. A glyph
defined by points 1-20 comprises strokes 1020 and 1022.
Mutual events 1024 and 1026 are starting points for strokes
defined by points 13-18 and 3-8, respectively. These strokes
are thus combined to form an explicitly connected stroke
1022 defined by points 3-8 and 13-18.

Implicitly connected strokes occur when the pair of end
points of one stroke 1s also the pair of starting points for
another stroke. The points of the strokes are 1terated through
to determine whether the strokes have matching end points or
starting points. If so, the strokes are merged into a single
stroke.

After the merger step, the dissection process 3000 1s com-
plete, and the process of midline extraction 4000 1s per-
formed. A midline corresponds to a polygon skeleton of a
given geometrical shape. A midline of a rectangle, for
example, may be a straight line corresponding to the longitu-
dinal axis of the rectangle. The skeleton 1s thus one or more
line(s) composed of segments that provides an approximate
view of the shape. The decomposition of the given glyph into
strokes where each stroke provides the basis for midline 1n the
final stroke-based shape of a glyph facilitates the derivation of
a glyph skeleton. During the midline extraction process 4000,
the corresponding midlines of all strokes are extracted.
Extracted midlines 916 are shown, for example, 1n FIG. 9.

Each stroke 1s defined by two sides and a pair of start points
and end points. The midline 1s determined by iterating
through all of the points of the stroke. For each point on a first
side a corresponding nearest point from the second side 1s
found. For a segment defined by these two points a midpoint
1s found and added to a midline. The process 1s repeated for
cach point on the second side. After both sides have been
processed, the length of both midlines 1s calculated. The
longer midline 1s defined to be the midline of the stroke.

The final midlines may be simplified by simplification
processes similar to the glyph simplification process 2100
described above, and by merging midlines 1n a similar manner
as described with respect to the merger step of the dissection
process 3000 described above. Midline simplification
reduces number of points 1n the glyph skeleton.

In the step of element analysis 5000, the glyphs are
searched for elements having repetitive patterns. According
to one embodiment of the present invention, pattern matching
determines whether the patterns are repetitive. Pattern match-
ing may be performed by using a database of patterns. The
patterns that occur frequently in the font are extracted from
the font. The glyphs are defined in the database and the
particular sections of the glyphs that have matching patterns
are stored. The information 1s read from the database prior to
the pattern matching process.

During the pattern matching process, the contours of a
given glyph are compared to patterns from the database. The
comparison 1s based on similarity measurements obtained
from mvariance functions that measure certain parameters of
the shape. These parameters typically remain unchanged
even when the shape undergoes different geometrical trans-
formations, and are thus “invariant” to the transformations.

Invariance may be determined by the transformations of
1sometry, similarity, and aiffine. An isometry transformation is
a transformation of the plane that preserves distances. A simi-
larity 1s a transformation of the plane that preserves shapes,
and 1s a transformation of the plane obtained by composing a
proportional scaling transformation (also known as a homo-
thety) with 1sometry. An ailine transformation is a transfor-
mation that preserves lines and parallelism. Typical transtor-
mations used for pattern matching may include translation,

10

15

20

25

30

35

40

45

50

55

60

65

14

proportional scaling, and nonproportional scaling. Other
transformations may also be used.

An exemplary pattern matching process compares the
similarity of two shapes during a translation 1n a two dimen-
sional plane 1 which every point of an original shape 1s
shifted by a shift value along the X or Y axis such that:

X, (new)=X (org)+<olfset>
and
Y.(new)=Y.(org)+<oliset>,

where X andY, are X andY coordinates of the 1-th point of the
shape and the pattern. If the offset 1s known, then only one
comparison may be required, e.g., whether X (org) may be
obtained by subtracting the value from X (new).

If the offset 1s not known, additional comparisons between
the shape and a pattern may be required. For example, a
rightmost point of the shape and the pattern may be deter-
mined respective X and Y coordinates subtracted to obtain an
offset value. The remaining points of the shape are selected
and the X and Y coordinates of the points are subtracted from
the offset value. If, as a result of subtraction, the X and 'Y
coordinates of the corresponding point of the pattern 1s
received, then the shape 1s similar to the pattern. If the sub-
traction gives such result for all the points of the shape, then
the shape 1s similar to the pattern. On the contrary, i the
subtraction results in different X and Y coordinate in the
shape from the X and Y coordinates of the point of the pattern,
then the shape 1s not similar to the pattern. Thus, under the
translation transformation the distances for similar shapes
and patterns remain unchanged.

For each glyph, the identified patterns are identified as
common elements 202 or unique elements 212 as described
with reference to FIG. 2 above. If a matching pattern 1s not
found, then a unique element 1s used to describe the particular
stroke.

Data such as font data provided by the Unicode consortium
may be used to define font elements. For CIK glyphs, for
example, which define 1deographs, radical-based element
extraction may be used. Radicals are strokes or event com-
plete 1deographs used to simplity the searching process in
CJK dictionaries. Similarly, under Unicode specifications, all
the 1deographs are grouped by the radicals (see, e.g., Kangxi
Radicals or CJK Radicals Supplement of the Unicode speci-
fications). These radicals are the primary elements that are
extracted. Pattern data used during the pattern matching pro-
cess comprises the glyphs, or parts of the glyphs that are
radicals. In addition to the radicals of the CIJK, additional
patterns are defined based on the visual estimation, 1f any
specific glyph or part of the glyph 1s recurrent in many glyphs.

By way of another example, for Korean Hangul syllables
there are defined decomposition rules that allow decompos-
ing ol each Hangul syllable to its Jamo characters, which 1s
also covered by a Unicode specification. In Korean language
all the Hangul syllables are composed of Jamo characters, and
thus Jamo glyphs may be regarded as basic elements to com-
pose Hangul glyphs for Korean.

For other languages, Unicode normalization charts, for
example, may be used. For each composite glyph these charts
define the simple glyphs which the composite glyph com-
prises. There are normalization charts for Hangul, Japanese,
some CJK 1deographs, complex Latin glyphs, and complex
Arabic glyphs. This information 1s used 1n the element analy-
s1s 5000 to define the elements of the compact font format.

In another embodiment, pattern matching 1s accomplished
without specific glyph data. Each shape is iterated through

US 7,787,694 B2

15

and stored 1n an evaluation database. The system recursively
determines whether there exist common elements based on
the data stored 1n the common database.

In the conversion step 6000, the geometrical data of the
outline font 1s adjusted to the specifications of compact font
format. For example, the original points specified in 1
cType™ typeface design units are converted to compact font
format design units. This conversion may be subject to vari-
ous font metrics, such as font baseline, font ascent and font
descent. Other metrics may also be used.

The conversion step 6000 stores the font data as a set of
data structures 200 and a database 2350 as described with
reference to FIG. 2 above. Elements that are pattern matched
with other elements are stored as common elements 204 in the
clement database 250, and are referenced 1n a corresponding
glyph data structure 200. The glyph data structure 200 also
stores corresponding shift X values 206, shift Y values 208,
and scaling values 210. Unique elements 212 are stored with
the attendant description data 216 as described with reference
to FIG. 2 above. Another exemplary data structure 1s that of
the Slangsoft Font Format as described in the above-refer-
enced provisional application 60/393,7935. Other data struc-
tures and storage architecture may also be used.

After the conversion step 6000 1s completed, the font data
may then be stored on a mobile device 100 for use with an
application program or rendering engine as described with
reference to FIG. 1 above. The conversion step 6000 may also
be incorporated 1n the element analysis step 5000.

While the systems and methods of this present application
have been described with reference to font data, the systems
and methods of this present application may also be applied to
other data types, such as graphical data entities, map entities,
or other visual display entities. In another embodiment, the
exemplary data structures of the present system and method
may be used to store map data 1n a compact format. For
example, the map of a geographic region, such as a city, may
be stored 1n the compact format of the exemplary data struc-
ture and accessed by a rendering engine to reconstruct a map
of the city. Additionally, as the mobile device changes loca-
tion, additional mapping data for the new geographic region
in which the mobile device 1s located may be downloaded.

This written description uses 1llustrative embodiments to
disclose the 1nvention, including the best mode, and also to
enable a person of ordinary skill in the art to make and use the
invention. Other embodiments and devices are within the
scope of the claims 1f they have elements that do not differ
from the literal language of the claims or have elements
equivalent to those recited 1n the claims.

What 1s claimed 1s:

1. A method for rendering text from stored font data, com-
prising:

10

15

20

25

30

35

40

45

50

16

recerving at a rendering engine a request to render a glyph;

in response to the request, the rendering engine accessing a
font data structure stored in a computer readable
medium, the font data structure including common ele-
ment data and unique element data for a plurality of
glyphs:

the rendering engine constructing a glyph skeleton using
the common element data and unique element data; and

the rendering engine rendering the glyph for display using
the glyph skeleton.

2. The method of claim 1, further comprising:

applying a typeface characteristic to the glyph skeleton to
render the glyph.

3. The method of claim 2, wherein the typeface character-

1stic icludes a font style.
4. The method of claim 2, wherein the typeface character-
1stic includes a line thickness.
5. The method of claim 1, further comprising:
generating the font data structure from source font data;
and
loading the font data structure into the computer readable
medium on a mobile device.
6. A mobile communication device, comprising:
a computer readable medium;
a font data structure stored in the computer readable
medium, the font data structure including common ele-
ment data and unique element data for a plurality of
glyphs;
an application program configured to request glyphs for
display on the mobile communication device; and
a rendering engine configured to:
receive a request from the application program to render
a glyph;

in response to the request, access the font data structure
to 1dentily common element data and umique element
data for the glyph;

construct a glyph skeleton using the identified comment
clement data and unique element data; and

render the glyph for display using the glyph skeleton.

7. The mobile communication device of claim 6, wherein
the rendering engine 1s further configured to apply a typetace
characteristic to the glyph skeleton to render the glyph.

8. The mobile communication device of claim 7, wherein
the typetface characteristic includes a font style.

9. The mobile communication device of claim 7, wherein
the typetface characteristic includes a line thickness.

10. The mobile communication device of claim 6, wherein
the font data structure 1s generated from source font data and
loaded 1nto the computer readable medium from an external
computer.

	Front Page
	Drawings
	Specification
	Claims

