12 United States Patent

US007784039B2

(10) Patent No.: US 7.784,039 B2

Tanaka 45) Date of Patent: Aug. 24, 2010
(54) COMPILER, COMPILATION METHOD, AND OTHER PUBLICATIONS
COMPILATION PROGRAM _ _ _ _
Fisher et al.; “Trace Scheduling: A Technique for Global Microcode
(75) Inventor: AKira Tanaka, Hirakata (JP) gg(;];l Eiflg_lg,Bfﬁi‘Efmnmmom on Computerss ¢. 1981 pp- 475
_ _ _ Hwu et al.; “The Superblock: An Effective Technique for VLIW and
(73) Assignee: Panasonic Corporation, Osaka (JP) Superscalar Compilation™; The Journal of Supercomputing, No. 7;
_ _ _ _ _ pp. 229-248; c. 1993.
(*) Notice: Subject to any disclaimer, the term of this AV. Aho et al., “Compilers: Principles, Techniques, and Tools,
patent 1s extended or adjusted under 35 Chapter 10—Code Optimization,” Addison Wesley (1986).
U.S.C. 154(b) by 1345 days. Ikuo Nakata, Konpaira no Kosei to Saitekika (Compiler Configura-
tion & Optimization), Asakura Shuppan (2004), pp. 358-381.
(21) Appl. No.: 11/229,731 * cited by examiner
(22) Filed: Sep. 20, 2005 Primary Examiner—We1Y Zhen
_ o Assistant Examiner—Lanny Ung
(65) Prior Publication Data (74) Attorney, Agent, or Firm—McDermott Will & Emery
US 2006/0064682 A1~ Mar. 23, 2006 LLP
(30) Foreign Application Priority Data (57) ABSTRACT
Sep. 22,2004 (JP) o, 2004-275573 A compile converts a program having a multiple execution
paths so as to expand a basic block on a specific execution
(51) Int.Cl. path while maintaining the program integrity. The complier
GO6L" 9/45 (2006.01) generates new basic blocks B103 and B104. The basic block
(52) US.CL ..., 717/151;°717/140 B104 1s composed of (1) statements generated by replacing
(58) Field of Classification Search None replacement target variables in a partial source program (ba-
See application file for complete search history. sic blocks B1-B7) on a hot path 200, and (1) a branch instruc-
_ tion that includes a branch condition for executing the hot
(56) References Cited

2003/0233643 Al

U.S. PATENT DOCUMENTS

6,035,122 A

0,170,083 Bl

0,463,582 B

0,681,387 Bl
2002/0066080 Al

¥ 3/2000
¥ 1/2001

- *10/2002
1/2004
5/2002

| *12/2003

Ando i, 717/155

Adl-Tabatabai 717/158

Lethin et al. 717/158

Hwu et al.

O’Dowd

Thompson et al. 717/161
52

path, generated by moditying a branch instruction on the hot
path 200. The basic block B103 1s composed of statements for
restoring restoration target variables out of the replacement
target variables. The source program 1s then converted to
execute, subsequently to the basic block B104, the basic
block B103 if the branch 1nstruction 1n the basic block B103

1s true, and to execute the basic block B1 11 false.

18 Claims, 15 Drawing Sheets

e 1

‘ HOT PATH \
INFORMATION ‘ SOLIRCE PROGRAM |

I

— 11

\ SYNTAX ANALYZER I

OPTIMIZER

— 120

2 PROGRAM CONVERTER

~— 121

VARIABLE INFO
COMPUTING UNIT

— 122

EXECUTION-PATH INT
CODE GENERATING UNIT

123

JUDGMENT INT CODE
GENERATING UNIT

RESTORATION INT CODE
GENERATING UNIT

— 125

BRANCH INT CODE
GENERATING UNIT

RESOURCE ALLOCATOR |
‘ 14

EXECUTABLE-CODE GENERATOR

‘ EXECUTABLE PROGRAM I

U.S. Patent Aug. 24, 2010 Sheet 1 of 15 US 7,784,039 B2

FIG. 1
52 51
—_— ==
HOT PATH
INFORMATION SOURCE PROGRAM

11

SYNTAX ANALYZER

OPTIMIZER

12

120

PROGRAM CONVERTER
127]

VARIABLE INFO
COMPUTING UNIT

122

EXECUTION-PATH INT
CODE GENERATING UNIT

123

JUDGMENT INT CODE
GENERATING UNIT

124

RESTORATION INT CODE
GENERATING UNIT

125

BRANCH INT CODE
GENERATING UNIT |

13
RESOURCE ALLOCATOR

14
EXECUTABLE-CODE GENERATOR

53

EXECUTABLE PROGRAM

U.S. Patent Aug. 24, 2010 Sheet 2 of 15 US 7,784,039 B2

FIG.2 START
STEP 11

GENERATE PARTIAL INT CODE OF PARTIAL
PROGRAM BY SYNTACTIC ANALYSIS
STEP 12

OBTAIN HOT PATH INFO

STEP 13

COMPUTE VARIABLE INFO (IN, DEF, OUT) BASED ON

CONTROL FLOW & DATAFLOW ANALYSES ON PARTIAL
INT CODE

STEP 14

DERIVE REPLACEMENT TARGET VARIABLES &
RESTORATION TARGET VARIABLES

STEP 15
GENERATE EXECUTION-PATH INT CODE BY REPLACING
REPLACEMENT TARGET VARIABLES

MODIFY BRANCH INSTRUCTIONS IN EXECUTION-PATH INT

CODE TO JUDGMENT INT CODE FOR CONDITION TO TAKE
EXECUTION-PATH CODE AND PLACE JUDGMENT INT CODE

AFTER INT CODE EXCLUDING BRANCH INSTRUCTIONS

STEP 16

STEP 17

GENERATE RESTORATION INT CODE FOR RESTORING

RESTORATION TARGET VARIABLES TO ORIGINAL
VARIABLES

STEP 18

GENERATE BRANCH INT CODE FOR CAUSING BRANCH
FROM END OF JUDGMENT INT CODE TO BEGINNING OF
PARTIAL INT CODE IF CONDITION IN JUDGMENT INT

CODE IS FALSE AND TO BEGINNING OF RESTORATION

INT CODE IF TRUE AND PLACE AFTER JUDGMENT INT
CODE

STEP 19

OPTIMIZE ALL INT CODE

U.S. Patent Aug. 24, 2010 Sheet 3 of 15 US 7,784,039 B2

FIG.3

START
STEP 21

PERFORM CONTROL FLOW & DATAFLOW ANALYSES
ON PARTIAL INT CODE
STEP 22

COMPUTE LIVENESS INFO (IN, OUT) & DEFINITION
INFO (DEF) FOR EACH BASIC BLOCK

STEP 23

DERIVE PATH-ENTRY VARIABLES FROM LIVENESS
INFO (IN) AT ENTRY OF HOT PATH AND PATH-EXIT
VARIABLES FROM LIVENESS INFO (OUT) AT EXIT

OF HOT PATH

STEP 24
DERIVE REPLACEMENT TARGET VARIABLES THAT
ARE PATH-ENTRY VARIABLES DEFINED ON HOT PATH

STEP 25

DERIVE RESTORATION TARGET VARIABLES THAT
ARE BOTH REPLACEMENT TARGET VARIABLES
AND PATH-EXIT VARIABLES

END

U.S. Patent Aug. 24, 2010 Sheet 4 of 15 US 7,784,039 B2

FIG.4

START
STEP 30
LOOP 1

STEP 31—

REPLACEMENT
TARGET VARIABLE
REFERENCED?

NO

STEP 32

VARIABLE
PAIR PRESENT?

STEP 33
REPLACE REPLACEMENT TARGET
VARIABLE WITH PAIRED VARIABLE

STEP 34

REPLACEMENT
TARGET VARIABLE
DEFINED?

YES
STEP 35 NO
VARIABLE PAIR
PRESENT?

STEP 36
DELETE VARIABLE PAIR

REPLACE REPLACEMENT TARGET
VARIABLE WITH ANOTHER VARIABLE
AND GENERATE VARIABLE PAIR

STEP 38
LOOP 1

NO

STEP 37

US 7,784,039 B2

Sheet 5 of 15

Aug. 24, 2010

U.S. Patent

94

cd

AS
gq+2=0:41S

0 +A=X€1S
QL +e=Q:2LS

rd

.2 + P =p:LS
.2 + I3 =e:98S

19

(0 <4) J1:6S
'€ + P = $:8S

(0 <) J:€S
QL +B =228
J+q=8:S

L +9
L+

02 +A=X:1 1S
‘0L +q=E80lLS

= P:SS

= 2:§S

¢4

d5 914

S

d

/% SLS &/ b+)=)
{
/x 1S/ Q+2=0D
/x LS x/ uOm+>Hx
/x 21S x/ 0L +te=q(

ENEH
/x LIS «/ mON+\AHX
/x0LlS &/ 0L +g=¢
/x 6S x/ HO <34) J
/x 8S x/ mm+_oﬂv_
{
/x LS x/ mN+_uH_u
/x9S «/ 2+0=E
ENER
/v SSx/ ‘L+o=p
/x ¥Sx/ 1 +23=0
/x €S x/ (0 <9)
/x2S %/ .0l +Be=2
/x LS x/ d+Qq=¢

VSOl

U.S. Patent Aug. 24, 2010 Sheet 6 of 15 US 7,784,039 B2

FIG.6

Sl:a=b +c¢

S2:c=a+ 10;
SS'If (c>0)

B2 B3
:C = ' Sb:a=cC+ 2;
d = ' S7:d=d+ 2;
4ll...n B4
S8:.f=d + 3;
SO:f (f > 0)

S10:a=b+10: S12:b=a+ 10;
S1T:x=y + 20; S13:x=vy + 30;
S14:.g=c + b;

BS BG

S15f =f+g;

U.S. Patent Aug. 24, 2010 Sheet 7 of 15 US 7,784,039 B2

FIG.7

BT
Sl:ta=b+c
S2:.c=a+ 10;
S3:If (c > 0)
B2 “
[
S4.c=c+ 1; Sb:a=c+ 2; 831
SS:d=e + 1 S7:d=d + 2;
S8:f=d + 3; S81:f=d + 3;
\\
SO:If (f > 0)
v 4
BS Bo
S10:a=b + 10; S12:b=a+ 10;
STl:x=y + 20; S13:x=y + 30;
' N S14:g=c + b;
N\
M ~B7
S15:f =f+9g;
|
\ 4
2,

U.S. Patent Aug. 24, 2010 Sheet 8 of 15 US 7,784,039 B2

FIG.3

B1
Sl:a=b+cC

S2.c=a+ 10;
S3:If (c > 0)

B3

S6:a=c + 2;
S7:d=d+ 2;

- B4
S8:f=d+ 3;
SO:If (f > 0)

S10:a=b + 10; S12:b=a+ 10;

BS B6

S11:x=y + 20; S13:x=y + 30;
N S14:g=c +Db;
.
h R7
S15:f =f+g;
v

2

U.S. Patent Aug. 24, 2010 Sheet 9 of 15 US 7,784,039 B2

FIG.9

B12
S12:a=b+c
S22:t1 =a+ 10;
S32:f (t1 > 0)
B2 2?2 YES ‘
S42:t2=t1 + 1;
S52t3 =e+ 1;
B42
S82:f =t3 + 3;
S92:f (f> 0)
B52 YES
S102:a=b+ 10;
S112:x=y + 20;
B72

S152:f =f+g; |

U.S. Patent Aug. 24, 2010 Sheet 10 of 15 US 7,784,039 B2

FIG.1T0A

30T 302 304 3
oo | w [ow [o
bedeszmy | a0 |abodesimy
abcdeammy | 1

00

,
,

,

, a,b,c,e,f,g,z,w,y
66 [acetzmy | bxo [scensmmay
"5 Jecereaxy |t lecetemny

303
EF
C
d
f
X
f

FIG.10B

4

00

FIG.10C
501 5 00

02 g

US 7,784,039 B2

Sheet 11 of 15

Aug. 24, 2010

U.S. Patent

94

cd

<
&S
‘q+2="06:p|S
€ +A=x:€1S 02 +A=X1LS
Ol +E=Q:2[S 0l +q=8eQ1lS
7, GH
(0 <4 H:6S
€ +Pp=18S
4e S
2 +pP=p:/S 'l +9=p:GS
.2 +2=18e.99 L +2=0%S
‘4

(0 <92) JIES
.0l +B=2:7S
d2+(g=¢e:|S

L d — 00¢

ON

.21 = J:10€S

S3A

(0 <J)pue
(0 < 13)H102S

b+ }=1J2G1S

02 +A=X2LLS

Ol +q=E8B.201S

.€ + €1=4Z8S
L +9=¢€32SS
L +13=23¢2pS
0l +&=[12¢S
D+ q=0:71S

e0ld

400R2

L LDl

U.S. Patent Aug. 24, 2010 Sheet 12 of 15 US 7,784,039 B2

FIG.12

3124 Sl12:a=b+c;//

SH2:t3=e+ 1;
S22:t1=a+ 10;//
S82:f =13 + 3;
S42:t2 =t1 +1;//

S102:a=b + 10;
S112:x=y+ 20;//
S152:f=f+q;
S201:f (t1 > 0)
and (f > 0)

YES

S301:¢c =t2 -

B103

US 7,784,039 B2

Sheet 13 of 15

Aug. 24, 2010

U.S. Patent

94

cd

129
‘q+2=0:41S

‘0 +A=X¢LS
0L +B=0Q:21LS

14

¢ TP =PiLS
.2 + 3 =ge.9S

L 8

/1S 0300 :91S
b+)= }3G1S

(0 <3J) JI:6S
'€+ P =4:8S

(0 <9) 4I:€S
0L +8=2:7S
D+ q=EB!LS

‘02 +A=X11S
0l +q=8e:QlS

¢4

¢t

84d

21 = 2:10€S

¢OlLd

1S 0300 ((0 < })
pue (0 < 13))i}:202S
D+ J=4:2G91S

02 +A=X211LS

0L +9=28:201S

'€+ €1=428S

'L +9=¢€228S

L +13=2%2¥S

0L +e=1222S

IJ+g=8B.2|S DLLg

0 M elg4

US 7,784,039 B2

Sheet 14 of 15

Aug. 24, 2010

U.S. Patent

98

¢d

WAL
u_n_ +2=D0:%1S

‘0 + A=XE|S
Ol +e=qg:¢ZlsS

1| 9

/1S 010b:91S
. D+3= JGLS

(0 <J) H:6S
€ +pP=48S

(0 <2) JI:ES
0l + B =202

02 +A=X1LS
0L +q=20lS

‘] +9=p:iSS
.l + 93 =0:%S

S8

4

A

84

.21= 2:10€S

c0lLd

1S 01006 (0=> }) JI:E0ZS
S 0106 (0=> 13) J1:202S
b +)=3291S

02 +A=X:2| 1S

.0l +9=28:201S

'€+ £1=}:¢8S

'L +9=¢3¢sS

L1 =22:28S

0l +B8=13:22S

J + q = B2 LS

@ 04

beld

AR =

U.S. Patent Aug. 24, 2010 Sheet 15 of 15 US 7,784,039 B2

FIG.135

8144 S12:a=b+c;//

S52:t3 =e + 1;
S22:tt=a+10;//

S82:f =t3 + 3;

S42:2 =t1 +1;//
S202:If (t1<=0) goto S1;
S102:a=b+ 10;//
S203:If (f<=0) goto S1;
S112:x=y+ 20;//
S152:f=1+q;

B103

S301:c =t2; |

US 7,784,039 B2

1

COMPILER, COMPILATION METHOD, AND
COMPILATION PROGRAM

This application 1s based on an application No. 2004-
275573 filed 1n Japan, the content of which 1s hereby incor-
porated by reference.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to compilers, and more spe-
cifically to an optimizing compilation technique for improv-
ing execution speeds.

(2) Description of the Related Art

Conventionally, in order to improve the performance of
programs installed in a computer system that processes mas-
stve data, an optimizing compiler 1s used to optimize such a
program to shorten the program execution time.

One optimization method 1s instruction scheduling that
reorders program statements to improve the execution etfi-
ciency.

Upon the optimization, a compiler analyzes the control
flow of a program focusing on branches and branch targets to
divide the program into units called basic blocks. A basic
block 1s a sequence of consecutive statements containing no
branches and merges, and thus executed from the beginnming,
to the end 1n order. Yet, each basic block may contain a branch
at the end.

Since basic blocks contain no branches and merges 1n a
middle, instruction scheduling within each basic block 1s
readily carried out. It should be noted, however, that the local
optimization within basic blocks produces only a limited
elfect. For this reason, it 1s desirable to expand basic blocks,
so that instruction scheduling takes place within a wider range
of the program.

Regarding a program containing multiple branches, it may
be known that which of the execution paths 1s frequently
executed (such an execution path 1s hereinafter referred to as
a “hot path”). According to one known method, statements on
a hot path are moved so as to expand a basic block to increase

the execution efficiency of the hot path (See “Compiler Con-
figuration & Optimization” by Ikuo NAKATA, Published by

Asakura Shuppan 1n 2004, pp. 358-381).

Here, a description 1s given to how to expand a basic block
residing on a hot path, taking a program shown 1n FIG. SA as
an example. FIG. 5A shows part of the program, whereas
FIG. 5B shows a control flow graph, which is a representation
of the control tflow, of the program. In the graph, edges con-
necting basic blocks B1-B7 represent branches and merges.
In this example, an execution path represented by a dashed
allow 200 that sequentially connects the basic blocks B1, B2,
B4, B5 and B7 1s a hot path.

As shown 1n FIG. 6, a statement S8 1included 1n the basic
block B4 1s moved into the basic block B2. Next, for a path
branched from the basic block B3 to the basic block B4, a
statement S81 1s generated by duplicating the statement S8
and 1nserted into the basic block B3 (FIG. 7). With this
arrangement, the basic block B2 residing on the hot path 1s
expanded while maintaining the program integrity.

However, there 1s a problem in a case shown in FIG. 8
where a statement S10 1s moved from the basic block BS to

the basic block B2. Suppose, an execution path i1s taken
sequentially from the basic blocks B1, B2, and B4, and a

branch condition of a statement S9 1n the basic block B4 1s

false. In this case, a variable “a” referenced by a statement
S12 1n the basic block B6 must hold a value defined by a
statement S1 1n the basic block B1. However, the variable “a”

5

10

15

20

25

30

35

40

45

50

55

60

65

2

holds a value defined by the statement S10 having been
moved 1nto the basic block B2. As a result, the program
integrity 1s no longer maintained.

As described above, there may be a case where data depen-
dency present in a program may not be ensured 11 a statement
1s moved across a basic block of which last statement 1s a
branch instruction. In such a case, reordering of the state-
ments 1s restricted and thus the basic blocks cannot be
expanded.

SUMMARY OF THE INVENTION

The present mnvention 1s made 1n view of the above prob-
lems and aims to provide a compiler for allowing a basic
block on a specific execution path to be expended, while
maintaining the program integrity.

According to one aspect of the present invention, there 1s
provided a compiler for converting a source program includ-
ing a branch instruction into an object program composed of
lines of object code. The compiler includes: an execution path
speciiying unit operable to specily one of a plurality of execu-
tion paths of a partial series of instructions, including a branch
instruction, of the source program; an execution-path code
generating unit operable to generate execution-path code that
at least includes object code corresponding to instructions
residing on the specified execution path except the branch
instruction, the code generation mvolving replacing, with
another variable, each variable that needs to be alive at an
entry point of the specified execution path and 1s defined on
the specified execution path; a restoration code generating
unit operable to generate restoration code for restoring each
of the replaced variables that needs to be alive at an exit point
ol the specified execution path to an original variable; a partial
code generating unit operable to generate partial code corre-
sponding to the partial series of instructions; and a branch
code generating unit operable to generate branch code based
on a branch condition of the branch instruction residing on the
specified execution path. The branch code leads from an end
of the execution-path code to a beginning of the restoration
code 11 the branch condition 1s true, and causes a branch from
the end o the execution-path code to a beginning of the partial
code 11 the branch condition 1s false.

Note that the end of the execution-path code 1s lead to the
beginning of the restoration code as a result of sequential
execution of the code or as a result of a branch.

With the structure stated above, a basic block residing on
the specified execution path 1s expanded. Consequently,
instruction scheduling can take place within a wider range of
code, so that optimization i1s performed more effectively. With
the structure stated above, 1n addition, the statements on the
specified execution path are executed with a higher priority
and include no branch instructions. Consequently, the execus-
tion speed of the execution-path code 1mproves, especially
when the specified execution path 1s taken highly frequently
than other paths.

As described above, the compiler according to the present
invention 1s capable of converting a program including a
multiple execution paths, in a manner to increase the execu-
tion speed of a frequently executed path. For this advantage,
the compiler 1s highly usable for example by being installed in

information processing devices including digital home appli-
ances.

Here, the execution-path code generating unit may be fur-
ther operable to place the execution-path code at a position
immediately after a series of instructions immediately pre-
ceding a beginning of the partial series of instructions. The
restoration code generating umit may be further operable to
place the restoration code at a position immediately after the
end of the execution-path code and to place, at a position

US 7,784,039 B2

3

immediately after the restoration code, a series of instructions
immediately following an end of the partial series of imstruc-
tions. The branch code generating unit may be further oper-
able to generate branch code that causes a branch from an end
of the partial code to the series of instruction immediately
tollowing the end of the partial series of instructions.

With the structure stated above, the newly generated execu-
tion-path code 1s placed so as continuously follow the source
program excluding the partial series of instructions. Thus,
when executing the source program, the cache memory 1s
elfectively allocated. In addition, since there 1s no branch
between the execution-path code and the source program, the
execution speed of the overall program 1improves, especially
when the specified execution path 1s taken highly frequently.

Here, the compiler may convert the source program into
intermediate code based on a syntactic analysis, and convert
the intermediate code 1nto the object program. The execution-
path code generating unit may include: a variable information
deriving subunit operable to derive a target variable to be
replaced, from varniables included in partial intermediate code
that 1s converted from the partial series of instructions based
on the syntactic analysis; an execution-path intermediate
code generating subunit operable to generate execution-path
intermediate code at least including intermediate code that 1s
included 1n the partial intermediate code and corresponds to
the instructions residing on the specified execution path
except the branch mstruction, by replacing each target vari-
able included 1n the intermediate code with another variable;
and a judgment intermediate code generating subunit oper-
able to convert all branch condition included 1n the execution-
path intermediate code into a single branch condition for
taking the specified execution path and to generate judgment
intermediate code for making a judgment on the branch con-
dition. The restoration code generating unit may include a
restoration intermediate code generating subunit operable to
generate restoration intermediate code for restoring each
replaced variable that needs to be alive at the exit point of the
specified execution path to an original variable. The branch
code generating unit may include: a branch intermediate code
generating subunit operable to generate branch intermediate
code that causes a branch to a beginning of the partial inter-
mediate code if the branch condition 1n the judgment inter-
mediate code 1s false; and an executable code generating
subunit operable to convert the partial intermediate code, the
execution-path mtermediate code, the judgment intermediate
code, the restoration intermediate code, and the branch inter-
mediate code to executable code that constitutes the object
program.

With the structure stated above, the source program 1s first
converted mto an itermediate program, which 1s easier for
the compiler to process, so that an executable program 1s
generated effectively. In addition, since the intermediate pro-
gram contains a single branch instruction generated by com-
bining a plurality of branch instructions, optimization of the
intermediate program 1s etfectively carried out.

Here, the compiler may convert the source program into
intermediate code based on a syntactic analysis, and converts
the intermediate code 1nto the object program. The execution-
path code generating unit may include: a variable information
deriving subunit operable to derive a target variable to be
replaced, from variables included in partial intermediate code
that 1s converted from the partial series of instructions based
on the syntactic analysis; an execution-path intermediate
code generating subunit operable to generate execution-path
intermediate code at least including intermediate code that 1s
included 1n the partial intermediate code and corresponds to
the instructions residing on the specified execution path
except the branch struction, by replacing each target vari-
able included 1n the intermediate code with another variable;
and a judgment intermediate code generating subunit oper-

10

15

20

25

30

35

40

45

50

55

60

65

4

able to separately convert each branch condition included 1n
the execution-path intermediate code into an individual
branch condition for taking the specified execution path and
to generate separate sets of judgment intermediate code each
for making a judgment on a respective one of the branch
conditions. The restoration code generating unit may include
a restoration intermediate code generating subunit operable
to generate restoration intermediate code for restoring each
replaced variable that needs to be alive at the exit point of the
speciflied execution path to an original variable. The branch
code generating unit may include: a branch intermediate code
generating subunit operable to separately generate sets of
branch intermediate code each for causing a branch to a
beginning of the partial intermediate code 11 the branch con-
dition 1n the respective one of the sets of judgment 1interme-
diate code 1s false and leading toward a beginming of the
restoration intermediate code 1f the branch condition 1s true;
and an executable code generating subunit operable to con-
vert the partial intermediate code, the execution-path inter-
mediate code, the judgment intermediate code, the restoration
intermediate code, and the branch intermediate code to
executable code that constitutes the object program.

With the structure stated above, the judgment intermediate
code generating subunit separately converts each branch con-
dition included 1n the execution-path code 1nto an individual
branch condition for taking the specified execution path and
generates separate sets of branch intermediate code each for
making a judgment on an individual one of the branch con-
ditions. Consequently, in the case, for example, where the
specified execution path 1s not so frequently taken, a branch to
another execution path 1s taken at an earlier stage of program
execution.

Here, the compiler may have an interpreter function for
sequentially executing the source program. The compiler
may further include an extracting unit operable to extract a
frequently executed path by collecting information on execu-
tion paths taken during execution of the partial series of
instructions using the imterpreter function. The execution path
specilying unit may specily the execution path extracted by
the extracting unit.

With the structure stated above, an execution path that 1s
frequently taken 1s specified based on information obtained
through actual execution of the program. Consequently, 1t 1s
allowed to expand a basic block residing on the thus specified
frequently-executed path.

Here, the compiler may optimize object code generated by
the partial code generating unit, the execution-path code gen-
erating unit, the restoration code generating unit, and the
branch code generating unit.

With the structure stated above, the thus generated object
program 1s optimized to further improve the execution speed.

BRIEF DESCRIPTION OF THE DRAWINGS

These and the other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereof taken in conjunction with the accompanying
drawings which illustrate a specific embodiment of the inven-
tion.

In the drawings:

FIG. 1 1s a functional block diagram of a compiler accord-
ing to an embodiment of the present invention;

FIG. 2 shows the operation tlow of the compiler;

FIG. 3 shows the flow of variable information computing,
processing performed by a variable information computing

unit 121;

US 7,784,039 B2

S

FIG. 4 shows the flow of variable replacement processing,
performed by an execution-path intermediate code generat-
ing unit 122;

FIGS. 5A and 5B are views for used for explaining the
operation of the compiler;

FIG. 6 1s a view used for explaining prior art and the
problem to be solved by the present invention;

FIG. 7 1s a view used for explaining prior art and the
problem to be solved by the present invention;

FIG. 8 1s a view used for explaining prior art and the
problem to be solved by the present invention;

FIG. 9 1s a view used for explaining the operation of the
compiler;

FIGS. 10A, 10B, and 10C are views showing the data
structure and example contents of variable information com-
puted by the variable information computing unit 121, and of
the history of vaniable pairs generated by the execution-path
intermediate code generating unit 122;

FI1G. 11 1s a control flow graph of a program converted by
the program converter 120;

FIG. 12 shows execution-path intermediate code after
instruction scheduling by an optimizer 12;

FI1G. 13 1s a control flow graph according to a modification
1 of the present invention;

FI1G. 14 1s a control flow graph according to a modification
2 of the present 1invention; and

FIG. 15 shows execution-path intermediate code after
instruction scheduling by the optimizer 12 according to the
modification 2.

L1
=y

ERRED

DESCRIPTION OF THE PR
EMBODIMENT

Embodiment

According to one embodiment of the present invention, a
compiler (1) reads a source program, (1) performs a lexical
analysis that 1s a process of breaking the source program into
a sequence of symbols called “lexical tokens™, (111) performs
a syntactic analysis that 1s a process of building a syntactic
tree structure based on the lexical tokens, (1v) generates,
based on the syntactic tree structure, an intermediate program
written 1n a specific intermediate language used by the com-
piler, (v) optimizes the intermediate program by, for example,
instruction scheduling and allocates resources, such as regis-
ters, to variables, and (v1) converts the optimized intermediate
program to an executable program.

Structure

FIG. 1 1s a functional block diagram showing an overall
structure of a compiler 1 according to the embodiment.

The compiler 1 1s composed of such functional blocks as a
syntax analyzer 11, an optimizer 12, a resource allocator 13,
and an executable-code generator 14. Note that 1n the figures,
the word “intermediated” 1s abbreviated as “int™.

Specifically, the compiler 1 1s implemented by a computer
system generally composed of a microprocessor, Read Only
Memory (ROM), Random Access Memory (RAM), and a
hard disk. The ROM or hard disk stores a computer program.

The functional blocks of the compiler 1 shownin FIG. 1 are
implemented by the microprocessor executing the computer
program. In addition, the RAM and hard disk are used to
realize storage of information by the functional blocks and
transfer of information between the functional blocks.

Hereinatter, a description 1s given to each functional block.

The syntax analyzer 11 reads a source program 51, per-
forms a syntactic analysis to recognize the control structure of

10

15

20

25

30

35

40

45

50

55

60

65

6

the source program 51, generates an intermediate program
composed of lines of intermediate code, and stores the inter-
mediate program within the compiler 1. The intermediate
code 1s a representation of the source program having an
equivalent control structure and generated using conditional
branch instructions and labels.

The optimizer 12 includes a program converter 120. The
optimizer 12 performs a control flow analysis and a datatlow
analysis on the intermediate program generated by the syntax
analyzer 11, and sends the analytical results to the program
converter 120, which will be described later in detail. In
addition, the optimizer 12 carries out optimization at the time
when the program converter 120 converts the intermediate
code to executable code.

The control flow analysis mentioned herein 1s a process of
analyzing the control flow of the intermediate program 1in
order to break the intermediate program 1nto basic blocks. On
the other hand, the dataflow analysis 1s a process of determin-
ing, for each variable occurs 1n the program, a section within
which the vaniable 1s alive, variable definition points, and
variable reference points.

Note that the terms “definition” of a variable and “refer-
ence” to a variable are used herein in the following meaning.

When a statement updates the value held by a variable, 1t 1s
said that the statement defines the variable, and the statement
1s called a variable definition point. When a statement uses the
value held by a vaniable, 1t 1s said that the statement refers to
the variable, and the statement 1s called a variable reference
point.

Next, a description 1s given to the program converter 120.

The program converter 120 1s generally composed of a
variable information computing unit 121, an execution-path
intermediate code generating unit 122, a judgment interme-
diate code generating unit 123, a restoration intermediate
code generating unit 124, and a branch intermediate code
generating unit 125.

On receiving hot path information from a source external to
the compiler 1, the program converter 120 stores the hot path
information therein and performs program conversion of a
subroutine that contains a hot path.

The hot path mmformation 1s input by a user and indicates an
execution path determined in advance by the user.

The vaniable information computing unit 121 computes
liveness information and definition information for each basic
block, based on the analytical results received from the opti-
mizer 12. Using the liveness information, the definition infor-
mation, and the hot path information, the varniable information
computing unit 121 derives path-entry variables, path-exit
variables, replacement target variables, and restoration target
variables. The thus derived replacement target variables are
sent to the execution-path intermediate code generating unit
122, whereas the restoration target variables are sent to the
restoration intermediate code generating unit 124.

Liveness iformation indicates, for each basic block gen-
erated according to the control flow analysis, variables that
are alive at the entry point of the basic block (hereinafter
“liveness information IN”’) and at the exit point of the basic
block (“hereinafter, “liveness information OUT”). More spe-
cifically, liveness information IN indicates variables refer-
enced before being defined downstream from the entry point
of each basic block, whereas liveness information OUT 1ndi-
cates variables referenced betfore being defined downstream
from the exit point of each basic block. Definition informa-
tion (heremafter “definition information DEF”) indicates
variables defined in each basic block.

A stmilar description of the liveness of variables 1s found 1n
“Compilers: Principles, Techniques, and Tools” by A. V. Aho,

US 7,784,039 B2

7

R. Sethi, and J. D. Ullman, published by Addison Wesley
Publishing Company 1n 1986, and pp. 631-632 of its Japanese
version “Compilers I and II” translated by Kenichi Harada,
published by SAIENSU-SHA Co., Ltd. 1n 1990.

Path-entry variables are live variables at the entry point of 5
the hot path, 1.e. the variables indicated by liveness informa-
tion IN of the first basic block on the hot path. Path-exit
variables are live variables at the exit point of the hot path, 1.¢.
the variables indicated by liveness information OUT of the
last basic block on the hot path. 10

Replacement target variables are path-entry variables that
are defined on the hot path. Restoration target variables are
both replacement target variables and path-exit variables.

The execution-path intermediate code generating unit 122
reads the hot path information 52 stored in the program con- 15
verter 120 and the intermediate program stored 1n the com-
piler 1. The execution-path intermediate code generating unit
122 then generates execution-path itermediate code from a
series ol statements composing part of the read intermediate
program corresponding to the hot path, by replacing identifies 20
ol replacement target variables sent from the variable infor-
mation computing unit 121. The thus generated execution-
path intermediate code 1s sent to the judgment intermediate
code generating unit 123.

Here, a description 1s given to the process of replacing the 25
identifiers of replacement target variables.

The execution-path intermediate code generating unit 122
replaces the i1dentifiers of replacement target variables with
different identifiers that are not present 1n a variable table.
Each time the variable replacement takes place, the execu- 30
tion-path itermediate code generating umt 122 pairs a
replacement target variable with a variable used to replace the
replacement target variable (hereinafter, such a pair of pre-
and post-replacement variables 1s referred to as a “variable
pair’), and stores the variable pair 1n the program converter 35
120. Note that the variable table 1s generated through the
lexical analysis by collecting information about the identifi-
ers and types of all variables declared 1n the program. The
variable table 1s stored within the compiler 1.

The judgment intermediate code generating unit 123 gen- 40
crates judgment intermediate code that includes a branch
condition for executing the hot path, by modifying branch
instructions included 1n the execution-path intermediate code
sent from the execution-path intermediate code generating
unit 122. The judgment intermediate code generating unit 123 45
then inserts the judgment intermediate code into the execu-
tion-path intermediate code, so that the judgment intermedi-
ate code 1s executed subsequently to the execution-path inter-
mediate code excluding the branch instructions. The resulting,
execution-path intermediate code 1s stored within the pro- 50
gram converter 120.

The restoration intermediate code generating unit 124 gen-
erates, based on the restoration target variables sent from the
variable mnformation computing unit 121, restoration inter-
mediate code for restoring the 1dentifiers of restoration target 55
variables back to their original identifiers. The thus generated
restoration intermediate code 1s stored within the program
converter 120.

The branch intermediate code generating unit 125 reads
from the program converter 120 the judgment intermediate 60
code inserted in the execution-path mtermediate code to gen-
erate branch intermediate code. The branch intermediate code
generated herein causes, subsequently to execution of the
execution-path intermediate code, the restoration intermedi-
ate code to be executed 1f the branch condition of the judg- 65
ment intermediate code 1s true, and the partial intermediate
code to be executed if the branch condition i1s false. The

8

branch intermediate code generating unit 125 then inserts the
branch intermediate code 1nto the execution-path intermedi-
ate code, so that the branch intermediate code 1s executed
subsequently to the judgment intermediate code. The result-
ing execution-path intermediate code 1s then stored within the
program converter 120.

The resource allocator 13 reads the entire intermediate
code generated. At the time of generating executable code
from the intermediate code, the resource allocator 13 carries
out allocation of hardware resources such as registers and
memory, based on the liveness information of variables
occurring in the entire intermediate code.

After the resource allocation, the executable-code genera-
tor 14 converts the entire intermediate code to an executable
program 353 written 1n a suitable machine language. The
executable program 53 1s then output to the outside of the
compiler 1.

Data

Now, a description 1s given to data used by the compiler 1
of the embodiment.

FIG. 10A shows liveness information IN 302, liveness
information OUT 304, and definition information DEF 303
computed by the variable information computing unit 121 for
cach basic block of the control flow graph shown in FIG. 5B.

FIG. 10B shows path-entry variables 401, path-exit vari-
ables 402, replacement target variables 403, and restoration
target variables 404 derived by the variable information com-
puting unit 121 based on the information shown in FIG. 10A.

FIG. 10C shows generation history of variable pairs for
cach basic block of the control tflow graph shown in F1G. 9. As
mentioned above, each variable pair 1s generated by the
execution-path intermediate code generating unit 122 when
replacing a replacement target variable. The control flow
graph shown 1n FIG. 9 represents the execution path newly
generated by the execution-path intermediate code generat-
ing unit 122 by duplicating the statements residing on the hot
path 200 shown 1 FIG. 5B and conducting the variable
replacement processing on the duplicate statements.

Operation

Next, with reference to the operation tlow shown 1n FIG. 2,
a description 1s given mainly to operations of the program
converter 120 where a characterizing feature of the present
invention lies.

Note that 1n this embodiment, the program converter 120
processes a subroutine, which 1s referred to as a partial pro-
gram. The subroutine includes multiple execution paths shar-
ing a single entry point and a single exit point.

First, the syntax analyzer 11 syntactically analyzes a partial
program upon receipt, generates partial intermediate code
corresponding to the partial program, and stores the thus
generated partial intermediate code within the compiler 1.
(Step 11)

Next, at an input of the hot path information 52 (FIG. 1), the
program converter 120 stores therein the hot path informa-
tion. (Step 12) Subsequently to the step 12, the optimizer 12
reads the partial intermediate code, performs a control flow
analysis and datatlow analysis to produce and send analytical
results to the variable information computing unit 121. Based
on the analytical results, the variable information computing
unmit 121 computes, for each basic block of the partial pro-
gram, liveness information IN and OUT and definition infor-
mation DEF. (Step 13)

Next, based on the liveness information IN and OUT and
definition information DEF computed 1n the step 13 as well as
the hot path information received 1n the step 12, the variable
information computing unit 121 derives path-entry variables,

US 7,784,039 B2

9

path-exit variables, replacement target variables, and restora-
tion target variables. The variable information computing unit
121 sends the replacement target variables to the execution-
path intermediate code generating unit 122 and the restora-
tion target variables to the restoration intermediate code gen-
crating unit 124. (Step 14)

Subsequent to the step 14, the execution-path intermediate
code generating unit 122 reads the hot path information and
the partial intermediate code, duplicates statements corre-
sponding to the hot path of the partial intermediate code, and
modifies the duplicate statements by replacing the identifiers
of replacement target variables to generate execution-path
intermediate code. The thus generated execution-path inter-
mediate code 1s sent to the judgment intermediate code gen-
erating unit 123. (Step 15)

On recewving the execution-path intermediate code, the
judgment intermediate code generating unit 123 generates
judgment intermediate code by modifying branch conditions
included 1n the execution-path intermediate code into a
branch condition for executing the hot path. The judgment
intermediate code generating unit 123 then inserts the judg-
ment intimidate code mto the execution-path intermediate
code, so that the judgment intermediate code 1s executed
subsequently to the statements of the execution-path interme-
diate code except the branch instructions. The resulting
execution-path intermediate code 1s stored within the pro-
gram converter 120. (Step 16)

Next, the restoration intermediate code generating unit 124
generates restoration intermediate code for restoring the res-
toration target variables received from the variable informa-
tion computing unit 121, and stores the restoration nterme-
diate code within the program converter 120. (Step 17)

Subsequent to the step 17, the branch intermediate code
generating unit 125 reads the execution-path intermediate
code stored 1n the step 16, generates branch intermediate
code, and 1nserts the branch intermediate code 1nto the execu-
tion-path intermediate code. The branch intermediate code
generated herein causes, subsequently to execution of the
judgment ntermediate code, the partial intermediate code
generated 1n the step 11 to be executed from the beginning of
the partial intermediate code 11 the branch condition of the
judgment intermediate code 1s not met. If the branch condi-
tion 1s met, the restoration intermediate code generated 1n the
step 17 1s caused to be executed subsequently to the judgment
intermediate code. (Step 18)

The optimizer 12 reads the partial intermediate code stored
in the step 11, the execution-path intermediate code stored 1n
the step 16, and the restoration intermediate code stored 1n the

step 17, and optimizes all the read intermediate code. (Step
19)

Variable Information Computing Processing

Next, a description 1s given to the variable information
computing processing, with reference to FIG. 3.

First, the optimizer 12 performs the control flow and data-
flow analyses on the partial program (Step 21). Based on the
analytical results, the variable mformation computing unit
121 computes liveness information IN and OUT and defini-
tion information DEF relating to variables occurring in the
partial program (Step 22).

Next, the variable information computing unit 121 derives
path-entry variables from the liveness information IN com-
puted in the step 22 for the first block on the hot path, and
path-exit variables from the liveness information OUT com-
puted in the step 22 for the last block on the hot path (Step 23).

Subsequent to the step 23, the variable mnformation com-
puting unit 121 derives, as replacement target variables, the

10

15

20

25

30

35

40

45

50

55

60

65

10

path-entry variables that are indicated by the definition infor-
mation DEF relating to the hot path (Step 24).

Next, the variable information computing unit 121 derives,
as restoration target variables, variables that are both the
replacement target variable derived in the step 24 and the
path-exit variables. The variable information computing unit
121 then sends the restoration target variables and the
replacement target variables to the execution-path intermedi-
ate code generating unit 122 (Step 25).

Variable Replacement Processing

On recerving information indicating the replacement target
variables from the variable information computing unit 121,
the execution-path intermediate code generating unit 122
reads the partial intermediate code and the hot path informa-
tion, duplicates statements corresponding to the hot path of
the partial intermediate code, repeats the vaniable replace-
ment processing on each replacement target variable included
in the duplicate statements, and generates variable pairs.

Hereinatter, a description 1s given to the vanable replace-
ment processing with reference to FIG. 4.

The execution-path intermediate code generating unit 122
repeats the vanable replacement processing for each replace-
ment target variable included in the duplicate statements
(Step 30).

The execution-path intermediate code generating unit 122
judges whether a currently processed replacement target vari-
able1s referenced by any statement (Step 31) and contained 1n
the existing variable palrs (Step 32). When both the judg-
ments result 1 the affirmative (Step 31: YES and Step 32:
YES), the execution-path intermediate code generating unit
122 modifies the statement by replacing the identifier of the
replacement target variable with the identifier that 1s paired in
a relevant variable pair (Step 33), and then moves onto a step
34. When any of the judgments 1n the steps 31 and 32 results
in the negative (Step 31: NO or Step 32: NO), the processing
simply moves onto the step 34.

Next, the execution-path intermediate code generating unit
122 judges whether the currently processed replacement tar-
get variable 1s defined by any statement (Step 34) and con-
tained 1n the existing variable pairs (Step 35). When both the
Tudgments result in the affirmative (Step 34: YES and Step 35:
YES), the execution-path intermediate code generating unit
122 deletes the variable pair that contains the replacement
target variable (Step 36), and moves onto a step 37. When 1t 1s
judged 1n the step 35 that there 1s no corresponding variable

pair (Step 35: NO), the processing simply moves onto the step
37.

In the step 37, the execution-path mtermediate code gen-
erating unit 122 determines a variable to be used to replace the
replacement target variable that 1s defined, and replaces the
replacement target variable with the thus determined variable,
and generates a new variable pair made up of the pre- and
post-replacement variables.

Operation Examples

Next, a specific example 1s given to the operation flow
shown 1n FIG. 2, using the partial source program shown 1n
FIG. 5A. FIGS. 3B and 9-12 are also referenced 1n the fol-
lowing description. In this example, i1t 1s assumed that the
intermediate code 1s relatively close to the source program.

In the step 11, the syntax analyzer 11 syntactically analyzes
the partial program and generates partial intermediate code.
The thus generated partial intermediate code 1s stored within
the compiler 1.

US 7,784,039 B2

11

Next, in the step 12, the program converter 120 recerves hot
path information that specifies, as a hot path, a path 200
sequentially connecting the basic blocks B1, B2, B4, BS, and
B’7 shown 1n the control flow graph (FIG. 3B). Upon receipt,

the program converter 120 stores therein the hot path infor-
mation.

In the step 13, the optimizer 12 carries out the control tflow
and data flow analyses. Based on the analyses, the variable
information computing unit 121 computes liveness informa-
tion IN and OUT and definition information DEF (FIG. 10A)
for each of the basic blocks B1-B7 of the control flow graph
(FIG. 5B). Specifically, the liveness information IN for the
basic block B1 (FIG. 5B) indicates the variables that are
shown 1n FIG. 10A 1n the “IN” column 302 at the row “B1”.
The liveness information OUT for the basic block B1 indi-
cates the variables that are shown 1n the “OUT” column 304
at the same row. The definition information DEF for the basic
block B1 indicates the variables that are shown 1n the “DEEF”
column 303 at the same row.

Next, 1n the step 14, the variable information computing
unit 121 dernives the path-entry variables 401, the path-exat
variables 402, the replacement target variables 403, and the
restoration target variables 404 (FIG. 10B), based on the
liveness information and definition information shown 1in
FIG. 10A as well as on the hot path information input 1n the
step 12.

The path-entry vaniables 401 are alive at the entry point of
the hot path. In other words, the path-entry variables are
indicated by the liveness information IN for the basic block

B1 (FIG. 3B) and thus contained 1n the IN column 302 at the
row “B1” (FIG. 10A).

The path-exit variables 402 are alive at the exit point of the
hot path. In other words, the path-exit variables 402 are indi-
cated by the liveness information OU'TT for the basic block B7
(FIG. 5B) and thus contained in the OUT column 304 at the
row “B7” (FIG. 10A).

The replacement target variables 403 are the path-entry
variables 401 that are contained in the DEF column 303 (FIG.
10A) for the basic blocks B1, B2, B4, BS, and B7 residing on
the hot path 200.

The restoration target variables 404 are included 1n both the

path-exit variables 402 and the replacement target variables
403.

In the example shown i FIG. 10, the DEF column 303
contains the variables {a, c, d, f, x}, whereas the path-entry
variables are {b, ¢, d, e, g, z, w, y }. Consequently, the replace-
ment target variables are {c, d}. In addition, the path-exit
variables are {a, c, e, f, z, w, X, y}. Consequently, there is one
restoration target variable, which is {c}.

The vaniable information computing umt 121 sends the
replacement target variables to the execution-path intermedi-
ate code generating unit 122 and the restoration target vari-
able to the restoration intermediate code generating unit 124.

In the next step of S13, the execution-path intermediate
code generating umt 122 reads the partial intermediate code
and the hot path information, duplicates the statements
S1-S15 residing on the hot path 200 shown i FIG. 5, and
generates new basic blocks B12-B72 with the duplicate state-
ments. The execution-path intermediate code generating unit
122 then performs the varniable replacement processing to
replace the replacement target variables that are included in
the duplicate statements and generates variable pairs. FIG. 9
shows the execution path that 1s newly generated by conduct-
ing the variable replacement processing on the duplicate
statements.

10

15

20

25

30

35

40

45

50

55

60

65

12

Now, a description 1s given to the variable replacement
processing (FIG. 4) taking the basic blocks B12 and B22
shown 1n FIG. 9, as an example.

Belore the vanable replacement processing, the duplicate
statements included in the basic block B12 are identical to the
statements 1ncluded 1n the basic block B1 shown in FIG. SB.
The duplicate statement S12 1n the basic block B12 has a
reference to the varniable “c”, which 1s the replacement target
variable (FIG. 4, Step 31: YES). Yet, there 1s no variable pair
containing the variable “c” (FIG. 4, Step 32: NO), so that the
execution-path intermediate code generating unit 122 does
not replace the variable “c”. In addition, the statement S12
does not define any replacement target variables (FIG. 4, Step
34: NO). Thus, the duplicate statement S22 1s to be processed
next. The execution-path intermediate code generating unit
122 judges that the duplicate statement S22 before the vari-
able replacement processing defines the replacement target
variable “c” (FIG. 4, Step 34: YES) and that there 1s no
variable pair made up of the varniable “c” (FIG. 4, Step 35:
NO). Consequently, the exeeutien-path 111termedlate code
generating unit 122 modifies the statement S22 by replacing
the identifier of variable “c” with “t1” which 1s contained
neither in the variable table nor in the variable pairs and
generates a new variable pair (¢, t1) (FIG. 4, Step 37). The
statement S32 to be processed next does not have any refer-
ence to a replacement target variable and does not define any
replacement target variables. Thus, no variable replacement
takes place. Next, the statement S42 included 1n the next basic
block B22 1s to be processed. (Note that the variable pairs
having been generated through the variable replacement pro-
cessing conducted on the basic block B12 are shown 1n FIG.
10C 1n a “vaniable pair generation history” column 502 at the
row “B12”.)

Subsequently, 1t 1s judged that the statement S42 before the
variable replacement processing has a reference to the vari-
able *“c” (F1G. 4, step 31: YES) and that the vaniable pair (c, t1)
1s already present as shown in FIG. 10C 1n the column 502 at
the “B12” row (FIG. 4, Step 32: YES). Thus, the execution-
path intermediate code generating unit 122 modifies the state-
ment S42 by replacing the variable “c” with “t1” (FI1G. 4, Step
33). Next, 1t 1s judged that the statement S42 defines the
replacement target varniable “c” (FIG. 4, Step 34: YES) and
that the variable pair (c, t1) 1s already present (F1G. 4, Step 35:
YES). Thus, the execution-path intermediate code generating
umt 122 deletes the variable pair (c, t1) (FIG. 4, Step 36),
modifies the statement S42 by replacing the 1de11t1ﬁer of
variable “c” with “t2”, which 1s included neither 1n the vari-
able table nor in the variable pairs, and generates a new
variable pair (c, t2) (FIG. 4, Step 37).

FIG. 10C shows the variable pair generation history 500
having been stored through the variable replacement process-
ing repeated by the execution-path intermediate code gener-
ating unit 122 for each statement up to S152 ofthe basic block
B72.

The execution-path intermediate code generating unit 122
sends, to the restoration intermediate code generating unit

124, the varniable pairs (c, t2) and (d, t3) shown 1n FIG. 10C at
the row of which block 501 column indicates “B72”. In addi-
tion, the execution-path intermediate code generating unit
122 sends the statements S12-5S152 composing the execution-
path mtermediate code shown 1 FIG. 9 to the judgment
intermediate code generating unit 123.

Next, 1n the step 16, the judgment intermediate code gen-
erating unit 123 converts the branch conditions S32 and S92
included in the received statements into a statement S201 of
branch mtermediate code (shown 1n FIG. 11 1n a basic block
B104) that includes a branch condition for executing the hot

US 7,784,039 B2

13

path. The judgment intermediate code generating unit 123
then generates the basic block B104 that includes the state-
ment S201 and stores the resulting basic block B104 within

the program converter 120.

Next, in the step 17, the restoration intermediate code
generating unit 124 generates a statement S301 of restoration

intermediate code for restoring the variable “t2” to *“c”, based
on the restoration target variable {c} and the variable pair (c,
t2) sent from the variable information computing unit 121.
The restoration intermediate code generating unit 124 then
generates the basic block B103 (FIG. 11) with the statement
S301 of the restoration intermediate code.

In the step 18, the branch intermediate code generating unit
125 reads the basic block B104 shown in FIG. 11 and gener-
ates branch intermediate code. The branch intermediate code
generated herein causes the statement S301 1n the basic block
B103 to be executed 11 the judgment 1n the statement S201 1s
true, and causes the series of statements starting from the
statement S1 1n the basic block Bl to be executed if the
judgment 1s false. The branch intermediate code generating,
unit 125 then inserts the branch intermediate code into the
execution-path intermediate code.

In the step 19, the optimizer 12 optimizes the intermediate
code generated through the processing up to the step 18 to

improve the execution speed.

FI1G. 12 shows the basic block B124 generated by conduct-
ing 1instruction scheduling on the statements of the basic
block B104. Note that the notation *//” 1n the figure represents
that statements preceding and subsequent to the notation are
processed 1n parallel.

Modification 1

According to the above embodiment, the judgment inter-
mediate code generating unit 123 generates the branch
instruction S201 that includes a branch condition for execut-
ing the hot path, by connecting the branch conditions S32 and
S92 shown 1n FIG. 9 using logical AND. Yet, as 1n a statement
5202 shown 1n FIG. 13, it 1s applicable to mvert the branch
conditions S32 and S92.

In addition, 1t 1s applicable to make an arrangement as
shown 1n FIG. 13, so that the partial program 1s executed as a
subroutine and a path connecting newly generated basic
blocks B114 and B103 1s taken as a main execution path. For
this purpose, the basic block B114 1s placed at a position
immediately after the statement S0 which 1s the last statement
in the basic block B0 immediately preceding the partial pro-
gram. In addition, the basic block B103 1s placed at a position
immediately belore the statement S17 which 1s the first state-
ment 1n the basic block B8 immediately following the partial
program.

Hereinatter, with reference to FI1G. 2, a description 1s given
to processing to make the above arrangement.

Note that the intermediate code representing the statements
placed before and after the partial program 1s stored 1n the
program converter 120 1n advance.

In the step 15, the execution-path intermediate code gen-
erating unit 122 duplicates the statements S1-S15 residing on
the hot path 200 and carries out the variable replacement
processing on the duplicate statements to generate the state-
ments S12-5152 (FIG. 9) composing the execution-path
intermediate code.

The execution-path intermediate code generating unit 122
inserts the statements S12-5152 (FI1G. 9) at a position imme-
diately after the statement SO0 and stores the resulting inter-
mediate code nto the program converter 120. In addition, the

10

15

20

25

30

35

40

45

50

55

60

65

14

execution-path intermediate code generating unit 122 sends
the statements S12-5152 to the judgment intermediate code
generating unit 123.

In the step 16, the judgment imntermediate code generating,
unit 123 1nverses the branch conditions of the branch condi-
tions S32 and S92 included 1n the received statements, and
connects the inversed branch conditions to generate the judg-
ment intermediate code. The judgment intermediate code
generating unit 123 then stores the basic block B114 com-
posed of the statements S12-S152 stored within the program
converter 120 and the thus generated judgment intermediate
code.

Next, 1n the step 17, the restoration intermediate code
generating unit 124 generates the basic block B103 that
includes the statement S301 of the restoration intermediate
code. In addition, the restoration intermediate code generat-
ing unit 124 places the basic block B103 at a position imme-
diately after the basic block B114 stored in the program
converter 120, and places a series of statements starting from
the statement S17 at a position immediately after the basic
block B103.

In the step 18, the branch intermediate code generating unit
125 reads the basic block B114 and generates branch inter-
mediate code that causes a branch to the statement S1 1n the
basic block B1 1f the branch condition of the judgment inter-
mediate code 1s met. The thus generated branch intermediate
code 1s mserted into the judgment intermediate code,
whereby the statement S202 1s generated. The branch inter-
mediate code generating unit 125 then generates the basic
block B114 that includes the statement S202, and stores the
basic block B114 within the program converter 120.

In addition, the branch mtermediate code generating unit
125 generates the statement S16 of branch intermediate code
that causes a branch from the statement S15 to the statement
S17. The branch intermediate code generating unit 125 then
inserts the statement S16 at a position immediately following
the statement S15, and stores the resulting intermediate code
within the program converter 120.

As described above, the statements are reordered, so that
the partial program 1s executed as a subroutine and that the
execution-path code and the source program code except the
partial program are taken as a main path. This arrangement
climinates a branch instruction causing a branch from the end
ol execution-path code to the source program. In the case
where the execution-path code 1s expected to be executed
with a high frequency, memory allocation is effectively car-
ried out, so that the execution speed of the overall main path
1s improved.

Modification 2

In the modification 1 described above, the judgment inter-
mediate code generating unit 123 generates the statement
5202 by connecting the branch conditions S3 and S9. Yet, 1t 1s
also applicable to convert the branch instructions 1nto sepa-
rate sets of judgment intermediate code as the branch condi-
tions S202 and S203 shown 1n FIG. 14.

In this case, 1n the step 16, the judgment intermediate code
generating unit 123 inverses the branch conditions of the
branch conditions S32 and S92, converts the inverted state-
ments 1nto separate sets of judgment intermediate code.

In the step 18, the branch intermediate code generating unit
125 generates separate sets of branch intermediate code each
causing a branch to the statement S1 at the top of the basic
block B1 when the respective branch condition of each set of
judgment mtermediate code corresponding to respective one
of the statements S32 and S92 i1s true. The branch intermedi-
ate code generating unit 125 then inserts the sets of branch

US 7,784,039 B2

15

intermediate code into the respective sets of judgment inter-
mediate code to generate statements S202 and S203. Finally,
the branch intermediate code generating unit 125 generates a
basic block B134 and stores the basic block B134 within the
program converter 120.

FIG. 15 shows the example of the intermediate code of
which statements in the basic block B144 have been opti-
mized 1n the step 19 by the optimizer 12 using the instruction
scheduling.

As shown 1n FIG. 15, the judgment intermediate code and
branch intermediate code are generated separately for each
branch conditions. Thus, a judgment as to whether the hot
path 1s taken 1s made earlier. This arrangement causes another
path to be taken earlier when the hot path 1s not taken. This
arrangement 1s especially effective when the hot path 1s not
expected to be taken very frequently.

Supplemental Note

Up to this point, a compiler according to the present imnven-
tion has been described by way of the embodiment and modi-
fications. It should be naturally appreciated, however, that the
present invention is not limited to the above specific embodi-
ment and modifications.

(1) According to the above embodiment, the program con-
verter 120 carries out the variable replacement processing by
first duplicating the statements of the intermediate code cor-
responding to the hot path and then replacing the replacement
target variables included in the duplicate statements. Yet, the
variable replacement processing may be carried out by
sequentially referencing the statements and generates execu-
tion-path intermediate code, without involving duplication of
the statements.

(2) According to the variable replacement processing 1n the
above embodiment, when a replacement target variable 1s
defined, the vanable at the variable definition point 1is
replaced, and a variable pair 1s replaced for each variable
replaced. In addition, when a replacement target variable 1s
referenced, the variable at the vanable definition point 1s
replaced with an 1dentifier as shown 1n a corresponding vari-
able pair. Yet, 1t 1s also applicable to replace a replacement
target variable at the variable definition point and the variable
reference point all with the same 1dentifier.

(3) According to the above embodiment, the hot path infor-
mation 1s mput by a user to the program converter 120. How-
ever, there 1s an alternative 1n the case where the compiler has
an 1interpreter function of sequentially interpreting and
executing a program or where the compiler operates 1 con-
junction with a device capable of executing a program such as
a debugger. In such a case, 1t 1s applicable to sequentially
execute the source program and dynamically store informa-
tion relating to execution paths having been taken in memory
or other storage. The program converter 120 uses the stored
information to extract frequently taken execution paths.

(4) According to the above embodiment, the program con-
verter 120 generates an executable program by converting,
intermediate program that has been converted by the syntax
analyzer 11 and subjected to the variable replacement pro-
cessing. However, 1t 1s also applicable to conduct the variable
replacement processing on the source program statements
residing on the hot path, and then converts the resulting
source program into an executable program.

(5) The present invention may be embodied as computer
programs executed by a computer to carry out the various
processing described above. Further, the present imnvention
may be embodied as digital signals representing the computer
programs. The present invention may be embodied as a com-
puter-readable recording medium storing any of the programs

10

15

20

25

30

35

40

45

50

55

60

65

16

and digital signals. The computer-readable recording
medium may be a flexible disk, a hard disk, a CDD-ROM, an
MO disc, a DVD, or a semiconductor memory. Alternatively,
the present invention may be embodied as any of the com-
puter programs and digital signals transmitted via a network,
such as an electronic communications network, a wired or
wireless communications network, or the Internet.

Although the present invention has been fully described by
way ol examples with reference to the accompanying draw-
ings, it 1s to be noted that various changes and modifications
will be apparent to those skilled 1n the art. Therefore, unless
such changes and modifications depart from the scope of the
present invention, they should be construed as being included
therein.

What 1s claimed 1s:

1. A compiler apparatus including a microprocessor for
converting a source program including a branch instruction
into an object program composed of lines of object code, the
apparatus comprising:

an execution path specilying unit configured to specily one
of a plurality of execution paths of a partial series of
instructions, including a branch instruction, of the
source program;

an execution-path code generating unit configured to gen-
erate execution-path code that 1s object code corre-
sponding to mstructions residing on the specified execu-
tion path except the branch instruction, with replacing
cach specific variable residing on the specified execution
path with another variable which does not reside on the
specified execution path, wherein the specific variable 1s
a variable that needs to be alive at an entry point of the
specified execution path and 1s defined on the specified
execution path;

a restoration code generating unit configured to generate
restoration code for restoring each of the replaced vari-
ables that needs to be alive at an exit point of the speci-
fied execution path to an original variable;

a partial code generating unit configured to generate partial
code corresponding to the partial series of mstructions;

a branch code generating unit configured to generate
branch code based on a branch condition of the branch
instruction residing on the specified execution path; and

an optimizer configured to optimize the execution-path
code to improve execution speed, wherein

the branch code leads from an end of the execution-path
code to a beginning of the restoration code 11 the branch
condition 1s true, and leads from the end of the execu-
tion-path code to a beginning of the partial code i1 the
branch condition 1s false so that the partial code includ-
ing branch instruction 1s executed after end of execution
of the execution-path code.

2. The compiler apparatus according to claim 1, wherein:

the execution-path code generating unit 1s further config-
ured to place the execution-path code at a position
immediately after a series of 1nstructions immediately
preceding a beginning of the partial series of instruc-
tions,

the restoration code generating unit 1s further configured to
place the restoration code at a position immediately after
the end of the execution-path code and to place, at a
position immediately after the restoration code, a series
of mstructions immediately following an end of the par-
tial series of instructions, and

the branch code generating unit 1s further configured to
generate branch code that causes a branch from an end of
the partial code to the series of istruction immediately
following the end of the partial series of instructions.

US 7,784,039 B2

17

3. The compiler apparatus according to claim 2, wherein:
the compiler apparatus converts the source program into
intermediate code based on a syntactic analysis, and
converts the intermediate code 1nto the object program,
the execution-path code generating unit includes:

a variable information deriving subunit operable config-
ured to derive a target variable to be replaced, from
variables included 1n partial intermediate code that 1s
converted from the partial series of instructions based
on the syntactic analysis;

an execution-path intermediate code generating subunit
configured to generate execution-path intermediate
code at least including intermediate code that 1s
included 1n the partial mtermediate code and corre-
sponds to the instructions residing on the specified
execution path except the branch instruction, by
replacing each target variable included 1n the interme-
diate code with another variable; and

a judgment intermediate code generating subunit con-
figured to convert all branch condition included 1n the
execution-path intermediate code 1nto a single branch
condition for taking the specified execution path and
to generate judgment intermediate code for making a
judgment on the branch condition,

the restoration code generating unit includes:

a restoration intermediate code generating subunit con-
figured to generate restoration itermediate code for
restoring each replaced variable that needs to be alive
at the exit point of the specified execution path to an
original variable, and

the branch code generating unit includes:

a branch intermediate code generating subunit config-
ured to generate branch intermediate code that causes
a branch to a beginning of the partial intermediate
code 11 the branch condition 1n the judgment interme-
diate code 1s false; and

an executable code generating subunit configured to
convert the partial intermediate code, the execution-
path mtermediate code, the judgment intermediate
code, the restoration intermediate code, and the
branch intermediate code to executable code that con-
stitutes the object program.

4. The compiler apparatus according to claim 2, wherein:
the compiler apparatus converts the source program into
intermediate code based on a syntactic analysis, and
converts the imntermediate code 1nto the object program,
the execution-path code generating unit includes:

a variable information deriving subunit configured to
derive a target vaniable to be replaced, from variables
included 1n partial intermediate code that is converted
from the partial series of instructions based on the
syntactic analysis;

an execution-path intermediate code generating subunit
configured to generate execution-path intermediate
code at least including intermediate code that 1s
included 1n the partial mntermediate code and corre-
sponds to the instructions residing on the specified
execution path except the branch instruction, by
replacing each target variable included in the interme-
diate code with another variable; and

a judgment intermediate code generating subunit con-
figured to separately convert each branch condition
included 1n the execution-path intermediate code 1into
an individual branch condition for taking the specified
execution path and to generate separate sets of judg-
ment mtermediate code each for making a judgment
on a respective one of the branch conditions,

10

15

20

25

30

35

40

45

50

55

60

65

18

the restoration code generating unit includes:

a restoration intermediate code generating subunit con-
figured to generate restoration intermediate code for
restoring each replaced variable that needs to be alive
at the exit point of the specified execution path to an
original variable, and

the branch code generating unit includes:

a branch intermediate code generating subunit config-
ured to separately generate sets of branch intermedi-
ate code each for causing a branch to a beginning of

the partial intermediate code if the branch condition in

the respective one of the sets of judgment 1ntermedi-
ate code 1s false and leading toward a beginning of the
restoration intermediate code 11 the branch condition
1s true; and

an executable code generating subunit configured to con-
vert the partial mtermediate code, the execution-path
intermediate code, the judgment intermediate code, the
restoration intermediate code, and the branch interme-

diate code to executable code that constitutes the object
program.
5. The compiler apparatus according to claim 1, wherein:
the compiler apparatus has an interpreter function for
sequentially executing the source program,
the compiler apparatus further comprises:
an extracting unit configured to extract a frequently
executed path by collecting information on execution
paths taken during execution of the partial series of
instructions using the interpreter function, and
the execution path specifying unit specifies the execution
path extracted by the extracting unit.
6. The compiler apparatus according to claim 1, wherein
the compiler apparatus further optimizes object code gen-
crated by the partial code generating unit, the restoration
code generating unit, and the branch code generating
unit.

7. A compilation method for converting a source program

containing a branch instruction into an object program com-
posed of lines of object code, the method comprising the steps

of:

specilying one of a plurality of execution paths of a partial
series of mstructions, including a branch struction, of
the source program;

generating execution-path code that 1s object code corre-
sponding to mstructions residing on the specified execu-
tion path except the branch instruction, with replacing
cach specific variable residing on the specified execution
path with another variable which does not reside on the
specified execution path, wherein the specific variable 1s
a variable that needs to be alive at an entry point of the
specified execution path and 1s defined on the specified
execution path;

generating restoration code for restoring each of the
replaced variables that needs to be alive at an exit point
of the specified execution path to an original vaniable;

generating partial code corresponding to the partial series
of 1nstructions;

generating branch code based on a branch condition of the
branch instruction residing on the specified execution
path; and

optimizing the execution-path code to improve execution
speed, wherein

the branch code leads from an end of the execution-path
code to a beginning of the restoration code 11 the branch
condition 1s true, and leads from the end of the execu-

tion-path code to a beginning of the partial code i1 the

US 7,784,039 B2

19

branch condition 1s false so that the partial code includ-
ing branch instruction 1s executed after end of execution
of the execution-path code.

8. The compilation method according to claim 7, wherein

the execution-path code generating step further ivolves
placing the execution-path code at a position immedi-
ately after a series of instructions immediately preceding
a beginning of the partial series of mstructions,

the restoration code generating step further involves plac-
ing the restoration code at a position immediately after
the end of the execution-path code and placing, at a
position immediately after the restoration code, a series
of mstructions immediately following an end of the par-
tial series of 1nstructions, and

the branch code generating step further involves generating
branch code for causing a branch from an end of the
partial code to the series of instruction immediately fol-
lowing the end of the partial series of instructions.

9. The compilation method according to claim 8, wherein

the compilation method converts the source program nto
intermediate code based on a syntactic analysis, and
converts the intermediate code 1nto the object program,
the execution-path code generating step includes the sub-
steps of:
deriving a target variable to be replaced, from vaniables

included 1n partial intermediate code that is converted
from the partial series of instructions based on the
syntactic analysis;

generating execution-path intermediate code at least
including intermediate code that 1s included 1n the
partial intermediate code and corresponds to the
instructions residing on the specified execution path
except the branch instruction, by replacing each target
variable included 1n the intermediate code with
another variable; and

converting all branch condition included 1n the execu-
tion-path intermediate code into a single branch con-
dition for taking the specified execution path and gen-
crating judgment intermediate code for making a
judgment on the branch condition,

the restoration code generating step includes the substep

of:
generating restoration intermediate code for restoring

cach replaced variable that needs to be alive at the exat
point of the specified execution path to an original
variable, and
the branch code generating step includes the substeps of:

generating branch intermediate code that causes a
branch to a beginming of the partial intermediate code
11 the branch condition in the judgment intermediate
code 1s false; and

converting the partial intermediate code, the execution-
path mtermediate code, the judgment intermediate
code, the restoration intermediate code, and the
branch intermediate code to executable code that con-
stitutes the object program.

10. The compilation method according to claim 8, wherein

the compilation method converts the source program into
intermediate code based on a syntactic analysis, and
converts the imntermediate code 1nto the object program,

the execution-path code generating step includes the sub-
steps of:

deriving a target variable to be replaced, from vaniables
included 1n partial intermediate code that 1s converted
from the partial series of instructions based on the
syntactic analysis;

generating execution-path intermediate code at least
including intermediate code that 1s included 1n the

10

15

20

25

30

35

40

45

50

55

60

65

20

partial intermediate code and corresponds to the
instructions residing on the specified execution path
except the branch instruction, by replacing each target
variable included 1n the intermediate code with
another variable; and

separately converting each branch condition included 1n
the execution-path intermediate code into an indi-
vidual branch condition for taking the specified
execution path and generating separate sets of judg-
ment mtermediate code each for making a judgment
on a respective one of the branch conditions,

the restoration code generating step includes the substep

of:

generating restoration intermediate code for restoring
cach replaced variable that needs to be alive at the exit
point of the specified execution path to an original
variable, and

the branch code generating step includes the substeps of:

separately generating sets of branch intermediate code
cach for causing a branch to a beginning of the partial
intermediate code 1f the branch condition in the
respective one of the sets of judgment intermediate
code 1s false and leading toward a beginning of the
restoration intermediate code 11 the branch condition
1s true; and

converting the partial intermediate code, the execution-
path intermediate code, the judgment intermediate
code, the restoration intermediate code, and the
branch intermediate code to executable code that con-
stitutes the object program.

11. The compilation method according to claim 7, wherein

the compilation method sequentially executes the source
program by interpreting,

the compilation method turther comprises the substep of:

extracting a frequently executed path by collecting infor-
mation on execution paths taken during execution of the
partial series of mstructions using the iterpreter func-
tion, and

the execution path specitying step specifies the execution
path extracted in the extracting step.

12. The compilation method according to claim 7, wherein

the compilation method further optimizes object code gen-
crated 1n the partial code generating step, the restoration
code generating step, and the branch code generating
step.

13. A computer-readable recording medium comprising a
compilation program for causing a device including a CPU to
convert a source program containing a branch instruction into
an object program composed of lines of object code, the
compilation program composed ol instructions, when
executed, to cause the device to perform the steps of:

speciiving one of a plurality of execution paths of a partial
series of mstructions, including a branch struction, of
the source program;

generating execution-path code that 1s object code corre-
sponding to mstructions residing on the specified execu-
tion path except the branch instruction, with replacing
cach specific variable residing on the specified execution
path with another variable which does not reside on the
specified execution path, wherein the specific variable 1s
a variable that needs to be alive at an entry point of the
specified execution path and 1s defined on the specified
execution path;

generating restoration code for restoring each of the
replaced variables that needs to be alive at an exit point
of the specified execution path to an original vanable;

generating partial code corresponding to the partial series
of 1nstructions;

US 7,784,039 B2

21

generating branch code based on a branch condition of the
branch 1nstruction residing on the specified execution
path; and
optimizing the execution-path code to improve execution
speed, wherein
the branch code leads from an end of the execution-path
code to a beginning of the restoration code 11 the branch
condition 1s true, and leads from the end of the execu-
tion-path code to a beginning of the partial code 11 the
branch condition 1s false so that the partial code includ-
ing branch instruction 1s executed after end of execution
of the execution-path code.
14. The computer-readable recording medium according to
claim 13, wherein:
the execution-path code generating step further involves
placing the execution-path code at a position immedi-
ately after a series of instructions immediately preceding
a beginning of the partial series of mstructions,
the restoration code generating step further involves plac-
ing the restoration code at a position immediately after
the end of the execution-path code and placing, at a
position immediately after the restoration code, a series
of mstructions immediately following an end of the par-
tial series of 1nstructions, and
the branch code generating step further involves generating
branch code that causes a branch from an end of the
partial code to the series of instruction immediately fol-
lowing the end of the partial series of instructions.
15. The computer-readable recording medium according to
claim 14, wherein:
the compilation program further causes the device to con-
vert the source program into intermediate code based on
a syntactic analysis, and converts the intermediate code
into the object program,
the execution-path code generating step includes the sub-
steps of:
deriving a target variable to be replaced, from vaniables
included 1n partial intermediate code that 1s converted
from the partial series of instructions based on the
syntactic analysis;
generating execution-path intermediate code at least
including intermediate code that 1s included 1n the
partial intermediate code and corresponds to the
instructions residing on the specified execution path
except the branch instruction, by replacing each target
variable included in the mtermediate code with
another variable; and
converting all branch condition included 1n the execu-
tion-path intermediate code into a single branch con-
dition for taking the specified execution path and gen-
crating judgment intermediate code for making a
judgment on the branch condition,

the restoration code generating step includes the substep
of:
generating restoration intermediate code for restoring
cach replaced variable that needs to be alive at the exat
point of the specified execution path to an original
variable, and
the branch code generating step includes the substeps of:
generating branch intermediate code that causes a
branch to a beginming of the partial intermediate code
11 the branch condition 1n the judgment intermediate
code 1s false; and
converting the partial intermediate code, the execution-
path mtermediate code, the judgment intermediate
code, the restoration intermediate code, and the

10

15

20

25

30

35

40

45

50

55

60

22

branch intermediate code to executable code that con-
stitutes the object program.
16. The computer-readable recording medium according to
claim 14, wherein:
the compilation program further causes the device to con-
vert the source program into intermediate code based on
a syntactic analysis, and converts the intermediate code
into the object program,
the execution-path code generating step includes the sub-

steps of:
deriving a target variable to be replaced, from variables

included 1n partial intermediate code that 1s converted
from the partial series of instructions based on the
syntactic analysis;

generating execution-path intermediate code at least
including intermediate code that 1s included 1n the
partial intermediate code and corresponds to the
instructions residing on the specified execution path
except the branch instruction, by replacing each target
variable included in the mtermediate code with
another variable; and

separately converting each branch condition included 1n
the execution-path intermediate code into an indi-
vidual branch condition for taking the specified
execution path and generating separate sets of judg-
ment itermediate code each for making a judgment
on a respective one of the branch conditions,

the restoration code generating step includes the substep
of:

generating restoration intermediate code for restoring
cach replaced variable that needs to be alive at the exat
point of the specified execution path to an original
variable, and
the branch code generating step includes the substeps of:
separately generating sets of branch intermediate code
each for causing a branch to a beginning of the partial
intermediate code 1f the branch condition in the
respective one of the sets of judgment intermediate
code 1s false and leading toward a beginning of the
restoration intermediate code 11 the branch condition
1s true; and
converting the partial intermediate code, the execution-
path itermediate code, the judgment intermediate
code, the restoration intermediate code, and the
branch intermediate code to executable code that con-
stitutes the object program.
17. The computer-readable recording medium according to
claim 13, wherein:
the compilation program further causes the device to
sequentially execute the source program by interpreting,
the compilation program further causes the device to per-
form the substep of:
extracting a frequently executed path by collecting infor-
mation on execution paths taken during execution of the
partial series of mstructions using the iterpreter func-
tion, and
the execution path specitying step specifies the execution
path extracted 1n the extracting step.
18. The computer-readable recording medium according to
claim 13, wherein
the compilation program turther causes the device to opti-
mize object code generated 1n the partial code generat-

ing step, the restoration code generating step, and the
branch code generating step.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

