12 United States Patent

Nelson et al.

(10) Patent No.:

45) Date of Patent:

US007783863B1

US 7,783,863 B1
Aug. 24, 2010

(54)

(75)

(73)

(%)

(21)
(22)

(63)

(60)

GRACEFUL DEGRADATION IN A
TRACE-BASED PROCESSOR

60/721,383, filed on Sep. 28, 2005, provisional appli-
cation No. 60/730,550, filed on Oct. 26, 2005, provi-
stional application No. 60/730,810, filed on Oct. 27,

Inventors: Christopher Patrick Nelson, Santa 2003, provisional application No. 60/731,962, filed on
Clara, CA (US); John Gregory Favor, Oct. 31, 2005, provisional application No. 60/732,438,
Scotts Valley, CA (US); Richard Win filed on Nov. 1, 2005, provisional application No.
Thaik, San Jose, CA (US); Matthew 60/832,848, filed on Jul. 23, 2006, provisional appli-
William Asheraft, Belmont, CA (US) cation No. 60/832,822, filed on Jul. 23, 2006, provi-
j j stional application No. 60/862,609, filed on Oct. 24,
Assignee: Oracle America, Inc., Redwood City 2006, provisional application No. 60/731,785, filed on
CA (US) j j Oct. 31, 2003, provisional application No. 60/866,205,
filed on Nov. 16, 2006, provisional application No.
Notice: Subject to any disclaimer, the term of this 60/866,203, filed on Nov. 16, 2006.
patent 1s extended or adjusted under 35 (
51) Int.CL
U.S.C. 154(b) by 262 days. GOGE 9/00 (2006.01)
Appl. No.: 11/923,638 (52) US.CL ..., 712/220;°712/227,°712/216;
" 712/207
Filed: Oct. 24, 2007 (38) Field of Classification Search 712/207,
712/220
Related U.S. Application Data See application file for complete search history.
Continuation-in-part of application No. 11/781,937, (56) References Cited
filed on Jul. 23, 20077, which 1s a continuation-in-part
of application No. 11/535,971, filed on Sep. 27, 2006, U.S. PAIENT DOCUMENTS
now Pat. No. 7,546,420, application No. 11/923,638, 4,912,707 A 3/1990 Kogge et al.
which 1s a continuation-in-part of application No. 5,381,533 A 1/1995 Peleg et al.
11/535,972, filed on Sep. 27, 2006, now Pat. No. 5,491,793 A * 2/1996 Somasundaram et al. 714/45
7,676,634, application No. 11/923,638, which is a con- 5,568,380 A 10/1996 Brodnax et al.
tinuation-n-part of application No. 11/535,977, filed 5,052,025 A 51997 White et al.
on Sep. 27, 2006, now Pat. No. 7,606,975, application 0,049,136 A 71997 Shen et al
. : . C 5,944,841 A 8/1999 Christie
No. 11/923,638, which 1s a continuation-in-part of 6014747 A 17000 Kri
. 014, ick et al.
application No. 11/553,453, .ﬁlecil on Oct. 26, 2006, 6.018.786 A 12000 Krick of al.
now Pat. No. 7,587,385, application No. 11/923,638, 6,031,992 A 22000 Cmelik et al.
which 1s a continuation-in-part of application No. 6,055,630 A 4/2000 D’Sa et al.
11/553,4535, filed on Oct. 26, 2006, now Pat. No. 7,568, 6,073,213 A * 6/2000 Peledetal. 711/125
088, application No. 11/923,638, which 1s a continua- 6,076,144 A 6/2000 Peled et al.
tion-in-part of application No. 11/553,458, filed on 6,115,809 A 9/2000 Mattson, Jr. et al
Oct. 26, 2006, now Pat. No. 7,568,089, application No. 6,170,038 Bl 172001 Krick et al.
11/923,638, which 1s a continuation-in-part ot appli- 6,185,660 Bl 2/2001 Mulla et al.
cation No. 11/591,024, filed on Oct. 31, 2006. 6,185,675 Bl ~ 2/2001 Kranich et al
6,189,141 Bl1* 2/2001 Benitezetal. 717/153
Provisional application No. 60/889,547, filed on Feb. 6,205,545 B1* 3/2001 Shahetal. 712/237
13, 2007, provisional application No. 60/862,609, 6,216,206 Bl 4/2001 Peled et al.
filed on Oct. 24, 2006, provisional application No. 6,351,844 Bl 2/2002 Bala
1[}\\
12~
TRACE UNIT
Sequencer Sequence buffer Ops fetcher
29 34 28
1
40~ ™~
42
h 4 Y
XM «)i U » SSE
4 »
34 36 [38
)
72

EXECUTION UNIT 14

US 7,783,863 Bl
Page 2

6,442,674 Bl 8/2002 Lee et al.
6,449,714 Bl 9/2002 Sinharoy
6,538,997 B1* 3/2003 Wangetal. 370/241
6,604,060 Bl 8/2003 Ryan et al.
6,609,189 B1* 82003 Kuszmauletal. 712/23
6,671,766 B1 12/2003 Vandenbergh et al.
6,799,263 Bl 9/2004 Morris et al.
6,895,460 B2 5/2005 Desoli et al.
6,950,924 B2 9/2005 Miller et al.
6,988,190 B1* 1/2006 Parkcoovvvvinviniinnin.nn 712/241
7,003,629 B1* 2/2006 AlSUp ...cocovvvvinininnnnnnn.. 711/118
7,133,969 B2 11/2006 Alsup et al.
7,136,992 B2 11/2006 Maiyuran et al.
7,139,902 B2 11/2006 Lee
7,213,126 Bl 5/2007 Smaus et al.
7,360,024 B2 4/2008 Hironaka et al.
7,366,875 B2* 4/2008 Rascheetal. 712/205
7,546,420 Bl 6/2009 Shar et al.
7,594,111 B2 9/2009 Kiriansky et al.
7,606,975 B1 10/2009 Shar et al.
2001/0032307 A1 10/2001 Rohlman et al.
2002/0095553 Al1* 7/2002 Mendelson et al. 711/118
2002/0144101 A1* 10/2002 Wangetal. 712/240
2003/0005271 Al1* 1/2003 Hsuetal. 712/237
2003/0084375 Al1* 5/2003 Mooreetal. 714/34
2004/0015627 Al 1/2004 Desoli et al.
2004/0083352 Al 4/2004 Lee
2004/0107336 Al 6/2004 Douglas et al.
2004/0193857 Al 9/2004 Miller et al.
2005/0108719 Al 5/2005 Need et al.
2005/0125632 Al 6/2005 Alsup et al.
2005/0289324 A1 12/2005 Miller et al.
2005/0289529 A1 12/2005 Almog et al.
2006/0179346 Al 8/2006 Bishop et al.
OTHER PUBLICATIONS

Quinn Jacobson , Eric Rotenberg , James E. Smith, Path-based next
trace prediction, Proceedings of the 30th annual ACM/IEEE interna-
tional symposium on Microarchitecture, p. 14-23, Dec. 1-3, 1997,
Research Triangle Park, North Carolina, United States.™

Eric Rotenberg , Quinn Jacobson , Yiannakis Sazeides , Jim Smuith,
Trace processors, Proceedings of the 30th annual ACM/IEEE inter-
national symposium on Microarchitecture, p. 138-148, Dec. 1-3,
1997, Research Triangle Park, North Carolina, United States.™*

Eric Rotenberg , Jim Smith, Control independence 1n trace proces-
sors, Proceedings of the 32nd annual ACM/IEEE international sym-
posium on Microarchitecture, p. 4-15, Nov. 16-18, 1999, Haifa,
Israel.™

Almog, Y. et al., Specialized Dynamic Optimizations for High-Per-
formance Energy-Efficient Microarchitecture, Proceedings of the
International Symposium on Code Generation and Optimization,
2004 (12 pages).

Chaparro, P. et al., Distributing the Fronted for Temperature Reduc-
tion, Proceedings of the 11th Symposium on High-Performace Com-
puter Architecture, Feb. 12-16, 2005 (10 pages).

Colwell, R. P. et al., A VLIW Architecture for a Trace Scheduling
Compiler, 1987, pp. 180-192 (13 pages).

Fisher, J. A., Trace Scheduling: A Technique for Global Microcode
Compaction, IEEE Transactions on Computers, vol. C-30, No. 7, Jul.
1981, pp. 478-490 (13 pages).

Friendly, D. et al, Putting the Fill Unit to Work: Dynamic Optimiza-
tions for Trace Cache Microprocessors, Proceedings of the 31st

Annual ACM/IEEE International Symposium on Microarchitecture,
Nov. 30-Dec. 2, 1998, pp. 173-181 (9 pages).

Grunwald, D. and Ghiasi, S., Microarchitectural Denial of Service :
Insuring Microarchitectural Fairness, Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture, Nov.
18-22, 2002 (10 pages).

Hinton, G. et al., The Microarchitecture of the Pentium 4 Processor,
Intel Technology Journal Q1, 2001 (12 pages).

IBM Technical Disclosure Bulletin, Grouping of Instructions, v. 38,
n. 8, Aug. 1, 1995, pp. 531-534 (4 pages).

Katevenis, E. G., Reduced Instruction Set Computer Architectures
for VLSI, Berkley, California 1983, pp. 67-68 and 190 (7 pages).
Rotenberg, E., Bennett, S., and Smuth, J. E., Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching, In Pro-
ceedings of the 29th Annual International Symposium on
Microarchitecture, Dec. 2-4, 1996, Paris, France (11 pages).
Slechta, B. et al, Dynamic Optimization of Micro-Operations, Pro-
ceedings of The 9th International Symposium on High-Performance
Computer Architecture, Feb. 8-12, 2003 (12 pages).

Smith, J. E. and Pleszkun, A. R., Implementation of Precise Interrupts
in Pipelined Processors, Proc. Computer Architecture, 1985 (15
pages).

Tremblay, M., High-Performance Fault-Tolerant VLSI Systems
Using Micro Rollback, Los Angeles, California, Sep. 1991, pp.
72-74, 81, 89-90, 102-104 and 246 (14 pages).

Vyaykumar, T. N., et al., Speculative Versioning Cache, IEEE Trans-
action on Parallel and Distributed Systems, vol. 12, No. 12, Dec.
2001, pp. 1305-1317 (13 pages).

Patel, S., Lumetta, S., “rePlay: A Hardware Framework for Dynamic
Optimization”, IEEE Transactions on Computers, vol. 50, No. 6, Jun.
2001 (26 pages).

Tanenbaum, A. S., Structured Computer Organization, Fourth Edi-
tion, Prentice Hall, Inc. 1984 (21 pages).

Patel S. J. et al., Improving Trace Cache Effectiveness with Branch
Promotion and Trace Packing, IEEE, 1998, pp. 262-271 (10 pages).
Tanenbaum, A. S., Structured Computer Organization, Second Edi-
tion, Prentice Hall, Inc. 1984, pp. 10-12 (5 pages).

™

* cited by examiner

Primary Examiner—Eddie P Chan

Assistant Examiner—Idriss N Alrobaye
(74) Attorney, Agent, or Firm—QOsha * Liang LLP

(57) ABSTRACT

A method of handling a trace to be aborted includes recerving
an 1ndication of a trace to be aborted and an indication of an
abort reason corresponding to an execution of the trace to be
aborted. The trace to be aborted has a trace type associated
therewith and includes a sequence of the operations, and
represents a sequence of at least two of the instructions. The
method further includes identifying a corrective action based
at least 1n part on the type of the trace to be aborted and on the
abort reason, not taking into account a correspondence
between the at least one operation that caused the execution to
be aborted and the at least one instruction that the at least one
operation at least in part represents. A next trace and 1ts trace
type 1s determined for execution, where the determining 1s
based on the trace to be aborted and on the corrective action.

18 Claims, 28 Drawing Sheets

US 7,783,863 Bl

Sheet 1 of 28

Aug. 24, 2010

U.S. Patent

L Ol

. LINA NOILND3XS
o
NN
cl
el
—— Y
J

8¢ ce 6¢
layols) sdp 18]Inq 8susnbeg lasusnbsag

1INM 40OVl

-0l

Cl

U.S. Patent Aug. 24, 2010 Sheet 2 of 28 US 7,783,863 B1

12 ~44 338 ~34
U

;
52
| e

DEC

REN

Abort SCH

Prioritization 53

AllA]|A

Ll L)L
Ul |U

00 “62 64

MOC 51

FIG. 2

30
U

U.S. Patent Aug. 24, 2010 Sheet 3 of 28 US 7,783,863 B1

Abort 50

Priority Accumulator
201 203

Detector Trigger
202 204

Pipe Control
205

From TU Execution Attribute

Control
251

To U

Trace Formation
Control

292

From TU

FIG. 2(a)

- (d)Z 914

HUr
uonnosax3

Ve
Jep|ing
ooig-nini\

US 7,783,863 Bl

43 0€

9l
aloen
16 uonoNSU|
oyng
uone|suel| abed

I |
m m
I |
| “
“ 5 6C “
| lapng 10)21p8ld !
- " l8ydre4 sdp 5oUSNbBG laouanbag “
. m
v o ! | I i
g “ I I “
= L _
I |
z o “
3 . “
7 o “
I ! — 1
L 31 |
] 18p023(] “
= “ “ “ _
Yo “ " | “
S b |
<] o 92 m
ok L ayoeD 19p|INg :
Z | eoigmniy 300]g olseg m
L “
I |
I |
I |
I |
I |
I |
I |

I

I

I

I

1SN EM SlqEL

U.S. Patent

U.S. Patent Aug. 24, 2010 Sheet 5 of 28 US 7,783,863 B1

=)
. Ll
N
yra -—
=
-
-,
O
&)
O
1
' C
O
©
l = g 8
e N w O\ —
O
. 5
O
O
<
190’
< Y
¢ S5
% &,
& = 4
d, <t
2 -

U.S. Patent Aug. 24, 2010 Sheet 6 of 28 US 7,783,863 B1

Abort Abort
Reason #1|Reason #2

Trace
Type #A

Trace
Type #B

Corrective
Action 1

1% Step

Abort Abort
Reason #1|Reason #2

Abort
Reason #N

Trace
Type #A

Trace
Type #B

Corrective
Action 2

IIj .e
|

2 Step

Abort Abort
Reason #1|Reason #2

Abort
Reason #N

Trace
Type #A

Trace
Type #B
Nth Step
(No further Aborts)

Corrective
Action N

FIG. 4

US 7,783,863 Bl

Sheet 7 of 28

Aug. 24, 2010

U.S. Patent

00t

14019

N# 90€l] d4d
OLE

G Old

UOSESJ SWES 0} anp Moqy ‘€# g9 91no9x3

MO ¢# 94 91N0dSX

MO |# g4 S1Nd9X 4

18bbl|

HOQV
¢0¢C

80¢ 90¢

aoel| gin

U.S. Patent Aug. 24, 2010 Sheet 8 of 28 US 7,783,863 B1

500
vy~

502

Trace execution

Is Abort Trig =
MOC Order
Violation™

506

-TU to refetch the trace as Is
and record new constraint
-IU apply MOC to the trace

5

ooel] 1sli) 0]
1))y "oads-uou saijdde |-

: SI SB 8p020JIIW |2)18)o)-
/ O_H_ S5P020IDIW SI 8okl | -

US 7,783,863 Bl

9oel] 1Sl O]
1))y ‘08ds-uou saljdde N]-
A SI SB 9p020.3IW Y218]0Y-
9p0o0IdIW S| 898l | -

9oel)] 181} 0] |aInquUNyY
0ads-uou saijdde |-

S| SE |S Y0)o)oy-

6ES
L VG N 0eC N

- o

< 90Bl1] PayoIalal oyl |

s JO UOIJNDBXd SUBIS N]- ASiS .MMM.M.HW_% M%Hm_:%m_._zdm

= ookl 1811} 8U) 0) > = 90.l] S| X l|ade |

3 a)nquUNY sso7 dIN Alddy- 51 SB IS U9ISIoY-

= GES 9z5 825

L5 N N 50B1) PaUDIaLol
aoel) peyodisjol ay) o) JO UONI8Xa SUBIS N|-

- 10 UOINDBXd SUBIS NI- ¢dIN ¢dd DOUBSSE SI UMOD Yealq ay)
m 50B1] 18111 BY) O) X = 8JEl] S = 90B1] S 4OIYM 10} S0 Jusnbasqns
< 9INqUNY SSOT dIN Alddy- O] "MV $SO7 dIN Alddy-
e AR HAS |S B 0] UMOD B0kl] dd 3] Yealg-

S eeq N

N
< ;108 aoel) payelol
uondo | o} JO uolIndaXe SJe]S (|-
¢,SSOT7 dIA S1qeinBIuod aul S ¢dN sooel) Jusnbasgns o]
= Bu| Ho Sndety i = 90Bl] S| . - A1dd
m = DU] HOogy A 10 ‘PBUBSSY e A 1}y S0 dIN Y} Alday-
: S
S 91G > .
02ZS
. uonndaxg aoel|

% 2LS N-01
-

U.S. Patent Aug. 24, 2010 Sheet 10 of 28 US 7,783,863 B1

536

Trace Execution

538

Abort Trig =
UP Loss?

540
542

-Refetch evicted trace as 1s v
-|U starts execution of the
refetched trace

Is evicting trace
older than
evicted trace”?

246 -Refetch evicted trace as i1s N

-lU applies TrcMissInOrder

Attr. To first executed trace
after the abort

-|U starts execution of the | | Y
refetched trace

544

Is evicting trace
younger than
evicted trace?

550

-MB trace i1s broken to BB

-lU applies TrcMissInOrder N
Atr. To all traces for which 048

breaking down is asserted | Y
-1U starts execution of the s trace = MB?

refetched trace

554 N 552
IS
Y TrcMissInOrder Y s trace = BB?
iod?
556 Applied” ,
BB t IS broken to S >
) raaceiiless nrgn_esn eoc -Trace is S| or microcode s
PP PeC. -Refetch trace and execute TrcMissInOrder

attr. To all traces for which

breaking down iIs asserted

-|U starts execution of the
refetched trace

with non-spec. Attr.
-|U starts execution of the
refetched trace N 564

Applied?

N 558 -Trace is S| or microcode
-Refetch trace and
execute with

-BB trace Is broken to S|
-|U applies TrcMissInQOrder

attr. To all traces for which TrcMissInOrder Attr.

-|U starts execution of
the refetched trace

breaking down Is asserted
-|IU starts execution of the
refetched trace

FIG. 8

1Senbay

N N JIoge spJeasiq |-
€65 N
N

ooel)

poYDIaJal /Yy Jo
UOIINDBXd SUEIS N]-

UONEPI[EeAUl
U}IM poy9o1a) 10 908l

payolajel = Joqy

(HOQY . C
= boy 1oqy

US 7,783,863 Bl

ooel]

i D1y
S| SB 99Bl) Uo)a)oY] Sy} 0} JYol paU9)ajal /) Jo
863 g 965 >l 9081} 819|dW0d >—> yopnosxe spEIS M-
665 N Aue a1y S| SB 99E1) UD19Jo3 -

9)N0BX9-8. 069

o pue 9del] ay] Yolaloy- ¢ Alled 165
M,l,. muamw_.hO_OLQQmw S 9ayoed — U@W_ 11oqy 50Bl] POYDIBIS. OU) 10
= Spoo0.dlW Jo 5gd/0dN S| UOINDBXS SUBIS |-
— W01} 80el) aU) S1epljeAul- " 5pOSCIDIN
,_w e N 10 |Q SI 828l -
=
7 . N 20BJ) Payodlalal ay) Jo
GBS ¢35 . UOIINJDXS SHE)S NI-
= bay] Loqy (99 = S0el] S| X 1S 0]
S| Q/G UdY0lIq SI 8Bl gg-
= 886G .
~ N N 086G
-+ aoeJ]) paycalal ayl Jo
N 90El] pPsyl}ajal al] éPleAUu| . co_uzwmmm ww_._ﬂwf_u_.
o JO UORNOSXd SLEIS M- <= = bay poqy (AN = 9oel] S| X ag o3

786
983 { . 9/C

aoel)
psydlejal ay) Jo

N | UOINooxa SHEels M-

0/6S S| SB 99.J) UD18Joy-

N-pog cLs

LONS
= boy 1oqy
S|

¢ OAIT 808l S

89¢

UOoNNJdXg 928l |

~—
=
P
~—
.
P. 909G
)
-

US 7,783,863 Bl

Sheet 12 of 28

Aug. 24, 2010

U.S. Patent

("u0D) 6 OIS

8oel) payolslal
3y} JO UonNI8xXa SUEBIS N|-

aoel)] Uo19JoY-
del) 10]|ne} |S = JoQe |-

©lL9 N

aoBl] payolalal
aU] JO UOIINJBXS
SHE]S []-

dows|p
PB1R|OS| IO SIS JOMD]

|S SE A UM PlIngal/|S 0] UMOD
90k} |I]0]oY- jealq = 10qQyY (|

119 609

aoel) payoslslel
SU] JO UOIINI8X3
SHEI]S []-

dd Ol
Ud)0.q SI 898..)-

dag 0}
9OEJ] UMOP

jealq = HoQyY |

G09
/09 N

aoel) payo)sje.
o4 JO UOIINIOXD
spe)s |-
qg se A
90BJ] UYoloJoy-

uolnoipaJsdsiw
youeluq Jouaju,
= HOQV |

109
€09

U.S. Patent Aug. 24, 2010 Sheet 13 of 28 US

Trace Execution

602
600\
s
Abort Trig =
IBM?
010 Y
-lU sends IBM to TU
-TU may modify the N\ /0038 606
first branch prediction| v 7ls itin Y s
S |t breaks the trace f|rSt |nter|0r |BM In
into BB branch? MB?7?
-lU starts execution
of the refetched trace
N
N 614
s
: Y
IBM In
-lU sends IBM to TU
-TU uses default
prediction as it breaks N

the trace into BB
-|U starts execution of
the retetched trace

618

7,783,863 B1

610

-|U sends
BMto TU

with bad code
segment mark

620

-IU sends
IBMto TU

with bad code
segment mark

022

-Trace Is microcode
FIG. 10 |U sends IBM to TU.
-TU Fetches alternate

microcode trace from an

alternate branch address

-|U starts execution of the
Alternate trace

U.S. Patent Aug. 24, 2010 Sheet 14 of 28 US 7,783,863 B1

Trace Execution

628

630 s

Abort Trig =
Cannot

626\

636

-MB Trace is broken to BB Y
-lU starts execution of the
refetched trace

N
640 638
-BB Trace is broken to SI v S
-lU starts execution of the Trace =
refetched trace BB?
N

642
644

-Send MU faultto TU Y

s S
or Microcode
a Non-spec
Trace?

N

646

Re-execute the trace In
non-speculative
652 Y

-Invalidate MB and refetch
as BB
-TU marks BB as non- Y

048

s
Abort
Req = NRQ
Overflow

promotable trace and with
the MissInOrder attnb.
-|U starts execution of the
refetched trace

FIG. 11

U.S. Patent Aug. 24, 2010 Sheet 15 of 28 US 7,783,863 B1

056 o e

-BB trace is invalidated and

rebuilt with fewer memops 654
-TU marks BB as non- v S
promotable trace and with Trace =
the MissinOrder attrib. BB?
-|U starts execution of the
refetched trace N 658

-Trace is Sl or Microcode
-Refetch with non-spec.
attribute
-|U starts execution of
the refetched trace

664

-MB Trace is broken to BB
-|U starts execution of the
refetched trace

668

-BB Trace is broken to Sl
-lU starts execution of the
refetched trace

N 670

-Trace is Sl or Microcode
-Refetch with non-spec. attribute

-|U starts execution of
the refetched trace

674 672

Y Abort req =
Perm. Non Spec.

676

-Invalidate MB and
refetch as BB Y
-|U starts execution of the
refetched trace

-Rebuild BB Trace while
isolating the memop into a non
spec.irace
-BB trace specially marked as
S| non spec. and non-
promotable in respective cache

-|U starts execution of

036

the refetched trace N -Mark microcode trace to be
executed non-speculatively
] - 684 082 in the future
Refetrizg:_ss‘i éﬂ Ttt?pplles Y N -Future executions of this trace

performed non-speculatively
-Refetch with non spec. attribute
-lU starts execution of the
refetched traces

-|lU starts execution of
the refetched trace

FIG. 11 (Cont.)

U.S. Patent

696

-Refetch MB trace as BB
-|U starts execution of the

refetched trace

700

-Refetch BB trace as S|
-|U starts execution of the
refetched trace

708

-Trace Is S| or microcode

-Send XM faultto TU

Aug. 24, 2010

Sheet 16 of 28

694

s Trace=
MB?

698

Y s Trace=
BB?

N

706

s SSE decode
enabled?

N 710

-Trace 1s S| or microcode
-Refetch as S| with

non-spec attribute
-|U starts execution of the
refetched trace

FIG. 12

Trace Execution

|s Abort Trig=
XM Fault?

US 7,783,863 Bl

690

U.S. Patent Aug. 24, 2010 Sheet 17 of 28 US 7,783,863 B1

713

4 1\ Trace Execution

717

Is Abort Trig =
LDX fault in a
non-spec trace?

-Trace is Sl or Microcode Y

-Send XM faultto TU

FI1G. 13

(1L O} }INe4 45S PUIS-

1Q 10
9PODVUIDIN S| 808l | -

US 7,783,863 Bl

Pl Old

0¢.

N
" ooel) poY21olal du) Jo
a iXal= UOIINDOXD SUBIS |-
ow =0JRl]| S| A IS Se
— ooBlJ| 99 UOl1oJoy-
> Qcl
7 82/

N
—
= . aoel) paydlalal au) Jo
3 Jned 455 X=l UOoIINd8Xxo SUEe]S N]-
3 =18bb11) Joqy X =80Bl] S| A qg se
o S| aoBI] g Yole)ey-
z 2]

vel

UOIINDaXg 3.l |

8L

U.S. Patent

N1l O}
1INEe4 8P02BP PUSS-

1S 10
SPO20IDI|\ Sl 908l | -

US 7,783,863 Bl

Gl Ol

Or.

aoel) payoslalal ay) Jo

x .99 UOIINDBXd SLUBIS N|-
p_nlu = 90JEl] S A 1S
> Se 90el| g9 Yo10Joy-
= Az
2 vv/
7 N
— 90Bl] paydslal ay) Jo
< line{ 8p0J3P AN UOIINJ2BXS SUBIS |-
. 3SS/NX = Jabbu — 90€l| S| qg se
- A A
N 1OQY S| aoel] g\ Uodlsloy-
m 3¢/
Ov.
UoIINDdX3 2.l | /Nmm

149

U.S. Patent

ML O}
JINed | PUSS-

1S 1O
SPO20IOIN SI 898l | -

Ol 9l c9! N

US 7,783,863 Bl

aoel) payolajal ay) Jo
UOIINDSXa SU.IS N|-

¢dd

o =90el] S| A 1S
= se ooel] 99 Uololoy-
< 85/
g 09/
@ N
s 9

soel) Payolelal 8y Jo
= dimeN x=1 UoINJBXd SHE]S N)]-
= u__%m_% Hoqy X =ooel] S| A gg se
< | a0el] g UYo18)8y-
o 1274
= 96/

uonnoax3 adel|
gy,

0592

U.S. Patent

U.S. Patent Aug. 24, 2010 Sheet 21 of 28 US 7,783,863 B1

/60

Trace Execution

770

S
Abort trigger =

Non-Spec trace with
OptRepString?

-Trace is Microcode Y

-Send MU faultto TU

FIG. 17

U.S. Patent Aug. 24, 2010 Sheet 22 of 28 US 7,783,863 B1

Trace Execution

772 774
N\

773

776

IS

-Trace is Microcode 1, Y datgbb?;tatsggi% \=Nith
-Send MU faultto TU OptRepString?

34 730

82

s
Abort trigger =

-Refetch MB Trace

IS

as BB Y Y) _ N
-IU starts execution Trace = MBY? data breakpoint w[’;hout
of the refetched trace OptRepString”

738
786

-Refetch BB Trace
as S| Y

IS
Trace = BB?

-|U starts execution
of the refetched trace

792
790

-Trap

FIG. 18

U.S. Patent Aug. 24, 2010 Sheet 23 of 28 US 7,783,863 B1

796
Y 's Microcode
-Irap Exit?
N
799
Y Does the trace

-FBM sentto TU have a rep-string

condition?

801

-Defer to trace that i1s

or was sequenced
next

FIG. 18 (Cont.)

U.S. Patent Aug. 24, 2010 Sheet 24 of 28 US 7,783,863 B1

800
¥

302

Trace Execution

ls Abort trigger =
Final Branch

Misprediction”

808

-Send FBM to TU Y s the FBM on

a new |P?

-Send the new [P
to the TU

810

Send FBM to TU

FI1G. 19

U.S. Patent Aug. 24, 2010 Sheet 25 of 28 US 7,783,863 B1

1002

U executes
one or more
operations

1005

|s abort trigger

priority of 1004
higher than
held at prior

level?

1006 1008

1009
s
abort trigger
of priority

N | Remember or hold
pending abort
1 or 27 priority level

1020~ LA 1012

-~

S
abort trigger
of priority 07

1014

Y

. X s
N " Isita MOC s Non_spec
Stop [« ~.. violation? .7 Attr. Applied to

. Trace?
1013 o Ll

»

M
Y N
1022-\ y 1015
n -.“-i Remember or hold
 Wait pending abort
e : priority level

FIG. 20

1016

U.S. Patent Aug. 24, 2010 Sheet 26 of 28 US 7,783,863 B1

1042
Abort prioritization /1 040
logic receives an abort

1043

1046

lgnore Abort

IS
there an abort
on an older
trace?

1044

S
there a higher or
equal priority abort
pending”

1050

1048 -Delay sending the U abort until

Y IU renames it
-|U sends abort to TU. U also
sends the abort reason and
trace |ID

IS
It a trap-style
abort?

1052

-lU sends about to TU. U also
sends the abort reason and
Trace ID
-lU halts rename stage

U.S. Patent Aug. 24, 2010 Sheet 27 of 28 US 7,783,863 B1

1070
/‘
T To T3 T4 c e . TN

1072
PRIORITIZATION

1074

PENDING
ABORT

1076

PRIORITIZATION

1078

PENDING
ABORT

1084

PRIORITIZATION

FIG. 22 1086

U.S. Patent Aug. 24, 2010 Sheet 28 of 28 US 7,783,863 B1

1094
PRIORITIZATION

Abort reason

F1G. 23

US 7,783,863 Bl

1

GRACEFUL DEGRADATION IN A
TRACE-BASED PROCESSOR

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority document
U.S. Provisional Application No. 60/889,547, entitled
“Instruction Sub-Type Tracking Unit”, filed on Feb. 13, 2007
and further claims the benefit of priority document U.S. Pro-
visional Application No. 60/862,609, entitled “Exception
Handling for Atomic Traces”, filed on Oct. 24, 2006, and
turther claims the benefit of priority document U.S. Provi-
sional Application No. 60/721,385, filed on Sep. 28, 2003,
entitled “Efficient Trace Cache Management During Seli-
Modifying Code Processing,” by Leonard Shar et al., and
turther claims the benefit of priority document U.S. Provi-
sional Application No. 60/730,530, filed on Oct. 26, 2003,
entitled “Checkpointing Status Flags for Atomic Traces,” by
John Gregory Favor et al., and further claims the benefit of
priority document U.S. Provisional Application No. 60/730,
810, filed on Oct. 27, 2003, entitled “Allocation and Deallo-
cation of Shadow Registers used by Atomic Traces,” by John
Gregory Favor et al., and further claims the benefit of priority
document U.S. Provisional Application No. 60/731,962, filed
on Oct. 31, 20035, entitled “Determining the Highest Priority
Abort Trigger 1n an Atomic Trace,” by John Gregory Favor et
al., and further claims the benefit of priority document U.S.
Provisional Application No. 60/731,785, filed on Oct. 31,
20035, entitled “Maintaining Memory Coherency within a
Trace Cache,” by Richard W. Thaik, and further claims the
benelfit of priority document U.S. Provisional Application
No. 60/732,438, filed Nov. 1, 2003, entitled “Zero-Cycle
Execution of Clear Operation and Automatic Register Free,”
by John Gregory Favor et al., and further claims the benefit of
priority document U.S. Provisional Application No. 60/832,
848, filed on Jul. 23, 2006, entitled “Microprocessor with
Caches for Instructions, Basic Blocks, and Traces,” by Don
Alpert et al., and further claims the benefit of priority docu-
ment U.S. Provisional Application No. 60/832,822, filed on
Jul. 23, 2006, entitled “Microprocessor with Coherent
Caches for Basic Blocks and Traces,” by Don Alpertetal., and
turther claims the benefit of priority document U.S. Provi-
sional Application No. 60/862,609, filed Oct. 24, 2006,
entitled “Exception Handling for Atomic Traces,” by Chris-
topher P. Nelson, and further claims the benefit of priority
document U.S. Provisional Application No. 60/866,203, filed
Nov. 16, 2006, entitled “Processor with Optimized Operation
Sequences for Basic Block and Multi-Block Trace Caches,”
by John Gregory Favor, and further claims the benefit of
priority document U.S. Provisional Application No. 60/866,
203, filed Nowv. 16, 2006, entitled “Processor with Basic Block
and Multi-Block Trace Caches,” by Matt Ashcratit et al. John
Gregory Favor 1s also known as John Favor or as Greg Favor.
Each of the above named priority documents 1s hereby incor-
porated by reference.

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 11/781,937, filed on Jul. 23, 2007 and
entitled “A Trace Unit with a Decoder, A Basic Block Builder,
and A Multi-Block Builder”, which 1s a continuation-in-part
of U.S. patent application Ser. No. 11/5335,971, filed Sep. 27,
2006, entitled “Efficient Trace Cache Management During
Self-Moditying Code Processing,” by Leonard Eric Shar et

al., and 1s a continuation-in-part of U.S. patent application
Ser. No. 11/535,972, filed Sep. 27, 2006, entitled “Selective
Trace Cache Invalidation for Self-Moditying Code Via

Memory Aging,” by Leonard Eric Shar et al., 1s a continua-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion-m-part of U.S. patent application Ser. No. 11/535,977,
filed Sep. 27, 2006, entitled “Trace Cache for Efficient Seli-
Moditying Code Processing,” by Leonard Eric Shar, 1s a
continuation-in-part of U.S. patent application Ser. No.
11/553,453, filed Oct. 26, 2006, entitled “Checkpointing
Statrace unit 12s Flags for Atomic Traces,” by Greg Favor et
al., and 1s a continuation-in-part of U.S. patent application
Ser. No. 11/553,455, filed Oct. 26, 2006, entitled “Check-
pointing Flags On-Demand for Atomic Traces,” by John Gre-
gory et al., and 1s a continuation-in-part of U.S. patent appli-
cation Ser. No. 11/5353,458, filed Oct. 26, 2006, entitled “Flag
Restoration from Checkpoints for Aborts of Atomic Traces,”
by John Gregory Favor et al., and 1s a continuation-in-part of
U.S. patent application Ser. No. 11/591,024, filed Oct. 31,
2006, entitled “Maintaining Memory Coherency within a
Trace Cache,” by John Gregory Favor. John Gregory Favor 1s
also known as John Greg Favor. Each of the above named
applications for which this application 1s a continuation 1n
part 1s hereby incorporated by reference.

BACKGROUND OF THE INVENTION

Processors have evolved throughout recent decades by
becoming smaller 1n size, more sophisticated in design and
exhibiting faster performance. Such an evolution has resulted
for various reasons, one of which 1s portability of systems
incorporating processors. Portability introduces demands on
processors such as smaller size, reduced power and etficient
performance.

A processor (such as a microprocessor) processes mnstruc-
tions according to an instruction set architecture. The pro-
cessing comprises letching, decoding, and executing the
instructions. Some 1nstruction set architectures define a pro-
gramming model where fetching, decoding, executing, and
any other functions for processing an nstruction are appar-
ently performed in strict order, beginning after the functions
for all prior mstructions have completed, and completing
before any functions of a successor instruction has begun.
Such an instruction set architecture provides a programming,
model where mstructions are executed in program order.

Some processors process mstructions 1n various combina-
tions of overlapped (or non-overlapped), parallel (or sernal),
and speculative (or non-speculative) manners, for example
using pipelined functional units, superscalar 1ssue, and out-
of-order execution. Thus, some processors are enabled to
execute 1nstructions and access memory in an order that dii-
fers from the program order of the programming model.
Nevertheless, the processors are constrained to produce
results consistent with results that would be produced by
processing 1nstructions entirely 1n program order.

In some 1nstruction set architectures, instructions are char-
acterized as being either sequential or non-sequential, 1.e.
specilying a change 1n control flow (such as a branch). Pro-
cessing alter a sequential instruction implicitly continues
with a next instruction that 1s contiguous with the sequential
instruction, while processing after a change 1n control flow
instruction optionally occurs with either the contiguous next
instruction or with another next instruction (frequently non-
contiguous) as specified by the control flow nstruction.

Applications of processors are, for example, in personal
computers (PCs), workstations, networking equipment and
portable devices. Examples of portable devices include lap-
tops, which are portable PCs, and hand-held devices.

Due to the wide use of code based on the x87 mnstruction
set, particularly by software programmers who have become
well accustomed to this code and are not likely to readily
adapt to another code, backward compatibility of code 1s key

US 7,783,863 Bl

3

in the architecture of a new processor. That 1s, the user of a
newly-designed processor must enjoy the ability to use the
same code utilized 1 a previous processor design without
experiencing any problems.

In trace-based processor architectures, different trace types
are used to significantly optimize execution by the back end,
or execution unit, of the processor. Traces are generally built
by the front end or trace unit (or instruction processing unit)
ol a processor.

Different types of traces might include a basic block trace,
a multi-block trace or a microcode trace. A multi-block trace
1s made of one or more basic block traces, one or more
multi-block traces or a combination thereof. A microcode
trace 1s used when, for example, a sequence of mnstructions 1s
either complex or rare. U.S. patent application Ser. No.
11/781,937, entitled “A Trace Unit with a Decoder, A Basic
Block Builder, and A Multi-Block Builder” and filed on Jul.
23, 2007, the disclosure of which 1s imncorporated herein by
reference as though set forth 1n full, presents further details of
such traces.

A trace, 1n some trace-based architectures, includes opera-
tions that do not correspond to 1nstructions in the instructions’
original program order. That 1s, knowledge of the original
program order of the mstructions 1s lost 1n a trace. Moreover,
an 1struction may result in multiple operations. Additionally,
there 1s no instruction boundary and the operations of a trace
do not have clear relative age or order between each other
(corresponding to the original instruction program order).

In prior art technmiques, when a problem with a trace 1s
detected, because there 1s a correspondence between mnstruc-
tions and operations, the relative age of the operation with the
problem 1s used to roll back the architectural state of the
processor to that which 1t was prior to the abort. However, in
a trace-based architecture, where there 1s no correspondence
between the instructions and corresponding operations and
there 1s no clear mstruction boundary, the problem cannot be
resolved using the age of the operation because the order of
the operations do not represent the original program order.

In prior art processors, when an abort 1s encountered, only
the relative age of the pending abort 1s considered, however,
where traces include operations that do not represent the
original program order, simply considering the relative age of
the pending abort falls short of resolving aborts effectively. In
trace-based architectures, if an abort, or a problem, applies to
more than one operation representing two or more mnstruc-
tions 1n the same trace, currently, the abort 1s not handled
cificiently, as there 1s no clear operation-to-instruction or
instruction order correspondences or instruction boundary.

In the foregoing trace-based architectures, a trace can
experience multiple abort triggers (due to problems with dii-
ferent instructions contained within the trace) while tradi-
tional non-traced based processors will only recognize a
single abort trigger for a single istruction.

In light of the foregoing, there 1s a need for a trace-based
processor having a trace unit (or front end) and an execution
unit (or back end) for efficiently managing problems (or
aborts) related to one or more traces while minimizing per-
formance 1mpact.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present speci-
fication, the present invention discloses a method and corre-
sponding structures for a graceful degradation protocol.

10

15

20

25

30

35

40

45

50

55

60

65

4

Briefly, 1n accordance with a method of the present inven-
tion, a method of handling a trace to be aborted includes
receiving an indication of a trace to be aborted and an indi-
cation of an abort reason corresponding to an execution of the
trace to be aborted. The trace to be aborted has a trace type
associated therewith and includes a sequence of the opera-
tions, and represents a sequence of at least two of the mnstruc-
tions. The method further includes 1dentifying a corrective
action based at least in part on the type of the trace to be
aborted and on the abort reason, not taking into account a
correspondence between the at least one operation that
caused the execution to be aborted and the at least one mnstruc-
tion that the at least one operation at least 1n part represents. A
next trace and its trace type 1s determined for execution,
where the determining 1s based on the trace to be aborted and
on the corrective action.

These and other objects and advantages of the present
invention will no doubt become apparent to those skilled 1n
the art aiter having read the following detailed description of
the preferred embodiments illustrated in the several figures of
the drawing.

IN THE DRAWINGS

FIG. 1 shows a processor to include a trace unit and an
execution unit, 1n accordance with an embodiment of the
present 1nvention.

FIG. 2 shows relevant details of the IU 36 of the execution
unit 1n accordance with an embodiment of the present inven-
tion.

FIG. 2(a) illustrates selected aspects of an embodiment of
abort prioritization unit 50 that embody various abort pro-
cessing functions.

FIG. 2(b) shows turther details of the trace unit 12.

FIG. 3 shows a flow chart abstractly depicting various abort
triggers and each of their respective resulting action.

FIG. 4 shows an abstract view of the different states of
Table 1 as time elapses from Time A to Time B to Time C.

FIG. 5 shows an exemplary tlow of the efiect of graceful
degradation on a multi-block trace, 1n accordance with an
embodiment of the present invention.

FIGS. 6-19 show the steps performed for some of the
corrective actions of Table 3.

FIGS. 20-23 show steps performed in prioritizing aborts, in
accordance with an exemplary method of the abort prioriti-
zation process of the present invention.

PR.

(L]
=]

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENT

In the following description of the embodiments, reference
1s made to the accompanying drawings that form a part
hereof, and 1n which 1s shown by way of illustration of the
specific embodiments 1n which the mvention may be prac-
ticed. It 1s to be understood that other embodiments may be
utilized because structural changes may be made without
departing from the scope of the present invention.

Referring now to FIG. 1, a processor core 10 1s shown to
include a trace unit 12 and an execution unit 14, 1n accordance
with an embodiment of the present invention. A “trace unit”,
as used herein, 1s synonymously referred to as an “instruction
processing circuit” or a “front end”. An “execution unit”, as
used herein, 1s synonymously referred to as a “back end”. A
“sequence of operations”, as used herein, 15 synonymously
referred to as a “trace”. In some embodiments of the present
invention, the processor core 10 1s a part of a processor that
includes multiple processor cores and 1n other embodiments,

US 7,783,863 Bl

S

the processor core 10 1s itself a processor. To this end, the term
“processor’ 1s used synonymously with the terms “processor
core”.

The trace unit 12 and the execution unit 14 exchange abort
information through the trace unit-provided abort link 40 and
the execution unit-provided abort link 42. More specifically,
the trace unit 12, upon detecting an abort trigger, sends a trace
unit abort trigger to the execution unit 14, through the link 40,
and the execution unit 14, upon detecting an abort trigger,
sends abort information to the trace unit 12, through the link
42. Abort trigger, as used herein, refers to an occurrence of an
abort for a specific reason relating to the problem. Multiple
abort triggers correspond to different abort reasons. Abort
trigger includes an indication of the trace that has the problem
(or the trace that 1s to be aborted).

The ops fetcher 28 of the trace unit 12 provides traces to the
execution unit. More specifically, traces are provided by the
ops fetcher 28 to the IU 36. The source of traces may be one
or more sources. In one embodiment, the sources are basic
block cache, multi-block cache and microcode cache. It 1s
understood however, that traces can be generated from any
source.

Traces and their related abort information are correlated
using trace identification (trace ID). Further discussion of
trace 1D 1s presented later.

The trace umit 12, upon recerving abort information (which
may include abort status) from the execution unit 14, through
the link 42, uses the received information to commuit or abort
the triggering trace. A triggering trace 1s a trace to which one
or more aborts apply.

If committed, a trace 1s sure to be executed, however, 1t
aborted, none of the operations (or memory operations)
within the trace have any efiect on the architectural state of
the processor core 10. In one embodiment, trace execution 1s
atomic 1n that the trace’s effects are either commaitted in their
entirety to the architectural state, or prevented 1n their entirety
from having any impact on the architectural state.

If a trace 1s aborted, the architectural state of the various
components of the trace unit 12 and the execution unit 14 are
returned to their states as they were prior to the start of the
trace. Architectural state 1s commonly understood as the part
ol the processor core which holds the state of a process, such
as the state of control registers or general purpose registers.

An atomic trace 1s generally a trace that may be treated, 1n
its entirety, as a single sequence of 1nstructions, or as having
a single entry and a single exit. In some scenarios, atomic
traces are produced by hardware translation of sequences of
instructions used by software according to a reference archi-
tecture. In some usage scenarios, an atomic trace may include
more than one basic block, 1.e. include one or more interior
conditional branches. As a degenerate case, atomic trace may
be a single instruction. To this end, a trace may also be a single
istruction.

In some embodiments, an atomic trace combines effects of
multiple mstructions from an original sequential program or
sequence of mstructions. In some embodiments, operations
within an atomic trace are optimized (such as by splitting,
combining, reorganizing, and so forth) in such a way that 1t
may be difficult to map each operation in the trace to an
instruction in the original program. Operations may also
appear 1n a diflerent order in the trace than their correspond-
ing instructions in the original program, and operations may
execute 1n the processor 1n a different order than they appear
in the trace. The foregoing holds true for traces.

In some embodiments, operations 1n a trace are tentatively
(or speculatively) executed based on one or more assump-
tions. If one or more of the assumptions are incorrect, then the

[

10

15

20

25

30

35

40

45

50

55

60

65

6

trace 1s aborted, 1.e. the effects of the operations 1n the trace
are undone. There are a number of events that may trigger the
need for a trace to be aborted. Depending on the event, the
trace may be re-executed with different execution constraints/
assumption (or attribute), or a different trace may be
executed. In order to resolve the event requiring the abort, a
correct abort trigger needs to be detected.

While reference 1s made to traces, all discussions,
examples and figures provided herein equally apply to atomic
traces.

The operations 1n the trace may be re-ordered so that they
are no longer 1n their original program order. Additionally, an
instruction can become multiple operations. .

[hus, 1n the
event of an abort, the order of the operations, within the same
trace, cannot be used as a basis for prioritizing aborts.
Retferring still to FIG. 1, the trace unit 12 1s shown to
include a sequencer 29, an operations (or ops) fetcher 28 and
a sequence bulfer 32. The sequencer 29 1s shown coupled to
the sequence buffer 32. The sequence builer 32 1s shown

responsive to the ops fetcher 28. U.S. patent application Ser.
No. 11/781,937, entitled “A Trace Unit with a Decoder, A

Basic Block Builder, and A Multi-Block Builder” and filed on
Jul. 23, 2007, provides further details of the sequencer 29, the
ops fetcher 28 and the sequence buffer 32.

The sequence buffer 32 stores traces that have been
sequenced by the sequencer 29, but not committed by the
execution unit 14. A trace that 1s committed 1s one whose
operations (ops) have all been successtully executed by the
execution unit 14, and the ops of all of the older (or earlier)
traces have also been successiully executed. An older (or
carlier) trace, as used herein, refers to a trace that 1s older 1n
program order and younger refers to a trace that 1s later in
program order.

The execution unit 14 1s shown to include an x87 and multi
media extensions (MMX) (XM) (a combination of x87 and
MMX) unit 34, an mteger unit (IU) 36, a streaming single-
instruction, multiple-data (SIMD) extensions (SSE) unit 38
and a memory unit (MU) 44. SIMD 1s a technique employed

to achieve data-level parallelism, as 1n a vector or an array
processor. The XM 34 1s shown coupled to the IU 36, which

1s shown coupled to the SSE 38 and the MU 44.

The XM 34, SSE 38 and the MU 44 send and receive abort
information to and from the IU 36. The XM 34 1s generally a
tfloating point unit for executing certain tloating point instruc-
tions. The MU 44 generally maintains cache and/or other
memory used by the execution umit 14. Functions of the IU 36
include storing and prioritizing abort triggers and generating
one or more aborts/abort reasons.

The SSE 38 1s generally a set of SIMD instructions to
maximize floating point 1nstruction execution. SSE and XM
are known and used 1n various processor architectures.

The IU 36 executes mteger registration operations and the
SSE 38 executes a set of SIMD register operations. SSE 38
generates one or more abort triggers, such as the SSE abort
trigger 74. The MU 44 executes memory operations and
generates MU abort trigger, such as the MU abort trigger 72.

FIG. 2 shows relevant details of the IU 36 of the execution
unit, 1n accordance with an embodiment of the present inven-
tion. The IU 36 1s shown to include an abort prioritization
logic 50, a decode block 52, a renaming block 54, a schedul-
ing block 56, a register file block 58, and arithmetic logic unit
(ALU) 060, ALU 1 62 and ALU 2 64. Eachofthe ALU 0,1
and 2 execute operations in parallel and offer three parallel
execution stages for a corresponding superscalar architecture.

The scheduling block 56 does not take 1nto account aborts
when scheduling, which serves to reduce the complexity of
the scheduling block’s design.

US 7,783,863 Bl

7

In an exemplary embodiment, the MU abort trigger 72 1s
generated from any one of the following six abort triggers: 3
CannotComplete triggers in stage data format and return
(DFR) and 3 OrderViolation triggers in the stage of memory
order violation (MOV). Similarly, the SSE abort trigger 74 1s
generated from any of two triggers, and the XM abort trigger
76 1s generated from any of four triggers.

The IU 36 1s further shown to include a memory order
constraint (MOC) block 51 responsive to the abort trigger 72
from the MU 44 and operative to generate a constraint to the
scheduling block 56. The block 51 generally stores memory
order constraints. It 1s understood however, that memory
order constraints may be maintained 1n other locations within
the IU 36 or outside thereof.

The abort prioritization logic 50 1s shown coupled to
receive abort triggers from the trace unit 12, the MU 44, the
SSE 38 and the XM 34. The abort prioritization logic 50 1s

also shown to generate abort information to the trace unit 12
through the link 42.

The renaming block 54 1s shown to generate a renaming
abort trigger to the abort prioritization logic 50, which 1s
referred to as iternal type of abort trigger because 1t 15 gen-
erated internally to the IU 36.

The decoder block 52 generally decodes data, the renaming,
block 54 generally renames a trace (or maps the architectural
registers to physical registers), the scheduling block 56
schedules operations for execution, and the register file block
58 maintains register files.

The trace unit 12 generates and provides, to the abort
prioritization logic 50, trace unit abort trigger 70. The abort
trigger 70, 1n some embodiments, includes a self modifying
code (SMC), parity, invalid and stall abort triggers. The trace
unit 12 sends the abort trigger 70, via the link 40, to the IU 36
(namely the abort prioritization logic 50) and the IU 36 pri-
oritizes the aborts and sends back to the trace unit 12, via the
link 42, a selected abort reason corresponding to a corrective
action to be performed. The abort reason results from choos-
ing the abort trigger to handle next and the corresponding
corrective action.

The MU 44 generates and provides, to the abort prioritiza-
tion logic 30, memory unit abort trigger 72. The SSE 38
generates and provides, to the abort prioritization logic 50,
SSE abort trigger 74 and the XM 34 generates and provides,
to the abort prioritization logic 50, XM abort trigger 76. The
triggers 70, 72, 74 and 76 are collectively referred to herein as
external abort triggers because they are generated externally
to the IU 36.

The renaming block 54 generates the renaming abort trig-
ger 73 and the combination of the ALU 0, 2 and 3 generates
the execution abort trigger 75, which serves as one of the
inputs of the abort prioritization logic 30. The abort triggers
73 and 75 are each internal abort triggers.

The abort prioritization logic 30 1s responsive to abort
triggers generated internally or externally to the IU 36 and
upon receipt of an abort trigger, arbitrates and prioritizes the
same.

In one embodiment of the present invention, there are four
different abort priority levels, 1.e. priority levels 0-3, although
in other embodiments of the present invention, any number of
priority levels may be employed. In the embodiment where
four abort prionty levels are employed, the highest abort
priority level 1s assigned to prionty level 0. When an abort
trigger of the highest abort priorty level, or priority level 0, 1s
detected by the IU 36, it 1s processed regardless of any other
abort triggers for that trace. If abort prionty levels are the
same, the existing (or pending) 1s maintained. Alternatively,
the non-pending abort 1s maintained (or taken).

10

15

20

25

30

35

40

45

50

55

60

65

8

Priority can be preferentially based on the relative age of
traces. For example, an older trace with a lower abort priority
level than a younger trace, will ultimately get priority over the
younger trace’s abort priority level. In the case where aborts
occur on the same age, priority level determines which takes
the abort. IT the priority level and age are the same, the
existing (pending) abort 1s maintained. Alternatively, the non-
pending abort 1s taken.

The abort prionitization logic 50, advantageously deter-
mines a reason for a trace to be aborted, 1.e. the abort reason,
alter receiving at least two incoming indications of occur-
rences ol abort triggers stemming from (or based on) the
execution of different operations of a same trace, where each
abort trigger has an associated abort priority level, and where
the trace represents multiple instructions. An indication of a
pending abort 1s held, as a pending abort. The held indication
1s of the abort trigger with the highest abort priority level
among the abort triggers that are associated with the trace. An
outgoing indication of the pending abort (or abort reason) 1s
provided by the abort prioritization logic 50. The outgoing
indication of the pending abort 1s the abort reason that was
selected among competing abort reasons causing the received
occurrences and 1s provided to the trace unit 12 through the
link 42.

Examples of abort reasons include but are not limited to at
least one of: a memory ordering constraint violation, a inter-
processor loss of a cache line, a uni-processor loss of a cache
line; a seli-moditying code event; a trace cache parity error; a
segmentation fault; a memory fault; a cannot complete fault;
a floating point operation fault; a breakpoint fault; a branch
misprediction fault, an interior branch misprediction fault, or
a final branch misprediction fault.

In some cases of the embodiments of the present invention,
a particular operation can cause multiple abort triggers. In
various embodiments, each abort trigger has a static priority
whereas, in prior art techmiques, the priorities are only
dynamic, relative to age. In other cases of the embodiment of
the present mvention, each occurrence of the same abort
trigger has the same abort prionty level regardless of the
program order of the instructions that correspond to the
operations. Prior art techniques, however, use mstruction (or
program) order.

In some embodiments and methods of the present inven-
tion, priority 1s given to an abort known to be earlier in
program order (based on trace order corresponding to the
original program order), while giving priority within a trace
according to the abort priority scheme. Where atomic traces
are used, the program order would be based on atomic trace
order).

In some cases, a corrective action 1s identified based, at
least 1n part, on the type of the trace to be aborted and on the
abort reason, where the 1dentification of the corrective action
does not take into account a correspondence between the
operation(s) that caused the execution to be aborted and the
instruction(s) that the operation at least 1n part, represents. In
other cases, the corrective action does take 1into account a
correspondence between the operation(s) that caused the
execution to be aborted and the instruction(s) that the opera-
tion at least in part, represents because some traces do include
such correspondence information.

There are several different aborts with a given abort prior-
ity level, such as priority level 0. All cause the trace from
which the abort was detected to be refetched and re-executed.
It an abort of priority 0 1s recorded, and another priority
abort 1s found 1n the same trace, then the desired action of the
second abort 1s recorded in addition to the desired action
already recorded for the first abort. For example, if a load

US 7,783,863 Bl

9

value misprediction 1s found during execution of a trace, then
the desired (or corrective) action 1s to re-execute the trace
with load value prediction disabled. If an intra-processor (or
multi processor) order violation 1s subsequently found during
execution of the (same) trace, then the desired memory con- 5
straint 1s recorded, and the pending abort accumulation logic
continues to remember that load value prediction should also
be disabled when the trace 1s re-executed.

In exemplary embodiments of the present invention, the
indications received, the indications held, and the indications 10
sent may or may not use the same encodings and they are all
stored 1n the abort prioritization logic 50. Alternatively, they
are stored elsewhere 1n the execution unit 14 or even exter-
nally to the execution unit 14.

In an embodiment of the present invention, the pending 15
abort 1s maintained (or held) when 1t has the same abort
priority level as the abort trigger. Alternatively, other than the
pending abort 1s maintained. The pending abort 1s cleared
when the trace 1t 1s associated with 1s ready to commut. At this
time, no higher abort priorities exist, either by way of age or 20
priority level, and the abort 1s commutted.

Some aborts shut down activity upon occurrence, others
allow the trace to complete so as to look for the actual cause
of the problem yet others effect a combination of the forego-
ng. 25

In one embodiment of the present invention, there are more
than one processor cores 10, 1n yet another embodiment, an
execution unit includes more than one IU and all IUs are
coupled to the trace unit 12. In some embodiments, only a
portion ofthe IU 1s coupled to the XM. In some embodiments, 30
all of the IUs are coupled to the XM (not illustrated by the
figure). In some embodiments the execution units are 1dent-
cal, while 1n other embodiments some of the execution unit
may be of a one type (having, for example, relatively high
instruction processing bandwidth and capable of operating at 35
a relatively high frequency) and some of the execution units
may be of another type (having relatively low processing
bandwidth and frequency). In some embodiments all or por-
tions of the abort priority unit 1s embodied in the IU, the MU,
or both. In various embodiments the number and processing 40
capabilities of the execution unit are varied without restric-
tion.

The processor employs techniques of speculative execu-
tion, predicting, for example, branch directions, lack of
exceptions, load values, and so forth. The processor manages 45
speculation according to groups of operations orgamized with
respect to atomic traces. Management of speculative execu-
tion of operations 1n traces comprises detecting incorrect
speculation abort triggers, prioritizing the detected abort trig-
gers, and responding by prescribing an appropriate corrective 50
action to correct execution according to the prioritization.
Prioritizing the abort triggers comprises prioritizing the abort
triggers with respect to each other according to pipeline
embodiment dependent processing constraints and relative
event architectural priority or a combination of any of the 55
latter and original program order.

FIG. 2{(a) illustrates selected aspects of an embodiment of
abort prioritization logic unit 50 that embody various abort
processing functions. The abort prioritization logic unit 50 1s
shown to comprise several elements, illustrated for clarity 60
without interconnections. Relative importance (1.e. abort pri-
ority level) of abort triggers 1s determined by circuitry of
(abort) priority unit (or circuit) 201, based on information
determined during instruction and trace processing. Indi-
vidual abort triggers are recognized for processing by priority 65
unit 201 by the circuitry of (abort) detector (circuit) 202.
Determining and retaiming the highest abort prionty level

10

detected for a current execution flow 1s performed by circuitry
of (pending abort) accumulator (circuit) 203. The “held” or
pending abort and its associated abort priority level are keptin
the accumulator 203.

For some abort priority levels, where there are multiple
abort triggers on the same trace, all of the aborts are main-
tained.

A highest-priority abort event (or trigger) 1s recogmzed (or
chosen) by circuitry of trigger unit (or circuit) 204. Activities
of processor pipelines (such as pipelines embodied in the TU,
MU, floating point (FP), and trace unit 12) and abort units
(such as the priority unit 201, the detector (circuit) 202, the
accumulator 203, and the trigger unit (or circuit) 204) are
coordinated by pipe control unit 205. Pipe control unit 205
comprises execution attribute control logic (or circuit) 251 to
direct the IU 36 to execute according to various attributes as
a Tunction of recognized abort triggers. Pipe control unit (or
circuit) 205 further comprises trace formation control logic
(or circuit) 252 to determine and direct formation of traces 1n
accordance with recognized abort triggers.

FI1G. 2(b) shows further details of the trace unit 12. In FIG.
2(b), a processor core 10 1s shown to include a trace unit 12
coupled to an execution unit 14 and to a table walker (TW) 95,
in accordance with an embodiment of the present invention.
“Processor” and “microprocessor’, as used herein are syn-
onymous. “Execution unit” and “back end”, as used herein,
are synonymous.

The execution unit 14 generally executes a sequence of
operations (also known as “sequence of code” or “trace”)
provided by the trace unit 12. The trace unit 12 generally
builds sequences of operations for use by the execution unit
14. In so doing, the trace umt 12 operates to reduce the
workload of the execution unit 14 by optimizing the sequence
ol operations 1n, for example, a basic block and/or multi-
block trace.

In accordance with an embodiment of the present inven-
tion, the trace unit 12 1s shown to include an instruction cache
circuit 16, a decoder circuit 18, a basic block builder circuit
20, a basic block cache circuit 22, a microcode cache circuit
24, a multi-block cache circuit 26, an operations fetcher cir-
cuit 28, a sequencer circuit 29, a branch predictor circuit 30,
a sequence buller circuit 32, a multi-block builder circuit 34,
a page translation builer (P1TB) (also known as “page trans-
lation cache (PTC)”) 91 and an instruction translation look-
aside buffer (ITLB) 93. The ITLB 93 of the trace unit 12 1s
shown coupled to the table walker 95.

In an alternative embodiment, the basic block cache circuit

22 and the multi-block cache circuit 26 collectively comprise
a trace cache circuit.

The basic block builder circuit 20 and the multi-block
builder circuit 34 are collectively referred to as a trace builder
circuit 36. While the trace builder circuit 36 1s a single circuit
in one embodiment of the present invention, 1n an alternative
embodiment, the trace builder circuit 36 1s physically more
than one circuit. For example, the basic block builder circuit
20 of the trace builder circuit 36 1s a physically-separate
circuit than the multi-block builder circuit 34 of the trace
builder circuit 36.

While in the embodiment of FI1G. 2(5), the basic block and
multi-block cache circuits 22 and 26 are shown to be physi-
cally separate circuits, alternatively, they may physically be
the same circuit.

In FIG. 2(b), the instruction cache circuit 16 1s shown
coupled to the decoder circuit 18 and, through the decoder
circuit 18, instruction cache circuit 16 recerves requests from
the sequencer circuit 29. The decoder circuit 18 1s shown
coupled to the basic block builder circuit 20 and to the opera-

US 7,783,863 Bl

11

tions fetcher circuit 28. The basic block builder 20 1s shown
coupled to the basic block cache circuit 22. The basic block
cache circuit 22 1s shown coupled to the operations fetcher
circuit 28 and to the sequencer circuit 29. The PTB 91 1s
shown coupled to the sequencer circuit 29 and 1s further
shown to provide information to the basic block cache circuit
22 and the multi-block cache circuit 26. The PTB 91 1s further
shown coupled to the ITLB 93, which 1s shown coupled to the
table walker 95 and the decoder circuit 18.

The multi-block builder circuit 34 1s shown coupled to the
operations fetcher circuit 28 for recerving traces used to build
a multi-block trace. Optionally, the multi-block builder cir-
cuit 34 15 coupled to the basic block cache circuit 22 and the
multi-block cache circuit 26 for receiving traces used to build
a multi-block trace.

The operations fetcher circuit 28 1s shown coupled to the
microcode cache circuit 24, the basic block cache circuit 22,
the multi-block cache circuit 26, the sequence bulfer circuit
32 and the decoder circuit 18. The sequencer circuit 29 1s
shown coupled to the branch predictor circuit 30, the multi-
block cache circuit 26, the microcode cache circuit 24 and the
basic block cache circuit 22. The operations fetcher circuit 28
1s shown coupled to the execution unit 14.

The instruction cache circuit 16 1s a cache, which 1s a
known form of memory, and 1s generally used to store instruc-
tions for optimization by the trace unit 12 before execution
thereot by the execution unit 14. The instruction cache circuit
16 provides the stored sequence of mstructions to the decoder
circuit 18. Instructions, as are referred to herein, are any
Reduced Instruction Set Computer (RISC)- or Complex
Instruction Set Computer (CISC)-based instruction code,
such as but not limited to the x87 instruction code.

The decoder circuit 18 receives the sequence of 1nstruc-
tions from the instruction cache circuit 16 and decodes the
received sequence of mstructions nto a sequence of opera-
tions.

In one embodiment of the present invention, the decoder
circuit 18 1s operable to detect a decode time 1nstruction mode
that 1s one of a plurality of instruction modes, and based, 1n
part, on the decode time 1nstruction mode, the decoder circuit
18 decodes the sequence of mstructions into a decoder trace.

A decoder trace 1s based on the sequence of instructions
from the instruction cache circuit 16. During decoding, the
instruction mode 1s detected and embedded into the decoder
trace. An instruction mode includes information such as the
number of parallel bits used 1n the architecture of the proces-
sor core, such as 16 parallel bits vs. 32 parallel data bits vs. 64
parallel bits, which are referred to as 16-bit mode, 32-bit
mode, or 64-bit mode, respectively. Alternatively, any other
parallel number of bits may be used by the processor core.

Information, 1n an instruction mode, other than the number
of parallel bits used by a processor core, includes default data
s1ze, default stack size, relative addressing modes, whether a
data segment 1s good or bad, whether or not data 1s used, and
any other information relevant to the decoding of instructions.

Optimization generally causes operations within the
sequence ol operations to be re-ordered and serves to reduce
the workload of the execution unit 14. Basic block traces,
which are at least, 1n part, based on the sequence of mnstruc-
tions generated by the mstruction cache circuit 16, are further
optimized. Multi-block traces, which are based on basic
block traces or multi-block traces or any combination thereof
are still further optimized. One reason for further optimiza-
tion of a multi-block trace relative to a basic block trace 1s its
s1ze. Multi-block traces are typically longer sequences of

10

15

20

25

30

35

40

45

50

55

60

65

12

operations than basic block traces and 1n this respect, there are
more ways ol re-arranging operations to cause further opti-
mization thereof.

Exemplary optimization techniques used by the embodi-
ment of FIG. 2(b) include elimination or removal of certain
operations, which essentially serves to reduce the execution
unit 14°s workload, removal of dependencies between opera-
tions, which also essentially serves to reduce the execution
unit 14°s workload; and more eff]

icient grouping or packing of
operations, which essentially benefits the efliciency of the
trace unit 12, by causing more compact or denser traces to be
built.

In an exemplary embodiment, all traces are executed
atomically, 1.e. completely executed or completely aborted.
When a trace 1s aborted, none of the operations within the
trace have any el

ect on the architectural state. In other words,
trace execution 1s atomic 1n that the trace’s etiects are either
committed in their entirety to the architectural state, or pre-
vented 1n their entirety from having any impact on the archi-
tectural state.

It a trace 1s aborted, the architectural state of the various
components of the trace unit 12 and the execution unit 14 are
returned to their states as they were prior to the start of the
trace. Architectural state 1s commonly understood as the part
of the processor core which holds the state of a process, such
as the state of control registers or general purpose registers.

In one embodiment of the present invention, the sequencer
circuit 29 operates to select a next sequence of operations
from among the decoder sequence of operations (or traces),
the basic block sequence of operations (or traces), and the
multi-block sequence of operations (or traces). In an alterna-
tive embodiment of the present invention, the sequencer cir-
cuit 29 sequences the next microcode trace, to be executed by
the execution unit 14, by addressing the next microcode trace
in the microcode cache 24. Upon 1dentiiying the next micro-
code trace, the microcode cache circuit 24 provides the next
microcode trace to be executed to the execution unit 14 for
execution thereof.

In operation, the sequencer circuit 29 determines the order
in which traces are sent to the execution unit 14 and which
traces to promote, which traces to combine. The ops fetcher
28 sends fetched operations to the execution unit 14. At the
same time, the sequencer circuit 29 1s sending the fetched
operations to the execution unit 14, sequencer circuit 29 also
sends the fetched operations to the one or both of the builder
circuits 20 and 34.

A microcode trace 1s used when, for example, instructions
are either complex or rare. The execution of rare mstructions
need not be efficient. Certain complex instructions, such as
“string manipulation” need to be optimized, and are done so
manually into microcode traces. During manual optimiza-
tion, the objective 1s to try to make the operations compact or
create traces that include the least number of operations pos-
sible.

An example of amicrocode trace 1s based on segmentation
changing code known to be used by x87 code programmers.
In the case of segmentation changing code, microcode traces,
rather than decoder traces (basic block or multi-block) are
used, and no additional optimization thereof 1s performed.

A microcode trace 1s generally represented by a sequenc-
ing action. That 1s, the decoder circuit 18 determines that a
sequencing action 1s microcode and terminates a current basic
block trace. Upon termination of the current basic block trace,
by the decoder circuit 18, a sequencing action results 1 a
‘call’ to a microcode trace 1dentified at a particular address in
the microcode cache circuit 24. The microcode trace 1s
retrieved, from the microcode cache circuit 24, by the opera-

US 7,783,863 Bl

13

tions fetcher circuit 28 and 1s provided, by the operations
fetcher circuit 28, to the execution unit 14 for execution
thereof.

Thereatfter, either the sequencer circuit 29 sequences the
next basic block trace, another trace, or additional microcode
traces are sequenced and executed. A microcode trace
includes a control transfer and sequencing action.

The sequencer circuit 29 performs various critical func-
tions. Among which 1s identifying the next trace to be
executed by the execution unit 14, and 1n doing so the trace
unit 12 decouples the sequencing time from the execution
time. The sequencing rate refers to the number of clock cycles
used for sequencing a next trace. A typical sequencing rate 1s
once every four clock cycles although 1n other embodiments
other sequencing rates are employed. A “cycle”, as used
herein, refers to a clock cycle.

In one method and embodiment of the present mnvention,
the sequencer circuit 29 sequences ahead of the execution unit
14 and 1nstructs the branch predictor circuit 30 to predict all
predictions associated with a sequencing action. The next
address resulting from a sequencing action 1s predicted by the
branch predictor circuit 30. A predicted result 1s also known
as a “projected result”.

For example, a sequencing action that might result 1n three
possible target addresses will have three possible target
addresses associated with it. The different target addresses are
generated by the branch predictor circuit 30 and stored 1n a
target address predictions storage location. The foregoing
results 1n higher power consumption and higher performance
by the trace unit 12.

The hardware described above, including any logic or tran-
sistor circuit, may be generated automatically by computer
based on a description of the hardware expressed in the syntax
and the semantics of a hardware description language, as
known by those skilled in the art. Applicable hardware
description languages include those provided at the layout,
circuit netlist, register transfer, and schematic capture levels.
Examples of hardware description languages include GDS 11
and OASIS (layout level), various SPICE languages and IBIS
(circuit netlist level), Verilog and VHDL (register transfer
level) and Virtuoso custom design language and Design
Architecture-IC custom design language (schematic capture
level). The hardware description may also be used, for
example, 1 various behavior, logic and circuit modeling and
simulation purposes.

FI1G. 3 shows a flow chart abstractly depicting various abort
triggers and each of their respective corrective action. In FIG.
3, abort triggers 100 are shown to serve as 1mput to the abort
prioritization logic 50. The abort triggers 100 include the
triggers 70-76. The abort prioritization logic 50 1s shown to
generate any one of N number of abort reasons, N being an
integer number, for any given abort trigger. Abort triggers
may be external or internal, as earlier noted.

An abort reason identifies the reason for the problem
detected within a trace that has been sequenced by the trace
unit 12. Identification of an abort reason and the type of trace
are used to determine a corresponding corrective action that is
to be taken to correct or mitigate the problem with the trace.

Atracetype1s a combination of the trace’s property and the
trace’s attribute. Examples of attributes are non-speculative
and single instruction. Trace property identifies 1f, for
example, a trace 1s a basic block trace, a multi-block trace, or
a microcode trace 1n the case where such traces are employed.
It 1s understood that trace property can include additional
traces or any one of the foregoing or any other combination.

10

15

20

25

30

35

40

45

50

55

60

65

14

In the case where there 1s only a basic block trace employed
or only a multi-block trace employed or any other traces, no
trace property 1s used.

Each abort reason 1s identified with one of the three pos-
sible trace properties in the case where basic block, multi-
block and microcode traces are used. In FIG. 3, the number of
trace types 1s M, M being an integer value. Thus, each abort
reason 1s associated with one of M different trace types.

As an example, 1 FIG. 3, the abort trigger 100 1dentifies
abort reason 2 102 as the reason for the problem associated
with a trace. Furthermore, the abort reason 102 1s applied to
trace type 1 104. In this manner, a trace that 1s 1dentified as
having a problem 1s identified and appropriate (corrective)
action 1s performed based on the trace type and the abort
reason, thereby advantageously allowing for a trace that can
be any of M types to be gracetully degraded.

As previously noted, a trace includes operations that rep-
resent mstructions. A sequence of instructions 1s decoded to
generate a sequence of operations by the trace unit 12. An
instruction may result in multiple operations.

In accordance with a method of the present invention, a
method of handling a trace to be aborted (or a method of
graceful degradation) uses a protocol to handle the abort. The
method 1ncludes the step of recerving an indication of a trace
to be aborted, 1.e. abort trigger, where the trace 1s of a trace
type, where the trace type includes a set of attributes. A set of
attributes 1s zero or more attributes.

The method further includes the steps of recerving an 1ndi-
cation of an abort reason, 1.¢. abort trigger, corresponding to
the execution of the trace to be aborted, 1dentifying a correc-
tive action based, at least 1n part, on the type of the trace to be
aborted and on the abort reason, without taking 1nto account
a correspondence between the operation that caused the
execution of the trace to be aborted and the instruction that the
operation at least 1n part represents. The method further
includes the step of determining a next trace (or a version of
the current trace to be aborted) for execution and the type of
the next trace, based on the trace to be aborted and on the
corrective action. It 1s understood that multiple operations
may correspond to a single istruction. Additionally, a trace
may have operations representing one or more instructions.

A next trace may be sequenced and/or executed immedi-
ately after the trace to be aborted. In some embodiments
however, that would always happen. In other embodiments 1t
would never happen. In yet other embodiments 1t might or
might not happen, depending on what else was going on in
parallel or concurrently with the trace to be aborted.

The foregoing next trace 1s not necessarily sequenced and/
or executed immediately after the trace to be aborted. In some
embodiments, the next trace 1s sequenced and/or executed
immediately after the trace to be aborted. In other embodi-
ments, the next trace i1s never sequenced and/or executed
immediately after the trace to be aborted. In yet other embodi-
ments, the next trace might or might not be sequenced and/or
executed immediately after the trace to be aborted, depending
on what else was going on 1n parallel or concurrently with the
trace to be aborted.

In some cases, the next trace represents a sequence of
instructions that 1s a subset of the sequence of instructions
represented by the trace to be aborted.

The foregoing steps are repeated until the execution of the
current version of the trace that was to be abort does not
generate any abort reason. The current version of the trace
may be the same trace,

In some 1nstances, an operation represents a part of an
instruction.

US 7,783,863 Bl

15

In some instances, a trace may include correspondence
between the operation that caused the execution of the trace to
be aborted and the instruction that the operation represents.
That 1s, some traces might have some operations that have
some correspondence information. Other traces do not have 5
operations that have correspondence information. In yet other
traces, a subset of the operations of a trace are known to
correspond to a subset of the instructions that the trace as a
whole represents.

An exemplary corrective action 1s invalidating a cached 10
version of the trace to be aborted. Others are 1) determinming,
that the next trace to be successtully executed 1s the same as
the trace to be aborted and keeping all of the attributes of the
next trace to be the same as the attributes of the trace to be
aborted; 2) determining that the next trace to be successiully 15
executed 1s the same as the trace to be aborted and altering at
least one of the attributes of the next trace to be successiully
executed to be different from the attributes of the trace to be
aborted; 3) determining that the next trace to be successiully
executed 1s a degraded version of the trace to be aborted and 20
keeping all of the attributes of the next trace to be the same as
the attributes of the trace to be aborted; or 4) determiming that
the next trace to be successtully executed 1s degraded version
of the trace to be aborted as the next trace and altering at least
one of the attributes of the next trace (to be successtully 25
executed) to differ from the attributes of the trace to be
aborted.

Gracetul degradation 1s a process for determining the trace
to be sequenced next by the sequencer 29 and in so doing uses
a protocol to determine the corrective action to be taken 1n the 30
presence ol an abort trigger. A trace that results 1n an abort,
may be refetched and sequenced accordingly for execution or
it may result 1n a different trace being fetched and sequenced
accordingly for execution or 1t may be degraded and
sequenced accordingly for execution. For example, a multi- 35
block trace may be degraded to multiple basic block traces. In
an exemplary embodiment, a multi-block trace represents a
sequence ol instructions that includes a control transfer
instruction internal to the sequence of instructions and a basic
block trace represents a sequence of instructions that includes 40
no control transtfer instructions internal to the sequence of
instructions.

In a trace-based processor architecture using basic block,
multi-block and microcode traces, when the trace to be
aborted 1s a multi-block trace, the degraded version of the 45
trace to be aborted 1s one of: 1) a single instruction trace
representing an 1nitial istruction of the sequence of mnstruc-
tions; 2) a basic block trace representing a subset of the
sequence of instructions where the subset begins with an
initial instruction of the sequence of instructions; or 3) a 50
multi-block trace representing a subset of the sequence of
instructions where the subset begins with an 1mitial instruction
of the sequence of mstructions.

When the trace to be aborted 1s a basic block trace, the
degraded version of the trace to be aborted 1s one of: 1) a 55
single 1nstruction trace representing an initial instruction of
the sequence of instructions; 2) a basic block trace represent-
ing a subset of the sequence of 1nstructions where the subset
begins with an 1nitial instruction of the sequence of 1nstruc-
tions. 60

When the trace to be aborted 1s a speculative single mnstruc-
tion trace (or a trace having speculative and single instruction
attributes), then the degraded version of the trace to be
aborted 1s one that has non-speculative single instruction
attributes and represents the same instruction. 65

In the gracetul degradation protocol (or process) of the
various methods and embodiments of the present invention, 11

16

the same problem previously encountered with the trace 1s
again encountered, then an alternative corrective action may
be performed. The alternative corrective action 1s selected
based on a criterion known to cause minimal performance
impact.

In one exemplary method, the process of graceful degra-
dation 1s stateless 1n that the history of a problem (or abort) 1s
not maintained and therefore cannot be relied upon, 1n resolv-
ing the abort. However, 1n certain exceptional cases, history 1s
maintained and used in the corrective action so as to, for
example, avoid the situation of entering into an endless loop.
Alternatively, the process of gracetul degradation 1s not state-
less and history of the problem 1s maintained.

Graceful degradation advantageously guarantees forward
progress 1n attempting to correct a problem with a trace and 1t
does so 1n a manner causing minimal performance impact.
Accordingly, it provides an optimal approach 1n resolving or
attempting to resolve a problem with modest performance
impact.

As previously noted, graceful degradation, in accordance
with various methods and embodiments of the present inven-
tion, attempts to correct problems associated with a trace
based on the type of abort trigger encountered and reason
therefor, which advantageously improves performance over
generic graceful degradation because the latter attempts to
correct problems with a trace regardless of the abort reason.

As previously noted, the corrective action might require the
same trace to be refetched or 1t might require a different trace
to be fetched or 1t might require more severe action. If the
attempt to correct the problem with the trace (or corrective
action) fails, again, either the same trace or a different trace
(the next trace) 1s 1dentified (or determined). This process 1s
repeated until the execution of the current version of the trace
does not generate any abort reason.

In an exemplary method of handling aborts, identifying of
the corrective action 1s based exclusively on the type of the
trace to be aborted and on the abort reason.

Where the next trace 1s a different trace than the trace that
was to be aborted, the latter might have resulted because of a
more severe action relative to the previous trace and this
process 1s repeated until the trace 1s corrected or the trace 1s
ultimately broken down into one or more traces with single
instruction attributes, or even one or more traces with single
instruction and non-speculative attributes, which 1s the most
severe and undesirable action that can be taken as a corrective
action. The process of handling the abort ends when there are
no more abort reasons when executing the current version of
the trace. A trace may have zero or more (or a set of) attributes.
That 1s, some traces have no attributes.

Accordingly, gracefully degrading a trace includes the
steps of detecting a problem associated with a trace, based
upon the detected problem, i1dentifying a corrective action
and resolving the detected problem associated with the trace
using the 1dentified corrective problem. The corrective
actions are defined by a multi-step graceful degradation pro-
tocol, an example of which 1s provided 1n Table 1 and its
related discussion; and a more detailed example of the pro-
tocol 1s provided 1n Table 3 and 1ts related discussion.

Examples of various reasons/ways in which abort triggers
are caused are discussed herein. In some cases specific
examples are provided, however, 1t 1s understood that these
are merely examples provided to help 1n an understanding of
graceful degradation and are not 1n any manner used to limait
the scope of the present inventions.

One of the reasons for the occurrence of an abort 1s that the
execution unit 14 may abort the execution of a particular trace
because of the behavior of one the x87 instructions from

US 7,783,863 Bl

17

which the trace unit 12 built that trace. As one example, a
particular x87 1instruction that attempts to accesses a
restricted or invalid memory address will cause an exception,
which 1s variously named a segmentation fault, protection
violation, address error, or trace unit 12 access violation. This
exception will be thrown regardless of how the trace unit 12
builds traces that contain that instruction and regardless of
how the execution unit 14 executes those traces. When this
exception occurs, the execution unit 14 signals the trace unit
12, which 1n turn schedules the execution of a microcoded
operation (op) that handles all occurrences of such excep-
tions. The terms “op”, “operation”, “memory operation” and

“memory op”” are used synonymously herein.

The sequencer 29 of the trace unit 12 chooses which
trace(s) goes to the IU 36 next. The traces that are sent to the
IU 36 by the ops fetcher 28 are referred to herein as sequence
of traces.

The next trace that the IU 36 of the execution unit 14
receives from the trace unit 12 1s the outcome of the gracetul
degradation process. When a trace aborts, any eflects on
architectural state from operations 1n the aborted trace are
rolled back. Also when a trace aborts, the sequence of traces,
as sent, to the IU 36 of the execution umt 14 1s disrupted.

The execution unit 14 typically executes operations from
several traces substantially concurrently and/or in parallel.
Execution 1s aborted of any operations from any trace that 1s
later 1n the sequence of traces than the aborted trace. Such
operations are discarded, and any effects of operations from
such traces are rolled back.

The execution unit 14 may also abort the execution of a
particular trace, and signal the trace unit 12 accordingly,
because that trace did not execute as expected. As a first
example, the execution unit 14 may speculatively predict the
value of aload operation, and subsequently that value 1s found
to be wrong. When a load value exception occurs, the trace
unit 12 may respond to the abort signal from the execution
unit 14 by rescheduling execution of the same trace that
aborted, but i a different mode—1for example, a mode that
disables load value prediction during that execution of that
trace. As a second example, the execution unit 14 may detect
that an 1nterior branch went opposite to the branch direction
that was used to build that trace. In this case, the trace unit 12
may respond to the abort signal (coupled onto the link 42)
from the execution unit 14 by scheduling a different trace,
perhaps one of the basic block traces from which the trace unit
12 built the aborted trace, or perhaps a multi-block trace built
using the opposite direction. Generally, when an abort trigger
1s received by the execution unit 14, the corrective action
generated as a result thereol may require the same trace to be
refetched, a different trace to be refetched, or a more severe
action to be taken—all of which are done 1n an effort to make
forward progress.

In one embodiment of the present invention, the abort
triggers 100 are generated by the execution unit 14 while the
abort reasons, in association with the trace types, causing a

corrective action to be taken, are performed by the trace unit
12.

In Table 1, each column represents an abort reason of
which there are N, N being an integer value and each row
represents a trace type. Identifying the abort reason and the
trace type results 1n a corrective action that 1s taken by the
trace unit 12, execution unit 14 or both.

As an example, 1n Table 1, the corrective action #1A 1s
taken when an abort reason #1 1s detected 1n association with
trace type #A. Because there are N abort reasons and M trace
types, there are N times M corrective actions. Examples of

5

10

15

20

25

30

35

40

45

50

55

60

65

18

corrective actions corresponding to abort reasons and trace
types are presented 1n Table 3.

TABLE 1
Abort Abort Abort

Reason #1 Reason #2 Reason #N

Trace Corrective Corrective Corrective
Type #A Action #1A Action #2A Action #NA

Trace Corrective Corrective Corrective
Type #B Action #1B Action #2B Action #NB

Trace Corrective Corrective Corrective
Type #M Action #1M Action #2M Action #NM

FIG. 4 shows an abstract view of the different states of
Table 1 as time progresses from Time A to Time B to Time C.
AtTime A, as a first step, an abort reason #1 and trace type #B
are detected resulting in the corrective action 1 being taken. If
yet another abort occurs, at Time B, as a result of a problem
with the trace that caused the abort at Time A, abort reason #N
and trace type B are detected resulting in corrective action 2,
performed as a second step. Finally, upon the occurrence of
yet another abort of the same trace as that of Time A and Time
B, at Time C, atan Nth step, abort reason #2 and trace type #M
are detected and result in the corrective action N, which
corrects the problem of the 1initial trace and no further abort 1s
taken.

FIG. 5 shows an exemplary tlow of the effect of graceful
degradation on a multi-block trace, in accordance with an
embodiment of the present invention. The multi-block trace
300 1s shown to cause reporting of an abort trigger 302 due to
a problem associated with the trace 300. The abort trigger 302
may be any one of the abort triggers 70-76 of FIG. 2. The
priority of the abort 1s determined by the abort prioritization
logic 50. The abort trigger 302, upon being arbitrated and
prioritized by the abort prioritization logic 50 results 1n a
corrective action that ultimately results 1n the breakdown of
the trace 300 to multiple basic block traces 304. In this
example, the trace 300 1s broken down to three basic block
traces: #1, #2 and #3. The basic block trace #1 executes
successiully, as does the basic block trace #2, 1n the example
of FIG. 5, but the basic block #3 results 1n an abort due to the
same abort reason as that detected for the trace 300.

In an embodiment of the present invention, a trace spans
several basic blocks across branch points. Branch points
occur as a result of an istruction that requires the program
counter to continue out of 1ts sequential program order. This
type of trace 1s created because the branches are highly
biased, or frequently encountered, at the time. If a branch
misprediction 1s detected, 1.e. the address predicted to be
jumped to 1s erroneously predicted, this may signify that the
trace 1s no longer useful and 1t 1s accordingly invalidated or
removed from 1ts respective trace cache. In one method of so
doing, the trace 1s immediately invalidated because once the
trace starts going wrong, 1t 1s no longer a valid trace. In
another method, the trace 1s maintained and not invalidated.
This 1s particularly done when the trace’s interior branch
misprediction, such as 1n the case of a multi-block trace,
occurs frequently. In this case, the trace still has a high bias
and one method of effectuating the foregoing 1s by monitor-
ing the number of mispredictions that occur. For example, 1f
two muspredictions occur consecutively, then the trace 1s
invalidated.

Yet another method 1s to mnvalidate the trace 11 the mispre-
diction rate increases to a value that 1s too large. That 1s, 11 the

US 7,783,863 Bl

19

time since the last misprediction 1s less than a predetermined
number, the trace 1s invalidated. In this manner, a trace with
mispredictions occurring less than once 1n a predetermined
period of time 1s allowed to remain valid. Maintaining a trace
valid advantageously obviously avoids building the same
trace over again. There are several options that can be used to
determine the rate of mispredictions, one 1s to have the rate be
programmable, another 1s to dynamically change the rate
based on performance metrics, and others are contemplated.
An 1n1tial value for the rate may use the number of 1terations
employed when building the trace.

The foregoing attempts at maintaining traces as valid traces
and others that are contemplated attempt to prevent unneces-
sary mvalidation of traces. Unnecessary invalidation results
in adversely affecting system performance. There 1s a tradeoff
however, between attempting to maintain traces valid and
maintaining too many traces that result in too many mispre-
dictions thereby occupying valuable cache space. This
tradeotl 1s at least one of the basis for determining the scheme
used in declaring traces invalid, some of which are discussed
above.

Abort triggers and processing of them 1s influenced by the
type of the trace that 1s executed. In response to an abort
trigger, the IU 36 may direct the trace unit 12 to fetch a
modified or different type of trace as described below and in

the Table 2 as follows:

TABLE 2
Trace Formation Description
Re-fetch Re-fetch the trace without modification.
Fetch Basic Block Invalidate the trace and fetch as basic blocks.

Fetch Instructions Fetch the indicated trace by decoding single
instructions per trace.

Single-Instruction Begin fetching the exception handler indicated by the

Fault IU.
Single-Instruction Begin fetching the exception handler indicated by the
Trap IU.
Interior Branch Fetch the trace is basic blocks until the mispredicted
Mispredict branch is reached, then fetch the remainder of

the trace.
Final Branch Fetch the trace corresponding to the correct branch
Mispredict destination.

If a multi-block trace was fetched, and the IU 36 requests
that 1t be re-fetched as basic block traces, the trace unit 12 1s
not aware of the number of basic block traces comprising the
original trace. Therefore, the trace unit 12 can fetch the first
basic block trace from a corresponding trace cache and fetch
subsequent basic block traces from any source. Thus, the
trace unit 12 commonly fetches those traces from, for
example, the basic block cache or the decoder block, but the
trace unit 12 might instead fetch a trace from the multi-block
cache, which the IU 36 might also request to be re-fetched as
basic block trace(s). In the event of such an uncommon occur-
rence, IU 36 continues to make forward progress toward

handling the abort trigger.

Similarly, 11 a basic-block trace was fetched, and the IU 36
requests that it be re-fetched as single 1nstructions, the trace
unit 12 1s not aware of the number of instructions comprising,
the original trace. Therefore, the trace unit 12 can fetch single
instructions until the first branch instruction that would have
terminated a basic block. Alternatively, 11 the number of
instructions fetched by trace unit 12 has reached a predefined
threshold, trace unit 12 can begin fetching from any source.
The threshold can be set so that the singly decoded instruc-
tions would rarely or never fit within a single basic block
cache entry. If trace unit 12 fetches subsequent instructions

10

15

20

25

30

35

40

45

50

55

60

65

20

from basic block cache or multi-block cache, IU 36 might
also request that this trace be re-fetched as single 1instructions.
In the event of such an uncommon occurrence, IU 36 contin-
ues to make forward progress toward handling the abort event
precisely (or by single instruction or single mstruction, non-
speculative execution).

Trace Execution Attributes

A variety of one or more attributes may be applied to atrace
during 1ts execution to enable forward progress or precise
exception handling. Examples of trace attributes comprise:

disable all speculation

disable value prediction

perform memory accesses 1 order
Cache line loss (MP)
handle cache misses in order

The meaning and use of the attributes i1s described below 1n
descriptions of the various abort triggers.

An abort priority scheme provides that each event (or
abort) that could cause a trace to be aborted 1s assigned a
priority. Some embodiments recognize the highest priority
event as an “‘official” abort trigger, and proper action (or
corrective action) 1s taken to control speculation and process-
ing in accordance with the event.

A variety of abort triggers (or types of abort triggers) are
detected according to various embodiments, by logic such as
(abort) detector 202, and subsequently prioritized, by logic
such as (abort) priority unit 201. Each event 1s assigned a
numerical priority, 1.e. abort priority level, wherein a rela-
tively lower number corresponds to a relatively higher prior-
ity. Each event also has an associated (corrective) action to be
taken 1f the event 1s recognized (or chosen) as the abort
trigger, such as by (abort) trigger unit 204. The corrective
actions are performed under direction of control logic, such as
pipe control unit 205.

Pending Abort Accumulation

Pending abort accumulation, such as performed by (pend-
ing abort) accumulator 203, comprises tracking the highest
abort priority level found so far for a current flow of execu-
tion. If no abort 1s pending, and then an abort occurs, the abort
1s recorded. If an abort 1s recorded, and another abort trigger
1s found 1n the same trace, the new abort (which 1s the pending
abort) 1s recorded only 11 1t 1s of higher abort priority level
than the previously recorded abort trigger. If the new abort
trigger 1s recorded, then the old abort trigger 1s discarded. IT
an abort trigger 1s recorded, and then another abort 1s found 1n
an earlier trace (1n program order), the new abort trigger 1s
always recorded, regardless of 1ts relative priority. If an abort
1s recorded, and then another abort 1s found 1n a later trace (in
program order), the new abort 1s never recorded, regardless of
relative priority. Thus priority 1s given to abort known to be
carlier 1n program order (based on atomic trace order corre-
sponding to the original program order), while giving priority
within a trace according to the abort priority scheme.

There may be several different aborts associated with a
abort priority level, such as priority 0, causing the trace from
which the abort was detected to be refetched and re-executed.
If an abort of priority 0 1s recorded, and another priority
abort 1s found 1n the same trace, then the desired action of the
second abort 1s recorded i addition to the desired action
already recorded for the first abort. For example, if a load
value misprediction 1s found during execution of a trace, then
the desired (or corrective) action 1s to re-execute the trace
with load value prediction disabled. If an intra-processor
order violation 1s subsequently found during execution of the
(same) trace, then the desired memory constraint 1s recorded,

US 7,783,863 Bl

21

and the pending abort accumulation logic continues to
remember that load value prediction should also be disabled
when the trace 1s re-executed.

As soon as a new abort 1s recorded 1n the pending abort
accumulation logic, the trace unit 12 1s directed to begin
tetching/composing the desired trace to replace the aborted
one (but see the Exception and Special cases, following). If

multiple aborts are recorded for a single executing trace, then
each sends a new direction to the trace unit; however, the final
elfect 1s as 11 only the last direction were sent.

Exception case: An abort may be detected for an early part
of a trace while the remainder of the trace 1s still being
fetched. A recorded single-instruction trap or final branch
misprediction doesn’t result in a new direction being sent to
the trace unit 12 until fetch of the current trace 1s complete.
This avoids corrupting the current trace when correcting the
subsequent trace.

Special case: I a single-instruction trap and a final branch

misprediction both occur, then the correct result (assuming no
higher priority abort trigger) 1s to record the next Program
Counter (PC) for the corrected branch target, but to fetch the
trap exception handler as the next trace to be executed. Both
require an appropriate directive to be sent to the trace unit 12.
If the final branch misprediction 1s recorded first, and the
single-nstruction trap 1s recorded later, then the two direc-
tives are naturally sent to the trace unit 12, and 1t responds
accordingly. If the two abort triggers occur in the opposite
order, then without special processing the single-instruction
trap would be recorded and the final branch misprediction
would be 1gnored. To rectity this, the logic sends the original
directive for the single-instruction trap, then sends an extra
directive for the final branch misprediction, and then finally
re-sends the single-instruction trap directive to ensure that the
correct trace 1s fetched. Similar special handling 1s invoked 1f
both abort triggers are found while the current trace 1s being,
tetched (meaning that no directive could be sent until fetch 1s
complete).

In some embodiments, the current stream of execution 1s
not ended until 1t commits to an abort trigger. Because an
abort with a higher priority level may yet be found in an
carlier trace, execution never ends until the pending abort 1s
on the earliest (1.e. oldest according to program order) trace
that 1s not yet commuitted. Once a trace 1s “oldest” 1n tlight
(oldest not yet commiutted), execution 1s ended at an appro-
priate time based on the pending abort.

For a priority 0 abort trigger, execution may be ended as
soon as the abort was detected 1n the oldest trace. Some
embodiments record additional actions (constraints) to take
when the trace 1s re-executed (even though no higher priority
abort trigger will be found). Some embodiments immediately
end execution of the trace (with the possibility of needing to
abort again with additional constraints a next time). Some
embodiments delay ending execution of the trace until 1t 1s
known that all desired constraints have been found. Some
embodiments continue execution until a re-fetched trace
(from the direction sent to the trace unit 12) 1s ready to execute
(in the meantime gathering additional constraints that may be
found). Then execution of the trace 1s ended (with respect to
the current fetch stream) and then execution of the re-fetched
trace begins.

For an abort priority level that 1s at least a level lower in
priority than the highest prionity level, a higher priority abort
event may remain undiscovered in the trace. The trace must be
allowed to continue to execute to determine 11 a higher prior-
ity abort event occurs. Some abort events (i1.e. a fault or a

10

15

20

25

30

35

40

45

50

55

60

65

22

disallowed non-cacheable access) prevent an operation from
completing. Special measures are taken to continue the trace.
These measures are described elsewhere herein (See the Del-
cterious Event section). When the trace 1s complete (ready to
commit except for the pending abort), execution ends, and the
final recorded abort reason applies.

For still lower priority levels, execution 1s ended as soon as
the trace that caused the abort commiuts. The trace 1s commuit-
ted because the operations in the trace have computed the
correct results (although the next trace (or the current version
of the trace) needs to execute differently). After committing
the current trace, execution 1s ended immediately before the
next trace 1s allowed to commut.

In all cases, at the time that execution ends, the aborted
traces and later traces (in program order) may have executed
one, many, or all operations. The results of these operations
are discarded, and execution state 1s rolled back to the check-
point architectural state for the oldest trace that was aborted.

Deleterious Event

Alternatively, for graceful degradation and abort priority
schemes, when a bogus operation 1s detected, following
operations are ensure to not have a bogus problem. Deleter:-
ous event processing, such as performed by all or portions of
pipe control unit 205, controls pipeline actions to eliminate
results of incorrect operations and to provide for execution of
correct operations. An operation that triggers a fault 1s con-
sidered to be incorrect (or “bogus”), as 1s an operation 1n a
speculative trace that attempts to access non-cacheable
memory. In etther case, the trace must be aborted. However,
the trace 1s allowed to continue executing as long as possible
to provide an opportunity to discover any possible higher
priority abort triggers. Continuing to allow processing after
discovering a faulting operation requires a mechanism to
allow the faulting operation to complete, as well as to allow
completion of some or all dependent operations. At the same
time, the faulting and subsequent operations may not be
allowed to actually execute (i.e. to complete or to irrevocably
alter architectural state).

A first mechanism to enable collecting additional abort
triggers without altering architectural state 1s 1n accordance
with a concept of bogus operations (or simply bogus “ops™).
A bogus op 1ssues, wakes up dependent operations, and 1s
removed from a scheduler as usual, but 1ts execution 1s sup-
pressed. When a memory operation fails to complete, 1t and
all dependent operations are cancelled as usual. If the reason
for the completion failure 1s temporary, then no special abort
processing 1s employed, as usual execution mechanisms sui-
fice. If the failure reason causes an abort trigger, then subse-
quently (such as 1n a next cycle) the operation 1s allowed to
execute again. In some embodiments a bogus-tlag 1s asserted
to mdicate an op 1s bogus (and deasserted otherwise). The
operation 1s thus allowed to re-1ssue, but it 1s marked as bogus
by the bogus-tlag.

Whenever an op 1ssues, the corresponding bogus-flag 1s
checked. If the op 1s bogus, then the op 1s converted to a
no-operation, or NOP (as far as execution of the op 1s con-
cerned). The op 1s thus prevented from causing any additional
abort triggers, and 1s also prevented from moditying archi-
tectural state. However, a bogus op wakes up dependent
operations at the same time and in the same manner as the
same op without an asserted bogus-flag. When subsequent
ops are 1ssued that are dependent upon a bogus op, the depen-
dent ops are also marked bogus. When an op 1ssues, 1t com-
pares 1ts dependency vector against a vector of bogus-flags. I

US 7,783,863 Bl

23

the 1ssued op depends on a bogus op, then the bogus-tlag 1s set
for the 1ssued operation, and the 1ssued op 1s converted to a

NOP.

Meanwhile, independent ops are allowed to execute as
usual. If one of the independent ops causes a lower priority
abort event, the op 1s marked as bogus, but the abort 1tself 1s
discarded. If an independent operation causes a higher prior-
ity abort event, then the higher priority abort event 1s recorded
and delaying was beneficial, as an additional trigger was
successiully collected.

Bogus-tlags are propagated ifrom an op even aiter the op
has been removed from a scheduler. Thus the bogus-flag 1s
left unchanged when the op 1s removed from the scheduler.
All bogus-flags are cleared at the time that execution 1s ended
due to the abort.

New operations are kept from entering the scheduler after
bogus operations have been removed from the scheduler until
execution ends on the current fetch stream. In some embodi-
ments a trigger for the first bogus-flag always causes a direc-
tive to be sent to the TU to fetch a different trace. After the
directive 1s sent, new ops/traces from the TU are held prior to
entering the scheduler. These ops remain on hold until execu-
tion ends on the old fetch stream. Hence following the first
abort, no new ops enter the scheduler until after execution
ends for the current fetch stream. Thus, there are no new ops
to be confused with respect to asserted bogus-flags.

An abort trigger that uses the bogus-flags also immediately
triggers a directive to stop the flow of incoming ops, disabling,
trace op fetching. However, the trace with the abort trigger
may still have ops being fetched/renamed. In other circum-
stances, the fact that the end of the trace 1s not reached would
imply that the trace 1s not allowed to commiut. The bogus-flags
would otherwise be used to allow the end of execution to be
delayed until the time at which the trace would otherwise be
committed, but this time never occurs 1f the trace never
tetches 1its last op(s). A trace that 1s committed has executed
all of 1ts operations and has changed the architectural state of
the processor. During execution of the trace, resources were
allocated to keep track of the execution history and to allow
the trace actions to be rolled back 1n case of an abort. When
the trace commuts, these resources are {reed.

Thus at the time that the stop directive 1s sent to the trace
unit 12, the trace being fetched 1s artificially marked as having,
tetched all ops. I1 this 1s the trace with the pending abort, then
the pending abort only needs to wait for the ops received so far
to complete. This 1s correct since using the bogus-flags serves
to complete all ops previous to the one that triggered the abort.
As a side effect, using the bogus-flags also serves to complete
ops that are fetched and after the offending op 1n program
order.

A second mechanism to enable collecting additional abort
triggers without altering architectural state comprises pro-
cessing ops that are 1n the scheduler and independent of a
failing op when the failing op does not finish. When a memory
operation fails to complete, it and all dependent ops are can-
celled. If the reason for the completion failure 1s temporary,
then the cancellation 1s processed as usual. If the failure
reason causes an abort event, then the op 1s not permitted to
1ssue again.

A directive 1s sent to the trace unit 12 based on the pending
abort, but operations already 1n the scheduler are allowed to
continue being issued as their dependencies are satisfied.

Eventually, either the trace becomes committable or the
entire pipeline empties. If no op 1s being 1ssued and no ops are

10

15

20

25

30

35

40

45

50

55

60

65

24

currently executing that might wake up another op, then it 1s
guaranteed that all ops that are independent of the offending
op have completed. The highest priority pending abort 1s then
processed.

In some embodiments, if any op 1ssues for a trace that 1s
later (1n program order) than the one with the pending abort,
then the op 1s squashed, as there may be little benefit in
allowing 1t to execute. In some scenarios the squashed op may
have had a chance to wake up dependent ops before 1t 1s
squashed. In any case, there 1s little or no value 1n executing,
ops rom later traces, and little or no value 1n waiting for any
long execution (such as a cache miss) that the later ops might
require. In some scenarios the squashing 1s most beneficial
when 1t squashes a load or store.

Since a directive has been sent to the trace unit 12, there are
no new ops that need to be fetched into scheduler entries.
Theretfore, leaving unprocessed ops in the scheduler until
execution ends on the current fetch stream never causes a
deadlock or performance problem.

Determining when the pipeline 1s empty comprises exam-
ining the state of MU 44 processing as well as IU 36 process-
ing. To ensure thatno op may be woken up in the current trace,
not only must the IU 36 functional unit pipelines (such as an
ALU pipeline) be empty, but the MU 44 must not have any

cache or translation look-aside butler (TLB) misses outstand-

ing that would have the potential to wake up a dependent op.
The MU 44 sends a signal to the pending abort logic describ-
ing whether there are any operations queued and waiting for
memory data. In some embodiments the state of floating point
processing 1s also examined when determining the pipeline 1s
empty, to ascertain 1f there are any ops remaiming in the

floating point that are associated with the core sourcing the

offending op.

A third mechanism to enable collecting additional abort
triggers without altering architectural state comprises allow-
ing ops 1n an abort-sourcing trace to execute. Faulting
memory ops are allowed to complete normally, although the
fault 1s recorded as a pending abort. Meanwhile, the trace 1s
allowed to complete as usual, and then the pending abort 1s
processed.

If a faulting op result 1s used by a dependent op to trigger a
higher priority abort, an incorrect abort type may result. How-
ever, eventually the correct result will be produced. The spu-
rious abort type occurs 1n limited circumstances, such as on a
fault or on a speculative non-cacheable access (1.e. rare
events). A microcode interior branch 1s coded such that 1t 1s
independent of potentially faulting non-memory operations,
or an alternate microcode handler for a mispredicted interior
branch retests the condition. Microcode conforms to a con-
straint that a microcode interior branch must appear ahead of
all memory ops for correct non-speculative behavior.

Table 3 presents more specific abort triggers and trace
types that result in corrective actions, as employed in an
exemplary graceful degradation protocol. The first column of
Table 3 lists various abort triggers. The second through the
fourth columns of represent corrective actions to be taken for
cach abort trigger and trace type. Table 3 provides a specific
example of Table 1 and the tables of FIG. 4 except that the
rows and columns are reversed.

—_

13
14

15

16

17

1%

19

20

21

22

23

24

25

Abort trigger

MOC order violation

MP loss w/o MpLoss Attr*
MP Loss with MpLoss attr®*
UP loss: older evicts younger

UP loss: younger evicts older

UP loss: same trace evicted
w/0 MissInOrder attr.

UP loss: same trace evicted
with MissInOrder attr.

TU abort request: SMC
applied to non-live trace
TU abort request: SMC
applied to live trace

TU abort request: Invalid
TU abort request: Stall

TU abort request: Parnty

274 abort
Interior Branch misprediction

Segment fault or Cannot
complete: MU fault

Cannot complete: Temp.

NonSpec
Cannot Complete: Perm.
NonSpec

Cannot Complete: NRQ)
overflow

XM fault

XM fault in non-spec 1 dx
SSE fault
XM/SSE decode fault

newip fault

XM error or data breakpoint
(no OptRepString)

Data breakpoint w/
OptRepString

Send IBM to TU; mark 1f

first interior branch in

trace
Fetch as BB

Fetch as BB

Invalidate MB and fetch

as BB

Invalidate MB and fetch

as BB; mark BB to
prevent rebuild as MB
Fetch as BB

NA

Fetch as BB
Fetch as BB
Fetch as BB

Fetch as BB

NA

US 7,783,863 Bl

TABLE 3
MB Trace BB Trace
Retetch and record Retetch and record
constraint constraint
Refetch w/MpLoss Attr. Refetch w/MpLoss

Attr.
Fetch as BB w/Mploss Fetch as SI w/
attr.** NonSpec attr.
Retetch Retetch
Retetch w/MissInOrder Refetch w/
attr. MissInOrder Attr.
Fetch as BB w/ Refetch w/
MissInOrder attr. MissInOrder Attr.
NA Fetch SI w/NonSpec
Attr.

Retetch Retetch
Fetch as BB Fetch as SI
Retfetch Refetch
Refetch Refetch
Invalidate MB/BB and Invalidate MB/BB and
refetch refetch
Retetch Retetch

Send IBM to TU; mark
as bad CS case

Fetch as SI

Fetch as SI

Rebuild BB while
isolating the memop

into a non-spec trace;
fetched as SI w/

NonSpec attr.

Rebuild BB with fewer
memops; fetched as SI

Fetch as SI

NA

Fetch as SI
Fetch as SI
Fetch as SI

Fetch as SI

NA

S Trace

NA

Fetch as SI w/
NonSpec Attr.
Fetch as ST w/
NonSpec Attr.
Fetch as SIw/
NonSpec Attr.
Fetch as SIw/
MissInOrder attr.

Fetch as ST w/
MissInOrder attr.

Fetch as SIw/
NonSpec Attr.
Retetch

Fetch as SIw/
NonSpec Attr.
Refetch

Refetch

Invalidate MB/BB
and refetch

Refetch

Send IBM to TU;
mark as bad CS
case

Spec: fetch as SI
w/NonSpec attr.;

NonSpec: send MU

faultto TU

Fetch as SIw/

NonSpec Attr.
Fetch as SIw/
NonSpec Attr.

Fetch as SIw/
NonSpec attr.

SSE decode
enabled: send XM
fault to TU; SSE
decode disabled:
fetch as SI w/
NonSpec attr.
Send XM fault to
TU

Send SSE fault to
TU

Send decode fault
to TU

Send IP fault to TU

Trap

NA

26

Emcode
Trace

Retetch and
record

constraint
Refetch w/

NonSpec Attr.
Refetch w/
NonSpec Attr.
Refetch

Refetch
w/MissInOrder
attr.

Refetch
w/MissInOrder
attr.

Refetch w/
NonSpec Attr.
Refetch

Refetch w/
NonSpec Attr.
Refetch
Refetch
Invalidate
MB/BB and
refetch
Refetch

Send IBM to
Ty

Spec: refetch
w/NonSpec
attr.;
NonSpec:
send MU fault
to TU

Refetch w/
NonSpec Attr.

Rebuild BB
while 1solating
MEemop
(actually
marks the
calling trace
for NonSpec
Execution;
refetched w/
NonSpec Attr.

Refetch w/
NonSpec Attr.

Send XM fault
toTU

NA (1gnored in
emcode)

Send SSE
fault to TU
Send decode
fault to TU
Send 1P fault
to TU

Exit: Trap;
Non-exit: defer
{0 next trace
Send MU fault
to TU

US 7,783,863 Bl

TABLE 3-continued
Abort trigger MB Trace BB Trace
26 OptRepString in non-spec NA NA
trace
2’7 Final branch misprediction Send FBM to TU Send FBM to TU

28

Emcode

S Trace Trace

NA Send MU fault
toTU

Send FBM to TU Send FBM to
T4U

*A CAB control causes the IU to behave as 1f MpLoss 1s always already asserted. I.e. On MP loss, the IU Breaks down mmmediately rather than refetching the

trace and applying the MpLoss attribute.

A CAB control causes the IU to also invalidate an multi-block trace 1if MP loss causes i1t to break down to basic block traces.

FIGS. 6-19 show the steps performed for some of the
corrective actions of Table 3.

Memory Order Constraint Violation Abort:

FI1G. 6 shows the corrective action 500 taken when memory
order constraint violation 1s detected as an occurrence of an
abort trigger. This abort trigger 1s detected by the abort pri-
oritization logic 50 of the IU 36. The steps 506 through 508
are performed when the memory order constraint (MOC)
violation abort trigger 1s recerved. MOC violation occurs
when two or more operations executed within a processor are
reported by the MU 44 as having been performed in the wrong
program order. MOC violation results in a MOC abort trigger
from the MU 44 to the IU 36.

Atstep 502, while atrace 1s being executed, an abort trigger
1s detected. Next at 504, a determination 1s made as to whether
or not the detected abort trigger 1s MOC violation abort trig-
ger. [T there 1s no MOC order violation abort trigger detected
at 504, the process goes back to step 502. However, i1 a MOC
order violation abort trigger 1s detected at 504, the process
proceeds to step 506.

At step 506, the trace unit 12 refetches the trace as 1s and
records a new constraint. A constraint, as used herein refers to
restrictions placed on certain memory operations (or ops)
within a trace that are used during execution of the trace. In
one embodiment of the present imvention, constraints are
stored 1n the MOC 51 of the IU 36.

An attribute, as used herein, refers to restrictions placed on
the entire trace that 1s used during execution of the trace. An
example of an attribute 1s MissInOrder where memory opera-
tions are not executed 1n the order 1n which they are required.
Another example of an attribute 1s a non-speculative associ-
ated with a non-speculative trace. A non-speculative trace, as
used herein, 1s a trace that cannot be speculatively executed in
which case all older traces must be committed.

Attributes can be temporary or permanent. Temporary
attributes are typically generated by the IU 36 while perma-
nent attributes are typically generated by the trace unit 12. An
example of a permanent attribute 1s where the abort 1s caused
due to the 1nability to complete successtul execution of the
operations within the trace due to, for example, executing to
non-cacheable location, 1n which case, the trace 1sregarded as
a non-speculative trace.

In one embodiment of the present invention, an attribute 1s
stored 1n a trace cache corresponding to the trace type of the
trace with the problem, within the trace unit 12. For example,
the attribute associated with a trace 1s stored in the execution
history component of the corresponding trace cache.

The IU 36 applies MOC violation abort trigger to the trace
so that the next time the trace 1s executed, the new constraints
apply. In one embodiment of the present invention, the cor-
rective action 500 ends at the completion of step 506 and the
execution unmt 14 stops executing immediately.

At step 506, the trace unit 12 records the new constraint and
the IU 36 applies it to the trace. Alternatively, the IU 36

15

20

25

30

35

40

45

50

55

60

65

records and applies the new constraint. Recording a con-
straint results 1n recording (or storing) the need for a con-
straint between two memory operations. IU 36 applies the
new constraint when executing the trace to ensure that the
trace’s memory operations are executed in order.

Optionally, at step 508, the process ‘waits’ for the trace unit
12 to send a new trace hoping to find additional constraints, in
the meanwhile, and the IU 36 (or execution unit 14) continues
executing other traces.

‘Wait’, as used herein with reference to the flow charts of
FIGS. 6 through 19 and FIGS. 20-23, refers to the process of
the IU 36 sending an abort to the trace unit 12 along with an
abort reason and a trace 1dentification (ID) while continuing
execution of the same trace to find additional constraints until
the trace unit 12 refetches the trace and sends it to the IU 36.
IT additional constraints are detected, they may be addressed
thereby advantageously continuing the processing performed
by the execution unit 14.

A trace ID 1s a number 1dentifying a trace to the trace unit
12 and the execution unit 14.

In an embodiment of the present invention, the trace ID 1s
generated by the trace umit 12 for 1ts, and the trace ID is also
generated by the execution unit 14 for 1ts use.

The foregoing steps relating to the corrective action 500 are
performed 1n sequential order 1n one embodiment of the
present invention and performed in parallel in an alternative
embodiment of the present invention.

‘Continue’, as used herein with reference to the flow charts
of FIGS. 6 through 19 and FIGS. 20-23, refers to the process
of the IU 36 sending an abort to the trace unit 12 and continu-
ing to wait for executing a trace to find higher priority aborts
and additional constraints or until the trace 1s ready to com-
mit. ‘Stop’, as used herein with reference to the flow charts of
FIGS. 6 through 19 and FIGS. 20-23, refers to the process of
the IU 36 sending an abort to the trace unit 12 along with abort
reason and trace ID, 1.e. abort information, and stopping
execution immediately, which causes halting of the renaming
process and removes all pending data 1n a skid buffer.

A skad butler 1s a buller located generally 1n the execution
unmit 14 and serves to store information passed between the
execution unit 14 and the trace unit 12. The skid butler 1s
always emptied as soon as the IU 36 sends an abort to the trace
umt 12.

Multiprocessor Cache (MP Loss) Abort:

FIG. 7 shows the corrective action 510 taken when an
occurrence ol a multi-processor cache line loss (IMP Loss)
abort trigger 1s received as an occurrence of an abort trigger.
The MP Loss abort trigger 1s received by the abort prioritiza-
tion logic 50 of the IU 36. The steps 514 through 332 are
performed when the MP Loss abort trigger 1s detected. MP
Loss abort trigger occurs when at least two processors attempt
to access the same location in the MU 44 cache at the same
time, whereby the MU 44 reports the contlict to the IU 36.

US 7,783,863 Bl

29

At step 512, while a trace 1s being executed, an MP Loss
abort trigger 1s recerved. Next at 514, a determination 1s made
as to whether or not the MP Loss abort trigger 1s detected. If
there 1s no MP Loss abort trigger detected at 514, the process
proceeds to step 512.

However, 11 a MP Loss abort trigger 1s detected at 514, the
process proceeds to 516. At 516, a determination 1s made at as
to whether or not the MP Loss attribute 1s received 1n the
corresponding trace cache of the trace unit 12. In some
embodiments, a configurable option, when enabled, forces
the trace 1nto generic degradation regardless of whether or not
the MP Loss attribute 1s received.

If the MP Loss attribute 1s received or the configurable
option 1s not disabled at 516, at 518 a determination 1s made
as to whether or not the trace 1s a multi-block trace. If 1t 1s
determined that the trace 1s a multi-block trace at 518, the
process proceeds to step 520. At step 520, the IU 36 signals
the trace unit 12 through the link 42 to invalidate the trace and
break 1t down 1nto at least one basic block trace. In the event
the multi-block trace consists of more than one basic block
trace, 1t 1s broken down into several basic block traces.

At step 518, the IU 36 then applies the MP Loss attribute to
all subsequent traces so that the next time the trace 1is
executed, the new attributes apply. Additionally, the IU 36
starts execution of the refetched trace(s). In this situation, the
corrective action 310 ends at the completion of step 520.

If at 518 1t 1s determined that the trace 1s not a multi-block
trace, at 522 a determination must be made as to whether or
not the trace 1s a basic block trace. If at 522 the trace 1s a basic
block trace, the process proceeds to step 524. At 524, the IU
36 signals the trace unit 12 through link 42 to break the trace
down 1nto at least one single instruction trace. A “single
istruction trace”, as used herein, refers to a trace having a
single mstruction attribute. In an exemplary embodiment, a
trace 1n the basic block cache may be regarded as a single
instruction trace and not as a basic block trace 1t it has this
attribute.

In the case where the basic block trace being broken down
includes more than one single nstruction trace, 1t 1s broken
down 1nto multiple single instruction traces. At 524, the IU 36
then applies the MP Loss attribute to all subsequent traces for
which the break down 1s asserted so that the next time the
trace 1s executed, the new attributes apply. Additionally, the
[U 36 starts execution of the refetched trace. In this situation,
the corrective action 510 ends at the completion of step 524.

If 1t 1s determined at 522 that the trace 1s not a basic block
trace, at 526 a determination 1s made at as to whether or not
the trace 1s a single instruction trace. If the trace 1s determined
to be a single mstruction trace at 526, the process proceeds to
step 528. At step 528, the trace unit 12 refetches the single
instruction trace as 1s and records a new attribute associated
therewith. More specifically, the new attribute 1s temporary,
and 1t 1s retained in the IU 36. The IU 36 applies the non-
speculative attribute to the single instruction trace so that the
next time the trace 1s executed, the new attributes apply. In this
situation, the corrective action 510 ends at the completion of
step 528.

If at 526 the trace 1s determined not to be a single 1nstruc-
tion trace, the trace must be a microcode trace, and the process
proceeds to step 530. At step 530, the trace unit 12 refetches
the microcode trace as 1s and records a new attribute to the
first trace. At step 330, the IU 36 applies the non-speculative
attribute to the first microcode trace so that the next time the
micro code trace 1s executed, the new attributes apply. More
specifically, the new attribute 1s temporary, and 1t 1s retained
by the IU 36 for application to the first trace. In this situation,
the corrective action 510 ends at the completion of step 530.

10

15

20

25

30

35

40

45

50

55

60

65

30

If at 516 the MP Loss attribute 1s not asserted or the con-
figurable option 1s disabled, at 332 a determination 1s made as
to whether or not the trace 1s a multi-block trace. If 1t 1s
determined that the trace 1s a multi-block trace at 532, the
process proceeds to step 533. At step 533, the IU 36 applies
the MP Loss attribute to the first trace so that the next time the
trace 1s executed, the new attributes apply. More specifically,
the new attribute 1s temporary, and the attribute 1s retained in
the IU 36 to be applied by the IU 36 to the next trace that 1t
receives. Additionally, the IU 36 starts execution of the
refetched trace. In this situation, the corrective action 510
ends at the completion of step 533.

If at 532 1t 1s determined that the trace 1s not a multi-block
trace, at 535 a determination must be made as to whether or
not the trace 1s a basic block trace. It at 535 the trace 1s a basic
block trace, the process proceeds to step 537. At step 537, the
IU 36 applies the MP Loss attribute to the first trace so that the
next time the trace 1s executed, the new attributes apply. More
specifically, the new attribute 1s temporary, and the attributed
1s retained 1n the IU 36 to be applied by the IU 36 to the next
trace that it recerves. Additionally, the IU 36 starts execution
of the refetched trace. In this situation, the corrective action
510 ends at the completion of step 537.

If 1t 15 determined at 535 that the trace 1s not a basic block
trace, at 539 a determination 1s made at as to whether or not
the trace 1s a single 1istruction trace. If the trace 1s determined
to be a single 1nstruction trace at 339, the process proceeds to
step 541. At step 541, the trace unit 12 refetches the single
instruction trace as 1s and records a new attribute associated
therewith. More specifically, the new attribute 1s temporary,
and the attribute 1s retained 1n the IU 36 to be applied by the
IU 36 to the next trace that 1t recerves. The IU 36 applies the
non-speculative attribute to the single instruction trace so that
the next time the trace 1s executed, the new attributes apply. In
this situation, the corrective action 510 ends at the completion
of step 541.

IT at 5339 the trace 1s determined not to be a single instruc-
tion trace, the trace must be a microcode trace, and the process
proceeds to step 543. At step 543, the trace unit 12 refetches
the microcode trace as 1s and records a new attribute to the
first trace. At step 543, the IU 36 applies the non-speculative
attribute to the first microcode trace so that the next time the
micro code trace 1s executed, the new attributes apply. More
specifically, the new attribute 1s temporary, and the attribute 1s
retained in the IU 36 to be applied by the IU 36 to the next
trace that 1t receives. In this situation, the corrective action
510 ends at the completion of step 543.

While the steps performed in the corrective action 510 are
shown in FIG. 7 and the foregoing discussion to be 1n sequen-
tial order, alternatively, they may be performed substantially
in parallel.

Uniprocessor (or Interprocessor) (UP Loss) Cache Abort:

FIG. 8 shows the corrective action 534 taken when an
occurrence of a single-processor cache line loss (UP Loss)
abort trigger 1s received by the abort prioritization logic 50 of
the IU 36. The steps 538 through 562 are performed when the
UP Loss abort trigger 1s recerved. UP Loss abort triggers
occur when there 1s a conflict due to, for example, one trace
(evicting trace) replaces a data cache line used by another
trace (evicted trace) in the MU 44 cache, whereby the MU 44
reports the contlict to the IU 36.

At step 536, a trace 1s executed and at 538, a determination
1s made as to whether or not an occurrence of the UP Loss
abort trigger 1s recerved. At 538, 11 there 1s no UP Loss abort
priority recerved, the process returns back to step 336.

However, 11 1t 1s determined that a UP Loss abort trigger 1s
recetved at 538, at 540 a determination 1s made at as to

US 7,783,863 Bl

31

whether or not the evicting trace 1s older than the evicted
trace. If the evicting trace 1s older than the evicted trace at 540,
the process proceeds to step 542. At step 542, the trace unit 12
refetches the evicted trace as 1s. At step 542, the IU 36 starts
execution of the refetched trace. In this situation, the correc-
tive action 334 ends at the completion of step 542.

If 1t 1s determined at 540 that the evicting trace 1s not older
than the evicted trace, at 544 a determination 1s made at as to
whether or not the evicting trace 1s younger than the evicted
trace. If the evicting trace 1s younger, as determined at 544,
the process proceeds to step 546. At step 546, the trace unit 12
refetches the evicted trace as 1s and records a new attribute.
When recording a new attribute, the IU 36 applies the trace
miss 1n order (TrcMisslnorder) attribute to the first trace
executed after the abort so that the next time the refetched
trace 1s executed, the new attributes apply. More specifically,
the new attribute 1s temporary, and the attribute 1s retained in
the IU 36 to be applied by the IU 36 to the next trace that 1t
receives. The IU 36 then starts execution of the refetched
trace. In this situation, the corrective action 534 ends at the
completion of step 546.

If 1t 1s determined at 544 that the evicting trace 1s not
younger than the evicted trace, at 548 a determination 1s made
at as to whether or not the evicting trace 1s amulti-block trace.
I11t 1s determined that the evicting trace 1s a multi-block trace
at 548, the process proceeds to step 550. At step 550, the IU 36
signals the trace unit 12 through the link 42 to break the
multi-block trace down into at least one basic block trace. In
the case where the multi-block trace being broken down
includes more than one basic block trace, 1t 1s broken down
into multiple basic block traces. The IU 36 then applies the
trace miss in order attribute to all subsequent traces for which
the break down 1s asserted so that the next time the traces are
executed, the new attributes apply. At step 5350, the IU 36
starts execution of the refetched trace(s). In this situation, the
corrective action 534 ends at the completion of step 550.

If 1t 1s determined at 548 that the evicting trace 1s not a
multi-block trace, at 552 a determination 1s made as to
whether or not the evicting trace 1s a basic block trace. If the
evicting trace 1s determined to be a basic block trace at 552, at
554 a determination 1s made as to whether or not the trace
miss 1n order attribute 1s recerved 1n the IU 36. 11 1t 15 deter-
mined at 554 that the evicting trace has the trace miss 1n order
attribute, the process proceeds to step 556. At step 556, the IU
36 signals the trace unit 12 through the link 42 to break the
trace down 1nto at least one single mnstruction trace. Inthe case
where the basic block trace being broken down includes more
than one single 1nstruction trace, it 1s broken down into mul-
tiple single istruction traces. The IU 36 then applies the
non-speculative attribute to all single instruction traces for
which the break down 1s asserted so that the next time the
traces are executed, the new attributes apply. At 5356, the IU 36
starts execution of the refetched trace(s). In this situation, the
corrective action 334 ends at the completion of step 556.

If 1t 1s determined at 554 that the evicting trace does not
have the trace miss 1n order attribute, the process proceeds to
step 558. At step 5358, the IU 36 signals the trace unit 12
through link 42 to break the trace down 1nto at least one single
instruction trace. The IU 36 then applies the trace miss 1n
order to all single instruction traces for which the break down
1s asserted so that the next time the traces are executed, the
new attributes apply. At 5358, the IU 36 starts execution of the
refetched trace(s). In this situation, the corrective action 534
ends at the completion of step 558.

If, however, at 552 it 1s determined that the evicting trace 1s
not a basic block trace, at 560 a determination 1s made as to
whether or not the trace miss 1n order attribute 1s received in

10

15

20

25

30

35

40

45

50

55

60

65

32

the corresponding trace cache of the trace unit 12. If at 560 1t
1s determined that the evicting trace has the trace miss in order
attribute, the process proceeds to step 562. At step 562, the
trace unit 12 refetches the evicting trace as 1s, and the IU 36
starts execution of the refetched trace, applying the non-
speculative attribute at the time of execution of the refetched
trace. In this situation, the corrective action 534 ends at the
completion of step 562.

I at 560 1t 1s determined that the evicting trace does not
have the trace miss 1n order attribute, the process proceeds to
step 564. At step 564, the trace unmit 12 refetches the evicting
trace as 1s, and the IU 36 starts execution of the refetched trace
applying the trace miss 1n order attribute at the time of execus-
tion. In this situation, the corrective action 534 ends at the
completion of step 564.

While the steps performed in the corrective action 534 are
shown 1n FIG. 8 and the foregoing discussion to be in sequen-
tial order, alternatively, they may be performed substantially
in parallel.

FIG. 9 shows the corrective action 564 taken when a trace
unit 12 requests an abort from the IU 36 as aresult of a fetched
trace being no longer valid. The abort sent by the trace unit 12
1s associlated with at least one of several types of abort
requests, with one embodiment of a set of abort request types
illustrated 1n FIG. 9. The triggering trace may be different
from the trace that 1s aborted or refetched in the corrective
action 564. Therefore, the IU 36 determines which trace to
abort based on the request recerved from the trace unit 12. The
abort trigger 1s sent by the trace unit 12 and recerved by the
abort prioritization logic 50 of the IU 36.

At step 566, while a trace 1s being executed, a “trace unit
request” abort 1s recerved, 1.e. abort trigger. At 568, a deter-
mination 1s made as to whether or not the trace unit 12 sent an
abort trigger associated with a SMC-type abort request due to
the presence of self moditying code (SMC). If 1t 1s determined
at 568 that the SMC-type abort request was transmitted by the
trace unit 12 to the IU 36, a determination 1s made at 570 as to
whether or not the trace 1s a “live trace.” A “live trace” 1s a one
for which the IU 36 has begun processing, but has not yet
completed processing. 11 1t 1s determined at 570 that the trace
1s not live, the process proceeds to step 372. At step 572, the
trace unit 12 refetches the non-live trace as 1s. Additionally,
the IU 36 starts execution of the refetched trace at 572. In this
situation, the corrective action 564 ends at the completion of

step 572.

However, 11 at 570 1t 1s determined that the trace 1s live, at
574 a determination 1s made as to whether or not the live trace
1s a multi-block trace. If 1t 1s determined at 574 that the live
trace 1s a multi-block trace, the process proceeds to step 576.
At step 576, the IU 36 signals the trace unit 12 through link 42
to break the trace down 1nto at least one basic block trace. In
the case where the multi-block trace being broken down
includes more than one basic block trace, 1t 1s broken down
into multiple basic block traces. At 576, the IU 36 starts
execution of the refetched trace(s). In this situation, the cor-
rective action 564 ends at the completion of step 576.

If, however, at 574 1t 1s determined that the live trace 1s not
a multi-block trace, at 578 a determination 1s made as to
whether or not the live trace 1s a basic block trace. It it 1s
determined at 578 that the evicting trace 1s a basic block trace,
the process proceeds to step 580. At step 580, the IU 36
signals the trace umt 12 through link 42 to break the trace
down 1nto at least one single instruction trace. In the case
where the basic block trace being broken down includes more
than one single instruction trace, it 1s broken down 1nto mul-
tiple single mstruction traces. At 380, the IU 36 then starts

US 7,783,863 Bl

33

execution of the single instruction trace. In this situation, the
corrective action 564 ends at the completion of step 580.

In the event 1t 1s determined that the live trace at 578 1s not
a basic block trace, the process proceeds to step 582. At step
582, the IU 36 re-executes the live trace, which 1s either 1n the
form of a single instruction trace or a microcode trace, apply-
ing the non-speculative attribute at the time of the execution
of the live trace. In this situation, the corrective action 564
ends at the completion of step 582.

IT1t 1s determined that the trace unit 12 did not send an abort
trigger associated with a SMC-type abort request at 568, at
584 a determination 1s made as to whether or not the trace unit
12 sent an abort trigger associated with an invalid-type abort
request. An invalid-type abort request indicates that the IU 36
should not execute the trace that resulted in the abort trigger’s
generation (the “triggering trace”). In some embodiments, the
trace unit 12 1s guaranteed to send the abort trigger before the
triggering trace 1s sent from the trace unit 12. It it 1s deter-
mined at 5384 that the invalid-type abort request was transmit-
ted by the trace unit 12 to the IU 36, the process proceeds to
step 586. At step 586, the trace unit 12 refetches the triggering
trace, and then the IU 36 re-executes the refetched trace. In
this situation, the corrective action 564 ends at the completion
of step 586.

If1t1s determined that the trace unit 12 did not send an abort
trigger associated with a mvalid-type abort request at 584, at
588 a determination 1s made as to whether or not the trace unit
12 sent an abort trigger associated with a stall-type abort
request.

A stall-type abort request indicates that the IU 36 has
stalled, preventing trace unit resources from being used for
other purposes. In some embodiments of the mvention, this
abort trigger serves to enhance processor performance.

If 1t 1s determined at 388 that the stall-type abort request
was transmitted by the trace unit 12 to the IU 36, at 390 a
determination 1s made as to whether or not there are any
complete traces “in tlight” to the IU 36. A trace 1s “in flight”
if 1t 15 transierred from the trace unit 12 to the execution unit
14 but not yet commutted. At 590, 111t 1s determined that there
1s at least one complete trace “in flight” to the IU 36, the
process proceeds to step 591. At step 591, the trace unit 12
refetches the triggering trace, and then the IU 36 re-executes
the refetched trace. In this situation, the corrective action 564
ends at the completion of step 591.

However, 1f 1t 1s determined at 590 that there are no com-
plete traces “in tlight” to the trace umt 12, the process pro-
ceeds to step 593. At 3593, the IU 36 discards the abort request.
In this situation, the corrective action 564 ends at the comple-
tion of step 593.

If 1t 1s determined that the trace unit 12 did not send a
stall-type abort request at 588, at 392 a determination 1s made
as to whether or not the trace unit 12 sent an abort trigger
associated with a parity-type abort request. A parity-type
abort request indicates that a parity error was received 1n the
triggering trace data. In some embodiments of the invention,
the parity error 1s recerved from the trace unit 12 by the IU 36
before the trace data transmitted by the trace unit 12 arrives at
the IU 36. Alternatively, in some embodiments the parity
error 1s received fromthe trace umit 12 by the IU 36 at the same
time as some, but not necessarily all, operations within the
triggering trace arrive at the IU 36. It 1t 1s determined at 592
that a parity-type abort request was sent by the trace unit 12 to
the IU 36, the process proceeds to step 394. At step 594, the IU
36 1nstructs the trace unit 12 via the link 42 to invalidate the
trace from the basic block cache and/or the multi-block cache
and/or microcode cache. At 594, the trace unit 12 refetches
the triggering trace, and then the IU 36 re-executes the

10

15

20

25

30

35

40

45

50

55

60

65

34

refetched trace. In this situation, the corrective action 564
ends at the completion of step 594.

I11t 1s determined that the trace unit 12 did not send an abort
trigger associated with a parity-type abort request at 592, at
596 a determination 1s made as to whether or not the trace unit
12 sent an abort trigger associated with a “Second Abort”
(“2"? Abort”)-type abort request. A “2"? Abort”-type abort
request indicates that the trace unit 12 sent an abort trigger
(through the abort trigger 70) associated with at least one of
several types of abort requests, with one embodiment of a set
ol abort request types illustrated 1n figure X3, to the IU 36
during the execution of the previous trace (the “1* abort™).
Upon the complete execution of the pending trace by the IU
36, the TU 36 applies the “2? abort” bit to the subsequent
trace recerved from the trace unit 12. If 1t 1s determined that

the “2”“ abort™ bit is not received at 596, the process proceeds
to step 566.

However, if at 596 it is determined that the “2”¢ abort” bit
1s received by the IU 36 1n the triggering trace, at 5398 1t 1s
determined whether or not the 1°” abort resulted in the refetch-
ing of the trace or the fetching of the trace with invalidation.
If it 1s determined that the 1°* abort was resulted in the trace
being refetched, the process proceeds to step 599. At step 599,
the trace unit 12 refetches the triggering trace, and then the IU
36 re-executes the refetched trace. In this situation, the cor-
rective action 564 ends at the completion of step 599.

If at 598 it is determined that the 1°* abort did not result in
a refetching of the trace or the fetching of the trace with
invalidation, at 601 it is determined whether or no the 1** abort
sent an interior branch misprediction to the trace unmit 12. If 1t
is determined that the 1°° abort sent an interior branch mispre-
ction to the trace unit 12, the process proceeds to step 603. At
step 603, the trace unit 12 refetches the trace as a basic block
trace, and the IU 36 re-executes the refetched trace. In this
situation, the corrective action 564 ends at the completion of

step 603.

If at 601 it is determined that the 1°” abort did not send an
interior branch misprediction to the trace unit 12, at 605 it 1s
determined whether or not the 1% abort requested the trace
unit 12 to break the previously executed trace into a basic
block trace. If it is determined that the 1°° abort sent a request
to the trace unit 12 to break the trace down 1nto a basic block
trace, the process proceeds to step 607. At step 607, the IU 36
signals the trace unit 12 through link 42 to break the trace
down 1nto a basic block trace. At 607, the IU 36 re-executes
the refetched trace. In this situation, the corrective action 564
ends at the completion of step 607.

Ifat 605 itis determined that the 1** abort did not request the
trace unit 12 to break the previously executed trace mto a
basic block trace, at 609 it is determined whether or not the 1%
abort requested the trace umit 12 to break the previously
executed trace 1nto a single nstruction trace, or to rebuild the
trace with fewer single instructions or with an isolated
memop. If it is determined that the 1°* abort sent a request to
the trace unit 12 to break the trace down or rebuild the trace
into a single instruction trace, the process proceeds to step
611. At step 611, the IU 36 signals the trace unit 12 through
link 42 to refetch the trace as a single instruction trace. At 611,
the IU 36 re-executes the refetched trace. In this situation, the
corrective action 564 ends at the completion of step 611.

Ifat 605 itis determined that the 1** abort did not request the
trace unit 12 to break the previously executed trace into a
basic block trace, the 1 abort was either a SI fault or trap, and
the process proceeds to step 613. At 613, the IU 36 signals the
trace unit 12 through link 42 to refetch the trace as a single
instruction trace. At 611, the trace unit 12 refetches the trig-

US 7,783,863 Bl

35

gering trace, and then the IU 36 re-executes the refetched
trace. In this situation, the corrective action 564 ends at the

completion of step 613.

While the steps performed 1n the corrective action 564 are
shown 1n FI1G. 9 and the foregoing discussion to be in sequen-
tial order, alternatively, they may be performed substantially
in parallel.

Interior Branch Misprediction Abort:

FIG. 10 shows the corrective action 600 taken when an
occurrence of an interior branch misprediction abort trigger 1s
received as an abort. The interior branch mispredict abort
trigger 1s recerved by the abort prioritization logic 50 of the IU
36. The steps 604 through 622 are performed when the 1nte-
rior branch mispredict abort trigger 1s recerved. An interior
branch assertion checks that the current processor state
matches the state required for correct execution of any trace.
An 1nterior branch misprediction abort trigger 1s recetved by
the IU 36 during execution when the prediction included in
the interior branch assertion 1s found to mismatch the current
machine state.

At step 602, while a trace 1s being executed, an occurrence
ol an interior branch misprediction abort trigger 1s received.
Next at 604, a determination 1s made as to whether or not the
interior branch misprediction abort trigger 1s received. If
there 1s no interior branch misprediction abort received at
604, the process proceeds to step 602.

However, 11 an interior branch misprediction abort trigger
1s received at 604, at 606 a determination 1s made at as to
whether or not the interior branch misprediction abort trigger
1s 1n a multi-block trace. In an exemplary embodiment, an
interior branch assertion, 1n a multi-block trace, checks the
accuracy of the speculative branch predictions that were used
to j01n multiple basic block traces into a multi-block trace. IT
it 1s determined that the interior branch misprediction 1s in a
multi-block trace 1n 606, at 608 a determination 1s made as to
whether or not the interior branch misprediction 1s 1n the first
interior branch of the multi-block trace. If it 1s determined that
the first interior branch was mispredicted 1n the multi-block
trace 1n 608, the process proceeds to step 610. At step 610, the
IU 36 sends the interior branch mispredictto the trace unit 12.
The trace unit 12 may modify the first branch prediction in the
multi-block trace as 1t breaks the trace down into at least one
basic block trace. Additionally, the IU 36 starts execution of
the refetched trace(s). In this situation, the corrective action
600 ends at the completion of step 610.

If 1t 1s determined that the interior branch mispredict abort
was not within the first interior branch of the multi-block trace
at 608, the process proceeds to step 612. At 612, the IU 36
sends the interior branch mispredict abort trigger to the trace
unit 12. The trace unit 12 breaks down the trace into at least
one basic block trace. At 612, the IU 36 then starts executing
the refetched basic block trace(s). In this situation, the cor-
rective action 600 ends at the completion of step 612.

I 1t 1s determined that the interior branch mispredict abort
was not in a multi-block trace at 606, a determination 1s made
at 614 as to whether or not the interior branch mispredictis in
a basic block trace. In an exemplary embodiment, an interior
branch assertion 1n a basic block trace or single instruction
trace checks that the code segment parameters have not
changed since the trace was built. If the interior branch
mispredict 1s 1n a basic block trace, the process proceeds to
step 616. At 616, the IU 36 sends the interior branch mispre-
diction abort trigger to the trace umt 12 with a “changed” or
“bad” code segment mark, marking the trace so as to alert the
trace unit 12 to the faulty code or operations resulting from

10

15

20

25

30

35

40

45

50

55

60

65

36

the misprediction. In this situation, the corrective action 600
ends at the completion of step 616.

I1 1t 1s determined that the interior branch mispredict abort
trigger was not 1n a basic block trace at 614, a determination
1s made at 618 as to whether or not the interior branch mispre-
dict abort trigger 1s 1n a single 1nstruction trace. If the interior
branch mispredict 1s 1n a single instruction trace, the process
proceeds to step 620. At 620, the IU 36 sends the interior
branch mispredict abort trigger to the trace unit 12 with a
“changed” or “bad” code segment mark. In this situation, the
corrective action 600 ends at the completion of step 620.

If 1t 1s determined that the interior branch mispredict abort
was not 1n a single mstruction trace at 618, the triggering trace
1s a microcode trace, and the process proceeds to step 622. In
an exemplary embodiment, an interior branch assertion 1n a
microcode trace checks that a mode flag or register value
matches the prediction embedded 1n the microcode. At 622,
the IU 36 sends the interior branch mispredict abort trigger to
the trace unit 12. The trace unit 12 must then jump to an
alternate branch address and fetch an alternate microcode
trace for execution. At 622, the IU 36 starts execution of the
alternate trace. In this situation, the corrective action 600 ends
at the completion of step 622.

While the steps performed in the corrective action 600 are
shown i FIG. 10 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

Single-nstruction fault abort 1s described relative to FIGS.
11-18 and Cacheable Store or Combining Write Overtlow
abort and Speculative non-cacheable access abort are

described relative to FIG. 11:

FIG. 11 shows the corrective action 626 taken when an
occurrence of “cannot complete” fault or fault-like condition
(“CannotComplete™) 1s received as an abort. The Cannot-
Complete abort sent by the trace unit 12 1s associated with at
least one of several “CannotCompleteReason encodings™
(“encoding™), with one embodiment of a set of encodings
illustrated in FIG. 11. The CannotComplete abort trigger sent

by the MU 44 1s recerved by the abort prioritization logic 50
of the IU 36 and the trace unit 12

At step 628, while a trace 1s being executed, a CannotCom-
plete abort 1s recerved, 1.e. abort trigger. At 630, a determina-
tion 1s made as to whether or not the MU 44 sent a Cannot-
Complete abort trigger to the IU 36. If the CannotComplete™

abort trigger was not recerved at 630, the process proceeds to
step 628.

However, 1f 1t 1s determined that the MU 44 sent a Cannot-
Complete abort trigger to the IU 36 at 630, at 632 a determi-
nation 1s made at as to whether or not the MU 44 sent a
CannotComplete abort trigger associated with a MU Fault-
type encoding to the IU 36 due to a fault that might have
occurred in the MU 44 or a segmentation fault. If 1t 1s deter-
mined that the MU fault-type encoding was transmitted by the
MU 44 to the IU 36, at 634 a determination as to whether or
not the triggering trace 1s a multi-block trace must be made. IT
it 1s determined that the triggering trace 1s a multi-block trace
at 634, the process proceeds to step 636. In 636, the IU 36
signals the trace unit 12 through link 42 to break the multi-
block trace down 1nto at least one basic block trace. In the case
where the multi-block trace being broken down includes
more than one basic block trace, it 1s broken down into mul-
tiple basic block traces. At 636, the IU 36 then starts execution
of the refetched basic block trace(s). In this situation, the
corrective action 626 ends at step 636

US 7,783,863 Bl

37

I1 1t 1s 1nstead determined that the triggering trace at 634 1s
not a multi-block trace, a determination must be made at 638
as to whether or not the triggering trace 1s a basic block trace.

If 1t 1s determined that the triggering trace 1s a basic block
trace at 638, the process proceeds to step 640. At 640, the U
36 signals the trace unit 12 through link 42 to break the trace
down into at least one single instruction trace. In the case
where the basic block trace being broken down includes more
than one single 1nstruction trace, it 1s broken down into mul-
tiple single mstruction traces. At 640, the IU 36 then starts
execution of the refetched basic block trace(s). In this situa-
tion, the corrective action 626 ends at step 640.

If 1t 1s determined that the triggering trace 1s not a basic
block trace at 638, a determination must be made at 642 as to
whether or not the triggering trace has a non-speculative
attribute. If 1t 1s determined at 642 that the trace 1s non-
speculative, the process proceeds to step 644. At 644, the MU
fault 1s sent to the trace unit 12, causing the trace unit 12 to
fetch the microcode fault handler. In this situation, the cor-
rective action 626 ends at step 644.

If 1t 15 1mstead determined at 642 that the triggering trace 1s
not a non-speculative trace, the process proceeds to step 646.
At 646, the IU 36 re-executes the triggering trace as a non-
speculative trace. In this situation, the corrective action 626
ends at step 644.

However, 1t 1t 1s determined at 632 that the MU 44 did not

send a CannotComplete abort trigger associated with a “MU
fault”’-type encoding to the IU 36, at 648 a determination 1s
made at as to whether or not the MU 44 sent a CannotCom-

plete abort trigger associated with a “Noncacheable Request
Queue” (NRQ) overtlow”-type encoding to the IU 36. The

MU 44 will send this abort trigger to the IU 36 when a
speculative trace contains many write combining loads that
cannot be flushed from the NRQ until the trace 1s commuatted.
IT 1t 1s determined that the MU 44 sent the CannotComplete
abort trigger associated with a “NRQ overtlow”-type encod-
ing to the IU 36, at 650 a determination as to whether or not
the triggering trace 1s a multi-block trace must be made. IT it
1s determined at 650 that the triggering trace 1s a multi-block
trace, the process proceeds to step 652. In 652, the IU 36
signals the trace unit 12 through link 42 to break the multi-
block trace down 1nto at least one basic block trace. Inthe case
where the multi-block trace being broken down includes
more than one basic block trace, it 1s broken down 1nto mul-
tiple basic block traces. The trace unit 12 marks the basic
block trace as non-promotable and with the MissInOrder
attribute 1n the multi-block trace cache to prevent promotion
of the trace to a multi-block trace in future executions of the
trace. At 652, the marking of the trace also indicates that all
memops 1n the multi-block trace must be completed before
any other trace may place “write-combining stores” in the
NRQ. “Write combining stores™ go to the NRQ, and when
they commit, they get shifted to the write combining bufier
and out to the bus. At 652, the IU 36 then starts execution of
the refetched basic block trace(s). In this situation, the cor-
rective action 626 ends at step 652.

I1 1t 1s 1nstead determined that the triggering trace at 650 1s
not a multi-block trace, a determination must be made at 654
as to whether or not the triggering trace 1s a basic block trace.
IT 1t 1s determined at 654 that the triggering trace 1s a basic
block trace, the process proceeds to step 656. At 656, the IU
36 signals the trace unit 12 through link 42 to invalidate the
basic block trace and to rebuild the basic block trace with
fewer memory operations (memops). The trace unit 12 marks
the first basic block trace specially as a non-promotable trace
and with the MissInOrder attribute 1n the basic block cache.

10

15

20

25

30

35

40

45

50

55

60

65

38

At 656, the IU 36 then starts execution of the refetched and
rebuilt basic block trace. In this situation, the corrective action

626 ends at step 656.

I1 1t 1s 1nstead determined at 654 that the triggering trace 1s
not a basic block trace, the process proceeds to step 658. At
658, 1f the triggering trace 1s a single 1nstruction trace, the
single instruction trace 1s refetched from the basic block
cache within the trace unit 12. However 11 the triggering trace
1S a microcode trace, the microcode trace 1s refetched from the
microcode cache of the trace unit 12. At step 658, the IU 36
applies the non-speculative attribute to the refetched trace so
that the next time the trace 1s executed, the new attributes
apply. More specifically, the new attribute 1s temporary, and 1t
1s retained by the IU 36 for application to the refetched trace
during execution. Additionally, the IU 36 starts execution of
the refetched trace. In this situation, the corrective action 626
ends at the completion of step 658.

However, 1f it 1s determined at 648 that the MU 44 did not
send a CannotComplete abort trigger associated with a “NRQ
overflow” -type encoding to the IU 36, at 660 a determination
1s made as to whether or not the MU 44 sent a CannotCom-
plete abort trigger associated with a “temporary non-specu-
lative requirement”-type encoding to the IU 36. In some
embodiments of the invention, the MU 44 will send the Can-
notComplete associated with a “temporary non-speculative
requirement”’-type encoding to the IU 36 when the MU 44
needs to update the “accessed” or “modified” bits of an
accessed page. I1 1t 1s determined at 660 that the MU 44 sent
the CannotComplete abort trigger associated with a “tempo-
rary non-speculative requirement”-type encoding to the IU
36, at 662 a determination as to whether or not the triggering
trace 1s a multi-block trace must be made. If 1t 1s determined
at 662 that the triggering trace 1s a multi-block trace, the
process proceeds to step 664. In 664, the IU 36 signals the
trace unmt 12 through link 42 to break the multi-block trace
down 1nto at least one basic block trace. In the case where the
multi-block trace being broken down includes more than one
basic block trace, 1t 1s broken down 1nto multiple basic block
traces. At 664, the IU 36 then starts execution of the retfetched
basic block trace(s). In this situation, the corrective action 626
ends at step 664.

I 1t 1s 1nstead determined that the triggering trace at 662 1s
not a multi-block trace, a determination must be made at 666
as to whether or not the triggering trace is a basic block trace.
If 1t 1s determined at 666 that the triggering trace 1s a basic
block trace, the process proceeds to step 668. At 668, the IU
36 signals the trace unit 12 through link 42 to break the
basic-block trace down into at least one single instruction
trace. In the case where the basic block trace being broken
down 1ncludes more than one single instruction trace, 1t 1s
broken down into multiple single instruction traces. At 664,
the IU 36 then starts execution of the refetched single mnstruc-

tion trace(s). In this situation, the corrective action 626 ends at
step 668.

If 1t 1s 1nstead determined at 666 that the triggering trace 1s
not a basic block trace, the process proceeds to step 670. At
670, 1f the tnggering trace 1s a single instruction trace, the
single instruction trace 1s refetched from the basic block
cache within the trace unit 12. However i1 the triggering trace
1s a microcode trace, the microcode trace 1s refetched from the
microcode cache of the trace unit 12. At step 670, the IU 36
applies the non-speculative attribute to the refetched trace so
that the next time the trace 1s executed, the new attributes
apply. More specifically, the new attribute 1s temporary, and 1t
1s retained by the IU 36 for application to the refetched trace
during execution. Additionally, the IU 36 starts execution of

US 7,783,863 Bl

39

the refetched trace. In this situation, the corrective action 626
ends at the completion of step 670.

However, 1t 1t 1s determined at 660 that the MU 44 did not
send a CannotComplete abort trigger associated with a “tem-
porary non-speculative requirement”-type encoding to the IU
36, the process proceeds to step 672. At 672, the MU 44 sent
a CannotComplete abort trigger associated with a “permanent
non-speculative requirement”-type encoding to the IU 36. In
some embodiments of the invention, the MU 44 will send the
CannotComplete abort trigger associated with a “permanent
non-speculative requirement”-type encoding to the IU 36
when a memory operation accesses uncacheable memory
space. The process proceeds to 674, where a determination as
to whether or not the triggering trace 1s a multi-block trace
must be made. If 1t 1s determined at 674 that the triggering
trace 1s a multi-block trace, the process proceeds to step 676.
In 676, the IU 36 signals the trace unit 12 through link 42 to
both 1nvalidate and break the multi-block trace down into at
least one basic block trace. In the case where the multi-block
trace being broken down includes more than one basic block
trace, 1t 1s broken down into multiple basic block traces. At
676, the IU 36 then starts execution of the refetched basic
block trace. In this situation, the corrective action 626 ends at
step 676.

I1 1t 15 mstead determined that the triggering trace at 674 1s
not a multi-block trace, a determination must be made at 678
as to whether or not the triggering trace 1s a basic block trace.

I 1t 1s determined at 678 that the triggering trace 1s a basic
block trace, the process proceeds to step 680. At 680, the IU
36 signals the trace unit 12 through link 42 to rebuild the basic
block trace with the uncacheable memory operation isolated
in a single istruction trace. The single instruction trace 1s
marked as a non-promotable and non-speculative trace so that
the next time the traces are executed, the new attributes apply.
More specifically, the new attribute 1s stored 1n the respective
trace caches, within the trace unit 12. At step 680, the IU 36
starts execution of the refetched traces. In this situation, the
corrective action 626 ends at step 680.

If 1t 15 mstead determined that the triggering trace at 678 1s
not a basic block trace, a determination must be made at 682
as to whether or not the triggering trace 1s a single 1nstruction
trace. If 1t 1s determined at 682 that the triggering trace 1s a
single mstruction trace, the process proceeds to step 684.

At 684, the trace unit 12 refetches the single instruction
trace as 1s and records a non-speculative attribute associated
therewith. More specifically, the new attribute 1s stored 1in the
corresponding cache, within the trace unit 12. The IU 36
applies the non-speculative attribute to the single instruction
trace so that the next time the trace 1s executed, the new
attributes apply. The non-speculative attribute also implies
that the trace 1s a single instruction trace, which 1s necessary
due to the fact that the single instruction trace 1s recorded 1n
the basic block cache. Additionally, the IU 36 starts execution
of the refetched trace. In this situation, the corrective action
626 ends at step 684.

I1 1t 1s 1nstead determined that the triggering trace at 682 1s
not a single instruction trace, the triggering trace 1s micro-
code, and the process proceeds to step 686.

At 686, the trace 1s microcode trace and the IU 36 signals
the trace unit 12 through link 42 to be executed, 1n the future,
with a non-speculative attribute. In future executions, the
1solated memop of this trace 1s performed speculatively At
step 686, the IU 36 applies the non-speculative attribute to the
refetched microcode trace so that the next time the triggering,
trace 1s executed, the new attributes apply. More specifically,
the new attribute 1s stored 1n a trace cache corresponding to
the trace type of the trace being aborted, within the trace unit

10

15

20

25

30

35

40

45

50

55

60

65

40

12. Additionally, the IU 36 starts execution of the refetched
trace, applying the non-speculative attribute to the microcode
sequence 1n the refetched trace. In this situation, the correc-
tive action 626 ends at step 686.

While the steps performed in the corrective action 626 are
shown 1 FIG. 11 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

FIG. 12 shows the corrective action 688 taken when an
occurrence of an XM fault 1s recetved as an abort. XM fault
abort triggers occur when the XM 34 signals a fault to the IU
36. The XM fault abort 1s received by the abort prioritization
logic 50 of the IU 36.

At step 690, while a trace 1s being executed, an occurrence
of an XM {fault abort trigger 1s recerved. Next at 692, a deter-
mination 1s made as to whether or not a XM fault abort trigger
was sent by the XM 36 and recerved by the IU 36. The XM
fault abort trigger 1s recerved when the XM 34 signals an
operation fault to the IU 36. 111t 1s determined at 692 that the
XM fault abort trigger 1s received, a determination must be
made at 694 as to whether or not the triggering trace 1s a
multi-block trace. If 1t 1s determined at 694 that the triggering,
trace 1s a multi-block trace, the process proceeds to step 696.
At 696, the IU 36 signals the trace unit 12 through link 42 to
break the multi-block trace down into at least one basic block
trace. In the case where the multi-block trace being broken
down includes more than one basic block trace, it 1s broken
down into multiple basic block traces. At 696, the IU 36 then
starts execution of the refetched basic block trace(s). In this
situation, the corrective action 688 ends at step 696.

If 1t 1s determined at 694 that the triggering trace 1s not a
multi-block trace, a determination must be made at 698 as to
whether or not the triggering trace 1s a basic block trace. If 1t
1s determined at 698 that the triggering trace 1s a basic block
trace, the process proceeds to step 706. At 700, the IU 36
signals the trace unit 12 through link 42 to break the basic
block trace down 1nto at least one single instruction trace. In
the case where the basic block trace being broken down
includes more than single 1instruction trace, 1t 1s broken down
into multiple single instruction traces. At 700, the IU 36 then
starts execution of the refetched single instruction trace(s). In
this situation, the corrective action 688 ends at step 700.

If 1t 1s determined at 698 that the triggering trace 1s not a
basic block trace, a determination 1s made at t 706 as to
whether or not SSE decode 1s enabled. If 1t 1s determined that
SSE Decode 1s enabled, the process proceeds to step 708. At
708, the trace 1s either single istruction or a microcode trace.
IU 36 sends the XM {fault to trace unit 12, causing the trace
unit 12 to fetch the microcode fault handler. In this situation,
the corrective action 688 ends at step 708.

If1t1s determined at 706 that SSE decode 1s not enabled, the
process proceeds to step 710. At step 710, the trace 1s either
single instruction or a microcode trace. The trace unit 12
refetches the single instruction trace and records the non-
speculative attribute associated therewith. The IU 36 applies
the non-speculative attribute to the single instruction trace so
that the next time the trace 1s executed, the new attributes
apply. More specifically, the new attribute 1s temporary, and 1t
1s retained by the IU 36 for application to the refetched trace
during execution. At 710, the IU 36 executes the refetched
single nstruction trace.

While the steps performed in the corrective action 688 are
shown 1 FIG. 12 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

FIG. 13 shows the corrective action 711 taken when an
occurrence of a LDX fault in a non-speculative trace 1s

US 7,783,863 Bl

41

received as an abort. The LDX faultin a non-speculative trace
abort trigger 1s a variant of the XM fault, and 1t 1s received by
the IU 36 in the REN stage. The XM fault abort 1s received by
the abort prioritization logic 50 of the IU 36.

At step 713, while a trace 1s being executed, an occurrence
of a LDX fault 1n a non-speculative trace abort trigger is
recerved. At715, a determination 1s made as to whether or not
a LDX fault abort trigger associated with a “LDX fault”-type
fault signal 1s sent by the XM 36 and received by the I1U 36.
The LDX fault abort trigger 1s applied to a non-speculative
LDX when an x87 exception 1s pending. If 1t 1s determined
that there 1s no LDX {fault in a non-speculative trace abort
trigger associated with a “LDX fault”-type fault signal
received at 715, the process proceeds to step 713.

However, 11 1t 1s determined at 715 that the LDX fault fault
abort trigger 1s received, the triggering trace 1s a single
istruction trace, and the process proceeds to step 717. At
717, the trace 1s either a single instruction or microcode trace.
The IU 36 sends the XM fault to trace unit 12, causing the
trace unit 12 to fetch the microcode fault handler. In this
situation, the corrective action 711 ends at step 717.

While the steps performed 1n the corrective action 711 are
shown 1 FIG. 13 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

FIG. 14 shows the corrective action 716 taken when an
occurrence ol a SSE fault 1s recetved as an abort. SSE fault
aborts occur when the SSE 38 signals a fault to the IU 36. A
SSE fault 1s signaled when a SSE operation triggers an
unmasked SSE exception. The SSE fault abort 1s recerved by
the abort prioritization logic 50 of the IU 36.

At step 718, while a trace 1s being executed, an occurrence
of a SSE fault abort trigger 1s received, 1.e. abort trigger. Next
at 720, 1t 1s determined whether or not the SSE {fault abort
trigger was sent by the SSE 38 and received by the IU 36. The
SSE fault abort trigger 74 1s sent by the SSE 38 to the 1U 36.
However, 1f 1t 1s determined at 720 that the SSE fault abort
trigger 1s not received, the process proceeds to step 718.

However, 1t 1t 1s determined at 720 that the SSE fault abort
trigger 74 1s recerved, a determination must be made at 722 as
to whether or not the triggering trace 1s a multi-block trace. I
it 1s determined at 722 that the triggering trace 1s a multi-block
trace, the process proceeds to step 724. At 724, the IU 36
signals the trace umt 12 through link 42 to break the multi-
block trace down 1nto at least one basic block trace. Inthe case
where the multi-block trace being broken down includes
more than one basic block trace, 1t 1s broken down 1nto mul-
tiple basic block traces. At 724, the IU 36 then starts execution
of the refetched basic block trace. In this situation, the cor-
rective action 716 ends at step 724.

If 1t 1s determined at 722 that the triggering trace is not a
multi-block trace, a determination must be made at 726 as to
whether or not the triggering trace 1s a basic block trace.

I 1t 1s determined at 726 that the triggering trace 1s a basic
block trace, the process proceeds to step 728. At 728, the IU
36 signals the trace unit 12 through link 42 to break the basic
block trace down 1nto at least one single instruction trace. In
the case where the basic block trace being broken down
includes more than one single nstruction trace, 1t 1s broken
down 1into multiple single instruction traces. At 728, the IU 36
then starts execution of the refetched single instruction
trace(s). In this situation, the corrective action 716 ends at
step 728.

However, if 1t 1s determined at 726 that the triggering trace
1s not a basic block trace, the triggering trace 1s either a single
instruction trace or a microcode trace, and the process pro-

ceeds to step 730. At 730, the IU 36 sends the SSE fault to

10

15

20

25

30

35

40

45

50

55

60

65

42

trace unit 12, causing the trace unit 12 to fetch the microcode
fault handler. In this situation, the corrective action 716 ends
at step 730.

While the steps performed in the corrective action 716 are
shown 1 FIG. 14 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

FIG. 15 shows the corrective action 732 taken when an
occurrence of an XM/SSE decode fault 1s received as an
abort. A XM/SE decode fault abort occurs when the IU 36
receives a XM operation or a SSE operation in the rename
stage when the corresponding instruction type 1s disallowed.
This 1s exhibited by the activation of trigger 73 (1n FIG. 2).
The XM/SSE decode fault abort (or the trigger 73) 1s recerved
by the abort prioritization logic 50 of the IU 36.

At step 734, while a trace 1s being executed, an occurrence
of a XM/SSE fault abort trigger 1s recerved. Next at 736, 1t 1s
determined whether or not the XM/SSE fault abort trigger
was triggered by the IU 36. If 1t 1s determined at 736 that the
XM/SSE decode fault 1s not recerved, the process proceeds to
step 738.

However, 1f 1t 1s determined at 736 that the SSE fault abort
trigger 1s recerved, a determination must be made at 738 as to
whether or not the triggering trace 1s a multi-block trace. If 1t
1s determined at 738 that the triggering trace 1s a multi-block
trace, the process proceeds to step 740. At 740, the IU 36
signals the trace unit 12 through link 42 to break the multi-
block trace down 1nto at least one basic block trace. Inthe case
where the multi-block trace being broken down includes
more than one basic block trace, 1t 1s broken down into mul-
tiple basic block traces. At 740, the IU 36 then starts execution
of the refetched basic block trace. In this situation, the cor-
rective action 732 ends at step 740.

If 1t 1s determined at 738 that the triggering trace 1s not a
multi-block trace, a determination must be made at 742 as to
whether or not the triggering trace 1s a basic block trace. If 1t
1s determined at 742 that the triggering trace 1s a basic block
trace, the process proceeds to step 744. At 744, the IU 36
signals the trace unit 12 through link 42 to break the basic
block trace down 1nto single instruction traces. At 744, the IU
36 then starts execution of the refetched single 1nstruction
traces. In this situation, the corrective action 732 ends at step
744.

However, 11 1t 1s determined at 742 that the triggering trace
1s not a basic block trace, the triggering trace 1s either a single
instruction trace or a microcode trace, and the process pro-
ceeds to step 746. At 746, the IU 36 sends the SSE fault to
trace unit 12, causing the trace unit 12 to fetch the microcode
fault handler. In this situation, the corrective action 732 ends
at step 746.

While the steps performed in the corrective action 732 are
shown 1 FIG. 15 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

FIG. 16 shows the corrective action 748 taken when an
occurrence of a newip fault 1s recerved as an abort. The newip
fault abort 1s recerved by the abort prioritization logic 50 of
the IU 36. The steps 752 through 762 are performed when the
newi1p fault abort 1s received. Newip fault aborts occur when
an operation to load a new instruction pointer (IP) detects that
the new IP 1s outside the segment limits or linear address
space (“‘out of bounds”).

At step 750, while a trace 1s being executed, an occurrence
of a newi1p fault abort1srecerved. Next at 752, a determination
1s made as to whether or not the newip fault abort trigger 1s
received. I 1t 1s determined at 752 that there 1s no newip fault
abort trigger received, the process proceeds to step 750.

US 7,783,863 Bl

43

However, 11 1t 1s determined at 752 that the newip fault
abort trigger 1s received, a determination must be made at 754
as to whether or not the triggering trace 1s a multi-block trace.
IT 1t 1s determined at 754 that the triggering trace 1s a multi-
block trace, the process proceeds to step 756. At 756, the U
36 signals the trace unit 12 through link 42 to break the
multi-block trace down 1nto at least one basic block trace. At
756, the IU 36 then starts execution of the refetched basic
block trace. In this situation, the corrective action 748 ends at

step 756.

If 1t 1s determined at 754 that the triggering trace 1s not a
multi-block trace, a determination must be made at 758 as to
whether or not the triggering trace 1s a basic block trace. IT it
1s determined at 758 that the triggering trace 1s a basic block
trace, the process proceeds to step 760. At 760, the IU 36
signals the trace unit 12 through link 42 to break the basic
block trace down 1nto at least one single instruction trace. At
760, the IU 36 then starts execution of the refetched single
instruction trace(s). In this situation, the corrective action 748
ends at step 760.

However, if 1t 1s determined at 758 that the triggering trace
1s not a basic block trace, the triggering trace 1s either a
microcode or single 1nstruction trace, and the process pro-
ceeds to step 762. At step 762, the IU 36 sends a IP fault to the
trace unit 12, causing the trace unit 12 to fetch the microcode
fault handler. In this situation, the corrective action 748 ends
at step 762.

While the steps performed 1n the corrective action 748 are
shown m FIG. 16 and the foregoing discussion to be in
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

FIG. 17 shows the corrective action 764 taken when an
occurrence ol an OptRepString fault 1s received as an abort.
The OptRepString fault abort 1s received by the abort priori-
tization logic 50 of the IU 36. The steps 768 through 770 are
performed when the OptRepString fault abort 1s received.

At step 766, while a trace 1s being executed, an occurrence
of an OptRepString fault abort 1s received. Next at 768, a
determination 1s made as to whether or not the OptRepString
fault abort trigger 1s recerved by the IU 36. The OptRepString
fault abort trigger 1s recerved when the IU 36 receives a
microcode trace with the OptRepString attribute prepared to
execute non-speculatively. If 1t 1s determined at 768 that the
non-speculative trace with OptRepString attribute abort trig-
ger was not recerved, the process proceeds to step 766.

However, 11 at 768 1t 1s determined that the OptRepString
fault abort trigger was received by the IU 36, the process
proceeds to step 770. At 770, the IU 36 sends the memory unit

fault to the trace unit 12. A memory unit fault 1s sent to the
trace unit 12 1n order to send the trace to the MU 44 fault

handler so that an alternate microcode trace that allows a
non-speculative attribute to be applied can be executed. In this
situation, the corrective action 764 ends at step 770.

While the steps performed 1n the corrective action 770 are
shown 1 FIG. 14 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

Single-Instruction Trap and Multi-Instruction Fault and Trap:

FIG. 18 shows the corrective action 772 taken when an
occurrence of a data breakpoint 1s recerved as an abort. The
data breakpoint abort 1s recetved by the abort prioritization
logic 50 of the IU 36. The steps 776 through 798 are per-
formed when the data breakpoint abort 1s recerved. Data
breakpoint aborts occur when a trace triggers a data break
point. A data break point 1s set to discontinue execution at the
end of the instruction that triggers 1t.

10

15

20

25

30

35

40

45

50

55

60

65

44

At 776, a determination 1s made as to whether or not a data
breakpoint abort trigger from a trace with the OptRepString
attribute was received by the IU 36. If 1t 1s determined at 776
that the data breakpoint abort was recerved from a trace with
the OptRepString attribute at 776, the process proceeds to
step 778. At step 778, the IU 36 sends the memory unit fault
to the trace unit 12. In this situation, the corrective action 772
ends at step 778.

If 1t 1s determined at 776 that the data breakpoint abort
trigger was not from a trace with the OptRepString attribute,
a determination 1s made at 780 as to whether or not a data
breakpoint abort trigger or an XM error, from a trace without
the OptRepString attribute, was recetrved by the IU 36. In the
exemplary embodiment, the abort trigger may alternatively
result from a “XM error.”” An “XM error” halts execution after
a XM reg_op, and the error triggers an unmasked x87 excep-
tion. If 1t 1s determined at 780 that the data breakpoint abort
was not received from a trace without the OptRepString
attribute at 780, the process proceeds to step 774.

However, 11 1t 1s determined at 780 that the data breakpoint
abort trigger from a trace without the OptRepString attribute
was recerved by the IU 36, a determination must be made at
782 as to whether or not the triggering trace 1s a multi-block
trace. In the exemplary embodiment, the abort trigger may
alternatively result from a “XM error.” An “XM error” halts
execution after a XM reg_op, and the error triggers an
unmasked x87 exception. If 1t 1s determined at 782 that the
triggering trace 1s a multi-block trace, the process proceeds to
step 784. At 784, the IU 36 signals the trace unit 12 through
link 42 to break the multi-block trace down 1nto at least one
basic block trace. In the case where the multi-block trace
being broken down includes more than one basic block trace,
it 1s broken down into multiple basic block traces. At 784, the
IU 36 starts execution of the refetched basic block trace. In
this situation, the corrective action 772 ends at step 784.

If 1t 1s determined at 782 that the triggering trace 1s not a
multi-block trace, a determination must be made at 786 as to
whether or not the triggering trace 1s a basic block trace. If 1t
1s determined at 786 that the triggering trace 1s a basic block
trace, the process proceeds to step 788. At 788, the IU 36
signals the trace unit 12 through link 42 to break the basic
block trace down 1nto single instruction traces. At 788, the IU
36 then starts execution of the refetched single 1nstruction
traces. In this situation, the corrective action 760 ends at step
788.

If 1t 1s determined at 786 that the triggering trace 1s not a
basic block trace, a determination must be made at 790 as to
whether or notthe triggering trace 1s a single instruction trace.
I 1t 1s determined at 790 that the triggering trace has a single
instruction attribute, the process proceeds to step 792. At 792,
a data breakpoint trap is taken (or processed). Traps are set
generally to capture data relating to a problem with the code
that 1s being diagnosed. Alternatively, 1f the abort trigger at
780 1s an XM error, then at step 792, the XM error abort 1s
taken (or processor). In this situation, the corrective action
760 ends at step 792.

XM error 1s an error type of abort trigger and XM fault 1s a
fault type of trigger.

If 1t 1s determined at 790 that the triggering trace 1s not a
single instruction trace, a determination must be made at 794
as to whether or not the triggering trace 1s a microcode “Exit”
trace or an exit out of the microcode trace. If 1t 1s determined
at 794 that the triggering trace 1s a microcode exit trace, the
process proceeds to step 796. At 796, a trap 1s set. In this
situation, the corrective action 760 ends at step 796.

If 1t 1s determined at 794 that the triggering trace 1s not a
microcode exit trace, a determination must be made at 798 as

US 7,783,863 Bl

45

to whether or not the triggering trace has a “rep-string con-
dition.” A “rep-string condition” checks for data breakpoints
in a trace. IT 1t 1s determined that a “rep-string condition™ 1s 1n
the triggering trace, the process proceeds to step 799. At 799,
the final branch misprediction 1s sent to the IU 36. In this
situation, the corrective action 760 ends at step 799.

However, 11 1t 1s determined at 798 that a “rep-string con-
dition” 1s not present in the triggering trace, the process
proceeds to step 801. At 801, the IU 36 defers to the trace that
1s to be or was sequenced next. In this situation, the corrective
action 760 ends at step 801.

While the steps performed 1n the corrective action 772 are
shown m FIG. 17 and the foregoing discussion to be in
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

Final Branch Misprediction Abort:

FIG. 19 shows the corrective action 800 taken when an
occurrence of a final branch misprediction 1s received as an
abort. The final branch misprediction abort 1s received by the
abort prioritization logic 50 of the IU 36. The steps 804
through 810 are performed when the final branch mispredic-
tion abort 1s recerved. Final branch misprediction aborts
occur when the final prediction 1 a multi-block, basic block,
single mnstruction, or microcode trace 1s mispredicted.

At step 802, while a trace 1s being executed, an occurrence
of a final branch misprediction abort trigger 1s recerved. Next
at 804, a determination 1s made as to whether or not the final
branch misprediction abort trigger 1s received. If 1t 1s deter-
mined at 804 that there 1s no final branch misprediction abort
trigger recerved, the process proceeds to step 802.

However, 1f 1t 1s determined at 804 that the final branch
misprediction abort trigger 1s received, at 806 a determination
1s made as to whether or not the final branch misprediction 1s
on a new IP. If 1t 1s determined at 806 that the final branch
misprediction 1s on anew IP, the process proceeds to step 808.
At 808, the IU 36 sends the final branch misprediction to the
trace unit 12, and the IU 36 sends the new IP to the trace unit
12. It this 1s the situation, the corrective action 800 ends at

step 808.

If 1t 1s determined that the final branch misprediction was
not on a new 1P, the process proceeds to step 810. At 810, the
IU 36 sends the final branch misprediction to the trace unit 12,
and the trace unit 12 updates 1ts trace sequencing to the
corrected target. In this situation, the corrective action 800
ends at step 810.

While the steps performed 1n the corrective action 800 are
shown 1 FIG. 19 and the foregoing discussion to be 1n
sequential order, alternatively, they may be performed sub-
stantially 1n parallel.

While the foregoing steps of FIGS. 6-19 and related dis-
cussion are directed to the steps being performed 1n sequen-
tial order, 1t 1s understood that at least some steps thereof may
be alternatively performed substantially 1n parallel or some
steps may be performed 1n sequential order and others may be
performed substantially 1n parallel.

Abort triggers, other than those indicated in Table 3 and
discussed relative to the flow charts of FIGS. 6-19, are antici-
pated. Examples of the some of which include:

Load Value Misprediction Abort:

Description: A load was predicted to read a certain value
from memory, and execution proceeded as 1f the value were
already read from memory. I1 a later check of memory shows
the prediction to be incorrect, then a load value misprediction
abort event 1s signaled.

Corrective Action: Re-fetch trace and execute with an
attribute to disable value prediction. In an exemplary embodi-

10

15

20

25

30

35

40

45

50

55

60

65

46

ment, an abort trigger due to a load value misprediction might
be of the higher priority level, or priority 0.

Abort Prioritization

Abort prioritization, in accordance with an embodiment
and method of the present invention 1s a method of determin-
ing a reason for a trace to be aborted 1n a trace-based proces-
sor architecture where a trace includes operations represent-
ing instructions and an nstruction might have more than one
operations representing it. To this end, the IU 36 receives at
least two 1ncoming indications of occurrences of abort trig-
gers, which may be any of the triggers 70-76. Prioritizing
among the abort trigger occurrences for the trace 1s based on
the abort priority level of each abort trigger that occurred
stemming {rom execution of the trace. An indication 1s held,
as a pending abort, of the abort trigger with a highest abort
priority level, such as priority 0, among the abort trigger
occurrences stemming from the execution of the trace and
provided, to the trace unit 12, as an outgoing indication of the
pending abort. The trace represents multiple instructions.
Prioritizing 1s performed among the abort trigger occurrences
for the same trace based on each abort trigger’s abort priority
level.

In some embodiments, the incoming indications of abort
triggers occurs over time and the held indication of the abort
trigger indicates the highest abort priority level among the
those of the abort trigger occurrences that have been priori-
tized. Those of the abort trigger occurrences that are dis-
carded have been prioritized and that are not the highest
priority abort priority level.

In some embodiments, the pending abort held further
includes indications of multiple abort trigger occurrences that
are prioritized subsequent to being held as the pending abort.

In some embodiments, each abort trigger has an associated
abort priority level based on the trace type of the trace being
aborted.

In some embodiments, the prioritizing among current abort
trigger occurrences for the trace includes all abort trigger
occurrences stemming from the execution of the trace.

In some embodiments, prioritizing among the abort trig-
gers occurs at multiple points in time, holding (or storing), as
a pending abort, an indication of the abort trigger with the
highest abort priority level among the prioritized abort trig-
gers, including the abort priority level of the pending abort
when prioritizing among incoming abort triggers.

In some embodiments, the pending abort 1s kept and the
current abort trigger 1s discarded 11 the abort priority level of
the pending abort 1s the same as the abort priority level of the
current abort trigger.

In some embodiments, a pending abort and the current
abort trigger are kept 1f the abort priority level of the pending
abort 1s the same as the abort priority level of the current abort
trigger.

In some embodiments, the pending abort 1s discarded and
the current abort trigger 1s kept if the abort priority level of the
pending abort 1s the same as the abort priority level of the
current abort trigger.

A particular operation can cause multiple abort triggers.
Each abort trigger has a static priority. That 1s, each occur-
rence of the same abort trigger has the same priority regard-
less of the program order of the instructions that correspond to
the operations.

In some embodiments, a combination of abort priority
level and 1nstruction order schemes are employed.

In some embodiments, prioritizing does not take into
account a correspondence between the operations that caused
the abort trigger occurrences and the instructions that the

US 7,783,863 Bl

47

operations, at least in part, represent. Examples of abort trig-
gers are shown and discussed relative to Table 3. Other abort
triggers are anticipated.

FIGS. 20-23 show steps performed 1n prioritizing aborts, in
accordance with an exemplary method of the abort prioriti-
zation process of the present invention.

FI1G. 20 shows the corrective action 1000 taken when IU 36
receives an abort trigger from various sources defined, for
example 1n Table 4, while executing a trace. Table 4 shows an
exemplary abort prioritization scheme, in accordance with an
embodiment of the present invention.

The abort trigger 1s detected by the abort prioritization
logic 50 of the IU 36. The Priority column of Table 4 lists the
priority levels. In this example, priority 0 takes on the highest
priority level that a trace can experience. The Abort column of
Table 4 includes the aborts that a trace can experience. The
Abort Description column of Table 4 lists the description of
corresponding aborts. The prioritization of each row 1s dic-
tated by the Priority column.

TABLE 4
Abort
Priority
Level Abort Abort Description

0 IntraProcessor A speculative memory access executed out

InterProcessor of order relative to another load or store in
the same core.
0 InterProcessor A speculative memory access executed out
Order Violation of order relative to the order seen by a
(MP loss) SNOOP access.
0 InterProcessor A speculative memory access caused
Order Violation replacement of a line used by a previously
(UP loss) executed, uncommitted memop. Because
another processor could modify the line
without our knowledge, we must
pessimistically abort the memop.
0 TU Abort The TU requested an abort for SMC or some
Request other reason.
1 Interior Branch The trace has a branch that 1s not the last
Mispredict instruction (prior to decoding and
optimization), and that branch was
mispredicted. Note that interior branches
are marked as such by the TU, which may
have no relation to the order of operations in
the trace.
2 Fault An operation triggered a hardware fault in a

multinstruction or singleinstruction trace.
The trace must be degraded until the fault 1s
positively 1dentified, and then an abort is
made to the emcode fault handler.

A writecombining store overflows the NRQ.
The trace must be rebuilt with fewer stores.
A memop accessed a page that was not

2 NRQ Overflow

2 Temporary

NonSpec previous accessed, or a store operation wrote

Requirement to a page that was not previously
unmodified. The instruction must be
executed nonspeculatively so that the MU
can safely set the accessed or modified bit
on the page.

2 Permanent The trace was not built to be executed non-
NonSpec speculatively, and a memory operation
Requirement attempted to access uncacheable memory.

Since the operation cannot be completed
speculatively, the trace must be rebuilt to
isolate the instruction.

2 Multilnstruction The trace was fetched with only a single

Trap instruction, and that immstruction triggered a
fault exception (an exception to be handled
before the instruction completes).

3 Singlelnstruction The trace was fetched with only a single

Trap instruction, and that instruction triggered a
trap exception (an exception to be handled
after the instruction completes).

3 x87 Error The trace was fetched with only a single

instruction, and that instruction triggered an

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 4-continued
Abort
Priority
Level Abort Abort Description

x87 error. The x87 error must be logged so
that we can repoit it properly when it triggers
a later x¥7 fault.

The previous trace had a branch as the last
instruction (prior to decoding and
optimization), and that branch was
mispredicted. Note that a final branch

is marked as such by the TU, which may
have no relation to the order of

operations 1n the trace.

3 Final Branch
Mispredict

Referring still to FIG. 20, at step 1002, while a trace 1s
being executed, an abort 1s received (or detected) or an occur-
rence of the abort trigger 1s received. When an occurrence of
an abort trigger 1s indicated, the process proceeds to 1005,
where a determination 1s made as to whether or not the abort
trigger priority level of the indicated abort tr1 gger, 01 1004, 1s
higher than that held as the priority level. If 1t 1s determined
that the priority of the abort trigger at 1004 1s not higher than

that of the held prionty level, the process proceeds to step
1002.

However, 11 1t 1s determined at step 10035 that the abort
trigger priority of 1004 1s higher than that which 1s held as the
priority level, the process continues to 1006 where a determi-
nation 1s made by the abort prioritization logic 50 as to
whether or not the detected abort trigger 1s of the highest
priority, such as priority 0. Thus, abort prioritization 1s advan-
tageously based on priority levels rather than age-based.
Although 1n other methods, a combination of prionty level
and age-based schemes 1s employed.

In one embodiment, 111t 1s determined that the abort trigger
1s ol priority 0, the process continues to step 1018 and ‘stops’.
‘Stop’ as performed 1n the step 1018 1s described hereinabove.

Therefetched trace can be the same as the aborted trace and
re-executed as 1s, or fetched 1n a different manner, or as an
entirely diflerent trace.

In one embodiment of present invention, i the abort trigger
1004 1s of priority 0, the process continues to step 1020 where
a determination 1s made as to whether or not a MOC violation
abort trigger (or MOC abort trigger) 1s detected. If there 1s no
MOC abort trigger detected at 1020, the process continues to
step 1018. However, 1f a MOC abort trigger 1s detected at
1020, the process continues to step 1022 where the process
‘waits’, 1.e. IU 36 sends an abort to the trace unit 12 along with
an abor‘[reason and a trace ID corresponding to the trace with
the abort while continuing execution of the same trace to find
additional constraints until the trace unit 12 refetches the
trace and sends it to the IU 36.

Next at step 1006, if the abort trigger 1s not of the highest
abort priority level, or priority 0, the process continues to step
1008. At step 1008, a determination 1s made by the abort
prioritization logic 50 as to whether or not the abort trigger 1s
of a sequentially lower abort priority level, such as, in this
example, priority 1 or 2. If the abort trigger 1s not of priority
1 or 2 indicating that the abort trigger must be of the lowest
abort priority level (priority 3), the process proceeds to step
1009 where the IU 36 must retain or hold the pending abort
priority level. Next, the process proceeds to step 1010 where
it ‘continues’, 1.e. IU 36 sends an abort to the trace unit 12 and
continues executing the same trace to find higher priority
aborts and additional constraints or until the trace 1s ready to
commit. If the abort trigger 1s of priority 1 or 2, the process

US 7,783,863 Bl

49

continues to step 1012 where a determination 1s made as to
whether or not non-speculative attribute, or an attribute that 1s
associated with anon-speculative trace, 1s applied to the trace.
If the non-speculative attribute 1s applied to the trace, the

process continues to step 1014 where the process ‘stops.” IT 53

the non-speculative attribute 1s not applied to the trace, the
process proceeds to step 1015. At 1015, the IU 36 must retain
or hold the pending abort priority level. Next, the process
proceeds to step 1016; ‘continue.”

FI1G. 21 shows the corrective action 1040 taken when the
abort prioritization logic 50 receives an abort trigger at step
1042 from various sources defined, for example 1n Table 3,
while executing a trace.

Table 5 1s a table of abort triggers and their respective
descriptions 1n an exemplary abort prioritization scheme. The
rows of Table 5 correspond to the abort triggers 70-76 (o1 FIG.
2).

TABL.

L1
N

Abort
Trigger Description

72 Order violation in ALU 0 (MOC, MP loss, or various kinds of
UP loss)

72 Order violation in ALU 1 (MOC, MP loss, or various kinds of
UP loss)

72 Order violation in ALU 2 (MOC, MP loss, or various kinds of
UP loss)

70 TU abort request

70 2nd abort (delayed TU abort request)

75 Branch misprediction in ALU O (interior or final)

75 Branch misprediction in ALU 1 (interior or final)

75 Branch misprediction in ALU 2 (interior, final, or
newipassert.fin)

72 SegFault or CannotComplete in ALU O (many variations are
possible)

72 SegFault or CannotComplete in ALU 1 (many variations are
possible)

72 SegFault or CannotComplete in ALU 2 (many variations are
possible)

76 XM fault on XM op O

76 XMiaulton XM op 1

74 SSE fault on SSE op O

74 SSE faulton SSEop 1

75 Newip fault in slot 2

75 Pending data breakpoint (previously accumulated from triplet O,
triplet 1, and triplet 2)

76 XM error in a hardware trace (from XM op O orop 1)

75 OptRepString in nonspec

72 XM fault on nonspec ldx 1n slot 2 of a hardware trace

72 XM/SSE decode fault

The ALU 0 0-2 of Table 5 correspond to the ALLU 0-2 60-64
of FIG. 2, respectively.

At step 1043, a determination 1s made as to whether or not
there 1s an abort applied to an older trace. If 1t 1s determined at
1043 that there was an abort applied to an older trace, the
process proceeds to step 1046 where the detected abort 1s
ignored by the abort prioritization logic 50.

However, 1f at 1043, 1t 1s determined that there was no abort
on a older trace, at 1044, a determination 1s made as to
whether or not the detected abort 1s of a higher or equal abort
priority level than the earlier abort received by the abort
prioritization logic 50, 1.e. the pending abort. If a higher or
equal priority abort 1s pending 1n the abort prioritization logic
50, the process continues to step 1046 where the detected
abort 1s 1ignored by the abort prioritization logic 50. If there 1s
not a higher or equal priority abort pending, indicating that
the detected abort 1s either the first abort trigger received by
the abort prioritization logic 50, or the abort received has a
higher abort priority level than the pending abort, and the
process continues to step 1048. The foregoing basis of abort

10

15

20

25

30

35

40

45

50

55

60

65

50

prioritization, based on priority levels instead of relative age,
advantageously allows prioritization of aborts in a trace-
based processor architecture where the operations do not
represent original program (instruction) order.

At step 1048, a determination 1s made as to whether or not
the new higher priority abort recetved 1s a trap-style abort. IT
the new abort recerved 1s a trap-style abort, the process con-
tinues to step 1050 where the abort prioritization logic 50
delays sending the abort to the trace unit 12 until the IU 36
finishes renaming the trace. IU 36 will then send the new
received abort to the trace unit 12 along with an abort reason
and the corresponding trace ID.

If the newly-received abort 1s not a trap-style abort, the
process continues to step 1052 where IU 36 sends the new
abort recerved to the trace unit 12 along with an abort reason
and the corresponding trace ID and halts rename stage and
does other housekeeping. The IU 36 also discards all opera-
tions in the scheduler 1n the execution pipeline and rolls back
its state, as directed by the information saved in a table. A
trap-style abort results from, for example, a user-initiated trap
in the code for test purposes.

In an alternative embodiment and method of the present
invention, while IU 36 1s processing the IU abort internally, 1t
will also send an abort to MU 44 to rollback the state of its

cache.

In one embodiment and method of the present invention,
the process continues to step 1054, after step 1052, where 1t
will continue execution of the same trace to find additional
constraints until the trace unit 12 refetches the same trace or

a broken down (degraded) version of the same trace and sends
it to U 36.

In some embodiments and methods, when the IU 36 sends

an abort to the trace unit 12, the trace unit 12 discards its
predicted path and resorts to the path dictated by the abort.

FIG. 22 shows, conceptually, a method 1070 of determin-
ing a reason for a trace to be aborted, employed in an abort
prioritization scheme, in accordance with an exemplary
method of the present invention.

In the method 1070, N number of aborts, or T1 through TN
are experienced by a trace, N being an integer value. First, T1
and T2 aborts are applied to the trace and at 1072, these aborts
are prioritized 1n accordance with a prionty level scheme,
such as discussed above, where the abort with the highest
level of priority 1s taken and saved as the “pending abort”.
Pending aborts are saved in the accumulator 203 in one
embodiment of the present invention.

Next, the same trace experiences abort T3 and abort T4,
which are current aborts. It 1s noted that aborts result from the
occurrence ol abort triggers. Next, at 1076, the aborts T3 and
T4 are prioritized relative to each other as well as the pending
abort, which was held at 1076, to obtain a current abort
priority level using the priority level scheme, 1.e. the abort
with the highest abort priority level 1s selected and stored as
the pending abortat 1078. The pending abort o1 1078 replaces
that of 1076. That 1s, the same physical location, such as the
same register, 1s used to store the pending abort. Thus, at any

given time, there 1s one pending abort in the exemplary
method of FIG. 22.

Next, T ,,1s applied to the same trace and prioritized against
the pending abort o1 1078 using the priority level scheme and
the result 1s stored, updating the pending abort at 1086.

The output of each of the prioritizations at 1072, 1076 and
1084 1s the current pending abort reason. Thus, at each of
1072, 1076 and 1084, the current pending abort reason 1s
updated.

US 7,783,863 Bl

51

The process of FIG. 22 1s one method of using a prioriti-
zation level scheme to prioritize aborts applied to the same
trace.

FI1G. 23 shows examples of pair-wise prioritization in that
two aborts are prioritized at any given time and then at a later
time prioritized either pair-wise again, or not. For example,
the T1 and T2 are pair-wise prioritized at 1074 as are TN and
the pending abort at 1084. However, at 1076, prioritization 1s
not performed pair-wise, rather, more than two abort priority
levels are compared. In an exemplary embodiment, the pri-
oritization of FIG. 22 1s not step-wise. That 1s, 1t 1s performed
through the progression of time, as time relates to clock

cycles. Alternatively, the prioritization scheme of FIG. 22
occurs step-wise, or 1n one clock cycle.

FIG. 23 shows, conceptually, a method 1090 of determin-
ing a reason for a trace to be aborted, employed in an abort
prioritization scheme, 1n accordance with another exemplary
method of the present invention.

In the method of FIG. 23, N (N being an integer value)
number of aborts, T1 through TN are applied to the same trace
at substantially the same time. N number of pending aborts
1092 hold the aborts T, -T . That 1s, each of the aborts 1s saved
in a corresponding pending abort, within the accumulator
203. Next, prioritization of the pending aborts of performed at
1094 1n accordance with an abort prioritization level scheme
discussed above, to generate a single abort reason. The gen-
erated abort reason essentially results from the reason for the
abort with the highest abort priority level among the aborts
T,-Tx

At 1094, the abort priority levels of pending aborts are
compared together to generate the abort reason. However,
alternatively, the abort reason 1s generated by performing
pair-wise prioritization, step-wise prioritization or non pair-
wise and non step-wise prioritization or any combination
thereof.

While the abort prioritization scheme of FIGS. 20-23 refers
to a prioritization level scheme, alternatively, an abort priori-
tization scheme uses a combination of the prioritization level
scheme and age-based scheme across multiple traces. The
trace 1D 1s an indicator of the relative age of a trace. For
example, a trace with a higher a trace ID than another trace, 1s
the younger trace among the two traces.

In the various embodiments of the present invention, some
of which are presented herein, pending abort triggers and
their respective abort reasons are store or remembered for the
purpose of prioritization of the abort triggers. Because 1n a
trace-based processor architecture multiple abort triggers
could result at different instances of time, the abort reason/
trigger need be stored to better prioritize the abort trigger.

In accordance with the foregoing, an abort prioritization
scheme and apparatus and a gracetul degradation protocol 1s
presented for use 1n trace-based processor architectures. The
abort prioritization and graceful degradation schemes of the
various embodiments of the present mmvention advanta-
geously prioritize and handle aborts (or problems) of traces
having no clear operation-to-instruction correspondences or
istruction boundary or instruction order correspondences.
The foregoing schemes allow for prioritization and handling
of aborts even though traces lack operations therein having
clear relative age or order between each other (corresponding
to the original 1instruction program order). Furthermore, these
schemes advantageously allow for multiple abort triggers to
be detected for the same trace whereas traditional processors
will only recognize a single abort trigger for a single mnstruc-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

52

While various embodiments have been described with
respect to atomic traces, the aforementioned techniques are
equally applicable to non-atomic traces and other groups of
instructions or operations.

Although the foregoing embodiments have been described
in some detail for purposes of clarnty of description and
understanding, the invention 1s not limited to the details pro-
vided. There are many embodiments of the mvention. The
disclosed embodiments are exemplary and not restrictive.

It will be understood that many variations 1n construction,
arrangement, and use are possible consistent with the descrip-
tion and are within the scope of the claims of the 1ssued patent.
For example, interconnect and function-unit bit-widths, clock
speeds, and the type of technology used are variable accord-
ing to various embodiments 1n each component block. Names
given to interconnect and logic are merely descriptive, and
should not be construed as limiting the concepts described.
The order and arrangement of flowchart and flow diagram
process, action, and function elements 1s variable according
to various embodiments. Also, unless specifically stated to
the contrary, value ranges specified, maximum and minimum
values used, or other particular specifications, are merely
those of the described embodiments, are expected to track
improvements and changes in implementation technology,
and should not be construed as limitations.

Functionally equivalent techmques known 1n the art are
employable 1nstead of those described to implement various
components, sub-systems, functions, operations, routines,
and sub-routines. It 1s also understood that many functional
aspects ol embodiments are realizable selectively in either
hardware (1.e., generally dedicated circuitry) or software (1.¢.,
via some manner ol programmed controller or processor)),
wherein the software 1s stored 1n a computer readable
medium, as a function of embodiment dependent design con-
straints and technology trends of faster processing (facilitat-
ing migration ol functions previously 1n hardware 1nto sofit-
ware) and higher integration density (facilitating migration of
functions previously in software nto hardware). Specific
variations i1n various embodiments include, but are not limited
to: differences 1n partitioning; different form factors and con-
figurations; use of different operating systems and other sys-
tem software: use of different intertface standards; number of
entries or stages 1n registers and butfers; and other vanations
to be expected when implementing the concepts described
herein 1n accordance with the unique engineering and busi-
ness constraints of a particular application.

The embodiments have been described with detail and
environmental context well beyond that required for a mini-
mal 1implementation ol many aspects of the embodiments
described. Those of ordinary skill in the art will recognize that
some embodiments omit disclosed components or elements
without altering basic cooperation among the remaining ele-
ments. It 1s thus understood that much of the details described
are not required to implement various aspects of the embodi-
ments described. To the extent that the remaining elements
are distinguishable from the prior art, components and fea-
tures that are omitted are not limiting on the embodiments
described herein.

All such variations 1n embodiments comprise insubstantial
changes over the teachings conveyed by the described
embodiments. It 1s also understood that the embodiments
described herein have broad applicability to other computing
applications, and are not limited to the particular application
or mndustry of the described embodiments. The invention 1s
thus to be construed as including all possible modifications
and varnations encompassed within the scope of the claims of
the 1ssued patent.

US 7,783,863 Bl

53

Although the present invention has been described 1n terms
ol specific embodiments, 1t 1s anticipated that alterations and
modifications thereof will no doubt become apparent to those
skilled 1n the art. It 1s therefore intended that the following
claims be interpreted as covering all such alterations and

modification as fall within the true spirit and scope of the
invention.

What 1s claimed 1s:

1. A method of handling a trace to be aborted, where the
method 1s adapted for use with a processor that executes
operations that represent 1nstructions, the method compris-
ng:

receiving an indication of a trace to be aborted and an
indication of an abort reason corresponding to an execu-
tion of the trace to be aborted, where the trace to be
aborted has a trace type associated therewith, where the
trace to be aborted includes a sequence of the operations,
and where the trace to be aborted represents a sequence
of at least two of the instructions;

identifying a corrective action based at least in part on the
type of the trace to be aborted and on the abort reason,
wherein the identifying does not take into account a
correspondence between at least one operation that
caused the execution to be aborted and at least one
instruction that the at least one operation at least 1n part
represents; and

determining a next trace for execution and the trace type of
the next trace for execution, where the determining 1s
based on the trace to be aborted and on the corrective
action,

when 1t 1s determined that the next trace 1s to be a degraded
version of the trace to be aborted and when the trace to be
aborted 1s a multi-block trace that represents a sequence
ol instructions that includes at least one control transter
instruction that 1s mternal to the sequence of instruc-
tions, then the degraded version of the trace to be aborted
1S:

a single instruction trace when representing an initial
instruction of the sequence of nstructions;

a basic block trace when representing a subset of the
sequence of nstructions where the subset begins with an
initial instruction of the sequence of mstructions;

and

a multi-block trace when representing a subset of the
sequence ol instructions where the subset begins with an
initial mstruction of the sequence of mstructions; and

when the trace to be aborted 1s a basic block trace that
represents a sequence of instructions that imncludes no
control transier mstructions internal to the sequence of
instructions, then the degraded version of the trace to be
aborted 1s:

a single instruction trace when representing an initial
instruction of the sequence of mnstructions; and

a basic block trace when representing a subset of the
sequence of nstructions where the subset begins with an
initial instruction of the sequence of mstructions.

2. The method of claim 1 further comprising;:

setting a current trace to be executed to be the next trace;

providing the current trace to be executed;

when the execution of the current trace completes without
generating any abort reason, then terminating the
method; and

when the execution of the current trace generates any of the
abort reasons, then repeating the receiving of the indi-
cation of a current version of the trace to be aborted and
a current version of the abort reason, repeating the 1den-
tifying, and repeating the determining, repeating the

10

15

20

25

30

35

40

45

50

55

60

65

54

setting, and repeating the providing until the execution
of the current trace completes without generating any
abort reason.

3. The method of claim 1, where the i1dentifying of the
corrective action 1s based exclusively on the trace type of the
trace to be aborted and on the abort reason.

4. The method of claim 1, where the next trace represents a
sequence ol one or more 1nstructions that 1s a subset of the
sequence ol 1nstructions represented by the trace to be
aborted.

5. The method of claim 1, where the trace type includes a
set of attributes including one or more of a single instruction
attribute, a non-speculative attribute, a multiprocessor (MP)
loss attribute which 1s an inter-processor cache line loss
attribute, a trace miss 1n order attribute, an operation repeti-
tion string attribute, or a miss 1n order attribute.

6. The method of claim 1, where the abort reason 1s at least
one of a memory ordering constraint violation, an inter-pro-
cessor loss of a cache line, a uni-processor loss of a cache line;
a self-modifying code event; a trace cache parity error; a
segmentation fault; a memory fault; a cannot complete fault;
a floating point operation fault; a breakpoint fault; a branch
misprediction fault, an interior branch misprediction fault, or
a final branch misprediction fault.

7. The method of claim 1, where the corrective action
includes invalidating a cached version of the trace to be
aborted.

8. The method of claim 1, where the trace type includes a
set of one or more attributes and where the corrective action 1s
at least one of:

determining that the next trace 1s to be the same trace as the

trace to be aborted and keeping all of the attributes of the
next trace to be the same as the attributes of the trace to
be aborted;

determining that the next trace 1s the same trace as the trace

to be aborted and altering at least one of the attributes of
the next trace to be different from the attributes of the
trace to be aborted;

determining that the next trace 1s to be a degraded version
of the trace to be aborted and setting all of the attributes
of the next trace to be the same as the attributes of the
trace to be aborted; or

determiming that the next trace 1s to be a degraded version
of the trace to be aborted and altering at least one of the
attributes of the next trace to differ from the attributes of
the trace to be aborted.

9. A circuit for handling a trace to be aborted, where the
circuit 1s adapted for use with a processor that executes opera-
tions that represent mstructions, the circuit comprising;:

a circuit configured to recerve an indication of a trace to be
aborted and to recerve an indication of an abort reason
corresponding to an execution of the trace to be aborted,
where the trace has a trace type associated therewaith,
where the trace includes a sequence of the operations,
and where the trace represents a sequence of at least two
of the instructions;

a circuit configured to 1dentily a corrective action based at
least 1n part on the type of the trace to be aborted and on
the abort reason, where the corrective action 1dentifica-
tion circuit does not take 1nto account a correspondence
between at least one operation that caused the execution
of the trace to be aborted and at least one 1nstruction that
the at least one operation at least 1n part represents; and

a circuit configured to determine, based on the trace to be
aborted and on the corrective action, a next trace for
execution and the trace type of the next trace,

US 7,783,863 Bl

3

when 1t 1s determined that the next trace 1s to be a degraded
version of the trace to be aborted and when the trace to be
aborted 1s a multi-block trace that represents a sequence
of instructions that includes at least one control transter
instruction that 1s internal to the sequence of nstruc-
tions, then the degraded version of the trace to be aborted
1S:

a single instruction trace when representing an initial
instruction of the sequence of nstructions;

a basic block trace when representing a subset of the
sequence ol instructions where the subset begins with an
initial instruction of the sequence of mstructions;

and

a multi-block trace when representing a subset of the
sequence of instructions where the subset begins with an
initial mstruction of the sequence of structions;

and

when the trace to be aborted 1s a basic block trace that
represents a sequence of instructions that imncludes no
control transfer mstructions internal to the sequence of
instructions, then the degraded version of the trace to be
aborted 1s:

a single instruction trace when representing an initial
instruction of the sequence of nstructions; and

a basic block trace when representing a subset of the
sequence ol instructions where the subset begins with an
initial mstruction of the sequence of structions.

10. The circuit of claim 9, further comprising;

a circuit configured to set a current trace to be executed to
be the next trace and to provide the current trace for
execution;

where the circuit configured to receirve the trace to be
aborted and the abort reason, the corrective action 1den-
tification circuit, and the next trace determination circuit
are Turther configured, when the execution of the current
trace generates any of the abort reasons, to repeat the
receiving of the indication of a current version of the
trace to be aborted and a current version of the abort
reason, to repeat the identifying, to repeat the determin-
ing, and to repeating the setting and the providing until
the execution of the current trace completes without
generating any abort reason.

11. The circuit of claim 9, where the circuit configured to
identily the corrective action 1s further configured to 1dentity
the corrective action 1s based exclusively on the trace type of
the trace to be aborted and on the abort reason.

12. The circuit of claim 9, where the next trace represents
a sequence of instructions that 1s a subset of the sequence of
instructions represented by the trace to be aborted.

13. The circuit of claim 9, where an attribute of the trace
type includes at least one of a single instruction attribute, a
non-speculative attribute, an inter-processor cache line loss
attribute, a uni-processor cache line loss attribute, or amiss 1n
order attribute.

14. The circuit of claim 9, where the abort reason 1s at least
one of a memory order constraint violation, interior branch
misprediction, single-instruction fault cacheable Store com-
bining write overtlow, speculative non-cacheable access,
single-instruction trap, multi-instruction fault; multi-instruc-
tion trap, or final branch misprediction.

15. The circuit of claim 9, where the corrective action
includes invalidating a cached version of the trace to be
aborted.

10

15

20

25

30

35

40

45

50

55

60

65

56

16. The circuit of claim 9, where the corrective action 1s at
least one of:

determining that the next trace 1s to be the same trace as the
trace to be aborted and keeping all of the attributes of the
next trace to be the same as the attributes of the trace to
be aborted;

determining that the next trace 1s the same trace as the trace
to be aborted and altering at least one of the attributes of
the next trace to be different from the attributes of the
trace to be aborted;

determining that the next trace 1s to be a degraded version
of the trace to be aborted and setting all of the attributes
of the next trace to be the same as the attributes of the
trace to be aborted; or

determiming that the next trace 1s to be a degraded version
of the trace to be aborted and altering at least one of the
attributes of the next trace to differ from the attributes of
the trace to be aborted.

17. A non-transitory computer readable medium that
includes instructions for handling a trace to be aborted, where
the 1nstructions are adapted for use with a processor that
executes operations that represent instructions, and where the
instructions when executed by an execution unit of the pro-
cessor comprise functionalities to:

receive an indication of a trace to be aborted, where the
trace has a trace type associated therewith, where the
trace mncludes a sequence of the operations, and where
the trace represents a sequence of at least two of the
instructions;

recerve an 1mndication of an abort reason corresponding to
an execution of the trace to be aborted;

1dentily a corrective action based at least in part on the type
of the trace to be aborted and on the abort reason, where
the identifying does not take into account a correspon-
dence between at least one operation that caused the
execution of the trace to be aborted and at least one
instruction that the at least one operation at least 1n part
represents; and

determine, based on the trace to be aborted and on the
corrective action, a next trace for execution and the trace
type of the next trace,

when 1t 1s determined that the next trace 1s to be a degraded
version of the trace to be aborted and when the trace to be
aborted 1s a multi-block trace that represents a sequence
of instructions that includes at least one control transfer
istruction that 1s internal to the sequence of instruc-
tions, then the degraded version of the trace to be aborted
1S:

a single instruction trace when representing an initial
instruction of the sequence of 1nstructions;

a basic block trace when representing a subset of the
sequence of istructions where the subset begins with an
initial instruction of the sequence of instructions; and

a multi-block trace when representing a subset of the
sequence of istructions where the subset begins with an
initial instruction of the sequence of mstructions;

and

when the trace to be aborted 1s a basic block trace that
represents a sequence ol instructions that includes no
control transier instructions internal to the sequence of
istructions, then the degraded version of the trace to be
aborted 1s:

a single instruction trace when representing an initial
instruction of the sequence of 1nstructions; and

a basic block trace when representing a subset of the
sequence of istructions where the subset begins with an
initial instruction of the sequence of nstructions.

US 7,783,863 Bl

S7

18. The non-transitory computer readable medium of claim
17, where the instructions when executed by the execution
unit of the processor further comprise functionalities to:

set a current trace to be executed to be the next trace and to

provide the current trace for execution;

recelve the trace to be aborted and the abort reason;

when the execution of the current trace generates any of the

abort reasons, repeat the receiving of the indication of a

58

current version of the trace to be aborted and a current
version of the abort reason;

repeat the 1dentifying, repeat the determining, and repeat
the setting and the providing until the execution of the
current trace completes without generating any abort
reason.

	Front Page
	Drawings
	Specification
	Claims

