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METHODS AND SYSTEMS FOR A
PREDICTION MODEL

BACKGROUND

Electronic control systems and electronic monitoring sys-
tems may be used 1n any of a variety of applications. For
example, any device that functions, at least in part, according
to values that change over time may benefit from monitoring,
the values and adjusting an electronic control system accord-
ingly.

One way to mmplement electronic control systems and
monitoring systems may comprise hard-coding algorithms
that are executed, for example, by a processor. However,
hard-coded algorithms may not be optimized for a particular
implementation of the electrical control system or monitoring
system. Even 1f a user 1s able to modily parameters that affect
an algorithm, a certain amount of expertise may be required to
understand how to “tweak”™ the parameters to 1mprove per-
formance of the algorithm.

There are several dynamic approaches to implement elec-
trical control systems and monitoring systems. For example,
some approaches implement adaptive parameterization of a
monitoring algorithm. However, the efficiency of adaptive
parameterization decreases when a momitoring algorithm
uses multiple parameters that are not monotonic or which
interact in arbitrary ways.

BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of exemplary embodiments of
the invention, reference will now be made to the accompany-
ing drawings in which:

FIG. 1 1illustrates one embodiment of a system:;

FI1G. 2 illustrates one embodiment of an online detection

model;
FIG. 3 illustrates one embodiment of another online detec-

tion model;
FI1G. 4 1llustrates one embodiment of another system;

FIG. 5 1llustrates one embodiments of a method; and
FIG. 6 illustrates one embodiment of another method.

NOTATTION AND NOMENCLATURE

Certain terms are used throughout the following descrip-
tion and claims to refer to particular system components. As
one skilled in the art will appreciate, computer companies
may refer to a component by different names. This document
does not intend to distinguish between components that differ
in name but not function. In the following discussion and 1n
the claims, the terms “including™ and “comprising’” are used
in an open-ended fashion, and thus should be interpreted to
mean “including, but not limited to . . . . Also, the term
“couple” or “couples” 1s intended to mean either an indirect or
direct electrical connection. Thus, 1f a first device couples to
a second device, that connection may be through a direct
clectrical connection, or through an indirect electrical con-
nection via other devices and connections. The term “system”
refers to a collection of two or more parts and may be used to
refer to a computer system or a portion of a computer system.

DETAILED DESCRIPTION

The following discussion 1s directed to various embodi-
ments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
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scope of the disclosure, including the claims. In addition, one
skilled 1n the art will understand that the following descrip-
tion has broad application, and the discussion of any embodi-
ment 1s meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, 1s limited to that embodiment.

As described below, embodiments of the invention derive
and use behavior prediction models capable of predicting of
an operant characteristic of a parameterizable system com-
ponent based on a state description of a system and a param-
cterization for the system component. In at least some
embodiments, the behavior prediction model permits auto-
matically determining a substantially optimal parameteriza-
tion of the system component by predicting operant charac-
teristics of the system component using combinations of state
descriptions and possible parameterizations. The substan-
tially optimal parameterization 1s then applied to the system
component. In some embodiments, the system component
comprises monitoring logic that detects “notable” changes or
events 1n a system based on the substantially optimal param-
cterization and data received from the system. The monitor-
ing logic may be implemented with hardware, software or a
combination of hardware and software.

In some embodiments, multiple behavior prediction mod-
els are dertved. For example, 1 such embodiments, each
behavior prediction model may be optimized for use with a
different system that implements the system component.
Therefore, some embodiments select which of multiple
behavior prediction models to use. Further, 1n some embodi-
ments, the task of determining a substantially optimal param-
cterization of the system component comprises reducing the
number of possible parameterizations and implementing a
classifier that selects a parameterization from the reduced set
ol parameterizations.

FIG. 1 illustrates one embodiment of a system 100. As
shown in FI1G. 1, the system 100 comprises an oftline learning
component 102 that generates and stores one or more behav-
1or prediction models 122 mtended to predict operant char-
acteristics of a parameterizable system (simulated or non-
simulated) or a parameterizable component of a system. The
system 100 also comprises an online detection component
140 that uses one or more of the behavior prediction models
122 to determine a substantially optimal parameterization for
the parameterizable system or the component of the system.
In the exemplary embodiment of FIG. 1, the behavior predic-
tion models 122 1s used to determine a substantially optimal
parameterization for a detection algorithm 154. However,
other embodiments determine a substantially optimal param-
cterization for other parameterizable components or systems.

To generate a behavior prediction model 122, the ofthine
learning component 102 makes use of a state description
distribution 108, which represents a joint probability distri-
bution over values of the parameters of a parametric model
106. The parametric model 106 provides a way of describing,
salient current or historical state information about the system
that implements the parameterizable component, and, 1n at
least some embodiments, a set of parameters according to the
parametric model 106 are considered a state description for
the system. If the salient state information relates to recent
historical values 1n a sequence of measured data values, the
parametric model 106 1s a standard statistical model such as a
Gaussian model, 1n which case the parameters according to
the model might be the mean and variance. Other standard
statistical models might include an autoregressive model, and
ARMA (auto-regressive moving average) model, an ARIMA
(auto-regressive mtegrated moving average) model, a Pois-
son model, or any other standard model known 1n the art. In
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some embodiments, models known in domains other than
statistics are used, as are ad hoc models created to describe a
particular real system or type of real system being studied.

The state description distribution 108 1s therefore thought
of as a probability distribution over the set of possible state
descriptions. To obtain the state description distribution 108,
the offline learning component 102 receives a corpus of data
from which state descriptions are derived according to the
parametric model 106. In the case in which the state reflects a
sequence of values, the data 1s a corpus of sequences 104
which have been obtained from the parameterizable compo-
nent or from components like the parameterizable compo-
nent. State descriptions derived from the corpus of sequences
104 are used to compute the state description distribution 108,
and the state description distribution 108 1s thought of as an
approximation to the likelihood of the system that imple-
ments the parameterizable component being 1n a particular
state.

Using the state description distribution 108, a corpus of
simulated data 112 1s constructed. For each element of the
corpus, a state description 1s drawn from the state description
distribution 108 and data i1s constructed that 1s compatible
with the state description. In some embodiments the state
descriptions correspond only to states seen 1n the corpus of
observed data, while 1n other embodiments they include state
descriptions that represent novel states. I the parametric
model 106 describes sequences, the construction of the cor-
pus of simulated data 112 comprises generating sequences
which when analyzed according to the parametric model 106
would produce state descriptions matching (or nearly match-
ing) those drawn from the state description distribution 108.

In constructing the corpus of sitmulated data 112, the offline
learning component 102 also makes use of additional 1nfor-
mation that allows 1t to transform data consistent with a state
description drawn from the state description distribution 108
into new data. For example, 11 the problem 1s to detect changes
in a measured sequence, the information regarding the
changes to detect are considered the additional information.
As shown, a changes to detect signal 110 1s provided so that
the stmulated data corpus 112 comprises data sequences for
which detection 1s desired as well as data sequences for which
detection 1s not desired.

For example, 1n some embodiments, the changes to detect
signal 110 comprises a statistical distribution of modifica-
tions to be made to the parameters of the parametric model
106 contained 1n a state description drawn from the state
description distribution 108. A sequence in the corpus of
simulated data 112 represents a sequence that starts out
matching an unaltered state description and whose state
description suddenly or gradually shifts to one matching the
altered state description. Alternatively, in some embodi-
ments, the shift from unaltered to altered retlects a tempo-
rarily bimodal distribution increasing the prevalence of the
altered distribution. In another embodiment, the construction
of the altered sequence comprises adding the values of a new
sequence to the values of the unaltered sequence. The new
sequence reflects the parametric model 106 or a different
model

In some embodiments, the corpus of simulated data 112
contains a {irst set and a second set of data sequences. The first
set comprises negative sequences expected 1n a parameteriz-
able component or system (1.€., sequences of data generated
when a system behaves normally). The second set comprises
positive sequences that may occur 1n a parameterizable com-
ponent or system (1.e., sequences ol data generated when an
unanticipated or notable event occurs 1n a system). Associ-
ated with each generated sequence 1n the corpus of simulated
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4

data 112 1s the state description used to generate i1t and an
indication of whether 1t 1s to be considered a positive
sequence or a negative sequence. In some embodiments, mul-
tiple generated sequences correspond to a single state
description.

The simulated data sequences 112 are input to a detection
algorithm 116, which attempts to determine whether they are
positive sequences or negative sequences. In some embodi-
ments, the detection algorithm 116 1s a Holt-Winters algo-
rithm. The behavior of the detection algorithm 116 1s con-
trolled by a set of detection algorithm parameters, which are
drawn from a distribution of such parameters 118 provided as
input to the ofifline learning component 102. In some embodi-
ments, a new set of detection algorithm parameters 1s chosen
for each simulated data sequence. As the detection algorithm
116 1s run, the offline learning component 102 computes
operant characteristics of the behavior of the detection algo-
rithm 116 when parameterized with each particular set of
detection algorithm parameters and when examining
sequences generated starting with each particular state
description. In some embodiments, the characteristics noted
comprise a lalse positive rate, an average false positive pen-
ctration, a false negative rate, and an average true positive
delay.

The false positive rate 1s expressed as the fraction of cases
in which the detection algorithm 116 signaled detection of a
positive sequence when examining a negative sequence (de-
scribed above) of a given fixed length. The average false
positive penetration 1s expressed as the average number of
negative points that the detection algorithm 116 observed
before mistakenly signaling detection of a positive sequence
(given that the detection algorithm 116 signals detection
within the fixed length used for the false positive rate
described above). The false negative rate 1s expressed as the
fraction of cases 1n which the detection algorithm 116 failed
to signal detection of a positive sequence when examining a
positive sequence of a given fixed length. The sequence
lengths of the positive sequences and the negative sequences
may be the same or may be different. The average true posi-
tive delay 1s expressed as the average number of points that
the detection algorithm 116 delayed belfore correctly signal-
ing detection of a positive sequence. In some embodiments,
the determination of each of these operant characteristics
requires that the detection algorithm 116 examine multiple
positive and/or negative sequences generated from the same
sequence state description when parameterized with the same
set of detection algorithm parameters.

In some embodiments, the operant characteristics com-
puted include other known measures used to characterize the
performance of a binary (or other) classifier. Such measures
include accuracy, precision, recall, true negative rate, f-mea-
sure, information gain, lift, change in entropy, binormal sepa-
ration, expected cost due to misclassification, and area under
ROC (receiver operating characteristic) curve. Further, 1n
some embodiments, operant characteristics include those
relating to the temporal behavior of the detection algorithm
116 (e.g., the expected amount of wall-clock time required to
detect a positive) or the amount of system resources (e.g.,
memory) required by the detection algorithm 116.

The operant characteristics of the detection algorithm 116,
along with the detection algorithm parameters and state
descriptions that led to them are collected in a labeled corpus
114 which comprises labeled entries relating combinations of
state descriptions and sets of detection algorithm parameters
to observed operant characteristics.

The regression algorithm 120 accesses the labeled corpus
114 to derive a behavior prediction model 122 based on the
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entries 1n the labeled corpus 114. In some embodiments, the
regression algorithm 120 comprises a plurality of indepen-
dently-regressed predictors, each configured to predict a
single operant characteristic (e.g., a false positive rate, a false
positive penetration, a false negative rate or a true positive
delay).

The regression algorithm 120 comprises any algorithm
capable of derving a function from a state description and a
set of detection algorithm parameters to one or more operant
characteristics. In the preferred embodiment genetic pro-
gramming 1s used. Additionally or alternatively, other known
method algorithms such as linear regression, logistic regres-
s10n, linear programming, integer programming, mixed inte-
ger programming, genetic algorithms, evolution strategies,
and neural networks could be used.

In some embodiments, more than one behavior prediction
model 122 1s generated by the regression algorithm 120 and
stored 1n the model library 124. For example, 1n some
embodiments, multiple behavior prediction models 122 are
generated due to multiple sequence corpora (in addition to the
sequence corpus 104) and/or multiple collections of changes
to detect (1.e., variance 1n the changes to detect signal 110). In
some embodiments, the multiple sequence corpora and the
multiple changes to detect relate to different types of param-
cterizable components or systems on which the online detec-
tion component 140 will be run.

The online detection component 140 of the system 100
accesses the model library 124 and selects a behavior predic-
tion model 122. If there 1s more than one behavior prediction
model 122 stored in the model library 124, the online detec-
tion component 140 determines which of the models 122 to
use. In some embodiments, the behavior prediction model
122 whose training distribution (e.g., state description distri-
bution 108) most closely matches states observed 1n the sys-
tem being monitored or at least one component of the system
being monitored

In some embodiments, the behavior prediction model 122
1s manually selectable. In such embodiments, the behavior
prediction models 122 contained in the model library 124 are
annotated with a human-interpretable description of the type
ol system each 1s considered appropniate for. For example, 1in
some embodiments, the human-interpretable description
indicates whether a behavior prediction model 122 1s appro-
priate for standalone systems or for networked systems. Addi-
tionally or alternatively, other descriptions such as size of
system, anticipated workload, source of data stream, or busi-
ness domain are used for manually selecting a behavior pre-
diction model 122.

In some embodiments, the data sequences associated with
the recently seen data 142 are historical. Alternatively, the
data sequences are collected as the online detection compo-
nent 140 operates (1.e., real-time data analysis). As more data
sequences are observed and characterized, a state description
144 associated with the recently seen data 142 may change.
Therefore, the online detection component 140 periodically
compares state description distributions (i.e., training distri-
butions) associated with behavior prediction models 122
stored 1n the model library 124 to a current state description
144 associated with the recently seen data 142. In some
embodiments, the online detection component 140 selects to
use a behavior prediction model 122 whose training distribu-
tion most closely matches the current state description 144
associated with the recently seen data 142. In at least some
embodiments, the state description 144 1s determined based
on the parametric model 106.

As shown 1n FIG. 1, the online detection component 140
comprises an optimization algorithm 146 that receives the
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state description 144 of the recently seen data 142. The opti-
mization algorithm 146 determines a substantially optimal
parameterization 150 for detection algorithm parameters
based on the state description 144. In a preferred embodi-
ment, the optimization algorithm 146 holds the state descrip-
tion 144 constant while determining optimal values for the
detection algorithm’s parameters based on predictions, com-
puted according to the behavior prediction model 122, of
operant characteristics of the detection algorithm 154 when 1t
1s run on a system whose state 1s described by the state
description 144 and when it 1s parameterized by various sets
of detection algorithm parameters.

In some embodiments, determining the substantially opti-
mal characteristics 150 comprises obtaining a single number
associated with each considered set of detection algorithm
parameters. To obtain the single number, a cost function 148
1s applied to the operant characteristics of the detection algo-
rithm predicted by the behavior prediction model 122. In
some embodiments, the cost function 148 comprises a “lfalse
positive cost” (1.€., the undesirability that the online detection
component 140 falsely identifies a sequence as “positive”).
The false positive cost 1s mput as a number value (1.e., the
undesirability of each false positive) or as a function (e.g., the
undesirability of a number of false positives per time frame)
or as a combination of number values and functions. In some
embodiments, the cost function 148 also comprises a utility
curve (1.e., a mapping algorithm) that relates a delay 1n detect-
ing an actual event to a cost (1.e., the costliness of each
detection delay to a user).

In some embodiments, the utility curve implements one or
more threshold delay values to distinguish different costs. For
example, in some embodiments, the curve assigns a minimum
cost up to a user-selected minimum delay, a maximum cost
alter a user-selected maximum delay, and a linear interpola-
tion of costs between the minimum delay and the maximum
delay.

In at least some embodiments, the selected behavior pre-
diction model 122 estimates the false positive rate, the false
positive penetration, the false negative rate, and the true posi-
tive delay based on a given set of detection algorithm param-
cters and the state description 144. In some embodiments, the
false positive rate, the false positive penetration and an esti-
mate of an expected frequency of notable events are used to
estimate a number of false positives that are expected between
two actual events. In such embodiments, the estimated num-
ber of expected false positives between two actual events are
combined with a user-provided cost for a false positive to
derive a cost due to false positives.

Additionally, in some embodiments, the false negative rate
and the true positive delay are combined with the user-pro-
vided utility curve to derive the cost due to an actual event.
Given the state description 144 and the detection algorithm
parameters, the optimization algorithm 146 minimizes the
combined cost due to false positives and actual events.

For example, in some embodiments, the optimization algo-
rithm 146 minimizes the combined cost by guessing a certain
number of sets of detection algorithm parameters and select-
ing the set of detection algorithm parameters associated with
the lowest combined cost. Alternatively, in some embodi-
ments, a “hill climbing™ technique 1s implemented to deter-
mine an optimal set of detection algorithm parameters. In a
hill climbing technique, a set of detection algorithm param-
eters 1s chosen and the combined cost 1s determined. One or
more sets of similar detection algorithm parameters are then
generated and the combined costs associated with each set of
similar detection algorithm parameters are determined. The
process 1s repeated for a specified amount of time, a specified
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number of 1terations, or until a specified number of iterations
have been performed without discovering a set that 1s associ-
ated with a lower combined cost. In alternative embodiments,
genetic algorithms, linear programming, closed-form solu-
tions or other techniques are implemented by the optimiza-
tion algorithm 146 to determine a substantially optimal
parameterization 150.

The substantially optimal parameterization 150 1s provided
to the detection algorithm 154, which monitors data 152 from
a system having a parameterizable component. In response to
detecting a notable change or notable event 1n the data 152,
the detection algorithm 154 outputs a signal 156. The signal
156 permits a variety of functions. For example, in some
embodiments, the signal 156 1s iput to an alert system con-
figured to provide an audio and/or visual alert to a user of the
system being monitored. Addltlonally or alternatively, the
signal 156 may be provided to a logging system configured to
log information associated with the notable event or notable
change 1n the data 152. In some embodiments, the signal 156
causes a modification in the behavior of the system being
monitored.

For example, 1n some embodiments, the signal 156 causes
the monitored system to perform one or more tasks such as
bringing more resources (e.g., disks, processors, people) on-
line, allocating resources to a task, taking resources oftline,
de-allocating resources from a task, executing a software
program, terminating execution of a soltware program, alter-
Ing some parameterization of a running software program,
instructing a component of the system to take some action,
increasing or decreasing the price associated with some ser-
vice, increasing the level of scrutiny provided by the online
detection component 140 or decreasing the level of scrutiny
provided by the online detection component 140. In some
embodiments, the signal 156 also causes other actions 1n a
system to occur (e.g., turning on a fire sprinkler or locking a
door).

FI1G. 2 1llustrates one embodiment of an online detection
model 200. As shown 1n FIG. 2, a data stream 206 1s divided
into a tramning window 202 and a testing window 204. The
data stream 206 comprises a plurality of data values 210. As
shown, each data value 210 comprises an associated time
value 208. In some embodiments, the training window 202
and the testing window 204 are adjacent (in time) and non-
overlapping. In other embodiments, the training window 202
and the testing window 204 overlap (e.g., partially or com-
pletely) or are separated from each other by a time gap. The
duration of the training window 202 i1s determined, for
example, by hardware bullers or software pointers.

The data associated with the training window 202 1s used to
compute a state description 144 which i1s provided to an
optimizer 220. As shown, the optimizer 220 also receives
input from a cost function 148 that describes the cost (1.e., a
quantification of undesirability) associated with incorrect
detection or detection delay of one or more “events” by the
detector 224. In some embodiments, the cost function 148
implements a cost per occurrence model, a cost per set of
occurrences model, a cost of occurrences per time period
model, or a combination of models. The optimizer 220 also
receives put from a behavior prediction model 122 that
predicts operant characteristics of the performance of the
detector 224 when the detector 224 1s parameterized by a set
of parameters. Such operant characteristics comprise the false
positive rate, the penetration for a false positive, the false
negative rate, and the delay for a true positive described
previously.

The optimizer 220 outputs optimized detection algorithm
parameter values 222 to the detector 224. The optimized
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detection algorithm parameter values 222 substantially mini-
mize the expected cost due to incorrect detection or delayed
detection by the detector 224 as indicated by the cost function
148. The optimized detection algorithm parameter values 222
are used to configure the detector 224, which receives data
from the testing window 204 as input. As the detector 224
receives data from the testing window 204, an interesting or
notable change in the data 1s detectable based on the opti-
mized algorithm parameters 222. When a change 1n the data
1s detected, the detector 224 outputs a change detect signal
226. The change detect signal 226 1s recerved by an alert
system, a logging system, an analysis system, or some other
system configured to use the change detect signal 226.

FIG. 3 illustrates one embodiment of another online detec-
tion model 300. This detection model 300 1s an embodiment
ol the online detection component 140 of FIG. 1. As shown in
FIG. 3, the detection model 300 comprises a classifier builder
140 A and an online detection component 140B. The classifier
builder 140A comprises an optimization algorithm 146 that
determines substantially optimal parameter values 150 based
on a behavior prediction model 122, a cost function 148 and
a set of state descriptions 302 according to a parametric model
(e.g., parametric model 106). The state descriptions 302
describe sequences likely to be seen on the system to be
monitored. More generally, the state descriptions 302
describe states likely to be encountered on the system to be
monitored. For example, in some embodiments, the state
descriptions 302 are obtained from monitoring a system 1n
real-time, from data collected historically on the system or on
similar systems, or from a well-known corpus based on sys-
tems presumed to be similar.

Additionally or alternatively, in some embodiments, the
state descriptions 302 are taken from actually observed
sequences or are drawn from a distribution of parameters
inferred from observed sequences. The optimization algo-
rithm 148 determines substantially optimal detection algo-
rithm parameter values 150 for some or each of the state
descriptions 302.

The state descriptions 302 and their associated substan-
tially optimal parameter values 150 are input, along with the
cost function 148 and the behavior prediction model 122, to
the selection algorithm 306. The selection algorithm 306 uses
the cost function 148 and the behavior prediction model 122
to calculate the cost expected when running the detection
algorithm 154 on a system whose state 1s described by each
state description 302 when the detection algorithm 154 1s
parameterized by the substantially optimal parameter values
150 associated with each other state description 302. In some
embodiments, the expected cost calculations are organized
and stored 1n a “cost matrix.” Based on one or more expected
cost calculations, the selection algorithm 306 determines a
reduced set 310 of parameterizations (e.g., a subset of the
optimal parameter values 150 associated with each state
description 302).

In at least some embodiments, the reduced set 310 of
parameterizations comprises an arbitrary number (k) of
parameterizations such that all of the state descriptions 302
are substantially optimized with at least one of the reduced set
310 of parameterizations. In some embodiments, to deter-
mine the reduced set 310 of parameterizations a non-plural-
istic voting technique 1s implemented 1 which each state
description 302 1s considered a “voter” and each of the sub-
stantially optimal parameter values 150 1s considered a “can-
didate.”

In the non-pluralistic voting technique each voter fills out a
“ballot™ that ranks the candidates based on the expected costs
stored 1n the cost matrix. If a voter ranks two candidates
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identically, the candidates are still be ranked 1n some canoni-
cal order. The candidates that occupy first place positions on
at least one ballot are then counted. If there are k first place
candidates or less, the first place candidates are selected as the
reduced set 310 of parameterizations. Otherwise, one or more
first place candidates are removed.

To determine which candidates to remove, the difference
between the expected costs of a first place candidate and a
second place candidate 1s calculated for each voter’s ballot.
For each first place candidate, a score 1s calculated based on
the difference between the first place candidate and one or
more second place candidates (each first place candidate may
be associated with one or more ballots). This score represents
the expected increase in cost should each first place candidate
be eliminated and voters are forced to select the second place
candidates. The first place candidate with the lowest score
(1.e., the one whose removal would result 1n the lowest
expected additional cost) 1s eliminated. Additionally, in some
embodiments, {irst place candidates that share the same low-
est score or that have a score less than a threshold amount are
eliminated. If, after the elimination, there are k candidates or
less, the reduced set 310 of parameterizations 1s complete.
Otherwise, the same process of eliminating first place candi-
dates with the lowest scores 1s repeated until k or less first
place candidates remain.

While the reduced set 310 of parameterizations 1s limited
to first place candidates in the exemplary embodiment
described above, other embodiments are configured to con-
sider other candidates. Additionally or alternatively, 1n some
embodiments, other elimination criteria such as summing the
cost difference between the original first place candidate and
the current second place candidate for each ballot (rather than
summing the cost difference between the current first place
candidate and the current second place candidate for each
ballot) 1s used. Also, 1n some embodiments, one or more
voters are eliminated from the process 11 a determination 1s
made that the one or more voters cause or may cause unde-
sirable candidates to be selected for the reduced set 310 of
parameterizations.

In some embodiments (e.g., i a classifier does not already
exist), a classifier 316 1s then generated using a regression
algorithm 312. The classifier 316 accepts as input a state
description 302 and selects a parameterization from the
reduced set 310 of parameterizations. The regression algo-
rithm 312 attempts to find a classifier 316 that minimizes the
expected additional cost due to selecting for a state descrip-
tion 302 a parameterization other than its lowest-cost param-
cterization in the reduced set 310 of parameterizations. Alter-
natrvely, in some embodiments, the regression algorithm 312
maximizes accuracy ol choosing the best option for each of
the state descriptions 302. In some embodiments, the regres-
sion algorithm 312 implements genetic programming, clas-
sifier trees, neural networks, support vector machines or other
known-method classifier-building techniques to generate the
classifier 316.

The classifier 316 of the online component 140B (derived
from the regression algorithm 312 or another source) selects
a set of parameters from the reduced set 310 of parameteriza-
tions based on a state description 144 computed from recently
seen data 142 according to a parametric model (e.g., paramet-
ric model 106). The detection algorithm 154 1s then config-
ured according to the selected parameters 318 and examines
data 152 from the momitored system to detect events of inter-
est or changes signaled by the data 152. In response to detect-
ing an event of interest or changes signaled by the data 152,
the detection algorithm 154 generates a signal 156. In some
embodiments, the signal 156 1s used 1n a variety of ways such
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as to alert a user of the event or the changes, to activate a
logging mechanism, to change behavior of a system being
monitored or to cause the system being monitored to perform
an action.

FIG. 4 1llustrates one embodiment of another system 400.
As shown 1n FIG. 4, the system 400 comprises a first compo-
nent 402 that provides data sequences 406 and a second
component 410 that momitors the data sequences 406 to detect
abnormalities (or data changes of interest) in the data
sequences 406. The first component 402 comprises any
device or unit that provides data such as a sensor-based
device, an mtegrated circuit, an internal or external computer
component, a computer, or a network of computers. As
shown, the first component 402 comprises a plurality of
parameterizable data providers 404A-404N coupled to an
input/output port 408. The parameterizable data providers
404A-404N generate data or data sequences 406 A-406N.
These data sequences 406 A-406N are provided to the second
component 410 via the input/output port 408.

The second component 410 comprises a processor 414
coupled to an input/output port 412 and to a memory 416. The
memory 416 comprises any permanent or removable storage
medium capable of storing computer readable mstructions. In
at least some embodiments, the processor 414 executes
instructions stored 1n the memory 416 that permait detection of
abnormalities 1n the data sequences 406 A-406N. As shown,
the memory 416 stores a corpus of data sequences 418, train-
ing instructions 420, optimizing instructions 422 and testing
instructions 424.

When executed by the processor 414, the training instruc-
tions 420 cause the processor 414 to access the corpus of data
sequences 418 stored 1n the memory 416 or 1n another storage
medium accessible to the processor 414. For example, in
some embodiments, the corpus of data sequences 418 1s pro-
vided by a removable storage device or by a remote storage
accessible via a network connection. Also, 1n some embodi-
ments, the corpus of data sequences 418 1s recerved directly
from the first component 402 (or another component) and
stored in the memory 416 (or other storage medium). In at
least some embodiments, the corpus of data sequences 418
comprises data sequences that have existed for more than a
predetermined amount of time (i.e., non-current data
sequences ).

The traiming instructions 420 cause the processor 414 to
parameterize the corpus of data sequences 418 and to store
state descriptions derived from the parameterization 1n the
memory 416. For example, 1n some embodiments, the train-
ing 1nstructions 420 generate state descriptions using a para-
metric model such as the parametric model 106 described for
FIG. 1. Also, in some embodiments, the training instructions
420 generate one or more behavior prediction models. Alter-
natively, 1n some embodiments, behavior prediction models
are available (e.g., generated and provided to the system 400)
without executing the training instructions 420.

The behavior prediction models are used by the optimizing,
instructions 422 to predict operant characteristics of the
monitoring logic 424. In at least some embodiments, a behav-
1or prediction model predicts operant characteristics based on
a state description and a parameterization associated with the
monitoring logic 424,

The optimizing instructions 422 also determine a substan-
tially optimal parameterization for the monitoring logic 424.
For example, in some embodiments, the optimizing instruc-
tions 422 determine the substantially optimal parameteriza-
tion for the monitoring logic 424 by minimizing a cost cal-
culated by a cost function based on operant characteristics
predicted by a selected behavior prediction model.
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If a plurality of behavior prediction models are available,
the optimizing instructions 422 select one of the behavior
prediction models. In such embodiments, the optimizing
instructions 422 may select a behavior prediction model by
comparing a state description distribution of the stored data
sequences 418 with a state description distribution of the
recently seen data sequences 406. Additionally or alterna-
tively, in some embodiments, the optimizing instructions 422
provide an interface that permits a user to manually select one
of the behavior prediction models.

If more than a threshold amount of substantially optimal
parameterizations exist for the monitoring logic 424, the opti-
mizing instructions 422 may reduce the amount of substan-
tially optimal parameterizations. For example, in some
embodiments, the optimizing instructions 422 implements a
non-pluralistic voting technique as previously described to
reduce the amount of substantially optimal parameteriza-
tions.

In at some embodiments, the monitoring logic 424 com-
prises istructions stored 1in the memory 416 and executed by
the processor 414. Alternatively, the monitoring logic 424
may comprise instructions or hardware implemented sepa-
rately from the second component 410. In either case, the
monitoring logic 424 receives and implements the substan-
tially optimal parameterization with a detection or monitor-
ing algorithm (e.g., the detection algorithm 154) to detect
abnormalities (or changes of interest) in data sequences 406
being monitored. If a change of interest 1s detected, the moni-
toring logic 424 causes the processor 414 (or a separate pro-
cessing device) to assert a signal 426 (e.g., the change detect
signal 226). In some embodiments, the signal 426 1s used, for
example, to log information related to the data sequence that
caused the signal 426, to alert a user that the change of interest
has occurred or to cause a change in the system 400 (e.g., start
execution ol a program, end execution of a program or real-
locate resources).

In at least some embodiments, the training instructions
420, the optimizing 1nstructions 422 and the monitoring logic
424 operate independently. Therefore, in some embodiments,
the traiming 1nstructions 420 are executed once, periodically,
or as controlled by a user to provide behavior prediction
models. Also, the optimizing instructions 422 are executed
periodically or as controlled by a user to update the substan-
tially optimal parameterizations implemented by the moni-
toring logic 424. The monitoring logic 424 monitors simu-
lated or non-simulated data sequences 406 1n real time based
on the substantially optimal parameterization provided by the

optimizing instructions 422 as previously described.
Although the first component 402 and the second compo-
nent 410 are shown as separate, 1n some embodiments, the
first component 402 1s part of a computer that houses the
second component 410. Alternatively, in some embodiments,
the first component 402 and the second component 410 are
positioned far away from each other and are coupled to each
other via a network. In such embodiments, the I/0 port 408
and the I/O port 412 comprise network ports that allow the
transier of data from the first component 402 to the second
component 410 across large distances. Also, the data
sequences 418, the training nstructions 420, the optimizing
instructions, 422 and the monitoring logic 424 may be imple-
mented 1n separate computing devices and are not necessarily
stored and executed by a single computing device. Thus, one
computing device may generate a behavior prediction model
and another computing device may use the behavior predic-
tion model to determine a substantially optimal parameter-
ization ol monitoring logic that momtors data to detect

changes of interest in the data or abnormal data. Additionally,
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some embodiments of the invention implement wireless com-
munication techniques that permit the components of the
system 400 to communicate wirelessly.

FIG. 5 1llustrates one embodiment of a method 500. As
shown 1n FIG. 5, the method 500 comprises obtaining a set of
state descriptions (block 302). Each state description
describes a state (e.g., an operational state) of a system at a
particular time. The state description comprises, for example,
statistical parameters such as a mean and a standard devia-
tion. At block 504, each of the state descriptions 1s combined
with a parameterization drawn from a distribution of param-
cterizations. The parameterizations are associated with the
system or a component of the system. At block 506, cases
(1.e., 1nstances) of each combined state description and
parameterization are labeled according to an operant charac-
teristic observed when simulating a system characterized
cach combined state description and parameterization. The
method 500 then derives a behavior prediction model that
approximately minimizes an error when predicting an oper-
ant characteristic, the error based on the labeled cases (block
508). In some embodiments, behavior prediction model com-
prises a mathematical model. Therefore, in some embodi-
ments, approximately minimizing the error when predicting
an operant characteristic comprises finding an optimal solu-
tion for the mathematical model using a technique such as
linear programming, integer programming or mixed integer
programming

FIG. 6 1llustrates one embodiment of another method 600.
As shown 1n FIG. 6, the method 600 comprises obtaining a
behavior prediction model configured to predict an operant
characteristic of a component based on a combination of a
state description and a parameterization for the component
(block 602). At block 604, a state description of a system that
implements the component 1s obtained. At block 606, a sub-
stantially optimal parameterization for the component, based
on the operant characteristics of the component predicted by
the behavior prediction model 1s automatically obtained. The
substantially optimal parameterization 1s obtained using
combinations of the system’s state description and a set of
possible parameterizations. The method 600 then applies the
substantially optimal parameterization to the component
(block 608).

The above discussion 1s meant to be illustrative of the
principles and various embodiments of the present invention.
Numerous variations and modifications will become apparent
to those skilled 1n the art once the above disclosure 1s fully
appreciated. For example, the components described 1n FIG.
1 may be implemented in hardware, software, or a combina-
tion of hardware and software. It 1s intended that the follow-
ing claims be interpreted to embrace all such varnations and
modifications.

What 1s claimed 1s:

1. A method, comprising:

obtaining, by a processor, a state description associated
with a system having a component including at least
hardware; and

automatically obtaining, by the processor, a substantially
optimal parameterization for the component based on
one or more operant characteristics of the component
predicted by a behavior prediction model using combi-
nations of the system’s state description and a set of
possible parameterizations for the component; and

using the substantially optimal parameterization to control
the component.

2. The method of claim 1 further comprising obtaiming a

behavior prediction model configured to predict operant char-
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acteristics of a component based on a combination of a state
description and a parameterization for the component.

3. The method of claim 1 further comprising applying the
substantially optimal parameterization to the component.

4. The method of claim 1 wherein the component com-
prises monitoring logic and the operant characteristics relate
to a future behavior of the monitoring logic.

5. The method of claim 4 wherein the system’s state
description comprises a characterization of a previously
observed sequence of data provided by the system.

6. The method of claim 5 further comprising 1dentifying
within a data stream a training window and a testing window,
wherein the characterization of the previously observed
sequence ol data comprises the tramning window and the
tuture behavior of the monitoring logic comprises the behav-
1ior of the monitoring logic when provided with the testing
window as input.

7. The method of claim 1 further comprising obtaining a set
of state descriptions, wherein obtaining the behavior predic-
tion model further comprises selecting the behavior predic-
tion model from a set of behavior prediction models based on
the set of state descriptions.

8. The method of claim 1 wherein automatically obtaining,
the substantially optimal parameterization comprises using,
the behavior prediction model to associate with substantially
cach of a plurality of the set of possible parameterizations a
predicted operant characteristic and selecting the substan-
tially optimal parameterization based on an associated pre-
dicted operant characteristic.

9. The method of claim 8 wherein selecting the substan-
tially optimal parameterization comprises associating with an
operant characteristic an expected cost computed according
to a cost function.

10. The method of claim 1 wherein the set of possible
parameterizations comprises a reduced set of possible param-
cterizations.

11. The method of claim 1 wherein automatically obtaining
a substantially optimal parameterization comprises selecting
a parameterization indicated by a classifier associated with
the behavior prediction model based on the state description.

12. A system, comprising:

a storage medium to store one or more behavior prediction
models configured to predict operant characteristics of a
parameterizable component based on a combination of a
state description and a parameterization for the compo-
nent that includes at least hardware; and

a processor coupled to the storage medium, the processor
to execute an optimization algorithm configured to
receive a behavior prediction model and to automati-
cally determine a substantially optimal parameterization
for the component based on one or more operant char-
acteristics of the component predicted by the recerved
behavior prediction model using combinations of a state
description associated with the component and a set of
possible parameterizations for the component.

13. The system of claim 12 wherein the received behavior
prediction model 1s selected by comparing a parameter dis-
tribution of recently seen data sequences associated with the
component with parameter distributions used to train the one
or more behavior prediction models stored in the storage
medium.

14. The system of claim 13 wherein the parameter distri-
bution of recently seen data sequences varies over time and
wherein the optimization algorithm 1s configured to 1mple-
ment a behavior prediction model trained using a parameter
distribution that most closely matches a current parameter
distribution of recently seen data.
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15. The system of claim 12 wherein the received behavior
prediction model 1s selected manually by a user.

16. The system of claim 12 wherein the optimization algo-
rithm automatically determines a substantially optimal
parameterization for the component by holding parameters
based on a parametric model constant while varying detection
algorithm parameters associated with the component.

17. The system of claim 12 wherein the optimization algo-
rithm applies a cost function to the behavior prediction
model, the cost function measures a cost of incorrectly 1den-
tifying a notable data sequence associated with the compo-
nent.

18. The system of claim 12 wherein the optimization algo-
rithm applies a cost function to the behavior prediction
model, the cost function measures a cost of delay 1n detecting,
a notable data sequence associated with the component.

19. The system of claim 12 wherein the optimization algo-
rithm 1s configured to automatically determine a plurality of
substantially optimal parameterizations.

20. A system, comprising;:

a storage medium to store one or more behavior prediction
models configured to predict operant characteristics of a
parameterizable component based on a combination of a
state description and a parameterization for the compo-
nent that includes at least hardware;

a processor coupled to the storage medium, the processor
to execute an optimization algorithm configured to
receive a behavior prediction model and to automati-
cally determine a substantially optimal parameterization
for the component based on one or more operant char-
acteristics of the component predicted by the recerved
behavior prediction model using combinations of a state
description associated with the component and a set of
possible parameterizations for the component,

wherein the optimization algorithm 1s configured to auto-
matically determine a plurality of substantially optimal
parameterizations; and

a selection algorithm that determines a reduced set of sub-
stantially optimal parameterizations based on an
expected cost of implementing each substantially opti-
mal parameterization.

21. The system of claim 20 further comprising a classifier
that selects a substantially optimal parameterization from the
reduced set based on a parametric distribution of recently
seen data associated with the component.

22. A computer-readable medium that stores instructions,
where the instructions, when executed, cause at least one
processor 1o:

derive a behavior prediction model configured to predict
operant characteristics using a state description and a
parameterization;

automatically generate a substantially optimal parameter-
1zation for a component coupled to the computer based
on one or more operant characteristics of the component
predicted by the behavior prediction model using com-
binations of a state description associated with the com-
ponent and a set of possible parameterizations for the
component; and

apply the substantially optimal parameterization to the
component.

23. The computer-readable medium of claim 22, where the
instructions, when executed, cause at least one processor to
periodically implement a different behavior prediction
model.
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24. A computer system, comprising:
a processor to:
derive at least one behavior prediction model configured
to predict operant characteristics using a state descrip-
tion and a parameterization; and 5
automatically generate a substantially optimal param-
cterization for a component based on one or more
operant characteristics of the component predicted by
the behavior prediction model using combinations of
a state description associated with the component and 10
a set ol possible parameterizations for the component,
wherein the component includes at least hardware;
and
use the substantially optimal parameterization to control
the component. 15
25. The method of claim 4, further comprising:
the monitoring logic monitoring 1nput data to detect a
change 1n the data; and
the monitoring logic outputting an indication of the
change.

16

26. The system of claim 12, wherein the component
includes a monitoring logic that monitors mnput data to detect
a change 1n the mput data and to output an indication of the

change.

277. The computer-readable medium of claim 22, wherein
the component includes a monitoring logic that monitors
input data to detect a change 1n the input data and to output an
indication of the change.

28. The system of claim 24, wherein the component
includes a monitoring logic that monitors iput data to detect
a change 1n the input data and to output an indication of the

change.

29. The system of claim 12, wherein the substantially opti-
mal parameterization 1s used to control the component.

30. The computer-readable medium of claim 22, wherein
the substantially optimal parameterization 1s used to control
the component.
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