12 United States Patent

Williamson et al.

(10) Patent No.:

45) Date of Patent:

(54) RESULT BYPASSING TO OVERRIDE A DATA
HAZARD WITHIN A SUPERSCALAR
PROCESSOR

(75) Inventors: David James Williamson, Austin, TX

(US); Glen Andrew Harris, Austin, TX

(US); Stephen John Hill, Austin, TX

(US)
ARM Limited, Cambridge (GB)

(73)

(%)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1011 days.

Notice:

(21) 11/137,792

(22)

Appl. No.:
Filed: May 26, 2005

Prior Publication Data

US 2006/0271768 Al Nov. 30, 2006

(65)

Int. CI.
GO6F 9/30 (2006.01)
GO6F 9/40 (2006.01)

US.CL .. 712/218; 712/216; 712/217;
712/219

Field of Classification Search 712/216-219
See application file for complete search history.

(1)

(52)

(58)

References Cited

U.S. PATENT DOCUMENTS

(56)

5471,593 A * 11/1995 Braniginc.c........ 712/235
5,509,130 A * 4/1996 Trauben etal. 712/215
5,640,588 A * 6/1997 Vegesnaetal. 712/23
5,805,852 A * 9/1998 Nakanishi 712/218
5,958,041 A * 9/1999 Petolino etal. 712/214
6,073,231 A * 6/2000 Bluhmetal. 712/218

Start

6,101,597
0,408,381
0,587,940
0,889,317
6,922,760
2002/0108026
2002/0169942
2003/0120902
2003/0163672
2003/0200421
2004/0255099
2006/0095732
2006/0168583
2006/0259741

A
Bl *
BI*
B2 *
B2

=

AN AN NN A

O - -

US007774582B2

US 7,774,582 B2
Aug. 10, 2010

8/2000 Colwell et al.
6/2002 Geartyetal. 712/225
7/2003 Soltisetal. 712/216
5/2005 Samietal. 712/218
7/2005 Nguyencoocenenee.. 711/154
8/2002 Balmeretal. 712/218
11/2002 Sugimotoc..ceeene.e. 712/24
6/2003 Kottapallietal. 712/216
8/2003 Fetzeretal. 712/218
10/2003 Crooketal. 712/215
12/2004 Kromercoevvennnnen... 712/219
5/2006 Tranetal. 712/217
7/2006 Bassoetal. 718/102
11/2006 Hastie ...coevvevenvennnnnn... 712/215

FOREIGN PATENT DOCUMENTS

JP

2000-347861

12/2000

OTHER PUBLICATIONS
UK Examination Report dated Dec. 18, 2009 for GB 0606086.7.

* cited by examiner

Primary Examiner—Eddie P Chan

Assistant Examiner—William B Partridge
(74) Attorney, Agent, or Firm—Nixon & Vanderhye P.C.

(57)

ABSTRACT

A data processing system including multiple execution pipe-
lines each having multiple execution stages E1, E2, E3 may
have instructions 1ssued together in parallel despite a data
dependency therebetween 11 1t 1s detected that the result oper-
and value for the older instruction will be generated 1n an
execution stage prior to an execution stage which requires that
result operand value as an input operand value to the younger
instruction and accordingly cross-forwarding of the operand
value 1s possible between the execution pipelines to resolve
the data dependency.

Two candidate
48

Instructions received

\
-~ Data hazard? 50
vY
- N
Cross forwarding possible? >
54
Set up cross forwardin
S _P_ _+ UIWa _Q 58 -
7
. + I_ssue oi_der
l Issue both instructions instruction |
— —1 02 only |
- I

i

10 Claims, 4 Drawing Sheets

US 7,774,582 B2

Sheet 1 of 4

Aug. 10, 2010

U.S. Patent

r mmp R Ny e AR AN A o A AE B BN S EEE AR W W

- — il . — ke - Lt — il o — il J— — - L T

P wkl S Wy ek AEE AR BN LA BB AaEm MEE B O aam B N Bk e

| duljadid
uonnoax3

| D14

spuesado Jndjno

spuetado Jndut

am ik o B S T T s s an e s e e s O s oy

8~ ng =

o} 73

4 13
@ sulRdid
LoNN2aX3

US 7,774,582 B2

Sheet 2 of 4

Aug. 10, 2010

U.S. Patent

sabe)g

b Jaypng

sabelg
D jayun4

£

¢3 13 4e 1
FUA opuon | &
£

Z ‘b4

Ol

plezey

I0JU0Y)

_o_Eoo
ac_EmEOH_

10JU0") 8NSS|
anss| B
40194 uononsu|

pJeoq
-8100Q

buiplemiod

o

US 7,774,582 B2

Sheet 3 of 4

Aug. 10, 2010

U.S. Patent

g PM4 X 8[qeud

vV PMd X 8|qeu]

pIeZEH SY08YD X C

abejg pm4 X C

¢ b4

e 8>V j1onL

| b9y g 218

_ | "abejS v S

| "bay v 218

0 8bejS 1s8(

0 bay 18

|- obe)s g 01g F

~ap00a(Q
g 9IS

L~ 9p09338(]
VIS 1 1sul
8¢

) 18apooa(]
159(] 0 Jsul

U.S. Patent Aug. 10, 2010 Sheet 4 of 4 US 7,774,582 B2

Two candidate
instructions received |48

Data hazard? 50
Y

Cross forwarding possible? A

o4
Y

Set up cross forwarding
58
o6

Issue olider

issue both instructions instruction
02 only

Fig. 4

US 7,774,582 B2

1

RESULT BYPASSING TO OVERRIDE A DATA
HAZARD WITHIN A SUPERSCALAR
PROCESSOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to data processing systems. More
particularly, this invention relates to the control of instruction
1ssue within superscalar data processing systems.

2. Description of the Prior Art

It 1s known to provide superscalar data processing systems
including multiple instruction pipelines so that multiple
streams of program 1instructions can be executed in parallel
thereby increasing processor throughput. A problem with
such systems 1s that data dependencies between program
istructions can require that an output of one 1nstruction 1s
used as an iput to another instruction such that, 1f those two
istructions are 1ssued together, then the true put to the
younger instruction will not be available when required since
it will not yet have been calculated by the older instruction. In
order to deal with this situation it 1s known to provide data
dependency hazard checking mechanisms which are respon-
stve to the source and destination register specifiers of pro-
gram 1nstructions to be 1ssued to identify any combinations of
instructions with a data dependency that would cause an error
i those mstructions were 1ssued together. If such a data haz-
ard 1s detected, then the younger instruction(s) can be held
back and 1ssued 1n a later cycle such that the data hazard wall
not arise. This reduces processing performance since the par-
allel execution capabilities are not fully used.

SUMMARY OF THE INVENTION

Viewed from one aspect the present invention provides an

apparatus for processing data, said apparatus comprising;:

a plurality of execution pipelines for executing 1n parallel
program instructions of a sequence of program 1nstruc-
tion to generate output operand values, respective execu-
tion pipelines including a corresponding plurality of
execution stages, output operand values for differing
types of program instructions being generated in differ-
ent execution stages;

data hazard checking logic operable to detect a data depen-
dency hazard between candidate program instructions to
be 1ssued 1n parallel to respective execution pipelines of
said plurality of execution pipelines whereby an output
operand value for a first of said candidate program
istructions 1s an input operand value of a second of said
candidate program 1instructions and to generate a data
dependency hazard signal 1f such a data dependency
hazard 1s detected;

data hazard override logic operable to detect 1f said output
operand value of said first of said candidate program
instructions will be generated before said input operand
value for said second of said candidate program instruc-
tion will be required and to generate a data hazard over-
ride signal;

istruction 1ssue control logic operable 1 response to
receipt of said data hazard override signal to override
any data dependency hazard signal and to permit said
first of said candidate program instructions and said
second of said candidate program instructions to 1ssue in
parallel; and

operand forwarding logic operable to control said output
operand value of said first of said candidate program
istruction to be transmitted between execution pipe-

10

15

20

25

30

35

40

45

50

55

60

65

2

lines to serve as said iput operand value of said second
of said candidate program instructions.

The mvention recognizes that within a processing system
in which there are multiple execution stages 1n each execution
pipeline with output operand values being generated at dif-
ferent execution stages depending upon the type of program
instruction concerned, it 1s possible for some combinations of
program 1nstructions to be issued together so as to be
executed 1n parallel even though a data dependency exists
between the two instructions. This 1s possible if the data value
which 1s resulting 1n the data dependency hazard 1s one where
the output operand value will be generated 1n an execution
stage preceding the execution stage in which 1t 1s required to
form an mput operand for the dependent program instructions
if those instructions are 1ssued together. In this circumstance,
the combinations of program instructions which may be
1ssued together 1n parallel despite a detected data dependency
hazard can be detected and a signal arising from this detection
used to override the data dependency hazard. The mechanism
may also be used to control the transmission/forwarding of an
output operand value between the execution pipelines so as to
serve as a necessary mput operand value as the dependent
program instructions progress along the mstruction pipelines.

It will be appreciated that the present technique may be
used to provide for the overriding of data dependency hazard
checking 1n systems having multiple instruction pipelines
including more than two instruction pipelines, but the tech-
nique 1s well suited to systems having two instruction pipe-
lines and which perform 1n order program instruction execus-
tion. IT out of order execution 1s permitted, then the problems
associated with data dependencies can be mitigated at the cost
ol a considerable increase 1n the complexity needed to deal
with the out of order control.

The situation 1n which output operand values are available
at different execution stages 1s particularly likely to arise
when the execution stages concerned have different instruc-
tion execution logic operable to perform different data pro-
cessing operations. Within such systems the execution work-
load 1s divided between the execution stages with different
types of manipulation being performed at different stages.
Some 1instructions may require multiple different types of
mamipulation to be performed with these being performed in
different execution stages, e.g. a shift in one stage followed by
an ALU operation 1n another stage.

The different instruction execution logic provided in the
respective execution stages can take a variety of different
forms, but 1n preferred embodiments comprises logic oper-
able to perform one of more of the data shift operation, an
ALU operation and a load/store operation. These operations
can be conveniently arranged within the pipelines to be per-
formed 1n sequence at respective execution stages.

With this arrangement, candidate program instructions
having a data dependency hazard therebetween which can
nevertheless be 1ssued together 1n parallel mclude a shait
program 1nstruction followed by an ALU program instruc-
tion, a shift program instruction followed by a load/store
program 1nstruction and an ALU program instruction fol-
lowed by a load/store program instruction. In all of these
cases, the output operand value of the earlier instruction will
be available within the execution pipeline stages prior to 1t
being required as an input operand value for the following
program 1nstruction which has been 1ssued in parallel there-
with.

Viewed from another aspect the present invention provides
apparatus for processing data, said apparatus comprising;:

a plurality of execution pipeline means for executing in

parallel program instructions of a sequence of program

US 7,774,582 B2

3

instruction to generate output operand values, respective
execution pipelines including a corresponding plurality
of execution stage means, output operand values for
differing types of program instructions being generated
in different execution stage means;

data hazard checking means for detecting a data depen-
dency hazard between candidate program instructions to
be 1ssued 1n parallel to respective execution pipeline
means of said plurality of execution pipeline means
whereby an output operand value for a first of said can-
didate program instructions 1s an input operand value of
a second of said candidate program instructions and
generating a data dependency hazard signal 1f such a
data dependency hazard 1s detected;

data hazard override means for detecting if said output
operand value of said first of said candidate program
instructions will be generated before said input operand
value for said first of said candidate program 1nstruction
will be required and generating a data hazard override
signal;

instruction 1ssue control means responsive to receipt of
said data hazard override signal for overrniding any data
dependency hazard signal and permitting said first of
said candidate program instructions and said second of
said candidate program 1nstructions to 1ssue 1n parallel;
and

operand forwarding means for controlling said output
operand value of said first of said candidate program
instruction to be transmitted between execution pipeline
means to serve as said iput operand value of said sec-
ond of said candidate program instructions.

Viewed from a further aspect the present invention pro-
vides a method of processing data, said method comprising,
the steps of:

executing in parallel program instructions of a sequence of
program 1nstruction within a plurality of execution pipe-
lines to generate output operand values, respective
execution pipelines including a corresponding plurality
ol execution stages, output operand values for differing
types of program 1instructions being generated 1n differ-
ent execution stages;

detecting a data dependency hazard between candidate
program instructions to be 1ssued 1n parallel to respec-
tive execution pipelines of said plurality of execution
pipelines whereby an output operand value for a first of
said candidate program instructions 1s an input operand
value of a second of said candidate program instructions
and generating a data dependency hazard signal 1f such
a data dependency hazard 1s detected;

detecting 11 said output operand value of said first of said
candidate program instructions will be generated before
said mput operand value for said first of said candidate
program 1nstruction will be required and generating a
data hazard override signal;

in response to generation of said data hazard override sig-
nal, overriding any data dependency hazard signal and
permitting said first of said candidate program instruc-
tions and said second of said candidate program instruc-
tions to 1ssue in parallel; and

controlling said output operand value of said first of said
candidate program instruction to be transmitted between
execution pipelines to serve as said input operand value
of said second of said candidate program 1nstructions.

The above, and other objects, features and advantages of
this mvention will be apparent from the following detailed

10

15

20

25

30

35

40

45

50

55

60

65

4

description of illustrative embodiments which 1s to be read 1n
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically 1llustrates execution stages of mul-
tiple execution pipelines accessing a shared register bank;

FI1G. 2 schematically illustrates a portion of two 1nstruction
pipelines mcluding data hazard detection, hazard override
and cross-forwarding logic;

FIG. 3 1s a diagram schematically 1llustrating a portion of a
circuit for controlling instruction 1ssue and operand cross-
torwarding for instructions 1ssued 1n parallel; and

FIG. 4 15 a flow diagram schematically 1llustrating control
of 1nstruction 1ssue and cross-forwarding.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 schematically illustrates a portion of a multiple
1ssue data processing system including two execution pipe-
lines. It will be appreciated that FIG. 1 1s a highly schematic
representation and 1n practice a considerable number of addi-
tional functional elements will be present and required within
the system as a whole. These functional elements are not
illustrated in FIG. 1 for the sake of simplicity.

FIG. 1 illustrates how each of the execution pipelines
draws 1ts source 1nput operand values from a shared register
bank 2. The destination output operand values from each of
the execution pipelines are similarly written back into the
register {ile 2. Each of the execution pipelines 1n this example
embodiment 1s shown as having three execution stages E1, E2
and E3 respectively including a shifter 4, 4', an arithmetic
logic unit 6, 6' and a load/store unit 8, 8'.

Instructions passing along the respective execution pipe-
lines together with the selected source operand values may be
subject to shifting operations by the shifters 4, 4', arithmetic
and logical operations by the arithmetic logic units, 6, 6' and
memory access operations by the load/store units 8, 8'. It will
be appreciated that a different number of execution stages
may also be used and that the disposition of the relevant
instruction execution logic, namely the shifters 4, 4', the arith-
metic logic units 6, 6' and the load/store units 8, 8 may be
varied depending upon the particular implementation. It waill
also be appreciated that many or most instructions will only
use a subset of these different instruction execution circuits to
perform their intended processing operation. As an example,
an mstruction which 1s purely a shift operation will generally
only use a shifter 4, 4'. The output operand value from that
shift operation will be available by the end of the first execu-
tion stage E1. Similarly, a purely arithmetic/logic instruction
will likely only employ an ALU unit 6, 6' and its output
operand value(s) will be available at the end of the second
execution stage E2. The arithmetic logic units 6, 6' do not
require their mput operand values to be present until the
beginning of the second execution stage E2. Accordingly, 1
these input operand values are calculated using a shift opera-
tion 1n the other of the execution pipelines, then this shifted
value will be present by the end of the first execution stage E1
in that other execution pipeline and can be forwarded between
the execution pipelines to serve as the imnput operand value for
the ALU unit 6, 6' requiring 1t 1n time for the beginning of the
second execution stage E2. This represents cross-forwarding,
ol operands for instructions 1ssued 1n parallel into the two
execution pipelines. In a similar way, the load/store units 8, 8
do not require their input operand value(s) until the beginning
of the third execution stage E3 and accordingly may recerved

US 7,774,582 B2

S

as input operand values from the neighboring execution pipe-
line output operand values that have been generated by either
the AL U unit 6, 6' or the shifter 4, 4'.

FI1G. 2 schematically 1llustrates a portion of two instruction
pipelines using the above described techniques. A fetch and
instruction 1ssue block 10 serves to fetch multiple program
instructions (candidate program instructions) from an
istruction cache and to detect whether these require to be
issued 1mdividually (down pipeline 0) or may be issued 1n
parallel down the two pipelines (pipelines 0 and 1). A data
hazard detection unit 12 serves to examine (partially decode)
the istructions which are candidate instructions for being
issued in parallel to determine i1f the young instruction
requires as an input operand value a within a register which 1s
serving as a destination register for the older candidate pro-
gram 1nstruction to be issued. This 1s data hazard detection as
1s conventionally performed and can employ a scoreboard 14
to keep track of data dependencies. Such standard data hazard
detection not only applies to candidate program instructions
being 1ssued 1n parallel along the execution pipelines but may
also arise when seeking to 1ssue an instruction which has a
dependency upon an instruction which 1s already progressing
along the execution pipelines but will not have generated 1ts
destination (output) value in time for when this 1s required by
the candidate program 1nstruction being examined. This type
of data hazard detection between pending program instruc-
tions within an mstruction pipeline 1s known and will not be
described further herein.

The present technique provides the additional capability of
overriding detected data hazards using hazard override logic
16 when these are occurring between candidate instructions
for 1ssue 1n parallel 1T those instructions are such that the
output data being generated by the older instruction which 1s
required by the younger instruction will be so generated
betore that data 1s actually required by the younger instruc-
tion as the two instructions progress in parallel along the
execution pipelines. It this condition 1s satisfied, then the data
concerned can be cross-forwarded between the execution
pipelines and the two 1nstructions can be 1ssued together. The
1ssue control logic 18 1s responsive to both the conventional
data hazard detection logic 12 and the hazard override detec-
tion logic 16 to 1ssue either a single or two 1nstructions from
the candidate pair of instructions being examined. IT forward-
ing 1s required between the execution pipelines and 1s
detected as being possible given the timings involved by the
hazard override detection logic 16, then this forwarding 1s
controlled by forwarding control logic 20.

Within the execution pipelines themselves these are
respectively preceded by decoder stages before the multiple
execution stages are reached. The execution stages can per-
form their different forms of data manipulation as previously
described. Instruction specitying decoded control signals and
operands are passed between the stages as indicated by the
double lined arrow between the stages. When required, an
operand can be forwarded between the execution pipelines
using the multiplexers 22, 24 to replace a current operand
value (or effectively space holder) progressing along the pipe-
line for that operand with an operand value selected from the
other pipeline under control of cross-forwarding control sig-
nals generated by the forwarding control logic 20. The older
instruction 1s 1n this example embodiment 1s always 1ssued
into pipeline 0 and accordingly cross-forwarding 1s only
required from pipeline 0 to pipeline 1.

FIG. 3 schematically illustrates generation of the control
signals for detecting that a hazard may be present and over-
riding that hazard together with controlling the cross-for-
warding. Decoders 26, 28, 30 respectively decode the desti-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

nation register specified for the older instruction as well as the
two source registers specified by the younger instruction.
Comparitors 32, 34 determine i the destination register for
the older instruction 1s the same as either of the source regis-
ters for the younger istruction and 1f this 1s detected, then a
data hazard signal 1s generated.

The decoders 26, 28, 30 are also responsive to their instruc-
tions to determine the execution stage by which the destina-
tion register value will be available 1n the case of the older
instruction and by which the source register value(s) will be
required by the younger instruction. The execution stage at
which these conditions are met varies depending upon the
type of instruction concerned. As an example, shift instruc-
tions 1n the system of FIG. 1 will require their sources to be
present early (at the start of execution stage E1), but will also
generate their destinations early (at the end of execution stage
E1). Conversely load/store operations will not require their
sources to be present until much later (the start of execution
stage E3), but will similarly generate their destinations much
later (the end of execution stage E3). Comparitors 36, 38
serve to detect whether the destination value being produced
by the older 1nstruction will be available prior to either of the
source values required for the younger instruction being
needed. If such a condition 1s present, then the output of these
comparitors 36, 38 can be used with the AND gates 40, 42 to
override any detected data hazard signal. An OR gate 42 1s
responsive to any data hazard signal (for either input operand
value of the younger instruction) which has not been over-
written and 1nhibits dual 1ssue 11 such a data hazard exists and
cannot be resolved by cross-forwarding. If a data hazard has
been detected and has been overwritten, then the AND gates
44, 46 genecrate cross-forwarding enable signals for the
respective source operands where this 1s necessary. These
cross-Torwarding control signals are used to control the mul-
tiplexers 22, 24 of FIG. 2 etther directly or having been
subject to further processing to accommodate forwarding
requirements otherwise arising. Another example of further
processing may involve tracking of the signal generated by
the decoder 26 indicating when the destination stage will be
generating its result value as at that time, or subsequent to that
time, the operand value can be transmitted between the execu-
tion pipelines to resolve the data dependency.

FIG. 4 1s a flow diagram schematically illustrating control
of the 1ssue of multiple instructions. At step 48 two candidate
instructions for dual 1ssue are recerved. Step 50 determines
whether there 1s a data hazard present between the two
instructions, e.g. the younger istruction requires as one of 1ts
sources a value which 1s a destination of the older instruction.
If such a data hazard does not exist, then processing can
proceed to step 52 at which both instructions can be 1ssued in
parallel to the two execution pipelines.

If a data hazard i1s detected at step 50, then processing
proceeds to step 54 at which a check 1s made as to whether this
data hazard can be overridden due to cross-forwarding being
possible. Whether or not cross-forwarding 1s possible will
depend upon the particular type of instruction concerned. If
the older 1nstruction 1s a shift, then in the example of FIG. 1
this may be 1ssued together with an ALU i1nstruction or a
load/store instruction. If the older instruction 1s an ALU
instruction, then this may be 1ssued in parallel with a load/
store mstruction. These are particular examples and are not
limiting to the generality of the scope of the present tech-
nique.

I1 step 54 determines that cross-forwarding 1s not possible
to overcome the data hazard detected at step 50, then process-
ing proceeds to step 56 at which the older instruction 1s 1ssued
alone and the younger instruction issued 1n a following pro-

US 7,774,582 B2

7

cessing cycle providing some other data dependency does not
prevent this. If cross-forwarding 1s determined as being suit-
able for overriding the data hazard at step 54, then processing
proceeds to step 58 at which the necessary cross-forwarding
1s set up to occur at the appropnate time as the istructions
progress along the execution pipelines and the two mnstruc-
tions are 1ssued together at step 52.

FI1G. 2 as described above illustrates the cross-forwarding
paths used by instructions 1ssued together 1n parallel into the
two execution pipelines. It will be appreciated by those in this
field that forwarding between the execution pipelines 1s per-
tormed for other instructions 1n addition to those 1ssued at the
same time 1n parallel to the two execution pipelines. This type
of forwarding may be controlled in dependence upon the data
held 1n the scoreboard 14 in accordance with normal tech-
niques. The embodiment shown 1n FIG. 2 1s simplified and 1n
practice forwarding in either direction between the pipelines
may be performed at the various stages not only to deal with
instructions issued at the same time in parallel into the two
pipelines but also for instructions 1ssued at different times.
The selection of which operands should be transferred
between the execution pipelines and at what times can be
merged for both the normal forwarding operations as con-
trolled by the scoreboard for instructions 1ssued at different
times as well as the forwarding performed 1n accordance with
the present technique for nstructions 1ssued together at the
same time. The control signals passed along the pipeline to
control the forwarding multiplexers and selection of these
two different types can be merged and performed by the same
hardware. The hardware which implements the forwarding
need not know that the forwarding was the result of conven-
tional scoreboard type forwarding for instructions 1ssued at
different times or was the result of forwarding for instructions
issued at the same type for which 1s was determined that
cross-forwarding between execution pipelines could resolve
the data dependency even though those instructions were
issued at the same time. Thus, the data hazard detection logic
12 operating with the scoreboard 14 together with the hazard
override detection logic 16 together provide mputs to the
torwarding control unit 20 of FIG. 2 which produces overall
torwarding control signals passed down the execution pipe-
lines with the instructions to control the forwarding resulting
from both types of situation. The hazard override detection
logic 16 also provides an mput to the 1ssue control logic 18 to
allow parallel 1ssue of dual instructions at the same time
despite a data dependency signal from the data hazard detec-
tion logic 12 1n the circumstance where forwarding control by
the forwarding control logic 20 can resolve that data depen-
dency during the progress of the two mnstructions along the
execution pipelines.

Although 1llustrative embodiments of the invention have
been described 1n detail herein with reference to the accom-
panying drawings, it 1s to be understood that the invention 1s
not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled 1n the art without departing from the scope and spiritof
the invention as defined by the appended claims.

We claim:

1. Apparatus for processing data, said apparatus compris-
ng:

a plurality of execution pipelines for executing 1n parallel
program instructions of a sequence of program 1nstruc-
tion to generate output operand values, respective execu-
tion pipelines including a corresponding plurality of
execution stages, output operand values for differing
types of program instructions being generated in differ-
ent execution stages;

10

15

20

25

30

35

40

45

50

55

60

65

8

data hazard checking logic operable to detect a data depen-
dency hazard between candidate program instructions to
be 1ssued 1n parallel to respective execution pipelines of
said plurality of execution pipelines whereby an output
operand value for a first of said candidate program
instructions 1s an input operand value of a second of said
candidate program 1instructions and to generate a data
dependency hazard signal i1f such a data dependency
hazard 1s detected:

data hazard override logic for detecting 11 said output oper-

and value of said first of said candidate program instruc-
tions will be generated betfore said input operand value
for said second of said candidate program instruction
will be required and for generating a data hazard over-
ride signal;

instruction issue control logic operable 1n response to

receipt of said data hazard override signal to override
any data dependency hazard signal and to permit said
first of said candidate program instructions and said
second of said candidate program instructions to 1ssue 1n
parallel; and

operand forwarding logic operable to control said output

operand value of said first of said candidate program
istruction to be transmitted between execution pipe-
lines to serve as said mput operand value of said second
of said candidate program instructions.

2. Apparatus as claimed 1n claim 1, wherein said plurality
of execution pipelines comprises two execution pipelines
performing in order program instruction execution.

3. Apparatus as claimed 1n claim 1, wherein said plurality
of execution stages 1nclude respective different instruction
execution logic operable to perform different data processing
operations as required for execution of a program instruction
progressing between said plurality of execution stages.

4. Apparatus as claimed 1n claim 3, wherein for at least
some types ol program instructions all required processing
operations needed to generate at least one output operand
value are complete before a last of said plurality of execution
stages 1s reached.

5. Apparatus as claimed in claim 3, wherein for at least
some types of program instructions at least one input operand
value 1s not required until after a first of said plurality of
execution stages 1s reached.

6. Apparatus as claimed 1n claim 3, wherein said respective
different instruction execution logic perform one or more of:

a data shift operation;

an ALU operation; and

a load/store operation.

7. Apparatus as claimed 1n claim 1, wherein said plurality
ol execution stages for respective execution pipelines lines
comprises a sequence ol execution stages including a shait
execution stage operable to perform data shiit operation, an
ALU execution stage operable to perform an ALU operation
and a load/store execution stage operable to perform a load/
store operation.

8. Apparatus as claimed 1n claim 7, wherein for candidate
program 1nstructions having a data dependency hazard:

a shift program instruction followed in a program by an

ALU program instruction are 1ssued 1n parallel;

a shift program 1instruction followed in a program by a

load/store program instruction are 1ssued 1n parallel; and

an ALU program 1nstruction followed in a program by a

load/store program instruction are 1ssued 1n parallel.

9. Apparatus for processing data, said apparatus compris-
ng:

a plurality of execution pipeline means for executing in

parallel program instructions of a sequence of program

US 7,774,582 B2

9

instruction to generate output operand values, respective
execution pipelines including a corresponding plurality
ol execution stage means, output operand values for
differing types of program instructions being generated
in different execution stage means;

data hazard checking means for detecting a data depen-
dency hazard between candidate program instructions to
be 1ssued 1n parallel to respective execution pipeline
means of said plurality of execution pipeline means
whereby an output operand value for a first of said can-

didate program 1instructions 1s an input operand value of

a second of said candidate program instructions and
generating a data dependency hazard signal 11 such a
data dependency hazard 1s detected,;

data hazard override means for detecting 11 said output
operand value of said first of said candidate program
instructions will be generated before said input operand
value for said first of said candidate program 1nstruction
will be required and generating a data hazard override
signal;

instruction 1ssue control means responsive to receipt of

said data hazard override signal for overriding any data

dependency hazard signal and permitting said first of

10

15

20

said candidate program instructions and said second of 2>

said candidate program 1nstructions to 1ssue 1n parallel;
and

operand forwarding means for controlling said output
operand value of said first of said candidate program
instruction to be transmitted between execution pipeline
means to serve as said input operand value of said sec-
ond of said candidate program 1nstructions.

30

10

10. A method of processing data, said method comprising

the steps of:

executing 1n parallel program instructions of a sequence of
program instruction within a plurality of execution pipe-
lines to generate output operand values, respective
execution pipelines including a corresponding plurality
of execution stages, output operand values for differing
types ol program 1nstructions being generated 1n difier-
ent execution stages;

detecting a data dependency hazard between candidate
program 1instructions to be 1ssued 1n parallel to respec-
tive execution pipelines of said plurality of execution
pipelines whereby an output operand value for a first of
said candidate program instructions 1s an input operand
value of a second of said candidate program instructions
and generating a data dependency hazard signal 1t such
a data dependency hazard 1s detected;

detecting 11 said output operand value of said first of said
candidate program instructions will be generated before
said iput operand value for said first of said candidate
program 1nstruction will be required and generating a
data hazard override signal;

in response to generation of said data hazard override sig-
nal, overriding any data dependency hazard signal and
permitting said first of said candidate program instruc-
tions and said second of said candidate program instruc-
tions to 1ssue in parallel; and

controlling said output operand value of said first of said
candidate program instruction to be transmitted between
execution pipelines to serve as said input operand value
of said second of said candidate program instructions.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

