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Ford=21t0 1000 S1
for K= 5 to 1000
AlJ.K] = A[J,K] + B[J-1,K]} + C[J-3,K-1] <S1> (1.2)
B{J.K] = B[J,K] + A{J-1,K-2] + C[J,K-1] <S2> Ao ¥
C[J'K] = C[J,K] + A[J-Z,K—B] + B[J,K-B] <S3> (3 1) | 82 (2 3
D[J,K] = D[J,K] + A[J-1,K-4] + C[J,K-3] <S4> | |
(0,1 (0,3)
Fig. 2A (Original Loop before Statement Shifting)
S3 (1,4)
l(o,s)
S4

Fig. 2B (DDG of Original Loop)

distance a[S1-S2] = offset[S1] - offset[S2] + (1,2) S
distance a[S1-S3] = offset[S1] - offset[S3] + (2,3) l
distance a[S1-54] = offset{S1] - offset[S4] + (1,4)
distance a[S2-S1] = offset[S2] - offset[S1] + (1,0)
distance_a[S2-S3] = offset[S2] - offset[S3] + (0,3) S2
distance_a[S3-51] = offset|S3] - offset{S1] + (3,1)
distance a[S3-5S2] = offset[S3] - offset[S2] + (0,1)
distance a[S3-54] = offset[S3] - offset[S4] + (0,3)
Fig. 2C (Basic Equations Group) Sf
S4

Fig. 2D (Spanning Tree)

distance a[S1-S2] + distance a[S2-S1] = (2,2)

distance a[S1-S2] + distance a[S2-S3] - distance a[S1-S3]) = (0,2)

distance a[S1-S2] + distance a[S2-S3] + distance a[53-51} = (4,6)

distance a[S1-5S2] + distance_a[S2-S3] + distance_a[S3-5S4) - distance_a[S1-S4] = (0,4)
distance_a[S2-S3] + distance_a[S3-S2] = (0,4)

Fig. 2E (Dependence Equations Group)
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Calculate Shifting offset of each statement in DDG:

1 Initialize a work stack S to be empty stack

2 For.every MUCS in DDG

3 Select a statement vO from MUCS, set offset(v0)=0, push vO into stack S
4 While S is not empty, pop statement x from stack S

> FFor each successor y of x

6 If offset(y) has not been set

7 Set offsel(y)=offset(x)+distance_a(x->y)-distance_b(x->y)
8 Push y into stack S

9 End If

10 End For

11 For each predecessor y of x

12 If offset(y) has not been set

13 Set offsel(y) = offset(x) +distance_a(y->x)-distance_a(y->x)
14 Push y into stack S

15 End if

16 End For

17 End While

18 Set m is the minimum offset of all statement in MUCS

19 if m#0

20 For every statement vO in MUCS

21 offset(v0)=offset(v0)-m

22 End For

23 End If

24 End For

Fig. 3
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For P = -20000 to 29998
for J = max(0, (2+P)/3) to min(10000, (20000+P)/3)
if (3J-P) % 2 = 0) then
if (1 <= J <= 10000 and 2 <= 3J-P <= 20000) then
AlJ.(3J-P)/2] = A[J,(3J-P)/2] + B[J-1,((3J-P)/2)-2)] <S1>
if (0 <= J <= 9999 and 0 <= 3J-P <= 19998) then
B[J+1,((3J-P)/2)+1] = B[J+1,((3J-P)/2)+1] + A[J,(3J-P)/2)] <S2>

Fig. 5 (Loop after Unimodular Transformation)
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Step 1. Calculate Alfitude of each statement in graph DDG.

) Initialize a work stack S to empty stack

1) Pick any statement vO from DDG, set Alt(v0)=0, push vO into S
i) While S is not empty, pop statement x from stack S

V) For each successor y of x,

V) If Alt(y) has not been set

Vi) Set All(y) = (All{x)+W(x->y)) (mod m);
Vi) Push y into stack S

Viit) End if

1X) End For

X) For each predecessor y of x

X1) If Alt(y) has not been set

XI1) Set Alt(y)=(Alt(x)+m-W(y->x)) (mod m);
X1i1) Push y into stack S

XIV) End if

XV) End for

xvl) End While

Step 2: Calculate new weight function W’ of each edge in graph G.
) For each edge u->vin graph G

i) W (u->v)=floor{(Alt(u) + W(u->v))/m)*m

i) End For

Fig. 6
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S1: Alt=0
S1: Alt=0
l ,
1 0
1 Y 2 S2: Alt=1  °
3 S2: Alt=1 ]
0
2
0
0 1
\J S3: Alf=1
S3: Alt=1 o
0
Y
Y S4: Alt=1
S4: Alt=1
Fig. 7A (After Altitude 1% column) Fig. 7B (After Solve distance_a 1* Column)
S1: Alt=0 S1: Alt=0
0 - 0
0 i
1 S2: Alt=0 3 52: AIE0
0 4
Y 4
S3: Alt=1 S3. Al=1
5 2
Y
S4: Alt=0 S4: Alt=0

. - d
Fig. 7C (After Altitude 2™ column) Fig. 7D (After Solve distance_a 2" Column)
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1

STATEMENT SHIFTING TO INCREASE
PARALLELISM OF LOOPS

FIELD OF THE INVENTION

The embodiments of the invention relate generally to loop
transformations and, more specifically, relate to statement
shifting to increase parallelism of loops.

BACKGROUND

Multiprocessors, which herein include multi-core proces-
sors, are becoming more widespread in the computer indus-
try. As such, parallel execution of code 1n the multiprocessors
1s an 1mportant technmique to take advantage of for perfor-
mance gains. To optimize performance on multiprocessors,
software programs need to be parallelized to take full advan-
tage of parallel execution.

Generally, loops 1n a software program take additional time
in the execution of a program. A technique to reduce this time
1s loop transformation. Loop transformations are used to
increase the parallelism of the software program 1n modern
compilers. Currently, there are many kinds of loop transior-
mations, such as fusion, fission, blocking, shifting, GCD
(greatest common divisor) transformation, unimodular trans-
formation, and affine partitioning.

Loop shifting, 1n particular, mnvolves moving operations
from one 1teration of the loop body to a different iteration of
the loop body. It does this by shifting a set of operations from
the beginning of the loop body to the end of the loop body. A
copy ol these operations 1s also placed in the loop head or
prologue. Loop shifting shiits a set of operations one at a time,
thereby exposing just as much parallelism as can be exploited
by the available resources. Parallelizing transformations can
then operate on the shifted operations to further compact the
loop body. Loop shifting can be a beneficial technique to
expose parallelism 1n order to increase the performance, area,
and resource utilization of a multiprocessor.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the invention. The draw-
ings, however, should not be taken to limit the invention to the
specific embodiments, but are for explanation and under-
standing only.

FI1G. 11s a flow diagram of a method of one embodiment of
the 1nvention;

FIGS. 2A through 2F 1llustrate one embodiment of state-
ment shifting by basic equations groups and dependence
equations groups;

FI1G. 3 depicts a pseudo-code listing of one embodiment of
determining an oifset for statement shifting;

FIGS. 4 A through 4D depict one embodiment of statement
shifting;

FI1G. 5 1llustrates one embodiment of a loop after statement
shifting combined with unimodular transformation;

FI1G. 6 depicts a pseudo-code listing of one embodiment of
an algorithm to increase the parallel chances for greatest
common divisor (GCD) transformation;

FIGS. 7A through 7D illustrate one embodiment of an
implementation of the algorithm of FIG. 6; and

FIG. 8 illustrates a block diagram of an exemplary com-
puter system used 1n implementing one or more embodiments
of the invention.
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2
DETAILED DESCRIPTION

A method and apparatus for statement shifting to increase
the parallelism of loops are described. Reference 1n the speci-
fication to “one embodiment” or “an embodiment” means
that a particular feature, structure, or characteristic described
in connection with the embodiment 1s included 1n at least one
embodiment of the invention. The appearances of the phrase
“1n one embodiment” 1n various places 1n the specification are
not necessarily all referring to the same embodiment.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
embodiments of the invention may be practiced without these
specific details. In other instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, 1n order to avoid obscuring the mnvention.

Embodiments of the invention present a novel type of loop
shifting to be known as statement shifting. Statement shifting
1s implemented by solving basic and dependence equations
groups that are built according to a data dependence graph
(DDG) of a loop. In statement shifting, every statement 1n the
loop has 1ts own transformation mapping. The equations
groups provide accurate loop transformation constraints for
cach statement 1n the loop. By way of the equations groups,
statement shifting explores parallel chances for other loop
transformation techniques.

FIG. 1 1s a flow diagram depicting a method according to
embodiments of the imnvention. The method of FIG. 1 depicts
a process 100 to perform statement shifting on a loop 1n
program code. The statement shifting of process 100 operates
to change the weight of an edge 1n a data dependence group
(DDG) of the loop. In one embodiment, the logic and opera-
tions of process 100 may be part of a parallelizing compiler.
In another embodiment, process 100 may be implemented as
computer-accessible instructions executable by a computer
system.

The process 100 for statement shifting begins at processing,
block 110, where a DDG 1s constructed for the loop that is to
undergo loop transformation. The DDG 1s constructed by
representing each statement 1n the loop as a node, and the
dependencies between each statement are represented as
edges with corresponding weights. Then, at processing block
120, a basic equations group 1s built representing the state-
ments 1n the target loop. Further explanation of basic equa-
tions groups 1s provided 1 a subsequent portion of this
description. At processing block 130, a spanning tree (ST) 1s
generated for each maximal undirected connected sub-graph
(MUCS) 1n the DDG. The ST 1s a graph including every
vertex of the target graph. A MUCS 1s a subgraph that satisties
some specified property (such as being undirected and con-
nected 1n this case) and to which no node 1n the parent graph
can be added without violating the property.

At processing block 140, a basic undirected circle 1s
defined for each dependence 1n the MUCS, but not in the ST,
where all other dependences 1n the basic undirected circle are
in the ST. At processing block 150, for each basic undirected
circle defined at processing block 140, a dependence equation
1s created that 1s part of a dependence equations group. Fur-
ther explanation of dependence equations groups 1s provided
in a subsequent portion of this description. The dependence
equations in the dependence equations group are dertved, 1n
part, from the basic equations group. Finally, at processing
block 160, the offset of each statement in the target loop 1s
determined from the dependence equations group. This offset
dictates a shifting vector that is applied to each statement 1n
the target loop for statement shifting.
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In one embodiment, the relationship of the dependence
distances of statements 1n a loop before and after statement
shifting may be described by the following basic equation:

(1)

where: distance_a| D] and distance_b[D] are non-negative
integers

In the above equation, D 1s a data dependence edge
between statements 1n the DDG. Distance b and distance a
are arrays that represent distance vectors of all the depen-
dence distances before and after statement shifting, respec-
tively. S and S are the start and the end of the dependence
edge D, respectively. The array offset represents shifting vec-
tors of all statements during shifting. These shifting vectors
determine the shifting mappings of statements 1n the loop.

A basic equations group may then be created by applying
basic equation (1) to each dependence between statements 1n
a loop. In basic equation (1) above, distance_a array deter-
mines the DDG after statement shifting. In addition, oifset
array determines the loop after statement shifting 1s com-
pleted. However, both distance_a and offset are unknown
from the original loop. In some embodiments, a dependence
equations group may be constructed to solve distance_a array.
Once distance_a array 1s known, oflset may then also be
solved.

In the dependence equations group, each equation 1s

expressed as:

distance__a/D]=oflset[S,|-oflset[ S |+distance_ b/D/

21
*a

Ldistance a/D.J*a=X._,  distance_ b/D,]

; (2)
where: m=number of dependence edges 1n DDG
a=integer coellicient
As distance_b array 1s known before statement shifting

from the DDG, equation (2) may be rewritten as:

>, distance afD.]*a.=h (3)

where: B=vector of integer vector

In one embodiment, to create the dependence equations
group from DDG, the following algorithm, identified as algo-
rithm A, may be implemented.

Algorithm A:

(1) Build DDG for the loop dependences 1n the loop.

(2) For each MUCS 1n the DDG, generate a ST. Each
dependence 1n the ST 1s known as a basic dependence.

(3) Any dependence that 1s 1n the MUCS, but not 1n the ST,
1s known as a common dependence. Each common depen-
dence 1s mside a umque undirected circle whose all other
edges are 1n ST. This circle 1s called a basic undirected circle.
Every basic undirected circle determines an equation in the
dependence equations group. An arbitrary direction may be
chosen to be a positive direction of the basic undirected circle.
Then, for every dependence arc D, 11 D 1s not in the basic
undirected circle, the coetlicient (i.e., a,) of distance_a[D] and
distance_b[D] 1n equations (2) and (3) described above 1s O.
Otherwise, 11 the direction of D 1s positive, the coellicient 1s 1
and 11 the direction of D 1s negative, the coellicient 1s —1.

FIGS. 2A through 2E depict an example of statement shift-
ing by basic equations group and dependence equations
group, such as by utilizing the techniques described above.
FIG. 2A 1s an exemplary original loop of program code. FIG.
2B 1s the DDG of the loop betore statement shifting. As seen,
cach edge corresponds to a dependency between statements
in the loop and 1s 1dentified with a weight before statement
shifting,

FI1G. 2C 1s a basic equations group that 1s determined from
the DDG 1n FIG. 2B. Every dependence between statements
in the loop determines a basic equation of the basic equations
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4

group. Referring to the DDG of FIG. 2B, there are eight edges
representing eight dependencies between statements 1n the
original loop. As a result, there are eight basic equations in the
basic equations group as illustrated in FIG. 2C. In one
embodiment, each basic equation 1s created from equation (1)
described above.

FIG. 2D 1s a ST of the DDG of FIG. 2B. FIG. 2E 1s the

dependence equations group determined from this ST. The
dependence equations of the dependence equations group are
determined according to equation (3) and algornithm A
described above. There are five basic undirected circles in the
DDG as determined with the ST. As a result, there are five
dependence equations derived from these basic undirected
circles.

Once the dependence equations group 1s determined, 1t 1s
possible to solve for distance_a, and thereby solve for offset.
FIG. 3 1s apseudo-code listing depicting a one embodiment of
an algorithm to solve offset. In one embodiment, given that
distance_a array satisfies the dependence equations group,
olfset array may then be solved according to the algorithm
described with respect to FIG. 3. Once offset 1s determined,
the shifting vector for statement shifting of a loop may be
determined.

FIGS. 4 A through 4D show one embodiment of an example
of the application of statement shifting to a loop. Initially,
FIG. 4A 1s an original loop before statement shifting is
applied. Then, FIG. 4B 1llustrates the DDG of this loop belore
statement shifting. At this point, the basic equations group
and dependence equations group are created for the loop. In
one embodiment, equations (1), (3), and algorithm A, each
described above, may be applied to the loop to determine the
olflset or shifting vector for each statements 1n the loop.

FIGS. 4C and 4D present the DDG and loop, respectively,
alter statement shifting. For example, as seen 1in FIG. 4D, the
offset of S2 after statement shifting 1s <1,1>. Similarly, the
sthtmg mapping of S2 1s JI'=J+1 and K K+1 (where <J, K>
1s the loop 1ndex of original loop and <J',K'>1s the loop mdex
of the loop after statement shifting).

In embodiments of the invention, statement shifting may be
utilized to explore more parallel chances for loop transforma-
tions. These loop transformations may include techniques
such as unimodular transformation and greatest common
divisor (GCD) transformation. One skilled in the art will
appreciate that these transformations are not the only trans-
formations that statement shifting may apply to. For example,
statement shifting may also apply to other loop transforma-
tions, such as fusion, fission, blocking, shifting, and affine
partitioning.

The following description serves to illustrate in an exem-
plary fashion the benefits and application of statement shiit-
ing to specific loop transformation techniques. Furthermore,
the following description assumes that one skilled 1n the art 1s
knowledgeable 1n the prior art loop transformation tech-
niques.

In some embodiments, statement shifting may be utilized
to improve the loop transtormation technique of unimodular
transformation. Unimodular transformation combines loop
interchanges, reversal, and skewing, which are three basic
transformations that reorder iterations of nested loops by
umimodular matrix transformation. A unimodular matrix is a
square, integer matrix where the absolute value of the deter-
minant 1s 1.

FIG. 5 1s one embodiment of a code listing 1llustrating how
statement shifting improves parallelism of unimodular trans-
formation. The loop shown i FIG. 5 1s the application of
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statement shifting and unimodular transformation to the
original loop of FIG. 4A. The distance matrix of the original
loop 1n FIG. 4A 1s

(1 1)

The rank of this matrix for parallelization purposes 1s 2.

After statement shifting, such as that depicted in FI1G. 4D,
the distance matrix of the loop 1s

> )

The rank of this matrix 1s 1, which increases the paralleliza-
tion chances for unimodular transtormation. FIG. 5§ depicts
the resulting loop after the unimodular transformation to the
loop of FIG. 4A.

In other embodiments, statement shifting may be utilized
to improve the loop transformation technique of GCD trans-
formation. GCD transformation 1s a kind of remainder trans-
formation. It realizes loop partition by a greatest common
divisor of the distance vector of each nested loop.

FIG. 6 presents one embodiment of an algorithm to solve
distance_a 1n order to increase the parallel chances for GCD
transformation. The algorithm presented in FIG. 6 may be
utilized to find optimal statement shifting that enables maxi-
mal parallelization chances for GCD transformation. For
example, 1n one embodiment, the following algorithm, 1den-
tified as algorithm B, finds optimal statement shifting for
GCD transformation.

Algorithm B:

(1) Build a DDG representing statements 1n a loop.

(2) From the DDG, specily the dependence equations
group according to equation (3) above, specifically as
Axdistance a=B, where A 1s the coeflicient matrix and B 1s a
known vector. When the loop 1s single dimensional, every
clement of B 1s an integer. When the loop 1s nested, every
clement of B 1s an integer vector so that B 1s viewed as a
known integer matrix.

(3) The values of distance_a array may be viewed as a
matrix, and may be solved step-by-step. In each step, one row
of distance_a matrix 1s solved. The parameter m 1s specified
as the GCD of all elements 1n k-th column of B in the depen-
dence equations group. Then, the algorithm depicted 1in FIG.
6 may be used to solve the k-th row of distance_a matrix. In
this algorithm, the old weight function W(x—>y) 1s used to get
the k-th element from the distance vector of the dependence
x—>y. The new weight function W' 1n step 2 above records the
solution of the k-th row of distance_a. The parameter m 1s the
maximal common factor of all integers in the k-th row of B.

In embodiments of the invention, the algorithm 1n FIG. 6
operates to set all weights to be a times factor of m, so thatm
continuous 1terations of the corresponding loop level can be
tully parallelized.

FIGS. 7A through 7D present one embodiment of an

example application of the above algorithm B to the original
loop of FIG. 2A. FIG. 7TA 1s the DDG afiter step 1 (when

solving for the 1%’ row of distance_a matrix) where the alti-
tude of each statement 1s marked beside the statement. FIG.
7B is after step 2 (when solving for the 1°’ row of distance_a
matrix) where the 1% row of distance a matrix is solved.
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6

FIGS. 7C and 7D depict the results after steps 1 and 2 (when
solving for the 2% row of distance_a matrix) where solving
for altitude and then solving the 2" row, respectively.

After the above algorithm 1s applied, the distance a matrix
of the loop of FIG. 2A 1s

(22200200]?"
24 4 0400 2

As 1llustrated from this matrix, the GCD of the first and
second rows 1s 2. As aresult, the parallel chances for the GCD
transformation are increased.

Embodiments of the invention present a type of loop shift-
ing known as statement shifting. Statement shifting 1s imple-
mented by solving basic and dependence equations groups.
The dependence equations group provides accurate con-
straints of statement shifting. Statement shifting exposes the
essence of constraints 1n a loop transformation so that there
are no extra constraints remaining in the dependence equa-
tions group, which results in optimal loop transiformations.
Different loop transformation solutions may be obtained
according to any particular policies that are being employed.
Different solutions may benefit diflerent loop transforma-
tions.

FIG. 8 1s a block diagram illustrating an exemplary com-
puter system 800 used 1n implementing one or more embodi-
ments of the invention. The computer system (system) 800
includes one or more processors 802a-c. The processors
802a-c may 1nclude one or more single-threaded or multi-
threaded processors. A typical multi-threaded processor may
include multiple threads or logical processors, and may be
capable of processing multiple instruction sequences concur-
rently using 1ts multiple threads.

Processors 802a-¢ may also include one or more internal
levels of cache and a bus controller or bus interface unit to
direct interaction with the processor bus 812. As in the case of
chip multiprocessors or multi-core processors, processors
802a-c may be on the same chip. The chip may include shared
caches, iterprocessor connection network and special hard-
ware support such as those for SPT execution (not shown).
Furthermore, processors 802a-c may include multiple pro-
cessor cores. Processor bus 812, also known as the host bus or
the front side bus, may be used to couple the processors
802a-c with the system interface 814.

System 1nterface 814 (or chipset) may be connected to the
processor bus 812 to interface other components of the sys-
tem 800 with the processor bus 812. For example, system
interface 814 may include a memory controller 818 for inter-
facing a main memory 816 with the processor bus 812. The
main memory 816 typically includes one or more memory
cards and a control circuit (not shown). System interface 814
may also include an input/output (I/O) interface 820 to inter-
face one or more I/0 bridges or I/O devices with the processor
bus 812. For example, as 1llustrated, the I/O iterface 820 may
interface an I/O bridge 824 with the processor bus 812. 1/0
bridge 824 may operate as a bus bridge to interface between
the system interface 814 and an I/O bus 826. One or more 1[/O
controllers and/or I/O devices may be connected with the 1/0
bus 826, such as I/O controller 828 and I/O device 830, as
illustrated. I/O bus 826 may include a peripheral component
interconnect (PCI) bus or other type of I/O bus.

System 800 may include a dynamic storage device,
referred to as main memory 816, or a random access memory
(RAM) or other devices coupled to the processor bus 812 for
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storing information and instructions to be executed by the
processors 802a-c. Main memory 816 may also be used for
storing temporary variables or other intermediate information
during execution of instructions by the processors 802a-c.
System 800 may include a read only memory (ROM) and/or
other static storage device coupled to the processor bus 812
for storing static information and instructions for the proces-
sors 802a-c. Main memory 816 or dynamic storage device
may include a magnetic disk or an optical disc for storing
information and instructions. In some embodiments, main
memory 816 may include nstructions to execute a compiler
817. Compiler 817 may operate to assist in the implementa-
tion of various embodiments of the present invention.

I/O device 830 may include a display device and/or an
input device. System 800 may also include a communication
device (not shown), such as a modem, a network interface
card, or other well-known interface devices, such as those
used for coupling to Ethernet, token ring, or other types of
physical attachment for purposes of providing a communica-
tion link to support a local or wide area network, for example.
Stated differently, the system 800 may be coupled with a
number of clients and/or servers via a conventional network
inirastructure, such as a company’s intranet and/or the Inter-
net, for example.

It 1s appreciated that a lesser or more equipped system than
the example described above may be desirable for certain
implementations. Therefore, the configuration of system 800
may vary from implementation to implementation depending
upon numerous factors, such as price constraints, perfor-
mance requirements, technological improvements, and/or
other circumstances.

It should be noted that, while the embodiments described
herein may be performed under the control of a programmed
processor, such as processors 802a-c, 1n alternative embodi-
ments, the embodiments may be fully or partially imple-
mented by any programmable or hardcoded logic, such as
field programmable gate arrays (FPGAs), transistor transistor
logic (T'TL) logic, or application specific integrated circuits
(ASICs). Additionally, the embodiments of the invention may
be performed by any combination of programmed general-
purpose computer components and/or custom hardware com-
ponents. Therefore, nothing disclosed herein should be con-
strued as limiting the various embodiments of the invention to
a particular embodiment wherein the recited embodiments
may be performed by a specific combination of hardware
components.

In the above description, numerous specific details such as
logic 1mplementations, opcodes, resource partitioning,
resource sharing, and resource duplication implementations,
types and interrelationships of system components, and logic
partitioning/integration choices may be set forth 1n order to
provide a more thorough understanding of various embodi-
ments of the ivention. It will be appreciated, however, to one
skilled in the art that the embodiments of the invention may be
practiced without such specific details, based on the disclo-
sure provided. In other instances, control structures, gate level
circuits and full software instruction sequences have not been
shown 1n detail in order not to obscure the invention. Those of
ordinary skill in the art, with the included descriptions, will be
able to implement appropriate functionality without undue
experimentation.

The various embodiments of the invention set forth above
may be performed by hardware components or may be
embodied in machine-executable mstructions, which may be
used to cause a general-purpose or special-purpose processor
or a machine or logic circuits programmed with the mstruc-
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tions to perform the various embodiments. Alternatively, the
various embodiments may be performed by a combination of
hardware and software.

Various embodiments of the invention may be provided as
a computer program product, which may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer (or other electronic
devices) to perform a process according to various embodi-
ments of the invention. The machine-readable medium may
include, but 1s not limited to, floppy diskette, optical disk,
compact disk-read-only memory (CD-ROM), magneto-opti-
cal disk, read-only memory (ROM) random access memory
(RAM), cerasable programmable read-only memory
(EPROM), eclectrically erasable programmable read-only
memory (EEPROM), magnetic or optical card, flash memory,
or another type of media/machine-readable medium suitable
for storing electronic 1nstructions. Moreover, various
embodiments of the invention may also be downloaded as a
computer program product, wherein the program may be
transierred from a remote computer to a requesting computer
via a commumnication link (e.g., a modem or network connec-
tion).

Similarly, 1t should be appreciated that in the foregoing
description, various features of the invention are sometimes
grouped together 1n a single embodiment, figure, or descrip-
tion thereof for the purpose of streamlining the disclosure
aiding 1n the understanding of one or more of the various
inventive aspects. This method of disclosure, however, 1s not
to be mterpreted as reflecting an intention that the claimed
invention requires more features than are expressly recited 1in
cach claim. Rather, as the following claims reflect, inventive
aspects lie 1n less than all features of a single foregoing
disclosed embodiment. Thus, the claims following the
detailed description are hereby expressly incorporated into
this detailed description, with each claim standing on 1ts own
as a separate embodiment of this invention.

Whereas many alterations and modifications of the iven-
tion will no doubt become apparent to a person of ordinary
skill 1n the art after having read the foregoing description, 1t 1s
to be understood that any particular embodiment shown and
described by way of illustration 1s 1n no way intended to be
considered limiting. Therelfore, references to details of vari-
ous embodiments are not intended to limit the scope of the
claims, which i1n themselves recite only those features
regarded as the mvention.

What 1s claimed 1s:

1. A method for statement shifting to increase parallelism
of loops for compiler optimization, comprising;:

constructing a data dependence graph (DDG) to represent

dependences between statements 1n a loop;
constructing a basic equations group from the DDG;
constructing a dependence equations group derived 1n part
from the basic equations group by:
generating a spanning tree for each maximal undirected
connected sub-graph (MUCS) 1n the DDG;
identifying one or more basic undirected circles for each
dependence of the DDG that 1s in the MUCS and not
in the spanning tree, wherein all other dependences in
cach basic undirected circle are 1n the spanning tree;
and
creating a dependence equation for the dependence
equations group from each of the one or more basic
undirected circles; and
determining a shifting vector for the loop from the depen-
dence equations group, wherein the shifting vector to
represent an oifset to apply to each statement 1n the loop
for statement shifting.
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2. The method of claim 1, further comprising applying the
shifting vector to the loop to create a statement shifted loop
with parallelization constraints removed.

3. The method of claim 1, wherein a MUCS 1s a sub-graph
of the DDG having the properties of being undirected and
connected, and to which no node in the DDG 1s added without
violating the undirected and connected properties.

4. The method of claim 1, wherein a basic equation of the
basic equations group 1s expressed as distance a[D]=ollset
|S~|-ollset] S ]+distance_b[D], wheremn D 1s a dependence
edge between the statements 1n the loop, distance_a 1s an
array ol distance vectors of the dependences after the state-
ment shifting, distance b 1s an array of distance vectors of the
dependences before the statement shifting, S,.and S . are start
and end nodes of the dependence edge D, and offset 1s an
array representing the shifting vector during the statement
shifting.

5. The method of claim 4, wherein a dependence equation
of the dependence equations group 1s expressed as .,
mdistance_a[D,]*a =B, wherein a, 1s an integer coellicient, m
1s a number of the statements 1n the loop, and B 1s a vector of
integer vectors.

6. The method of claim 2, wherein a loop transformation
technique 1s applied to the statement shifted loop to increase
parallelization chances for the loop.

7. The method of claim 6, wherein the loop transformation
technique includes at least one of a unimodular transforma-
tion and a greatest common divisor (GCD) transformation.

8. A machine-accessible medium for statement shifting to
increase parallelism of loops for compiler optimization, the
machine-accessible medium having stored thereon data rep-
resenting sets of instructions that, when executed by a
machine, cause the machine to perform operations compris-
ng:

constructing a data dependence graph (DDG) to represent

dependences between statements 1n a loop;
constructing a basic equations group from the DDG;
constructing a dependence equations group derived 1n part
from the basic equations group by:

generating a spanning tree for each maximal undirected
connected sub-graph (MUCS) 1n the DDG;

identifying one or more basic undirected circles for each
dependence of the DDG that 1s in the MUCS and not
in the spanming tree, wherein all other dependences 1n
cach basic undirected circle are 1n the spanming tree;
and
creating a dependence equation for the dependence equa-
tions group ifrom each of the one or more basic undi-
rected circles; and
determining a shifting vector for the loop from the depen-
dence equations group, wherein the shifting vector to
represent an oifset to apply to each statement 1n the loop
for statement shifting.
9. The machine-accessible medium of claim 8, further

comprising applying the shifting vector to the loop to create a
statement shifted loop with parallelization constraints

removed.
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10. The machine-accessible medium of claim 9, wherein a
loop transformation technique 1s applied to the statement
shifted loop to 1ncrease parallelization chances for the loop.

11. The machine-accessible medium of claim 10, wherein
the loop transformation technique includes at least one of a
umimodular transformation and a greatest common divisor
(GCD) transformation.

12. The machine-accessible medium of claim 8, wherein a
basic equation of the basic equations group 1s expressed as
distance_a|D]=ollset[S | -olfset]S ]+distance_b[D],
wherein D 1s a dependence edge between the statements 1n the
loop, distance_a 1s an array of distance vectors of the depen-
dences after the statement shifting, distance b 1s an array of
distance vectors of the dependences before the statement
shifting, S~ and S are start and end nodes of the dependence
edge D, and offset 1s an array representing the shifting vector
during the statement shifting.

13. The machine-accessible medium of claim 12 wherein a
dependence equation of the dependence equations group 1s
expressed as 2._, distance_a[D,]*a,=B, wherein a, 1s an
integer coellicient, m 1s a number of the statements in the
loop, and B 1s a vector of integer vectors.

14. A system for statement shifting to increase parallelism
of loops for compiler optimization, comprising;:

a processor coupled with memory;

the memory including instructions to implement a com-

piler, the compiler to:

construct a data dependence graph (DDG) to represent

dependences between statements 1n a loop;

construct a basic equations group from the DDG;

construct a dependence equations group derived in part

from the basic equations group by the compiler further

to:

generate a spanning tree for each maximal undirected
connected sub-graph (MUCS) 1n the DDG;

identily one or more basic undirected circles for each
dependence of the DDG that 1s in the MUCS and not
in the spanning tree, wherein all other dependences 1n
cach basic undirected circle are 1n the spanning tree;
and

create a dependence equation for the dependence equa-
tions group from each of the one or more basic undi-
rected circles; and

determine a shifting vector for the loop from the depen-

dence equations group, the shifting vector to shift the
statements 1n the loop 1n order to remove parallelization
constraints of the loop.

15. The system of claim 14, wherein the shifting vector to
represent an offset to apply to each statement 1n the loop for
statement shifting.

16. The system of claim 15, wherein a loop transformation
technique may be applied to the loop after statement shifting
to increase parallelization chances for the loop.

17. The system of claim 16, wherein the loop transforma-
tion technique includes at least one of a unimodular transior-
mation and a greatest common divisor (GCD) transformation.
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