12 United States Patent
Malaviya

US007770056B2

US 7,770,056 B2
Aug. 3, 2010

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR DYNAMIC
PAGE CLASSIFICATION FOR MEMORY

DUMPING

(75) Inventor: Ajit Malaviya, Bangalore Karnataka

(IN)

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 400 days.

(21) Appl. No.: 11/873,713

(22) Filed: Oct. 17, 2007
(65) Prior Publication Data
US 2008/0098209 Al Apr. 24, 2008
(30) Foreign Application Priority Data
Oct. 18,2006 (IN) .o, 1919/CHE/2006
(51) Int.CL
GO6l’ 11/00 (2006.01)
(52) US.CL . 714/5; 714/15
(58) Field of Classification Search 714/43,

714/15, 5, 13, 54; 713/2; 711/161, 162
See application file for complete search history.

~

(56) References Cited
U.S. PATENT DOCUMENTS

4,458,307 A * 7/1984 McAnlisetal. 714/22
5,293,612 A * 3/1994 Shingalccceeee.e.e. 711/159
7,290,175 B1* 10/2007 Kessleretal. 714/37
7,509,521 B2* 3/2009 Iwakuraetal. 714/5
2003/0009640 Al* 1/2003 Armllietal. 711/147

* cited by examiner

Primary Examiner—Dieu-Minh Le

(57) ABSTRACT

A techmique for creating memory page classification that
improves memory dumping eificiency. In one example
embodiment, this 1s accomplished by creating DPCs that
substantially maps to operational hierarchy of kernel that
includes modules/sub-systems that can allocate and manage
the kernel. One or more DPCs associated with the kernel’s
modules/sub-systems that needs to dumped 1s then deter-
mined upon recerving a computer system panic condition.
The memory pages associated with the one or more DPCs are

then dumped to an external memory based on the determina-
tion.

20 Claims, 4 Drawing Sheets

110

100 CREATE DPCa IN A KERNEL UPON BOOT-UP

120
MONITOR THE COMPUTER SYSTEM FOR PANIC CONDITION F

IS PANIC CONDITION
DETECTED BY ANY ONE OF THE
DDLU ES/SUB-SYSTEMS?

130

RECEIVE THE PANIC CODE GENERATED BY AMODULE’SUB- |~
SYSTEM UPON DETECTING THE PANIC CONDITION

CREATE A LIST OF DPCs ALONG WITH ASSOCIATED CALLBACKS |~ 190
THAT NEEDS TO BE DUMPED

180

FORM A LIST OF DPGs THAT NEED TO BE DUMPED BASED ON
THE RECENED DPC LPDATES

190

DUMP MEMORY PAGES ASSOCIATED WITH THE FORMED LIST OF
DPCs TO AN EXTERNAL MEMORYDEVICE

U.S. Patent Aug. 3, 2010 Sheet 1 of 4 US 7,770,056 B2

100 ‘ CREATE DPCs IN A KERNEL UPON BOOT-UP I/

l

| MONITOR THE COMPUTER SYSTEM FOR PANIC CONDITION

120

130

IS PANIC CONDITION
DETECTED BY ANY ONE OF THE
MODULES/SUB-SYSTEMS?

140

RECEIVE THE PANIC CODE GENERATED BY A MODULE/SUB- |~
SYSTEM UPON DETECTING THE PANIC CONDITION

CREATE A LIST OF DPCs ALONG WITH ASSQCIATED CALLBACKS \/‘ 150
THAT NEEDS TO BE DUMPED

160

RECEIVE DPC UPDATES FROM ALL THE CALLBACKS.

170

ARE UPDATES RECEIVEL
FROM ALL THE ASSOCIATED
CALLBACKS?

NO

YES

180

FORM A LIST OF DPCs THAT NEED TO BE DUMPED BASED ON
THE RECEIVED DPGC UPDATES

190

DUMP MEMORY PAGES ASSOCIATED WITH THE FORMED LIST OF
DPCs TO AN EXTERNAL MEMORY/DEVICE

FIG. 1

U.S. Patent Aug. 3, 2010 Sheet 2 of 4 US 7,770,056 B2

200

210
SEND A REQUEST TO CREATE A NEW DPC

220

INITIALIZE NECESSARY DATA STRUCTURES AND
ASSOCIATED HIERARCHY FOR THE NEW DPC

230

FORM A UNIQUE HANDLE ASSOCIATED WITH THE
NEW DPC

240

SEND THE FORMED UNIQUE HANDLE TO THE ONE
OF KERNEL MODULES/SUBSYSTEMS

FIG. 2

U.S. Patent

300

l

Subsystem-1

DPC11| DPC12]DPC04

320

Aug. 3,2010

Sheet 3 of 4

Kernel Toplevel

DPC01|DPC02|DPCO03| 310

Subsystem-2

DPC21|DPC22| DPC23

320

Module-12

DPC
121

DPC

ool [

Module-13

DPC | DPC

132 | 133

Module-121

1211 loa1 10412

FIG. 3

I—

US 7,770,056 B2

Subsystem-3

DPC32| DPC33

Module-31

DPC | DPC | DPC
311 | 312 | 313

Module-311

DPC | DPC | DPC
311131123113

U.S. Patent

400

416

USER INPUT
DEVICE

OUTPUT
DEVICE

418

420

Aug. 3, 2010 Sheet 4 of 4

US 7,770,056 B2

410

402

404

VOLATILE
MEMORY
406

408

NON-VOLATILE
MEMORY
PROCESSING 495
UNIT
405 | NETWORK REMOVABLE
INTERFACE STORAGE
401
412

FIG. 4

STORAGE

NON-REMOVABLE

414

US 7,770,056 B2

1

SYSTEM AND METHOD FOR DYNAMIC
PAGE CLASSIFICATION FOR MEMORY
DUMPING

RELATED APPLICATIONS

The present application 1s based on, and claims priority

from, Indian Application Number 1919/CHE/2006, filed Oct.
18, 2006, the disclosure of which 1s hereby incorporated by

reference herein in its entirety.

BACKGROUND OF THE INVENTION

Operating systems typically are configured to perform
memory dumps upon the occurrence of system crashes and
serious failures involving hung user processes and services. A
memory dump comprises copying the contents of main
memory to an external storage, for example, in the form of a
file stored on a hard disk or other secondary storage medium.
In the case of a system crash, a memory dump typically must
be followed by a reboot of the system. Currently, full memory
dumps are indispensable resources for the analysis and cor-
rection of problems related to crashes and for development of
reliable systems.

Writing data from main memory to a hard disk 1s a rela-
tively slow operation. In the case of a full memory dump, the
system must scan the entire contents of memory and write
contents to the external storage. Thus, the principal drawback
to generating a full memory dump 1s the length of “down
time” 1t entails for the system, during which the system 1s
elfectively unusable for other purposes. This downtime 1s a
function of the onboard memory size and, where a system
reboot 1s required, the speed of the boot storage device. Writ-
ing 256 gigabytes of memory to disk, for example, can take
more than an hour to complete. For a computer system with
terabytes range of memory, generating a full memory dump
can take several hours.

In some systems, each of the physical memory pages 1s
assigned to one of several specific page classes. For example,
a physical memory page that contains the kernel code can
belong to a specific page class. By dividing the physical
memory i the computer system into different page classes, it
becomes possible to only dump those parts of the memory
that are most useful for debugging a problem. However, this
solution still requires dumping all the memory pages of a
selected class, which can still be a very time consuming task.
Furthermore, 1n systems with very large memory, there 1s a
good chance that each page class becomes larger over time,
thereby increasing the time needed to dump even a few page
classes

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way ol example only, with reference to the accompanying
drawings in which:

FIG. 1 1s a flowchart illustrating a method for dynamic
memory page classification according to an embodiment of
the present subject matter.

FIG. 2 1s a flowchart 1llustrating a method for creating a
new dynamic page class (DPC) according to an embodiment
of the present subject matter.

FIG. 3 1s a block diagram that shows kernel module/sub-
system and 1ts associated DPC hierarchy according to an
embodiment of the present subject matter.

FIG. 4 1s a block diagram of a typical computer system
used for implementing embodiments of the present subject
matter shown 1 FIGS. 1-3.

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the wvarious
embodiments of the invention, reference 1s made to the
accompanying drawings that form a part hereof, and in which
are shown by way of 1illustration specific embodiments 1n
which the invention may be practiced. These embodiments
are described 1n sufficient detail to enable those skilled in the
art to practice the mvention, and 1t 1s to be understood that
other embodiments may be utilized and that changes may be
made without departing from the scope of the present inven-
tion. The following detailed description is, therefore, not to be
taken 1n a limiting sense, and the scope of the present inven-
tion 1s defined only by the appended claims.

The term “computer system panic” refers to a condition,
found by a sub-system in the kernel, at which the computer
system cannot make progress in any reliable manner. This can
be due to data structure corruption, lack of suificient
resources to process a request, an invalid/unexpected request,
and so on.

As will be explained 1n more detail in what follows, the
present technique allows dynamic creation of page classes.
The term “DPC (Dynamic Page Class)” refers to a page class
that 1s dynamically created by a sub-system. It can be a top
level page class or a sub-class of an existing or new class. In
addition, the terms “module”, “sub-system”, “module/sub-
system”, and “kernel module/sub-system™ are used inter-
changeably throughout the document. Also, the term “page
classification” refers to a mechanism by which a physical
memory page 1s assigned to a page class. This can include
changing the page class association with a memory page.

The present technique creates DPCs and uses them to
improve the memory dump efficiency. In one example
embodiment, the present technique uses the operational hier-
archical nature of the kernel architecture to create the DPCs to
improve memory dump efliciency during a computer system
panic condition.

FIG. 1 1llustrates an example method 100 for dynamic page
classification to improve memory dump efficiency. At step
110, this example method 100 begins by creating DPCs by a
subsystem in the kernel upon boot-up. In some embodiments,
the some page classes may be created by the dump sub-
system 1n the kernel upon the computer system boot-up such
that they substantially map to the operational hierarchy of the
kernel. In these embodiments, the page classes substantially
reflect logical and/or physical relationship of kernel modules/
sub-systems. The dump sub-system i1s a sub-system that
resides 1n the kernel that exports the page classification
mechanism to the rest of the computer system as will be
described below. In these embodiments, during operation
and/or upon boot-up, the dump sub-system can dynamically
create DPCs based on requests received from other kernel
sub-systems.

For example, a typical operating system can include sub-
systems 1n the kernel, such as file system, virtual memory,
butiler cache and so on. The file system can be further divided
into smaller modules, such as virtual file system layer, butfer
cache, HFS (hierarchical file system), NFS (network file sys-
tem) and so on. The virtual memory system 1n the operating
system can be sub-divided into lower level services, such as
translation management, memory allocation, physical page
management, swap management and so on. Similarly, the
builer cache 1n the operating system can be divided into
sub-layers, such as interface module, memory allocation
module, Input/Output (I/O) layer and so on. In some embodi-
ments, the DPCs are predefined to follow such kernel hierar-
chy to improve memory dump etficiency.

US 7,770,056 B2

3

FIG. 3 shows a typical operational hierarchy of a well-
defined kernel 300 1n an operating system. As shown 1n FIG.
3, the kernel 300 has a top level system 310 and associated
modules/sub-systems 320. It can be seen 1n FIG. 3 that the
kernel 300 1s organized 1n a hierarchical manner. Each level in
the kernel hierarchy can have 1ts own associated data and they
are shown as DPCs. The DPC number included with each
DPC 1s shown 1 FIG. 3 for illustrative purposes only. It can
be seen 1 FIG. 3 that the data hierarchy follows the kernel
module hierarchy. However, for practical reasons each mod-
ule can request creation of its own top level DPC and its
associated hierarchy. For example, 1t can be seen 1n FIG. 3
that the top level DPC (DPC 04) and its associated hierarchy
with the lower level DPCs (DPC 041 DPC 042, and DPC 141,
and DPC 142) are shown 1n boxes surrounded outside by a
dark contrast color to 1llustrate the formation of a hierarchy
starting from the top level and ending in a tree structure with
its associated lower level DPCs.

As shown 1n FIG. 3, the kernel organization 1s hierarchical
in nature. Typically, interfaces between top level system and
sub-systems are invariant, to avoid changes to one sub-system
leading to further modifications being required to others.
Each module/sub-system 1n the kernel allocates and manages
its own private data structures. For example, memory alloca-
tion module associated with the butfer cache may allocate and
free data structures 1t uses to track its own 1nternal state. Such
allocation/de-allocation of the data structures are generally
performed by the associated module/sub-system. Other mod-
ules/sub-systems 1n the kernel may refer to these data struc-
tures and not allocate/de-allocate based on their association.
Such an operational hierarchy facilitates each of the modules/
sub-systems monitoring 1ts own health. The term “health”
here refers to consistency of data structures.

Each module/sub-system may contain multiple types of
data structures, and each data structure may have the same or
a separate DPC. For example, the system page table 1s gen-
crally managed by virtual memory sub-systems and virtual
mapping modules. Any new entry 1n the module/sub-system
1s generally created by the virtual mapping module. Other
modules/sub-system may request a new entry or want to
examine the contents of an entry, but the creation of the new
entry 1s performed by the mterfaces provided by the virtual
mapping module.

As described-above, the present technique allows each
sub-system to create and define 1ts own DPC. This can be a
top-level page class or a sub-class of an existing or new class.
The dump sub-system 1s another sub-system that resides 1n
the kernel that exports the page classification mechanism to
the rest of the computer system.

At step 120, the computer system health condition 1s moni-
tored by each one of the kernel modules/sub-systems during,
operation of the computer system. Generally, the computer
system panic condition 1s called by one of the modules/sub-
systems when they find 1t difficult to continue operation 1n a
reliable manner. This can be due to data structure corruption,
lack of suilicient resources to process a request, or an invalid/
unexpected request and the like. In some embodiments, each
sub-system, upon detecting a computer system panic condi-
tion, generates and sends 1ts own panic code to the dump
sub-system. The panic code may include an i1dentifier that
carries 1nformation associated with the computer system
panic condition. Such an identifier can include enough con-
textual information associated with the panic condition to
facilitate each sub-system to assess whether or not a certain
DPC needs to be dumped. In some embodiments, during
normal operation, each of the sub-systems 1n the kernel keeps
track of their own health via internal momitoring mechanisms.

10

15

20

25

30

35

40

45

50

55

60

65

4

Such health data 1s typically kept in each associated sub-
system so that 1t 1s accessible to the dump sub-system during
a computer system dump initiation.

At step 130, the method 100 determines whether any one of
the modules/sub-systems has detected a computer system
panic condition. The method 100 goes to step 120 1t the
computer system panic condition 1s not detected by any of the
modules/sub-systems.

The method 100 goes to step 140 1f one or more of the
modules/sub-systems have detected the computer system
panic condition. At step 140, the dump sub-system receives
the panic code generated by one or more of the modules/sub-
systems of the operating system upon detecting a computer
system panic condition during operation. In some embodi-
ments, the generated panic code 1s sent as an argument. In
these embodiments, each sub-system 1n the kernel calls a
panic condition using statically configured or dynamically
configured panic code.

At step 150, a list 1s then created including DPCs that need
to be dumped along with a set of associated callbacks. The
term “callback™ refers to a function handle provided by the
sub-system creating a DPC to the dump sub-system. For each
DPC, the sub-system creating 1t provides the function handle
through which the dump sub-system can invoke 1ts associated
services. The dump sub-system calls each of these callbacks
in step 160, speciiying the associated DPC and the panic code
received from the panicking sub-system. The callback pro-
vides a mechanism for the creating subsystem to check the
health data of the associated sub-system and to decide
whether or not a DPC needs to be dumped. This decision 1s
then communicated to the dump sub-system by the callback.

At step 160, DPC updates are recerved form the callbacks
via the associated modules/sub-systems. The received DPC
updates are then used to update the list of DPCs created by the
dump sub-system. The updated list of DPCs can result in one
or more DPCs from being removed or added from the to-be-
dumped list of DPCs.

At step 170, the method 100 determines whether the DPC
updates have been recerved from all the associated callbacks.
Themethod 100 goes to step 160, 1f the DPC updates have not
been recerved from all the associated callbacks based on the
determination at step 170. The method 100 goes to step 180 11
the DPC updates have been received from all the associated
callbacks based on the determination at step 170.

For a top-level DPC, a callback function 1s provided to
invoke during dump time to determine when the DPCs need to
be dumped. The lower-level DPCs can default to the associ-
ated top-level DPCs callback or can be assigned to a new one.

Thus, 1n some embodiments, each sub-system 1n the com-
puter system, having an allocated DPC, monitors 1ts own
health and keeps track of any changes made to them. This can
facilitate during a computer system panic condition in decid-
ing whether or not a DPC needs to be dumped. The kernel
along with each of the sub-systems passes the control to the
dump sub-system upon completing the processing of the
DPCs upon detecting a computer system panic condition.

The kernel can also have statically defined page classes that
are created without being requested by a sub-system. These
statically defined page classes may or may not have callbacks
associated with them. In some embodiments, 11 there are any
static page classes that are configured 1n the computer system,
the dump sub-system may provide the operator with a facility
to control the DPCs that can be dumped, 1.e., to mark the
DPCs as must, may, or not be dumped. In these embodiments,
il any of the DPCs are marked as must-be-dumped, then all
the associated sub-classes are also marked as must-be-
dumped by default. If the DPCs are marked as not-to-be-

US 7,770,056 B2

S

dumped, then they are removed from the dump list. For the
remaining DPCs that are marked as may-be-dumped, the
registered callbacks are invoked, specitying the DPC and the
panic 1dentifier arguments. In these embodiments, depending
on the implementation, a callback may handle multiple reg-
1stered DPCs or may handle only the one that 1s specified to be

handled. All the registered callbacks provide information that
identifies the associated DPCs. In some embodiments, a link-
age may be defined between two DPCs that are not directly
connected through the DPC hierarchy. This linkage serves to
allow multiple callbacks to participate in making a decision as
to whether or not a DPC needs to be dumped. In these embodi-
ments, 11 linkages are defined, then it may lead to more than
one callback being called for a DPC. In such a scenario, the
decision to dump the DPCs can be a logical based operation.

In some embodiments, the sub-system, to which the call-
back points, verifies the consistency of the sub-system with
respect to the DPC. In these embodiments, the callback may
use the panic identifier, if relevant, and make a decision as to
whether or not a DPC needs to be dumped. The decision
to-dump or not-to-dump a DPC 1s returned to the dump sub-
system. The dump sub-system, upon recerving the informa-
tion related to each DPC as to whether to-dump or not-to-
dump the DPC, proceeds with writing to the external memory,
disk and/or device and subsequent re-imtialization of the
system during boot-up of the computer system.

At step 180, a list of DPCs that need to be dumped 1s
tormed 11 DPC updates have been recetved from all the asso-
ciated callbacks based on the recerved DPC update. In some
embodiments, the formed list of DPCs takes mto account any
pre-configured mandatory DPCs as described above. In some
embodiments, the dump sub-system collects and collates the
information received from each sub-system for a specified
DPC or all its associated/linked DPCs and then builds the
final list of DPCs that need to be dumped. In some embodi-
ments, when memory pages residing in the kernel are dumped
upon detecting a computer system panic condition the con-
tents of the data structures are written to an external memory.
Using the above-described techmiques, the dump of memory
pages consists of the private data structures allocated by the
various sub-systems in the kernel. This 1s due to a substantial
reflection in operational hierarchy of the kernel 1n the data
structures. This allows the data structures to be assigned at
cach point 1n the hierarchy to different DPCs. Such a segmen-
tation of the data structures allows the number of memory
pages that need to be dumped to be narrowed down to only
those memory pages in the kernel that are affected by the
crash.

Generally, the panic code 1s sent by an affected sub-system
in the kernel and 1t 1s safe to assume that the affected memory
pages reside 1n the associated DPCs and data structures. Fur-
ther, the DPCs are generally at a very coarse classification
level, and so making a decision to-dump or not-to-dump does
not require extensive computation. As described-above, 1t can
be envisioned that some DPCs may be used by more than one
sub-system 1n the kernel. Such DPCs may have to be dumped
if the computer system panic condition 1s detected and called
by any one of the sub-systems using them. The linking of
these DPCs based on usage helps specily the virtual depen-
dency across the kernel hierarchy. In these embodiments, the
callback related to more than one sub-system may need to be
called to decide whether or not a DPC needs to be dumped
upon detecting a computer system panic condition.

At step 190, the memory pages associated with the formed
list of DPCs are then dumped by the dump sub-system to an
external memory/device. In some embodiments, the com-

10

15

20

25

30

35

40

45

50

55

60

65

6

puter system reboots upon dumping the memory pages asso-
ciated with the one or more DPCs to the external memory/
device.

The above described techmique via the DPC sub-division
process can significantly reduce the number of physical
memory pages that may be required to be dumped. The above
technique provides a fine grained approach 1n terms of select-
ing the page classes to be dumped than what 1s available
through static page classification techmique. As the DPC
structure can be made to map to the kernel hierarchy, a low
level DPC belongs entirely to the sub-system that creates 1t
and 1ts consistency 1s affected and determined only by the
code belonging to that sub-system. This mechanism provides
an 1solation approach at the DPC level. As a result, DPCs can
be created and managed within a subsystem without affecting
the rest of the sub-systems 1n the kernel. It can be envisioned
that the page classification can grow as the system physical
memory grows with usage and/or time. This facilitates in
providing a mechanism by which the actual memory content
to be dumped can be limited to only the affected areas of the
memory, and makes 1t possible to limit the memory content to
a reasonable or manageable size.

FIG. 2 illustrates an example method 200 for creating a
new DPC. At step 210, this example method 200 begins by
sending arequest to create anew DPC. In some embodiments,
anew memory page 1s assigned to one of the DPCs by the one
of kernel modules/sub-systems upon allocation of a new
memory page. In these embodiments, one of the sub-systems
in the kernel can request forming a new DPC based on its own
internal criteria. Also 1in these embodiments, whenever a new
memory page 1s allocated 1t 1s assigned to one of the existing
DPCs by the sub-system. At step 220, necessary data struc-
tures and associated hierarchy are initialized for the new
DPC. In these embodiments, the dump sub-system updates
internal data structures to assign or remove the new memory
page to the one or more DPCs.

In some embodiments, a request to create a new DPC 1s
sent to the dump sub-system by one of the modules/sub-
systems based on pre-determined criteria. In these embodi-
ments, necessary data structures and associated hierarchy for
the newly created DPC are 1nitialized. A unique handle asso-
ciated with the newly created DPC 1s then formed. The
formed unique handle 1s then sent to the associated one of the
modules/sub-systems. The new DPC 1s then created by the
dump sub-system upon recerving the request from the one of
the kernel modules/sub-systems. In some embodiments, the
dump sub-system provides an interface so that any one of the
sub-systems can request a DPC.

At step 230, a umique handle associated with the new DPC
1s formed. At step 240, the formed unique handle 1s then sent
to the associated one of the kernel modules/sub-systems. In
some embodiments, the dump sub-system then creates the
new DPC, mitializes data structures and hierarchy, and
returns the unique handle to the associated DPC and sub-
system. The associated sub-system then stores the unique
handle for later use during dumping of the DPCs upon detect-
ing a computer system panic condition.

In some embodiments, the dump sub-system creates
appropriate internal structures to manage the newly created
DPCs. A unique reference, 1.¢., a DPC handle, 1s returned to
the calling sub-system for using in subsequent operations. In
some embodiments, an additional link 1s created to associate
a lower level DPC with another upper level DPC. The calling
sub-system can then use the DPC handle to classily any of the
memory pages it owns/controls. This classification can be
registered with the dump sub-system through interfaces pro-
vided for an intended purpose. In these embodiments, the

US 7,770,056 B2

7

memory pages can be reclassified at any time without restric-
tion. Further in these embodiments, the dump sub-system
may not check beyond verifying the validity of the DPC. Also
in these embodiments, the dump sub-system stores only the
last classification of a memory page.

Although the flowcharts 100 and 200 includes steps 110-
190 and 210-240, respectively, that are arranged serially 1n
the exemplary embodiments, other embodiments of the sub-
ject matter may execute two or more steps 1n parallel, using
multiple processors or a single processor orgamzed as two or
more virtual machines or sub-processors. Moreover, still
other embodiments may implement the steps as two or more
specific interconnected hardware modules with related con-
trol and data signals communicated between and through the
modules, or as portions of an application-specific integrated
circuit. Thus, the exemplary process tlow diagrams are appli-
cable to software, firmware, and/or hardware 1mplementa-
tions.

Although the embodiments of the present mvention are
described 1n the context of non-distributed environment they
can be very much implemented in the distributed environ-
ment as well.

Various embodiments of the present subject matter can be
implemented 1n software, which may be run 1n the computing
system environment 400 shown in FIG. 4 (to be described
below) or 1n any other suitable computing environment. The
embodiments of the present subject matter are operable 1n a
number of general-purpose or special-purpose computing
environments. Some computing environments include per-
sonal computers, general-purpose computers, server comput-
ers, hand-held devices (including, but not limited to, tele-
phones and personal digital assistants (PDAs) of all types),
laptop devices, multi-processors, microprocessors, set-top
boxes, programmable consumer electronics, network com-
puters, mimicomputers, mainirame computers, distributed
computing environments and the like to execute code stored
on a computer-readable medium. The embodiments of the
present subject matter may be implemented 1n part or in
whole as machine-executable 1nstructions, such as program
modules that are executed by a computer. Generally, program
modules include routines, programs, objects, components,
data structures, and the like to perform particular tasks or to
implement particular abstract data types. In a distributed
computing environment, program modules may be located 1n
local or remote storage devices.

FIG. 4 shows an example of a suitable computing system
environment 400 for mmplementing embodiments of the
present subject matter. FIG. 4 and the following discussion
are 1ntended to provide a brief, general description of a suit-
able computing environment 1n which certain embodiments
of the mventive concepts contained herein may be imple-
mented.

A general computing device, 1n the form of a computer
410, may include a processor 402, memory 404, removable
storage 401, and non-removable storage 414. Computer 410
additionally includes a bus 4035 and a network interface 412.

Computer 410 may include or have access to a computing,
environment that includes one or more user input devices 416,
one or more output devices 418, and one or more communi-
cation connections 420 such as a network interface card or a
USB connection. The one or more output devices 418 can be
a display device of computer, computer monitor, TV screen,
plasma display, LCD display, display on a digitizer, display
on an e¢lectronic tablet, and the like. The computer 410 may
operate 1 a networked environment using the communica-
tion connection 420 to connect to one or more remote com-
puters. A remote computer may include a personal computer,

10

15

20

25

30

35

40

45

50

55

60

65

8

server, router, network PC, a peer device or other network
node, and/or the like. The communication connection may

include a Local Area Network (LAN), a Wide Area Network
(WAN), and/or other networks.

The memory 404 may include volatile memory 406 and
non-volatile memory 408. A variety of computer-readable
media may be stored 1 and accessed from the memory ele-
ments of computer 410, such as volatile memory 406 and
non-volatile memory 408, removable storage 401 and non-
removable storage 414. Computer memory elements can
include any suitable memory device(s) for storing data and
machine-readable instructions, such as read only memory
(ROM), random access memory (RAM), erasable program-
mable read only memory (EPROM), electrically erasable
programmable read only memory (EEPROM), hard drive,
removable media drive for handling compact disks (CDs),
digital video disks (DVDs), diskettes, magnetic tape car-
tridges, memory cards, Memory Sticks™ and the like; chemi-
cal storage; biological storage; and other types of data stor-
age.

“Processor” or “processing unit,” as used herein, means
any type of computational circuit, such as, but not limited to,
a microprocessor, a microcontroller, a complex imstruction set
computing (CISC) microprocessor, a reduced instruction set
computing (RISC) microprocessor, a very long instruction
word (VLIW) microprocessor, explicitly parallel instruction
computing (EPIC) microprocessor, a graphics processor, a
digital signal processor, or any other type of processor or
processing circuit. The term also includes embedded control-
lers, such as generic or programmable logic devices or arrays,
application specific itegrated circuits, single-chip comput-
ers, smart cards, and the like.

Embodiments of the present subject matter may be imple-
mented 1 conjunction with program modules, including
functions, procedures, data structures, application programs,
etc., for performing tasks, or defiming abstract data types or
low-level hardware contexts.

Machine-readable 1nstructions stored on any of the above-
mentioned storage media are executable by the processing
unit 402 of the computer 410. For example, a program module
425 may include machine-readable mstructions capable of
creating memory page classifications that can improve
memory dumping eificiency according to the teachings and
herein described embodiments of the present subject matter.
In one embodiment, the program module 425 may be
included on a CD-ROM and loaded from the CD-ROM to a
hard drive 1n non-volatile memory 408. The machine-read-
able instructions cause the computer 410 to encode according
to the various embodiments of the present subject matter.

The operation of the computer system 400 for recompiling
executable code to improve performance 1s explained in more
detail with reference to FIG. 1.

The above-described technique allows each module/sub-
system 1n the kernel to create 1ts own DPC. The created DPCs
can be associated with a top level class or a sub-class of an
existing or new class. There 1s no limit to the hierarchy of
DPCs. The above process supports a multi-level hierarchy of
DPCs. The above process provides a much finer grained defi-
nition of memory page classification without the overhead of
rebuilding or redesigning the OS every time a page class 1s
added. As memory size increases and/or sub-systems are able
to assess their health, the above process adapts itself by
dynamically increasing the number of levels. The hierarchy
of the DPCs substantially map the logical or physical rela-
tionship between sub-systems so that grouping of DPCs and
sharing of callbacks to improve etficiency of the dump pro-
Cess.

US 7,770,056 B2

9

The above technique can be implemented using an appa-
ratus controlled by a processor where the processor 1s pro-
vided with instructions 1n the form of a computer program
constituting an aspect of the above technique. Such a com-
puter program may be stored in storage medium as computer
readable instructions so that the storage medium constitutes a
turther aspect of the present subject matter.

The above description 1s intended to be 1llustrative, and not
restrictive. Many other embodiments will be apparent to those
skilled in the art. The scope of the subject matter should
therefore be determined by the appended claims, along with
the full scope of equivalents to which such claims are entitled.

As shown herein, the present subject matter can be 1imple-
mented 1n a number of different embodiments, mncluding
various methods, a circuit, an I/O device, a system, and an
article comprising a machine-accessible medium having
associated instructions.

Other embodiments will be readily apparent to those of
ordinary skill in the art. The elements, algorithms, and
sequence of operations can all be varied to suit particular
requirements. The operations described-above with respect to
the method 1llustrated in FIG. 1 can be performed 1n a differ-
ent order from those shown and described herein.

FIGS. 1-4 are merely representational and are not drawn to
scale. Certain proportions thereol may be exaggerated, while
others may be minimized. FIGS. 1-4 illustrate various
embodiments of the subject matter that can be understood and
approprately carried out by those of ordinary skill 1n the art.

In the foregoing detailed description of the embodiments
of the invention, various features are grouped together 1n a
single embodiment for the purpose of streamlining the dis-
closure. This method of disclosure 1s not to be interpreted as
reflecting an 1ntention that the claamed embodiments of the
invention require more features than are expressly recited 1n
cach claim. Rather, as the following claims reflect, inventive
invention lies in less than all features of a single disclosed
embodiment. Thus, the following claims are hereby 1ncorpo-
rated into the detailed description of the embodiments of the
invention, with each claim standing on 1ts own as a separate
preferred embodiment.

The mvention claimed 1s:
1. A method for creating dynamic page classification, com-
prising:
creating DPCs 1n a kernel by a sub-system upon computer
system boot-up, wherein the kernel includes modules/
sub-systems that allocate and manage the kernel;

determining whether one or more DPCs need to be dumped
upon receiving a panic code generated by one of the
modules/sub-systems during operation of the computer
system, wherein the one or more DPCs to be dumped are
determined based on association of the one or more
DPCs with the recerved panic code; and

dumping memory pages associated with the one or more
DPCs to an external memory by the sub-system based on
the determination.

2. The method of claim 1, wherein, the sub-system com-
prises a dump sub-system.

3. The method of claim 2, wherein determining whether the
one or more DPCs that need to be dumped upon receiving the
panic code, comprises:

receiving the panic code generated by one of the modules/

sub-systems upon detecting the panic condition during,
system operation by the dump sub-system:;

creating a list of DPCs, along with associated callbacks

based on the recerved panic code by the dump sub-
system:

10

15

20

25

30

35

40

45

50

55

60

65

10

determiming whether one or more associated DPCs needs
to be dumped based on the created list of DPCs along
with the associated callbacks by the one of the kernel
modules/sub-systems; and

forming a list of DPCs that need to be dumped based on the
determination by the dump sub-system.

4. The method of claim 3, further comprising;

recerving DPC updates from each callback; and

determining whether the DPC updates have been received

from all the associated callbacks; and

11 so, updating the formed list of DPCs that need to be

dumped based on the recetved DPC updates.

5. The method of claim 4, wherein dumping pages associ-
ated with the one or more DPCs to the external memory
further comprises:

copying contents of memory to the external memory or a

device by the dump sub-system upon detecting the com-
puter system panic condition.

6. The method of claim 1, further comprising;

sending a request, to create a new DPC, to the dump sub-

system by one of the modules/sub-systems based on
pre-determined criteria; and

creating the new DPC by the dump sub-system upon

receiving the request from the one of the kernel modules/
sub-systems.

7. The method of claim 6, wherein creating the new DPC
COmMprises:

imtializing necessary data structures and associated hier-

archy for the new DPC;

forming a unique handle associated with the new DPC; and

sending the formed unique handle to the associated one of
kernel modules/sub-systems.

8. The method of claim 1, further comprising;

assigning the new memory page to one of the DPCs by the
one of the kernel modules/sub-systems upon allocation
of a new memory page; and

updating internal data structures to assign or remove the
new memory page to the one of the DPCs by the dump
sub-system.

9. The method of claim 1, further comprising:

monitoring the computer system panic condition by each
one of the kernel modules/sub-systems during operation
of the computer system.

10. The method of claim 1, wherein creating the DPCs
COmprises:

creating the DPCs such that the DPCs substantially map to
kernel modules/sub-systems.

11. An article comprising:

a storage medium having instructions, that when executed

by a computing platform, result 1n execution of a method

for reducing non-local access for dynamic page classi-

fication comprising;:

creating DPCs 1n a kernel by a dump sub-system upon
computer system boot-up, wherein the kernel includes
modules/sub-systems that allocate and manage the ker-
nel:

determiming whether one or more DPCs need to be dumped
upon receiving a panic code generated by one of the
kernel modules/sub-systems during operation of the
computer system, wherein the one or more DPCs to be
dumped are determined based on association of the one
or more DPCs with the received panic code; and

dumping pages associated with the one or more DPCs to an
external memory by the dump sub-system based on the
determination.

US 7,770,056 B2

11

12. The article of claim 11, wherein determining whether
the one or more DPCs that need to be dumped upon receiving,
the panic code, comprises:

receiving the panic code generated by one of the modules/
sub-systems upon detecting the panic condition during
system operation by the dump sub-system; creating a list
of DPCs, along with associated callbacks based on the
received panic code by the dump sub-system;

determining whether one or more associated DPCs need to
be dumped based on the created list of DPCs along with
the associated callbacks by the one of the kernel mod-
ules/sub-systems; and

forming a list of DPCs that need to be dumped based on the
determination by the dump sub-system.

13. The article of claim 12, further comprising:
receiving DPC updates from each callback; and

determining whether the DPC updates have been received
from all the associated callbacks; and

if so, updating the formed list of DPCs that needs to be
dumped based on the recerved DPC updates.

14. The article of claim 12, wherein dumping pages asso-
ciated with the one or more DPCs to the external memory

turther comprises:
copying contents of memory to the external memory or a
device by the dump sub-system upon detecting the com-
puter system panic condition.

15. The method of claim 11, wherein creating the DPCs
COmMprises:

creating the DPCs such that the DPCs substantially map to
kernel modules/sub-systems.

16. A computer system comprising;

a processing unit; and

a memory coupled to the processor, the memory having
stored therein code for creating memory page classifi-
cation, the code causes the processor to perform a
method comprising:

creating DPCs 1n a kernel by a dump sub-system upon
computer system boot-up, wherein the kernel includes
modules/sub-systems that allocate and manage the ker-
nel:;

10

15

20

25

30

35

40

12

determiming whether one or more DPCs need to be dumped
upon receiving a panic code generated by one of the
kernel modules/sub-systems during operation of the
computer system, wherein the one or more DPCs to be
dumped are determined based on association of the one
or more DPCs with the received panic code; and

dumping pages associated with the one or more DPCs to an
external memory by the dump sub-system based on the
determination.

17. The system of claim 16, wherein determining whether

the one or more DPCs that needs to be dumped upon recerving
the panic code, comprises:

recerving the panic code generated by one of the modules/
sub-systems upon detecting the panic condition during,
system operation by the dump sub-system:;

creating a list of DPCs, along with associated callbacks

based on the recewved panic code by the dump sub-
system;

determining whether one or more associated DPCs need to

be dumped based on the created list of DPCs along with
the associated callbacks by the one of the kernel mod-
ules/sub-systems; and

forming a list of DPCs that needs to be dumped based on

the determination by the dump sub-system.

18. The system of claim 17, further comprising:

recerving DPC updates from each callback; and

determiming whether the DPC updates have been received
from all the associated callbacks; and

11 so, updating the formed list of DPCs that need to be

dumped based on the recerved DPC updates.

19. The article of claim 18, wherein dumping pages asso-
ciated with the one or more DPCs to the external memory
further comprises:

copying contents of memory to the external memory or a

device by the dump sub-system upon detecting the com-
puter system panic condition.

20. The method of claim 16, wherein creating the DPCs
COmprises:

creating the DPCs such that the DPCs substantially map to

kernel modules/sub-systems.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

