US007761653B2
a2 United States Patent (10) Patent No.: US 7,761,653 B2
Lee et al. 45) Date of Patent: Jul. 20, 2010
(54) FLASH MICRO-CONTROLLER WITH (51) Int.CL
SHADOW BOOT-LOADER SRAM FOR GO6F 12/00 (2006.01)
DUAL-DEVICE BOOTING OF (52) USuCle oo, 711/103
MICRO-CONTROLLER AND HOST (58) Field of Classification Search None
See application file for complete search history.
(75) Inventors: Charles C. Lee, Cupertino, CA (US); PP P ry
David Q. Chow, San Jose, CA (US); (56) References Cited
Abraham C. Ma, Fremont, CA (US);
Frank Yu, Palo Alto, CA (US). U.S. PATENT DOCUMENTS
Ming-Shiang Shen, Taipe1 Hsien (1W) 7,305,544 B2* 12/2007 Bulusu et al. 713/2
(73) Assignee: Super Talent Electronics, Inc., San 2005/0138414 Al1* 6/2005 Zimmeretal. 713/201
Jose, CA (US) 2007/0067614 Al* 3/2007 Berryetal. 713/1
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 . _
U.S.C. 154(b) by 467 days. cited by examiner
| Primary Examiner—Bran R Peugh
(21) Appl. No.: 11/875,648 74) Attorney, Agent, or Firm—Stuart T. Auvinen; gPatent,
V, AZ g
(22) Filed: Oct. 19, 2007 LLC
(65) Prior Publication Data (57) ABSTRACT
US 2008/0040598 Al Feb. 14, 2008
o A flash microcontroller has a Static Random-Access-
Related U.5. Application Data Memory (SRAM) builler that stores several blocks of boot
(60) Continuation-in-part of application No. 11/624,667, code read from a tlash memory. The boot code includes an

filed on Jan. 18, 2007, which 1s a division of applica-
tion No. 09/478.720, filed on Jan. 6, 2000, now Pat.
No. 7,257,714, which 1s a continuation-in-part of
application No. 09/366,976, filed on Aug. 4, 1999, now
Pat. No. 6,547,130, application No. 11/875,648, which
1s a confinuation-in-part of application No. 11/466,
759, filed on Aug. 23, 2006, now Pat. No. 7,702,831,
which 1s a continuation-in-part of application No.
10/789,333, filed on Feb. 26, 2004, now Pat. No. 7,318,
117, application No. 11/875,648, which 1s a continua-
tion-in-part of application No. 09/366,976, and a con-
tinuation-n-part of application No. 11/773,830, filed
on Jul. 5, 2007, which 1s a continuation-in-part of
application No. 11/309,594, filed on Aug. 28, 2006,
now Pat. No. 7,383,362, which 1s a continuation-in-
part of application No. 10/707,277, filed on Dec. 2,
2003, now Pat. No. 7,103,684.

initial boot loader, boot code and a control program that are
executed by the flash microcontroller, and an operating sys-
tem OS 1mage and an external-host control program that are
executed by an external host. Both the external host and the
microcontroller are booted from boot code buifered in the
SRAM butler. A first-reset-read address from the external
host 1s captured by the microcontroller during 1its boot
sequence and stored 1n a mapping table along with a physical
address of the block 1n the SRAM butier with the operating
system OS 1mage and the external-host control program. A
boot-loader state machine reads the flash ID and programs
flash parameter registers with timing parameters for the flash
memory.

20 Claims, 12 Drawing Sheets

REG'S
162

FLASH
MEM
CTLR 148

ADDR

VOLTAGE
PLIMP 144

l

FLASH INTERFACE

|

BOOT-CODE

CMD

MLC
FLASH

MEM 169

SRAM BFR
14

PAGE BFRS

U.S. Patent Jul. 20, 2010 Sheet 1 of 12 US 7,761,653 B2

G 1

A K/lLEAI\iH CPU VOLTAGE
162 | CTLR 148 | 146 PUMP 144
168
140
FLASH INTERFACE
150
ADDR CMD

MLC
FLASH
MEM .. | | m———— = e

152
SRAM BFR
154

PAGE BFRS
160

U.S. Patent Jul. 20, 2010 Sheet 2 of 12 US 7,761,653 B2

FIG. 2

MICRO- b

CONTROLLER

POWER-ON
RESET CKT 164

HIGH-LEVEL 172
BOOT LOADER
STATE MACHINE

FLASH 150

INTERFACE

LOGICAL
ADDR
TAGS 126

LOGICAL-
PHYSICAL
MAPPING

TABLE 170

U.S. Patent Jul. 20, 2010 Sheet 3 of 12 US 7,761,653 B2

DATA BUS

192

STATE 122

MACHINES
POWER CONTROL
MGT 116 LOGIC 120

DATA BUFFERS
126

YDECODERS I o
e
CMDREG 114 SENSE AMPS I s
WR DRIVERS
136
ADDRESS
BUFFERS &
DECODERS "
112 DRV
128
ADDRESS
S 194

FIG. 3

U.S. Patent Jul. 20, 2010 Sheet 4 of 12 US 7,761,653 B2

o0
CONFIG DATA 92
USER DATA
54

EXT. HOST CTL PGM B

57
EXT. HOST CTL PGM A
56
EXT HOST
OS IMAGE COPY B RBOOT
o9 CODE
OS IMAGE COPY A
CTL PGM B 67
CTLPGM A U.CTLR
00 BOOT
EXTENDED BOOT-CODE COPY B CODE
63
EXTENDED BOOT-CODE COPY A
62
BOOT CODE
ADDR? o 1ST UNIT
JMP ADDR2 g4 SYS PTRS 65 (S.M.)
ADDR1 —

F1G. 4

U.S. Patent Jul. 20, 2010 Sheet 5 of 12 US 7,761,653 B2

POWER-ON
RESETS BOOT
LOADER

ACTIVATE HIGH-LEVEL
BOOT LOADER STATE 202
MACHINE

SEND FLASH RESET CMD 204
TO FLASH MEM

206

READ FLASH ID USING CMD X90 TO
DETERMINE FLASH TYPE

208

WRITE FLASH PARAMETERS INTO

FLASH PARAM. REG'S

210
GENERATE FLASH READ CMD
READ FLASH BLK 0, PAGE 0 TO SRAM BLK A

214

212

END HIGH-LEVEL
BOOT LOADER S.M.,
RESET U-CTLR

FIG. 5

U.S. Patent Jul. 20, 2010 Sheet 6 of 12 US 7,761,653 B2

FIG. 6

U-CTLR STARTS EXECUTING SRAM BLK 232
A; FIRST ADDR IS JMP ADDR2

EXECUTE FIRST UN 234
BOOT CODE AT ADD

SET ADDRESS TO FETCH 2364
BOOT-CODE COPY A FROM
FLASH

FETCH BOOT-CODE 238
COPY FROM FLASH;
WRITE TO SRAM BLK B

GENERATE RUNNING CHECKSUM
INCLUDING STORED CHECKSUM FROM
BOOT-CODE COPY DURING READING

240

CHANGE N
ADDRESS TO
FETCH
BOOT-CODE COPY
B Y

CONTINUE WITH
3RD STAGE

BOOTING

246
244 249

U.S. Patent Jul. 20, 2010 Sheet 7 of 12 US 7,761,653 B2

3RD STAGE
BOOTING

202

=SS TO FETCH CTL PGM|_~ 256
MAGE COPY A FROM FLASH

FETCH CGP & OS IMAG 298
COPY FROM FLASH;
WRITE TO SRAM BLK C

GENERATE RUNNING CHECKSUM 260
INGLUDING STORED CHECKSUM FROM
CP/OS IMAGE COPY DURING READING

CHANGE U-CTLR
ADDRESS TO ISSUES RDY 266
FETCH CP/OS SIGNAL TO
IMAGE COPY B v HOST
264 562

HOST EXECUTES CTL
PGM & OS IMAGE

FROM SRAM BLK C

FIG. 7

268

U.S. Patent Jul. 20, 2010 Sheet 8 of 12 US 7,761,653 B2

POWER-ON
RESET OF HOST

2/2

HOST SENDS 15T RESET READ

ADDRESS TO U-CTLR

U-CTLR USES MAPPING TABLE TO MATCH 574
1ST RESET ADDRESS FROM HOST TO FLASH
BLK

U-CTLR SENDS RDY SIGNAL TO HOST AFTER 2/6
INTERNAL BOOTING COMPLETES

HOST EXECUTES CTL PRM AND OS 278
IMAGE FROM SRAM BLK C

END DUAL-DEVICE 280
BOOT SEQUENCE

FIG. 8

U.S. Patent

Jul. 20, 2010 Sheet 9 of 12

READ BOTH COPIES OF CTLPGM TO

DETERMINE WHICH COPY TO UPGRADE

WRITE U

UPGRADE
REQUEST

SELECTED LOCATION

DISABLE ACCESS TO OLD
COPY BY ERASING ENTRY
BLK

STO

IN COPY OF ENTRY BLK

Rt VALID ENTRY ADD

—ND

FIG. 9

"GRADED CTLPGM TO

US 7,761,653 B2

282

284

U.S. Patent Jul. 20, 2010 Sheet 10 of 12 US 7,761,653 B2

UPGRAD
CMD

292
S>TART FROM COPY A

SET CNT A AND 294
CNT B=0

FIG. 10A

302

RASE BLK WITH COPY A

304 2AM UPGRAD 314
O COPY A

306

WRITE PRE-CALCULATED
CHECKSUM AT END OF COPY A

303

—RIFY COPY A BY READING COPY A
& GENERATING CHECKSUM

FAIL UPDATE
A; ALERT

USER

320
CONTINUE WITH
UPDATE B 316

U.S. Patent

320

322

324

326

328

330

338

Jul. 20, 2010

CONTINU

RAS

PROG

WRIT

CHECKSUM AT

RIFY COPY B BY

& GEN

UPDATE

= WIT

RAM UPGRAD

Sheet 11 of 12

= BLKWITH COPY B

TO COPY B

RATING CH

PRE-CALCULATE
=ND OF CO

READING CO

—CKSUM

DONE; REPORT

RESULTS

334

US 7,761,653 B2

FIG. 10B

332

336

US 7,761,653 B2

g |

y—

-~

-

g

y—

~

P

b

=

7 —
e
O
I
0

= =

a Q

—3
O

U.. —

—

—_
O

U.S. Patent

+~v—

_ %

: <=
—1

A_u L =

LL =
" N "
: | S| rim < "
. RRm <T_ .
. T o QO 7, = .
® SMR ECI.-I.\. D ¢
: <=3 :
. 1 — 8
. L = O ‘
: © .
. o — S .
: N < o o Ko
. nd N D = > 2 O
. L1 - O o o) QO O "
" N 87 m .
" LLL . .
o @, NU L1l = .
.) LLJ D O .
. - Y z LL] O .
. <[an < T O .
. O 0 N Z 0, N o

US 7,761,653 B2

1

FLASH MICRO-CONTROLLER WITH
SHADOW BOOT-LOADER SRAM FOR
DUAL-DEVICE BOOTING OF
MICRO-CONTROLLER AND HOST

RELATED APPLICATION

This application 1s a continuation-in-part (CIP) of the
application Ser. No. 11/773,830 filed Jul. 3, 2007, for “Mold-
ing Method to Manufacture Single-Chip On-Board Device”,
which 1s a CIP of U.S. patent application for “Single Chip
Multi-Media Card/Secure Dagital (MMC/SD) Controller
Reading Power-on Boot Code from Integrated Flash Memory
tor User Storage™, U.S. application Ser. No. 11/309,594 filed
Aug. 28, 2006, now U.S. Pat. No. 7,383,362, which 1s a CIP
of “Single-Chip USB Controller Reading Power-on Boot
Code from Integrated Flash Memory for User Storage™, U.S.
application Ser. No. 10/707,277, filed Dec. 2, 2003, now U.S.
Pat. No. 7,103,684.

This 1s also a continuation-in-part (CIP) of the application
tor “Electronic Data Storage Medium with Fingerprint Veri-
fication Capability”, U.S. Ser. No. 11/624,6677 filed Jan. 18,
2007, which 1s a divisional application of U.S. patent appli-
cation Ser. No. 09/478,720, filed on Jan. 6, 2000, now U.S.
Pat. No. 7,257,714, which has been petitioned to claim the
benefit of CIP status of one of inventor’s earlier U.S. patent
applications for “Integrated Circuit Card with Fingerprint
Verfication Capability”, U.S. application Ser. No. 09/366,
976, filed Aug. 4, 1999, now 1ssued as U.S. Pat. No. 6,547,
130, and “Flash Memory Controller for Electronic Data Flash
Card” U.S. Ser. No. 11/466,759, filed Aug. 23,2006, which 1s
a CIP of “System and Method for Controlling Flash
Memory™, U.S. Ser. No. 10/789,333, filed Feb. 26, 2004 now

U.S. Pat. No. 7,318,117.
This application 1s related to “Flash memory device and

architecture with multi level cells”, U.S. Ser No. 10/800,228,
filed Mar. 12, 2004, now U.S. Pat. No. 7,082,056, and “Flash
drive/reader with serial-port controller and tlash-memory

controller mastering a second RAM-butfer bus parallel to a
CPU bus™, U.S. Ser. No. 10/605,140, filed Sep. 10, 2003, now

U.S. Pat. No. 6,874,044

FIELD OF THE INVENTION

This invention relates to flash micro-controllers, and more
particularly to flash microcontrollers with a SRAM for boot-
ing two devices.

BACKGROUND OF THE INVENTION

Hard disks and other mass storage devices are being
replaced or supplemented with solid-state mass storage such
as flash memories. Flash memories use non-volatile memory
cells such as electrically-erasable programmable read-only
memory, (EEPROM), but are not randomly accessible at the
byte level. Instead, whole pages or sectors of 512 bytes or
more are read or written together as a single page. NAND
flash memory 1s commonly used for data storage of blocks.
Pages 1n the same block may have to be erased together, and
limitations on writing may exist, such as only being allowed
to write each page once between erases.

Program code 1s often stored in randomly-accessible
memory such as a ROM or a NOR flash memory. Since NOR
flash memory 1s byte-addressable, NOR flash can store code
that can be executed. Byte-addressing 1s needed to execute
code, since branch and jump nstructions may have a target
that 1s at a random location that must be fetched next. The

10

15

20

25

30

35

40

45

50

55

60

65

2

target may be byte-addressable. Since boot routines execute
instructions one at a time, rather than a whole page at a time,
randomly-accessible memory 1s needed for boot-code execu-
tion.

Small portable devices such as personal digital assistants
(PDA), multi-function cell phones, digital cameras, music
players, etc. have a central processing unit (CPU) or micro-
controller that must be booted just as a PC or host CPU must
be booted. These small devices are often quite cost and size
sensitive. Having a NOR flash or ROM may increase the size
and cost of these portable devices.

NAND flash memory 1s less expensive than NOR flash
memory, and thus preferable from a cost standpoint. NAND
flash memory may already be present on some devices such as
cell phones or music players as the primary mass storage
memory. It 1s thus desirable to use NAND flash memory to
store boot code.

Computers once required a complex series of steps to 1ni1-
tialize and make them ready to run programs. Instructions for
bootstrapping the computer were loaded 1nto the computer
alter power-on, such as by manually toggling switches rep-
resenting the 1°s and 0’s of bootstrap instructions on the front
panel. The computer was brought from a dead state into a
usetul state, like lifting the computer up by 1ts own bootstraps.

More recently, computers still execute a complex sequence
of instructions after power-on to boot the computer and load
its operating system (OS). The mitial instructions may reside
in a read-only memory (ROM), along with a personal com-
puter’s Basic Input-Output System (BIOS). The operating
system such as Windows may be loaded from the hard disk,
and when booting 1s complete the OS can execute user pro-
grams. Various system checks such as peripheral device and
memory detection and si1zing can be performed during boot-
ng.

Both the flash device and the host must be booted at some
point in time. Typically, the host 1s booted from its hard disk
betore the flash device 1s inserted into the host. The tflash
device 1s then booted when power from the host reaches the
flash device.

What 1s desired 1s a flash-memory microcontroller that 1s
bootable from boot code stored 1n flash memory. It 1s further
desired to boot both the flash microcontroller and the host. A
flash microcontroller with enhanced booting performance 1s
also desired.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a flash microcontroller with a
boot-loader SRAM for dual-device booting.

FIG. 2 shows a flash device 1n more detail.

FIG. 3 shows a flash memory.

FIG. 4 shows boot code stored 1n a flash memory.

FIG. 5 1s a flowchart of an 1initial power-on reset sequence
for a dual-boot tlash microcontroller.

FIG. 6 1s a flowchart of 1mitial resetting of the microcon-
troller.

FIG. 7 1s a flowchart of third stage booting of the micro-
controller.

FIG. 8 1s a flowchart of a power-up reset sequence for the
external host.

FIG. 9 1s a flowchart of processing an upgrade request.
FIGS. 10A-B are tlowcharts of upgrading both copies.

FIG. 11 1s a block diagram of a Secure-Digital (SD) flash
microcontroller.

US 7,761,653 B2

3
DETAILED DESCRIPTION

The present invention relates to an improvement 1n flash
microcontrollers. The following description is presented to
enable one of ordinary skill in the art to make and use the
invention as provided in the context of a particular application
and 1ts requirements. Various modifications to the preferred
embodiment will be apparent to those with skill in the art, and
the general principles defined herein may be applied to other
embodiments. Therefore, the present invention 1s not
intended to be limited to the particular embodiments shown
and described, but 1s to be accorded the widest scope consis-
tent with the principles and novel features herein disclosed.

FIG. 1 1s a block diagram of a flash microcontroller with a
boot-loader SRAM for dual-device booting. Flash device 140
1s plugged into host 142 and powers up when plugged 1n.
Flash device 140 generates internal supply voltages from an
external power supply mnput using voltage pump 144. Central
Processing Unit (CPU) 146 processes commands from host
142 which update operating registers 162 which control
operation of flash memory controller 148. Operating registers
162, CPU 146, and flash memory controller 148 may be part
of microcontroller 168.

Flash interface 150 provides a lower-level memory inter-
face to multi-level-cell MLC flash memory 152, which may
contain one or more flash-memory chips, and to SRAM.
SRAM buifer 154 may contain block and page butifers of data
that 1s stored in MLC flash memory 152, such as boot code.
SRAM buller 154 stores both blocks and smaller pages.
Pages are stored in page buifer 160.

Flash interface 150 generates signals for address, data, and

command buses and associated control signals to the physical
memory devices, both flash and SRAM. A SRAM cache of

the datain MLC flash memory 152 1s also provided by SRAM
data cache 158, with 1ts associated tags stored in SRAM tags
156. Requests that match SRAM tags 156 may be accessed 1n
SRAM data cache 158, which has a faster access time than
MLC flash memory 152.

FI1G. 2 shows a flash device in more detail. Microcontroller
168 receives high-level requests from a host using a bus
protocol and generates lower-level memory-access com-
mands that are sent to flash interface 150. Flash interface
reads, writes, and erases tlash memory in MLC flash memory

152, but can also access data more quickly using SRAM
butilers 154. SRAM buifers 154 1s an array of SRAM that can

be partitioned into a cache with SRAM tags 156 and SRAM
data cache 158.

SRAM butllers 154 can also include builers used to store
boot code that1s read from MLC flash memory 152. Blocks A,
B, C can store blocks of boot or operating system (OS) code
read from MLC flash memory 152. When power-on 1s
detected by power-on reset circuit 164, boot-loader state
machine 172 can be activated. Boot-loader state machine 172
configures flash interface 150 by reading parameters from
flash parameter registers 166 and programming these flash
parameters 1nto tlash intertace 150. These flash parameters
are device-specific, and include device specifications such as
the density and width of MLC flash memory 152, the number
of cycles needed for access, and other timing requirements
that must be met. Once boot-loader state machine 172 con-
figures flash interface 150, boot-loader state machine 172
activates tlash interface 150 to read the first page of the first
block from MLC flash memory 152. This first page contains
system pointers to boot code 1n the flash. These pointers are
flowed to locate instructions to jump to in the 1nitial boot
code, or 1n extended boot code. Additional boot code, control
programs, and OS 1mages are successively read from MLC

10

15

20

25

30

35

40

45

50

55

60

65

4

flash memory 152 and loaded into SRAM butlers 154 for
execution by the CPU 1n microcontroller 168. Once this CPU
1s booted and running 1ts OS, more boot code for the external
host may be read from MLC flash memory 152 and sent to the
host, so that the host can be booted.

Once the host 1s booted, mappings from host (logical)
addresses to tlash (physical) addresses may be stored 1n map-
ping table 170. Flash interface 150 uses these mappings in
mapping table 170 to locate physical pages in MLC flash
memory 152 that correspond to the logical addresses from
host requests.

FIG. 3 shows a flash memory. Flash memory 152 may
include some or all of the blocks shown 1n FIG. 3, and other
blocks, or some of the functions may be performed by a
separate flash controller. Flash memory 152 may be a separate
flash chip or may be integrated with the flash microcontroller.

Flash-memory MLC cells 110 1s an array of rows and
columns of multi-level cell (MLC) EEPROM transistors that
can store multiple bits of data in each memory cell using
different voltage levels. The MLC cell’s voltage levels are
sensed by sense amplifiers 134 when a read current 1s drawn
through a selected row of MLC cells. Word line drivers 128
drives one row or word line in MLC cells 110 while the other
rows are disabled. A row portion of an address applied to
address decoder 112 1s further decoded by X decoder 124 to
select which row to activate using word line drivers 128.

A column portion of the address applied to address decoder
112 1s turther decoded by Y decoder 132 to select a group of
bit lines for data access. Data butilers 126 may be a limited
width, such as 64 bits, while MLC cells may have a larger
number of bit lines, such as 8x64 columns. One of the 8
columns may be selected by Y decoder 132 for connection to
data buifers 126.

During writing, external data 1s collected by data buffers
126 and applied to write drivers 136. Write drivers 136 gen-
erate voltages or currents so that the set currents are applied to
bit lines for MLC cells that are to be written with a 1, while
reset currents are applied to bit lines for MLC cells to be reset
to O.

State machines 122 can activate control logic 120 to enable
and disable write drivers 136 after programming or erasure.
State machines 122 can generate various internal control
signals at appropriate times, such as strobes to pre-charge bit
lines and latch sensed data into data butiers 126.

Command register 114 can receive commands that are
decoded and processed by control logic 120. External control
signals such as read/write, data strobes, and byte enables may
also be recerved 1n some embodiments. Command register
114 may be replaced by a command decoder 1n some embodi-
ments. Power management unit 116 can power down blocks
to reduce power consumption, such as when the MLC flash
memory 1s de-selected. Since MLC cells 110 are non-volatile,
data 1s retained when power 1s disconnected.

There may be several arrays of MLC cells 110 and associ-
ated logic on a large MLC flash chip. An array-select portion
of the address can be decoded by address decoders 112 to
enable one of the many arrays or blocks on the MLC flash
memory or chip.

FIG. 4 shows boot code stored in a flash memory. Flash
memory 50 1s NAND-type flash memory that 1s block-acces-
sible, allowing pages 1n a block to be written just once before
the whole block 1s erased. Entire pages are read as one or more
512-byte sectors; individual bytes cannot be read or written.

Flash memory 350 stores 1nitial boot loader 60 at the first
page of the first block. Initial boot loader 60 begins with a
jump address, IMP ADDR2 64, which points to the first

instruction to execute in 1nitial boot loader 60. Other system

US 7,761,653 B2

S

pointers 65 are also located near the beginning of 1nitial boot
loader 60. These other system pointers can be used as a table
or pointers by boot-loader instructions.

Initial boot loader 60 1s read from MLC flash memory 152
by boot-loader state machine 172 and written mnto SRAM
butfer 154 (FIG. 2). Then the CPU in microcontroller 168
executes the 1nitial boot loader by reading the jump address
IMP ADDR2 64 and jumping to that address within initial
boot loader 60 to begin executing istructions.

These 1nstructions 1n 1itial boot loader 60 load further
boot code into SRAM bufters 154, such as extended boot
code 62, 63, which are 2 copies of the same boot code that 1s
then executed by the CPU 1n microcontroller 168. Extended
boot code 62, 63 1s stored after initial boot loader 60 1n the
other pages of the first block.

Control program 66, 67 are two copies of the control pro-
gram that 1s run by the CPU 1n microcontroller 168 once
booting of the flash device 1s completed. This control program
sends boot code to the external host that 1s read from MLC
flash memory 152 and buifered by SRAM butfer 154.

Further blocks of flash memory store two copies of OS
image 38, 59, which 1s the OS 1mage for the host, and two
copies ol external-host control program 56, 57, which 1s the
control program run on the external host’s CPU. The external
host can be rebooted once one copy of the OS 1mage and the
external-host control program has been successiully trans-
terred to the external host.

Flash memory 50 also stores user data 54 and configuration
data 52. User data 54 1s the main user or application data
stored by flash memory 50. Unused user storage 52 1s avail-
able for new data.

FI1G. 5 1s a flowchart of an 1nitial power-on reset sequence
for a dual-boot flash microcontroller. Applying power to the
flash device initiates this sequence first of all sequences. The
high-level boot-loader state machine 1s activated by the
power-on reset signal, step 202. A flash-reset command 1s
then generated by the boot-loader state machine and sent to
the MLC flash memory, step 204. The flash configuration or
tflash ID 1s then read from the just-reset MLC flash memory
using an X90 command generated by the boot-loader state
machine, step 206. The flash ID 1s parsed to locate configu-
ration or tlash parameters which are then written into the tlash
parameter registers (166 of FIG. 2), step 208.

The boot-loader state machine then activates the flash
interface to generate a flash read command, step 210. The
timing of the physical signals from flash interface 150 to
MLC flash memory 152 1s determined by the flash parameters
written 1nto the flash parameter registers in step 208.

Since the tlash memory was reset 1n step 204, the first page
of the first block in the MLC flash memory 1s read first, step
212. The flash data 1s written into SRAM buifer 154 as BLK
A. Inmitial boot loader 60 (FIG. 4) 1s now loaded into BLK A of
SRAM butfer 154. The boot-loader state machine can now
end, step 214, after a reset signal 1s generated to microcon-
troller 168.

FIG. 6 1s a flowchart of 1nitial resetting of the microcon-
troller. Once the boot-loader state machine has loaded 1nitial
boot loader 60 into SRAM buifer 154 by following the steps
in FIG. 5, the reset of microcontroller 168 activates the rou-
tine of FIG. 6.

After being reset, microcontroller 168 begins by reading
the first address in BLK A of SRAM buiter 154, which 1s the
IMP ADDR?2 address, step 232. The microcontroller jumps to
ADDR2, fetches that instruction and executes it, step 234,
and the following instructions. This 1s the first unit boot code,
or imtial boot loader 60. These 1nstructions set the address of

tflash mtertface 150 to read copy-A of boot code 62 from MLC

10

15

20

25

30

35

40

45

50

55

60

65

6

flash memory 152, step 236. Copy-A of boot code 62 1s read
from flash memory and written to BLK B in SRAM buftfer
154, step 238.

A running checksum 1s updated for each byte read from
flash, step 240. The last bytes of the copy of boot code 62
includes a stored checksum, which 1s included when gener-
ating the running checksum. The stored checksum 1s calcu-
lated so that the final running checksum should be O when no
errors occurred. Thus when the final running checksum 1s 0,
step 242, then no errors were detected. The third stage of
booting can proceed, step 246.

However, when the final running checksum was not zero,
step 242, then an error was detected. The fetch address for
flash interface 150 1s changed to the mitial address of Copy-B
boot code 63 (FIG. 4), step 244, and fetching 1s repeated
through steps 238, 240 for copy B. Should the final runming
checksum for copy-B be zero, then the third stage of booting
can proceed, step 246. Otherwise, loading may be reat-
tempted some number of times before device booting 1s aban-

doned.

Both one copy of control program 66, 67, and one copy of
boot code 62, 63 can be loaded 1nto BLK B by the process of

FIG. 6

FIG. 7 1s a flowchart of third stage booting of the micro-
controller. Once 1nitial boot loader 60 has loaded one copy of
boot code 62, 63 and one copy of control program 66, 67 into
BLK B, control program 66 begins executing on microcon-
troller 168. Control program 66 loads one copy of OS 1mage

58, 59 and one copy of external-host control program 66, 67
into BLK C of SRAM builer 154 by following the steps 1n

FIG. 7.

When entering the third stage of booting, microcontroller
168 begins by jumping to an instruction in BLK B and execut-
ing that instruction 1n BLK B, step 252. A final instruction
executed 1n mitial boot loader 60 in BLK A points to this
initial instruction in BLK B. These instructions in BLK B that
are being executed in F1G. 7 are part of control program 66 (or
control program 67).

The microcontroller continues to execute the following

instructions 1 BLK B. These instructions set the address of
tflash interface 150 to read copy-A of OS 1image 58 and later to
read copy-A of external-host control program 56 from MLC
flash memory 152, step 256. Copy-A of OS 1image 58 and later
copy-A of external-host control program 56 are read from
flash memory and written to BLK C1n SRAM buftlfer 154, step

238.

A running checksum 1s updated for each byte read from
flash, step 260. The last bytes of the copy of external-host
control program 56 include a stored checksum, which 1is
included when generating the running checksum. The stored
checksum 1s calculated so that the final running checksum
should be 0 when no errors occurred. Thus when the final
running checksum1s 0, step 262, then no errors were detected.

However, when the final running checksum was not zero,
step 262, then an error was detected. The fetch address for
flash interface 150 1s changed to the 1nitial address of Copy-B
OS 1mage 59 (FIG. 4), step 264, and fetching 1s repeated
through steps 258, 260 for copy B. Should the final runming
checksum for copy-B be zero, then the next stage of booting
can proceed, step 266. Otherwise, loading may be reat-

tempted some number ol times before device booting 1s aban-
doned.

When a copy was successtully loaded with a zero {inal
running checksum, step 262, then microcontroller 168 gen-
crates a ready signal to the external host, step 266. The exter-
nal host then reads and executes external-host control pro-

US 7,761,653 B2

7

gram 56 using OS 1mage 58 that 1s read by the external host
from BLK C of SRAM buiter 154, step 268.

FIG. 8 1s a flowchart of a power-up reset sequence for the
external host. The external host sends a first reset read request
to the flash device, step 272, along with a first-reset read
address. The flash device may still be in the process of booting
itself using the procedures in FIGS. 5-7, and may not respond
immediately to the external host.

The microcontroller accepts the first-reset read address
from the external host during a late stage of booting, and loads
this host address into mapping table 170 1n an entry. The host
address 1s the logical address, while the address of BLK C 1s
the physical address for this entry. Microcontroller 168 auto-
matically associates the first-reset read address from the
external host with BLK C, which stores external-host control
program 56 and OS mmage 58. Since the external host first
executes an mstruction from external-host control program
56 or from OS 1mage 58 when booting from the flash device,
this automatic association of the first-reset read address w1th
the physical address for BLK C, step 274, 1s quite useful for
dual-device booting.

Once the internal booting of microcontroller 168 com-
pletes (the procedures of FIGS. 5-7 are finished), the micro-
controller sends a ready signal to the external host, step 276
(also step 266 1n FI1G. 7). The microcontroller sends instruc-
tions from BLK C to the external host, allowing the external
host to execute external-host control program 56 using OS
image 358 stored 1n BLK C, step 278. The dual-device boot
sequence 1s completed, step 280, since both microcontroller
168 and external host 142 (FIG. 1) are re-booted.

FIG. 9 1s a flowchart of processing an upgrade request.
Both copies of the control program are read to determine
which copy to upgrade, step 282. A version may be read from
cach copy to determine which copy 1s the oldest, for example.
The upgraded control program 1s written to the selected loca-
tion, step 284. The newly-written control program 1s read and
a running checksum 1s generated and compared to zero, step
286. When the running checksum 1s non-zero, the write may
be repeated.

Once the running checksum 1s zero, writing was success-
tul. Access to the old copy of the control program 1s disabled
by erasing its entry block, step 288. A copy of the entry block
1s made, and the entry address for the updated control pro-
gram 1S written 1into the copy of the entry block, step 290. The
new entry block then replaces the old entry block, and the
upgrade 1s complete.

FIGS. 10A-B are flowcharts of upgrading both copies.
Both copies of a control program, OS 1mage, or boot code
may be upgraded using this procedure. When an upgrade
command 1s received, first copy A 1s processed, step 292.
Counters for copies A and B, CNT_A and CNT_B, are
cleared, step 294. The block with copy A 1s erased, step 302,
and the upgrade 1s programmed 1nto the erased block, step
304. A pre-calculated checksum 1s received with the
upgraded program, and this pre-calculated checksum 1s writ-
ten to the end of the block, step 306. The pre-calculated
checksum causes the final running checksum to be zero when
no €rrors occur.

The upgraded copy just written to flash 1s verified by read-
ing the copy and generating a running checksum that includes
the pre-calculated checksum stored in flash, step 308. When
this final running checksum 1s zero, step 310, then no errors
are detected. Upgrading can continue with copy B 1n FIG.
10B, step 320.

When the final running checksum 1s non-zero, step 310,
then an error occurred. The A count 1s incremented, step 312,
and compared to a threshold limait, step 314. When the A count

5

10

15

20

25

30

35

40

45

50

55

60

65

8

exceeds the threshold, step 314, then upgrading fails and the
user 1s notified, step 316. Otherwise, upgrading 1s re-at-
tempted using steps 302 to 310 again.

In FIG. 10B, copy B 1s upgraded. The block with copy B 1s
crased, step 322, and the upgrade 1s programmed nto the
erased block, step 324. A pre-calculated checksum recerved
with the upgraded program 1s written to the end of the block,
step 326. The pre-calculated checksum causes the final run-
ning checksum to be zero when no errors occur.

The upgraded copy just written to flash 1s verified by read-
ing the copy and generating a running checksum that includes
the pre-calculated checksum stored 1n flash, step 328. When
this final running checksum 1s zero, step 330, then no errors
are detected. Upgrading 1s ﬁmshed and the user may be
notified, step 338.

When the final running checksum i1s non-zero, step 330,
then an error occurred. The B count 1s incremented, step 332,
and compared to a threshold limit, step 334. When the B count
exceeds the threshold, step 334, then upgrading fails and the
user 1s notified, step 336. Otherwise, upgrading 1s re-at-
tempted using steps 322 to 330 again.

FIG. 11 1s a block diagram of a Secure-Digital (SD) flash
microcontroller. SD flash microcontroller 100 can be booted

from external tlash memory.

Internal bus 96 connects CPU 82 with SRAM 86, FIFO
data builer 94, direct-memory access (DMA) engine 88, and
flash-memory controller 90. CPU 82 executes instructions
read from SRAM 86, using cache 79 to cache instructions
and/or data.

DMA engine 88 can be programmed to transier data
between FIFO data butier 94 and tlash-memory controller 90.
CPU 82 can operate on or modily the data by reading the data
over bus 96. Cache 79 and external RAM can store instruc-

tions for execution by the CPU and data operated on by the
CPU.

SD transceiver 84 connects to the clock CLK and parallel
data lines 1D0:3 of SD bus 16 and contains both a clocked
receiver and a transmitter. An interrupt to CPU 82 can be
generated when a new command 1s detected on SD bus 16.
CPU 82 can then execute a routine to handle the interrupt and
process the new command.

SD operating registers 80 include the protocol registers
required by the SD specification. Registers may include a
data-port, write-protect, flash select, flash status, interrupt,
and 1dentifier registers. Other extension registers may also be
present.

Command decode and validator 89 detects, decodes, and
validates commands recerved over SD bus 16. Valid com-
mands may alter bus-cycle sequencing by bus state machine
83, and may cause response generator 87 to generate a
response, such as an acknowledgement or other reply. Ditler-
ent routines can be executed by CPU 82 or different transfer
lengths can be performed by DMA engine 88 in response to
the byte or sector capacity detected by command decode and
validator 89.

The transmit and recerve data from SD engine 81 1s stored
in FIFO data buffer 94, perhaps before or after passing
through a data-port register in SD operating registers 80.
Commands and addresses from the SD transactions can also
be stored in FIFO data buffer 94, to be read by CPU 82 to

determine what operation to perform.

Flash-memory controller 90 may also include a flash data
buifer, which may contain the commands, addresses, and data

sent over flash bus 18 to one or more flash mass-storage chips.
Data can be arranged to match the bus width of tlash bus 18,
such as 1n 32 or 94-bit words. DMA engine 88 can be pro-

US 7,761,653 B2

9

grammed by CPU 82 to transier a block of data between flash
bus 18 and FIFO data butfer 94.

Flash-specific registers in tlash control registers 93 may
include a data port register, interrupt, flash command and
selection registers, flash-address and block-length registers,
and cycle registers.

Error-corrector 92 can read parity or error-correction code
(ECC) from flash mass storage chips and perform data cor-
rections. The parity or ECC bits for data in that 1s being
written to flash mass storage chips can be generated by error-
corrector 92.

Flash programming engine 97 can be a state machine that
1s activated on power-up reset. Flash programming engine 97
programs DMA engine 88 with the address of the boot loader
code 1n the first page of the external flash mass-storage chip,
and the first address 1n cache 79 or 1n another local RAM, or
in SRAM 86. Then flash programming engine 97 commands
DMA engine 88 to transier the boot loader from the flash
mass storage chip to cache 79 or the other SR AM bultfer, or to
the external RAM. CPU 82 i1s then brought out of reset,

executing the boot loader program starting from the {first
address 1 cache 79 or the SRAM buillfer. The boot loader

program can contain instructions to move a larger control

program from the flash mass storage chip to SRAM 86. Thus
SD flash microcontroller 100 1s booted without an internal

ROM on internal bus 96.

Alternate Embodiments

Several other embodiments are contemplated by the mnven-
tors. For example different numbers and arrangements of
flash, SRAM, and SD cards or SD hosts can connect to the
microcontroller. Rather than use SD buses, other buses may
be used such as Memory Stick, PCI Express bus, Compact
Flash (CF), IDE bus, Serial ATA (SATA) bus, etc. Additional
pins can be added or substituted for the SD data pins. A
multi-bus-protocol chip could have an additional personality
pin to select which bus interface to use, or could have pro-
grammable registers. Rather than have a SD microcontroller,
a Memory Stick microcontroller could be substituted, for use
with a memory-stick interface, efc.

Universal-Serial Bus (USB) may be used rather than SD, or
other serial buses may be used such as PCI Express, Express-
Card, Firewire (IEEE 1394), serial ATA, serial attached
small-computer system interface (SCSI), etc. For example,
when PCI Express 1s used, additional pins for the PCI Express
interface can be added or substituted for the USB differential
data pins. PCI express pins include a transmit differential pair
PET+, PET-, and a receive differential pair PER+, PER- of
data pins. A multi-bus-protocol chip could have an additional
personality pin to select which serial-bus interface to use, or
could have programmable registers. ExpressCard has both
the USB and the PCI Express bus, so either or both buses
could be present on an ExpressCard device.

Rather than write the 1nitial boot sequence to address 0 1n
the SRAM, it can be written to another address 1n SRAM
when the CPU can be configured to execute from an address
other than address 0.

While a sector size of 512 bytes has been described, the
page size may have another size, such as 1K, 2K, 4K, 8K, efc.
Flash blocks may have 4 pages, 8 pages, 64 pages, or some
other number, depending on the physical flash chips and
arrangement used.

While the mvention has been described using an SD con-
troller, a MMC controller may be substituted. A combined
controller that can function for both MMC and SD may also

10

15

20

25

30

35

40

45

50

55

60

65

10

be substituted. SD may be considered an extension of MMC,
or a particular type of MMC, rather than a separate type of
bus.

While the mvention has been described as not requiring
ROM for booting, some ROM may still be present on the chip.
For example, a revision number may be included in a small
ROM. Hard-wired gates that are tied to power or ground may
also function as a read-only memory. While such ROM may
be present, ROM 1s not required for storing boot code or
booting instructions. A few bytes or more of ROM may be
thus present for other purposes.

Mode logic could sense the state of a pin only at power-on
rather than sense the state of a dedicated pin. A certain com-
bination or sequence of states of pins could be used to 1mitiate
a mode change, or an internal register such as a configuration
register could set the mode.

The microcontroller and SD components such as the bus
interface, DMA, flash-memory controller, transaction man-
ager, and other controllers and functions can be implemented
in a variety ol ways. Functions can be programmed and
executed by the CPU or other processor, or can be 1mple-
mented 1n dedicated hardware, firmware, or 1n some combi-
nation. Many partitioning of the functions can be substituted.

Data and commands may be routed 1n a variety of ways,
such as through data-port registers, FIFO or other buffers, the
CPU’s registers and builers, DMA registers and buffers, and
flash registers and builers. Some bullers may be bypassed or
climinated while others are used or present. Virtual or logical
butlers rather than physical ones may also be used. Data may
be formatted 1n a wide variety of ways.

T'he host can transfer standard SD commands and data
transactions to the SD transceiver during a transaction. Other
transaction types or variations of these types can be defined
for special purposes. These transactions may include a flash-
controller-request, a flash-controller-reply, a boot-loader-re-
quest, a boot-loader-reply, a control-program-request, a con-
trol-program-reply, a flash-memory-request, and a flash-
memory-reply. The flash-memory request/reply may further
include the following request/reply pairs: flash ID, read,
write, erase, copy-back, reset, page-write, cache-write and
read-status.

The host may be a personal computer (PC), a portable
computing device, a digital camera, a phone, a personal digi-
tal assistant (PDA), or other electronic device. The partition
of SRAM among various functions could change over time.

Wider or narrower data buses and flash-memory blocks

could be substituted, such as 4, 5, 8, 16,32, 64, 128, 256-biut,
or some other width data channels. Alternate bus architec-
tures with nested or segmented buses could be used internal or
external to the microcontroller. Two or more internal and flash
buses can be used in the SD flash microcontroller to increase
throughput. More complex switch fabrics can be substituted
for the internal buses.

The flash mass storage chips or blocks can be constructed
from any flash technology including multi-level-logic (MLC)
memory cells. Data striping could be used with the flash mass
storage blocks 1n a variety of ways, as can parity and error-
correction code (ECC). Data re-ordering can be adjusted
depending on the data arrangement used to prevent re-order-
ing for overlapping memory locations. An SD/MMC switch
could be mtegrated with other components or could be a
stand-alone chip. The SD/MMC switch could also be inte-
grated with the SD single-chip flash device. While a single-
chip device has been described, separate packaged chips or
die may be stacked together while sharing I/0 pins, or mod-
ules may be used.

US 7,761,653 B2

11

The background of the invention section may contain back-
ground information about the problem or environment of the
invention rather than describe prior art by others. Thus inclu-
s1on of material 1n the background section 1s not an admission
of prior art by the Applicant.

Any methods or processes described herein are machine-
implemented or computer-implemented and are intended to
be performed by machine, computer, or other device and are
not intended to be performed solely by humans without such
machine assistance. Tangible results generated may include
reports or other machine-generated displays on display
devices such as computer momnitors, projection devices,
audio-generating devices, and related media devices, and
may include hardcopy printouts that are also machine-gener-
ated. Computer control of other machines 1s another a tan-
gible result.

Any advantages and benefits described may not apply to all
embodiments of the mvention. When the word “means™ 1s
recited 1n a claim element, Applicant intends for the claim
clement to fall under 35 USC Sect. 112, paragraph 6. Often a
label of one or more words precedes the word “means”. The
word or words preceding the word “means’ 1s a label intended
to ease referencing of claim elements and 1s not intended to
convey a structural limitation. Such means-plus-function
claims are intended to cover not only the structures described
herein for performing the function and their structural equiva-
lents, but also equivalent structures. For example, although a
nail and a screw have different structures, they are equivalent
structures since they both perform the function of fastening.
Claims that do not use the word “means™ are not intended to
fall under 35 USC Sect. 112, paragraph 6. Signals are typi-
cally electronic signals, but may be optical signals such as can
be carried over a fiber optic line.

The foregoing description of the embodiments of the
invention has been presented for the purposes of 1llustration
and description. It 1s not intended to be exhaustive or to limait
the invention to the precise form disclosed. Many modifica-
tions and variations are possible in light of the above teaching.
It 1s intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended
hereto.

We claim:
1. A dual-booting flash microcontroller comprising:

a flash bus for connecting to a flash-memory chip, the flash
bus carrying address, data, and commands to the flash-
memory chip;

microcontroller boot code stored in the flash-memory chip
in a first block;

host boot code stored 1n the flash-memory chip 1n a host-
boot block:

a static random-access memory (SRAM) buffer;

a central processing unit (CPU) for executing instructions
read from the SRAM bufler;

a host interface for connecting to an external host over a
host bus:

a flash-memory interface for generating flash-control sig-
nals and for buffering commands, addresses, and data to
the flash bus, and for reading and writing the SRAM

butter;

a boot-loader state machine, activated by a reset signal, for
activating the flash-memory interface to read the micro-
controller boot code from the flash-memory chip, the
boot-loader state machine writing the microcontroller

boot code to the first block 1n the SRAM buftfer:

10

15

20

25

30

35

40

45

50

55

60

65

12

a mapping table storing mapping entries each having a
logical address from the external host and a physical
address of corresponding data stored in the flash-
memory chip; and

an 1nitial mapping entry storing a first-reset-read address
generated by the external host while the microcontroller
boot code 1s being executed by the CPU;

wherein the microcontroller boot code executed by the
CPU activates the host interface to send the host boot
code to the external host,

whereby the initial mapping entry 1s generated from the
first-reset-read address during booting of the dual-boot-
ing tlash microcontroller.

2. The dual-booting flash microcontroller of claim 1 turther

comprising:

flash parameter registers for storing flash parameters indi-
cating access timing and structure of the flash-memory
chip;

wherein the boot-loader state machine reads a flash 1den-
tifier from the flash-memory chip to generate the flash
parameters.

3. The dual-booting flash microcontroller of claim 2 further

comprising;

a flash-reset generator, activated by the boot-loader state
machine, the flash-reset generator generating a flash
reset command applied to the flash-memory chip.

4. The dual-booting flash microcontroller of claim 2

wherein the host interface further comprises:

a clocked-data interface to the host bus that connects to the
external host;

a bus transceiver for detecting and processing commands
sent over the host bus;

a builer for storing data sent over the host bus.

5. The dual-booting flash microcontroller of claim 1 further

comprising;

a checksum generator that generates a final running check-
sum from bytes read from the SRAM butfer; and

an error detector, coupled to the checksum generator, for
signaling an error when the final running checksum has
an error value.

6. The dual-booting tlash microcontroller of claim S further

comprising:

a cache 1n the SR AM bultler, the cache having tags and data
for caching data stored 1n the flash-memory chip.

7. A method for dual-booting a flash microcontroller and an

external host comprising:

applying power to the flash microcontroller that has a static
random-access memory (SRAM) buifer and a central
processing unit (CPU);

activating a state machine on the flash microcontroller to
read an 1nitial bootloader from a first page 1n a first block
of a flash memory coupled to the flash microcontroller
by a flash bus;

using the state machine to write the 1nitial boot loader to the
SRAM butier 1in the flash microcontroller:

resetting the CPU, causing the CPU to fetch mstructions of
the 1nitial boot loader stored 1n the SRAM buller;

executing on the CPU the 1nitial boot loader by fetching
instructions in the initial boot loader from the SRAM
bufter;

reading a next page from the flash memory after the first
page and writing the next page to a buller area of the
SRAM butfer as the initial boot loader 1s executed;

continuing to read next pages from the tlash memory and
copy the next pages to the SRAM buller as the initial
boot loader 1s executed until all pages of an extended
boot code have been copied to the SRAM;

US 7,761,653 B2

13

transferring execution from the iitial boot loader to the
extended boot code 1n the SRAM butter;

executing on the CPU the extended boot code and a control

program 1n the extended boot code by fetching nstruc-
tions 1n the extended boot code from the SRAM buftter:

reading a host-boot block from the tlash memory after the
extended boot code and writing the host-boot block to
the SRAM buttfer as the extended boot code 1s executed

until an external-host control program has been copied
to the host-boot block in the SRAM buiter;

transferring execution from the control program in the
extended boot code to the external-host control program
by executing a last instruction 1n the extended boot code
that causes the flash microcontroller to send a ready
signal to the external host; and

sending the external-host control program read from the
host-boot block 1n the SRAM butfer to the external host
and executing the external-host control program on the
external host to reboot the external host,

whereby the flash microcontroller 1s booted by fetching
and executing instructions from the SRAM bufler and

the external host 1s booted by fetching and executing
instructions from host-boot block 1n the SRAM buliifer.

8. The method for dual-booting of claim 7 further compris-
ng:
receiving a first-reset address from the external host while

the CPU 1n the flash microcontroller 1s executing boot
code; and

creating a first entry 1in a mapping table, the first entry
storing the first-reset address as a logical address, and
storing an address of the host-boot block 1n the SRAM

butler as a physical address for the first entry,

whereby the first entry for the host-boot block 1s automati-
cally generated during booting.

9. The method for dual-booting of claim 7 further compris-
ng:
generating a running checksum as boot code 1s read from
the flash memory 1nto the SRAM butter;

generating a final running checksum as a stored checksum
at an end of the boot code 1s read from the flash memory;
and

generating an error when the final runnming checksum 1s
non-zero.
10. The method for dual-booting of claim 9 further com-
prising:
reading a backup copy of the boot code from the flash
memory when the final running checksum 1s non-zero.

11. The method for dual-booting of claim 7 further com-
prising;:

sending a flash-reset command to the flash memory when
the state machine 1s executing;

reading a flash i1dentifier from the flash memory after the
flash-reset command 1s sent;

using the flash identifier to generate flash parameters; and

writing the flash parameters to tflash parameter registers in
the flash microcontroller.

12. The method for dual-booting of claim 11 further com-
prising:
upgrading boot code stored 1n the flash memory by:

locating an older copy of the boot code stored 1n an upgrad-
ing block in the flash memory;

erasing the older copy 1n the flash memory; and

writing an upgraded copy of the boot code to the upgrading
block.

10

15

20

25

30

35

40

45

50

55

60

65

14

13. The method for dual-booting of claim 12 further com-
prising:
verilying the upgraded copy by reading the upgraded copy

of the boot code from the upgrading block to generate a
final running checksum; and

repeating erase and writing of the upgrading block when
the final runming checksum 1s non-zero.

14. A dual-device booting flash microcontroller compris-
ng:
external host interface means for connecting to an external
host:;

flash bus means for connecting to a flash memory, the tlash
bus means carrying address, data, and commands to the
flash memory;

flash-memory controller means for generating flash-con-

trol signals and for buffering commands, addresses, and
data to the flash bus means;

volatile buffer means for storing instructions in a volatile
memory;

external-host boot sequence means, stored in the flash
memory, for transier to the external host over the exter-
nal host interface means, wherein the external-host boot
sequence means contains instructions for execution by
the external host after the external host 1s re-booted:

processor means for fetching and executing instructions
from the volatile buffer means:

extended-local boot sequence means, stored in the tlash
memory, for instructing the processor means to read the
external-host boot sequence means from the flash
memory and to write the external-host boot sequence
means 1nto the volatile bufler means:

initial boot loader means, stored in the flash memory, for
instructing the processor means to read the extended-
local boot sequence means from the flash memory and to
write the extended-local boot sequence means into the
volatile buffer means; and

hardwired initializer means, activated by a reset signal, for
activating the flash-memory controller means to read the
init1al boot loader means from the flash memory, and for
writing the 1itial boot loader means as first instructions
to the volatile bulfer means.

15. The dual-device booting tlash microcontroller of claim
14 further comprising:

flash parameter register means for storing flash parameters

indicating timing and access specifications of the flash
memory; and

parameter write means, activated by the hardwired initial-
1zer means, for reading a flash 1dentifier from the flash
memory, for using the flash identifier to generate flash
parameters, and for writing the tlash parameters to the
flash parameter register means;

wherein the flash-memory controller means reads the flash
parameters from the flash parameter register means to
generate flash-control signals that meet the timing and
access specifications of the flash memory,

whereby flash parameters are extracted during initializa-
tion.

16. The dual-device booting tlash microcontroller of claim
14 further comprising:;

checksum means for generating a running checksum when
boot code 1s read from the flash memory, wherein the

US 7,761,653 B2

15

boot code comprises the external-host boot sequence
means or the extended-local boot sequence means;

verily means for comparing the running checksum atter the
boot code has been read from the flash memory to a valid
checksum value, and for signaling an error when the
valid checksum value 1s not generated by the checksum
means; and

address means, activated by the error signaled by the verity
means, for switching an address to point to an alternate
copy of the boot code 1n the tlash memory.

17. The dual-device booting flash microcontroller of claim
14 wherein the 1nitial boot loader means further comprises:

an 1nitial jump instruction that 1s executed before other
instructions 1n the initial boot loader means, the initial
jump 1nstruction causing the processor means to fetch
subsequent instructions 1n the nitial boot loader means

from a jump target address 1n the volatile bulfer means.

18. The dual-device booting flash microcontroller of claim
14 further comprising:

reset means for resetting the processor means to begin
fetching and executing 1nstructions from the initial boot
loader means stored in the volatile bulfer means, the
reset means activating the processor means 1n response
to the hardwired 1nitializer means.

5

10

15

20

16

19. The dual-device booting tlash microcontroller of claim
14 further comprising:;

mapping table means for storing mapping entries that asso-
ciate a logical address from the external host with a
physical address 1n the flash memory or in the volatile
buffer means;

first read reset means for receiving a first read reset address
from the external host and for storing the first read reset
address as the logical address 1 a first entry in the
mapping table means; and

matching means for writing an address of the external-host
boot sequence means stored 1n the volatile buifer means
as the physical address for the first entry 1in the mapping,
table means,

whereby the first entry 1s generated automatically from the
first read reset address.

20. The dual-device booting flash microcontroller of claim

19 further comprising:

external ready means, activated when the external-host
boot sequence means has been loaded 1nto the volatile
buffer means, for activating the external host to re-boot
and fetch and execute instructions from the external-host
boot sequence means stored in the volatile buifer means,

whereby the external host 1s also re-booted.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

