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PARENT-CHILD QUERY INDEXING FOR
XML DATABASES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application 1s a continuation application of and claims
priority to U.S. Non-Provisional Application No. 10/462,019,
filed on Jun. 13, 2003, entitled “PARENT-CHILD QUERY
INDEXING FOR XML DATABASES, which claims the
benefit of U.S. Provisional Application No. 60/389,066, filed
Jun. 13, 2002, entitled “PARENT-CHILD QUERY INDEX-
ING FOR XML DATABASES,” the entire disclosures of
which are herein incorporated by reference for all purposes.
The present disclosures are related to the following com-
monly assigned co-pending U.S. Patent Applications:

U.S. patent application Ser. No. 10/462,100, filed Jun. 13,
2003, entitled “SUBTREE-STRUCTURED XML DATA-
BASE” (hereinatfter “Lindblad I-A”);

U.S. patent application Ser. No. 10/462,023, filed Jun. 13,
2003 |, entitled “XML DB TRANSACTIONAL UPDATE
SYSTEM” (heremafter “Lindblad II1I-A”); and

U.S. patent application Ser. No. 10/461,933, filed Jun. 13,
2003 , entitled “XML DATABASE MIXED STRUCTURAL-
TEXTUAL CLASSIFICATION SYSTEM” (hereinafter
“Lindblad IV-A”);

[T]

The respective disclosures of these applications are mncorpo-
rated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

The present mvention generally relates to accessing data
and more specifically to retrieving elements ol documents
using step queries generated from a query.

Many languages, such as Extensible Markup Language
(XML), define rules that are used for structuring data. An
XML document 1s created using the rules to structure data and
includes two parts: the marked up document and the docu-
ment schema. The marked up part of the document encodes a
description of the document’s storage layout and logical
structure. The schema part specifies constraints that define
XML document structures.

XML documents are made up of storage units called ele-
ments, which may be nested to form a hierarchical structure.
An element may contain either parsed or unparsed data.
Parsed data 1s made up of characters, some of which form
character data, and some of which form the markup; unparsed
data 1s data 1n 1ts native format. Also, XML elements may
have associated attributes, which may be referred to as name-
value pairs. Elements and attributes are described in XML
schema where the schema includes, for each element thatmay
occur 1n the document, a name, the type, the set of attributes,
and the set of allowable constituent elements. The relations
are represented 1n a graph with one vertex for each element
name, and one edge from an element to each possible con-
stituent.

In managing XML documents, retrieving elements in the
documents for reading or reformatting 1s often necessary.
Accordingly, several query languages have been proposed for
searching for and retrieving elements in the XML documents.
For example, XQuery, a language dertved from an XML
query language Quilt and borrowing features from other lan-
guages, including XPath, 1s used for accessing elements 1n an
XML document. XQuery accesses an element using a feature
from XPath called an XPath location path expression, which
specifies a pattern of elements within the XML document. For
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2

example, a query may be of the form A/B/C/D, and 1s inter-
preted to specily a pattern of the elements A, B, C, and D
within the structure of the XML document. In order to find the
desired element D, a system traces the hierarchy of the XML
document. The system finds in order, all instances of the
element A, all instances of the element B related to element A,
all instances of the element C related to the A/B group, and all
instances of the element D related to the A/B/C group. Thus,
the system processes the XQuery command sequentially,
starting from the first element and then to each subsequent
clement. This method of accessing elements in an XML docu-
ment becomes time consuming and requires extensive com-
puting power, especially when an element 1s deeply nested in
a hierarchical XML document or a query includes a long path
of elements.

BRIEF SUMMARY OF THE INVENTION

In one embodiment of the present invention, a method for
processing queries for a document of elements 1s provided.
The document includes a plurality of subsections where each
subsection includes at least a portion of elements 1n the docu-
ment. The method comprises: recerving a query for a path of
clements 1n the document of elements; determinming a plural-
ity of step queries from the query, each step query including
at least a part of the path of elements; for each step query in the
plurality of step queries, determining one or more subsections
that include elements that correspond to a step query; and
determining at least one subsection that includes the path of
clements of the query. In one embodiment, a result for the
query 1s generated using the at least one subsection.

A further understanding of the nature and advantages of the
invention herein may be realized by reference of the remain-
ing portions in the specifications and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s anillustration of a simple XML document 1includ-
ing text and markup.

FIG. 2 1s a schematic representation of the XML document
shown 1 FIG. 1; FIG. 2A 1llustrates a complete representa-
tion the XML document and FIG. 2B 1llustrates a subtree of
the XML document.

FIG. 3 1s a schematic representation of a more concise
XML document.

FIG. 4 illustrates a portion of an XML document that
includes tags with attributes; FIG. 4A shows the portion 1n
XML format; FIG. 4B 1s a schematic representation of that
portion 1n graphical form.

FIG. 5 shows a more complex example of an XML docu-
ment, having attributes and varying levels.

FIG. 6 1s a schematic representation of the XML document
shown 1n FIG. 5, omitting data nodes.

FIG. 7 1illustrates a possible decomposition of the XML
document illustrated 1n FIGS. 5-6.

FIG. 8 illustrates the decomposition of FIG. 7 with the
addition of link nodes.

FIG. 9 illustrates an XQuery server (XQE) according to
one embodiment;

FIG. 10 illustrates a flow chart for a process for generating,
database according to one embodiment; and

FIG. 11 1s a flow chart of a process for generating a result
for query according to one embodiment.

FIG. 12 depicts a PostinglList that may be stored using the
structure shown 1n FIG. 10 according to one embodiment of
the present invention.
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FIG. 13 depicts a Postinglist with corresponding scores
for each subtree ID according to one embodiment of the
present invention.

FIGS. 14A-14E depict PostinglList structures for each sub-
tree according to one embodiment of the present invention.

FIG. 15A shows a false positive match and FIG. 15B shows
a positive match.

DETAILED DESCRIPTION OF THE INVENTION

This detailed description 1llustrates some embodiments of
the invention and variations thereot, but should not be taken
as a limitation on the scope of the invention. In this descrip-
tion, structured documents are described, along with their
processing, storage and use, with XML being the primary
example. However, 1t should be understood that the invention
might find applicability 1n systems other than XML systems,
whether they are later-developed evolutions of XML or
entirely different approaches to structuring data.

Subtree Storage

Subtree storage 1s described 1n this section, with following
sections describing apparatus, methods, structures and the
like that might use and store subtrees. Subtree storage is
explained with reference to a simple example, but it should be
understood that such techniques are equally applicable to
more complex examples.

FI1G. 1 illustrates an XML document 30, including text and
markup. FIG. 2A 1llustrates a schematic representation 32 of
XML document 30, wherein schematic representation 12 1s a
shown as a tree (a connected acyclic simple directed graph)
with each node of the tree representing an element of the
XML document or an element’s content, attribute, the value,
etc.

In a convention used for the figures of the present applica-
tion, directed edges are oriented from an initial node that 1s
higher on the page than the edge’s terminal node, unless
otherwise indicated. Nodes are represented by their labels,
often with their delimiters. Thus, the root node 1n FIG. 2A 1s
a “citation” node represented by the label delimited with
“< >”, Data nodes are represented by rectangles. In many
cases, the data node will be a text string, but other data node
types are possible. In many XML files, it 1s possible to have a
tag with no data (e.g., where a sequence such as “<tag></
tag>" exists in the XML file). In such cases, the XML file can
be represented as shown in FIG. 2A but with some nodes
representing tags being leal nodes in the tree. The present
invention 1s not limited by such variations, so to focus expla-
nations, the examples here assume that each “tag” node 1s a
parent node to a data node (illustrated by arectangle) and a tag,
that does not surround any data 1s 1llustrated as a tag node with
an out edge leading to an empty rectangle. Alternatively, the
trees could just have leal nodes that are tag nodes, for tags that
do not have any data.

As used herein, “subtree” refers to a set of nodes with a
property that one of the nodes 1s a root node and all of the
other nodes of the set can be reached by following edges 1n the
orientation direction from the root node through zero or more
non-root nodes to reach that other node. A subtree might
contain one or more overlapping nodes that are also members
of other “inner” or “lower” subtrees; nodes beyond a sub-
tree’s overlapping nodes are not generally considered to be
partof that subtree. The tree o F1G. 2 A could be a subtree, but
the subtree of FIG. 2B 1s more 1llustrative in that 1t 1s a proper
subset of the tree illustrated 1n FIG. 2A.

To simplity the following description and figures, single
letter labels will be used, as 1n FIG. 3. Note that even with the

10

15

20

25

30

35

40

45

50

55

60

65

4

shorted tags, tree 35 1n FIG. 3 represents a document that has
essentially the same structure as the document represented by
the tree of FIG. 2A.

Some nodes may contain one or more attributes, which can
be expressed as (key, value) pairs associated with nodes. In
graph theory terms, the directed edges come 1n two flavors,
one for a parent-child relationship between two tags or
between a tag and its data node, and one for linking a tag with
an attribute node representing an attribute of that tag. The
latter 1s referred to herein as an “attribute edge”. Thus, adding
an attribute (name, value) pair to an XML file would map to
adding an attribute edge and an attribute node, followed by an
attribute value node to a tree representing that XML file. A tag
node can have more than one attribute edge (or zero attribute
edges). Attribute nodes have exactly one descendant node, a
value node, which 1s a leal node and a data node, the value of
which 1s the value from the attribute par.

In the tree diagrams used herein, attribute edges sometimes

are distinguished from other edges 1n that the attribute name
1s 1ndicated with a preceding “@”. FIG. 4A 1llustrates a
portion of XML markup wherein a tag b has an attribute name
of “K”” and a value of “V”. FIG. 4B 1llustrates a portion of a
tree that 1s used to represent the XML markup shown in FIG.
4 A, including an attribute edge 36, an attribute node 37 and a
value node 38. In some 1nstances, tag nodes and attribute
nodes are treated the same, such as indexing sequences and
the like, but other times are treated differently. To easily
distinguish tag nodes and attribute nodes 1n the illustrated
trees, tag nodes are delimited with surrounding angle brackets
(“<>"), while attribute nodes are be limited with an initial
“@”.
FIG. 5 et seq. illustrate a more complex example, with
multiple levels of tags, some having attributes. FI1G. 5 shows
a multi-level XML document 40. As 1s explained later below,
FIG. 5 also includes indications 42 of where multi-level XML
document 40 might be decomposed into smaller portions.
FIG. 6 illustrates a tree 50 that schematically represents
multi-level XML document 40 (with a data nodes omitted).

FIG. 7 shows one decomposition of tree 50 with subtree
borders 52 that correspond to indications 42. Each subtree
border 52 defines a subtree; each subtree has a subtree root
node and zero or more descendant nodes and some of the
descendant nodes might 1n turn be subtree root nodes for
lower subtrees. In this example, the decomposition points are
entirely determined by tag labels (e.g., each tag with a label
“Cc” becomes a root node for a separate subtree, with the
original tree root node being the root node of a subtree extend-
ing down to the first instances of tags having tag labels “c”).
In other examples, decomposition might be done using a
different set of rules. For example, the decomposition rules
might be to break at either a“c”’ tag or an “I”’ tag, break ata “d”
tag when preceded by an “r” tag, etc. Decomposition rules
need not be specific to tag names, but can specity breaks upon
occurrence of other conditions, such as reaching a certain size
of subtree or subtree content. Some decomposition rules
might be parameterized where parameters are supplied by
users and/or administrators (e.g., “break whenever a tag 1s
encountered that matches a label the user specifies”, or more
generally, when a user-specified regular expression or other
condition occurs).

Note from FIG. 7 that subtrees overlap. In a subtree decom-
position process, such as one prior to storing subtrees 1 a
database or processing subtrees, 1t 1s often useful to have
nonoverlapping subtree borders. Assume that two subtrees
overlap as they both include a common node. The subtree that
contains the common node and parent(s) of the common node
1s referred to herein as the upper overlapping subtree, while
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the subtree that contains the common node and child(ren) of
the common node 1s referred to herein as the lower overlap-
ping subtree.

FIG. 8 1llustrates one approach to having nonoverlapping,
subtrees, namely by introducing the construct of link nodes
60. For each common node, an upper link node 1s added to the
upper subtree and a lower link node 1s added to the lower
subtree. These link nodes are shown in the figures by squares.
The upper link node contains a pointer to the lower link node,
which 1n turn contains a pointer to the root node of the lower
overlapping subtree (which was the common node), while the
lower link node contains a pointer to the upper link node,
which 1n turn contains a pointer to the parent node of what
was the common node. Each link node might also hold a copy
of the other link node’s label possibly along with other infor-
mation. Thus, the upper link node may hold a copy of the
lower subtree’s root node label and the lower link node may
hold a copy of the upper subtree’s node label for the parent of
what was the common node.

An XQuery may include an XPath location that indicates a
path expression of elements. XPath location path expressions
have the form “name_a/name b/ .. ./name_z”, and specily a
pattern of elements within the XML document hierarchical
element structure. The terms name_a, name b, . . . refer to
clements or attributes of the XML document. The XPath
location path expression 1s used to specily a desired element
that 1s to be retrieved. For example, 1t all authors’ last names
appearing within a “citation” fragment are desired, an XPath
location path pattern 1s A/C/E or citation/author/last. For dis-
cussion purposes, the queries processed will be XQuery and
XPath queries for XML documents; however, 1t will be under-
stood that a person skilled in the art will appreciate other
queries that may be processed for other documents. Thus,
embodiments of the present invention are not limited to XML
documents and XQueries.

FI1G. 9 1llustrates an XQuery server (XQE) 200 according,
to one embodiment. XQE 200 includes a document processor
204 and a query processor 218. Document processor 204
generates step queries and step query results from documents
202 and stores the step queries and step query results 1n a
database 212. In one embodiment, documents 202 are parsed
documents. For example, parsed documents are created by an
XML parsing process. The parsing process accepts XML
textual inputs (serialized XML), analyzes the element struc-
ture of these documents, and outputs a data structure that
represents the mput document as a linked collection of ele-
ment nodes linked to attribute nodes and child element nodes.
The parsed XML document also may contain text nodes,
processing instruction nodes, and comment nodes.

Overview

Query processor 218 recerves a query 219 for elements in
documents 202 and generates step queries from a query 219.
In one embodiment, query 219 1s a parsed query. Parsed
queries are created by an XQuery parsing process. The
XQuery parsing process accepts XQuery textual inputs, ana-
lyzes their grammatical structure, and outputs a data structure
that represents the Xquery query as a linked collection of
expression nodes. For example, each query expression of the
form ‘A op B’ 1s represented as an op-node with two children
nodes representing the subexpressions A and B. The results
from the step queries are retrieved from database 212 and a
result for query 219 1s determined. For example, an intersec-
tion of the results 1s taken to generate the result for query 219.

Document Processing
XQE 200 receives documents 202, such as the XML docu-
ment of FIG. 1. Documents 202 are passed to a document
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processor 204, which includes a step query generator 206, a
canonicalizer 208, a hash key generator 210, and a step query
result generator 214. After recerving documents 202, step
query generator 206 generates step queries from documents
202. The step queries are patterns from the hierarchical struc-
ture of elements 1n documents 202. For example, the step
queries are relationships between elements that may be part
of possible queries for elements in document 202. The num-
ber of steps, K, 1n a query represents a number of levels of
relationships between elements. A query may be for any
number of K steps. A larger K means faster execution but
more space 1s required to store the larger step queries. A
smaller K means slower execution but less space 1s required.
For example, a two-step query may be a query for a parent
node and 1ts child node and a three-step query may be a query
for a parent, 1ts child, and the child’s child. In one embodi-
ment, one-step, two-step, three-step, and four-step queries
may be generated from elements in documents 202. These
step queries may take the form of these patterns for:

one-step queries:
(a) elem,
(b) word::wrd;

two-step queries:

(¢) elem/word::wrd,

(d) elem/word::[string],
(e) elem/child,

(1) elem/@attr;

three-step queries:
(g) eleml@attr/word::wrd,
(h) elem/@attr/word::[string],
(1) elem/child/word::wrd,
(1) elem/child/word::[string],
(k) parent/elem/child;

and four-step queries:

(1) elem/child/(@attr/word::wrd,

(m) elem/child/@attr/word::[string],
(n) parent/elem/child/word:
(0) parent/elem/child/word::[string],

wrd,

(p) grandp/parent/elem/child.

It will be understood that step queries are not limited to the
above queries and other step queries may be used and dertved
from documents 202.

Once the step queries are generated from documents 202,
the step queries are passed to canonmicalizer 208. Canonical-
1zer 208 reduces each step query to 1ts canonical form. For
example, the one-step queries are reduced to the following
canonical forms:

-> elem,
-> wrd;

(a) elem

(b) word::wrd

the two-step queries to the following canonical forms:

-> elem#word (“wrd™),
-> elem#fstring,
-> elem/#child,

-> elem#/ (@#attr;

(¢) elem/word::wrd

(d) elem/word::[string]

(e) elem/child
(1) elem/(@attr
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the three-step queries to the following canonical forms:

(g) elem/(@attr/word::wrd
(h) elem/(@attr/word::[string]
(1) elem/child/word::wrd

(1) elem/child/word::[string]
(k) parent/elem/child

-> elem#/ (@#Hattr#word(“wrd™),
-> elem#/ (@#Hattr#string,

-> elem#/#child#word(“wrd”),
-> elem#/#child#string,

-> parent#/#elem#/#child;

and the four-step queries to the following canonical forms:

(1) elem/child/@attr/word::wrd-> elem#/#child/(@#attré#word(“wrd™),
(m) elem/child/@attr/word::[string] -> elem#/#child/(@#atti#string,

(n) parent/elem/child/word::wrd -> parent#/#elem#/#child#word(“wrd”),
(0) parent/elem/child/word::[string] -> parent#/elem#/#child#string,

(p) grandp/parent/elem/child -> grandp#/parent#/#elem#/#child;

Once the step queries are reduced to their canonical fonm,
the step queries are passed to hash key generator 210.

Hash key generator 210 generates hash keys for each
canonical fonm that may be used for indexing results for each
step query. Although hash keys are described, 1t should be
understood that any reference to a storage location may be
used. In one embodiment, a 64-bit hash value 1s computed for
cach canonical form. Individual names such as parent, ele-
ment, and child, as well as the literals word (** ), /(@, and/
generate hash values by direct application of a 64-bit hashing
function 1n hash key generator 210. Also, terms (tokens)

separated by the hash mark “#” may be composed by applying
cither the formula A#B=hash64(A)*5 +hash64(B), or the for-

mula A#B=hash64(hash64(A), B), where hash64 represents
the hashing function. The latter formula expresses a general
compositional mechanism for forming the hash key for two
tokens using previously computed hash values for the first
token. Hash key generator 210 uses hash value caches and
hash composition to compute hash keys for all the indexable
step queries.

For example, the hash key for elem#/ (@attr 1s computed by
the hashing function as:

hash64(elem)*3+(hash64(/(@ )+hash64(attr));

and the hash key for A#B#C 1s computed as:

hash64(hash64(hash64(A), B), C)

and the hash key for A#B#C# . .

hash64(hash64( . ..
C),...,Y),2).

. #Y#Z. 1s computed as

(hash64(hash64(hash64(A), B),

Additionally, the hash key for a string value, such as:
string=word_1 word_2 . . . word_n, 1s computed by compo-
sition across the word tokens within the string. Thus, the hash
key 1s computed as follows:

( . . . (hash64(word_1)*5+hash64(word_2)*
+. .. )*5+hash64(word_n)).

The hash keys generated from hash key generator 210 are
stored 1n an index 213 of database 212. Also, the hash keys for
cach canonical step query are used to access step query results
stored 1n index 213 of database 212. The step query results are
generated by step query result generator 214. Step query
result generator 214 receives the step queries generated from
step query generator 206 and generates the results for each
step query using the hierarchical structure of documents 202
corresponding to the step query. In one embodiment, the step
query results may be the element(s) corresponding to the step
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query. In another embodiment, the step query results for a step
query are one or more sub-tree IDs corresponding to the XML
fragment for the step query. The step query and correspond-
ing step query results may be stored as a PostinglList, which
will be described below. Additionally, a frequency count of
how many times the step query result occurs within the XML
fragment 1s connected with the step query result. Once the
results for the step queries are determined, step query result
generator 214 stores the results 1n index 213. In one embodi-
ment, index 213 includes, but 1s not limited to, the results of
all atomic one-step queries of the forms:

(a) find all elements with a given name,

(b) find all elements containing a given word;

in addition, 1t includes the results of all two-step queries of the
> forms:
(c) find all elements of a given name whose text content
contains a grven word,
(d) find all elements of a given name whose text content
equals a given string,
(¢) find all elements of a given name with a child element of
a given name,
(1) find all elements of a given name with an attribute of a
given name;

in addition, it includes the results of all three-step queries of
the forms:
(g) find all elements of a given name with an attribute of a
given name whose value contains a given word,
(h) find all elements of a given name with an attribute of a
given name whose value equals a given string,
(1) find all elements of a given name with a child element of
a given name whose text content contains a given word,
(1) find all elements of a given name with a child element of
a given name whose text content equals a given string,
(k) find all elements of a given name with a parent of a
given name and a child element of a grven name;

and 1n addition, 1t includes the results of all three-step queries
of the forms:

(1) find all elements of a given name with a child element of
a given name with an attribute of a given name whose
value contains a given word,

(m) find all elements of a given name with a child element
of given name with an attribute of a given name whose
value equals a given string,

(n) find all elements of a given name with a parent element
of a given name with a child element of a given name
whose text content contains a given word,

(0) find all elements of a given name with a parent element
of a given name with an element of a given name with a
child element of a given name whose text content equals
a given string,

(p) find all elements of a given name with a grandparent
clement of a given name with a parent element of a given
name with an element of a given name and a child
clement of a given name;

It will be understood that the step query results are not
limited to the above possibilities and may store atomic query
results up to any fixed finite level.

In one embodiment, index 213 1s an inverted file index. The
inverted file mndex maps terms to Postinglists. The terms
correspond to textual units extracted from a collection of
documents 202 or document fragments from documents 202,
and Postinglists describe where and how often each term
appeared within a given document or document fragment
from documents 202. In one embodiment, ‘terms’ are the
atomic text units of document 202. Terms are generated by
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‘tokenizing’ the text content of the document. Text 1s token-
1zed through a process of table lookup for each character to
determine 11 that character 1s a word constituent, white space,
or punctuation. Word constituent characters delimited by

either spaces or punctuation are accumulated as ‘tokens’ .
Canonicalized step queries are also terms.

In one embodiment, a hash key 1s stored 1n a memory-map
list index file 1n 1ndex 213 whose entries contain (key, offset)
pairs, where the offset describes the absolute location within
a Listdata file where the list of results for the step query may
be found. Thus, the Listdata file includes a reference to the
step query results. In one embodiment, the step query results
are stored as a compressed list of (subtree-1d, frequency-
count) pairs. A subtree-1d uniquely identifies the XML frag-
ment matching the atomic step query, and the frequency-
count describes the approximate number of times that the
match occurred within document 202 or the document frag-
ment of document 202.

In one embodiment, a list of results 1n the ListData file may
be referred to as the PostinglList. The Postinglist includes the
unique subtree-1d 1dentifier of the corresponding result of the
step query. Additionally, the Postinglist includes a score,
which 1s a normalized frequency count. For example, index
213 stores, for each term, at a location determined by the hash
key of that term, a Postinglist containing references to the
subtrees containing the term along with a normalized fre-
quency count (score) that approximates the number of occur-
rences of the term within the subtree. In one embodiment, the
sequence of nodes returned by the function search may be
ordered by a ‘relevance’ score. The relevance of a node to the
specified query 1s a complex function that depends on the
frequency the query terms appear in the text of the query
nodes, the frequency the query terms appear across the entire
database, and the quality score attached to a given node. The
quality score 1s further described in Linblad IV-A. In one
embodiment, the Postinglists are stored 1 a compressed
format. Although the Postingl.ist 1s described, 1t will be
understood that other lists may be used to store step query
results.

Each hash value provides an index into a memory-mapped
Listlndex file of fixed-length records. Each record contains a
pair including a hash key and a fixed-width file offset. The file
offset describes the location within a secondary ListData
heap file where the Postinglists are stored. Binary search
finds the (key, ofiset) pair within the Listindex file, then a
single random access 1/0 to the ListData file locates the first
block of Postingl.ist data. In most cases one data block con-
tains the entire Postinglist. But 1f not, and the Postingl ist
exceeds the s1ze of one data block, then subsequent sequential
I/0’s fetch the remainder of the list. The number of I/O 1s
proportional the length of the Postingl.ist divided by the
packing factor—that 1s, the number of individual postings per

block.

In one embodiment, the format uses unary-log-log variable
length bit encodings for subtree 1d’s and scores. Furthermore,
both subtree 1d’s and scores may be kept in a differential form
where each Posting stores only the encoded difference from
the preceding subtree 1d and score. Large Postingl ists typi-
cally have long strings of consecutive subtree 1d’s with scores
that are mostly equal. The Postinglist formats encode the
consecutive runs using only one or two bits for the delta(id)
(the 1d differential), and delta (score) (the score differential).
Large Postinglists are stored with markers containing suifi-
cient information to allow a search process to skip forward
across blocks of Postings (a “skip-list” structure). The skip-
list block size a configurable parameter.
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For any choice of the skip-list block size parameter, three
cases may arise: (1) the Postingl ist size 1s less than fifteen, (2)
the PostinglList size 1s less than or equal to one block, and (3)
the Postinglist size exceeds a single block. In the following
description, the square brackets [ | indicate ‘unary-log-log
variable length bit encoding’. The parentheses indicate bit
fields of a specified size, (e.g., length(0:3) means a 4-bit
field). The notations {0} and {1 } indicate constant bits equal
to 0 and 1, respectively.

In case (1) the length, being less than 135, occupies four
leading bits, and the rest of the format 1s packed with variable-
length bit encodings of differential subtree 1d’s and scores:

length(0:3), [1d0], [score0],

1d1-1d0], [scorel-score(],
1d2-1d1], [score2-scorel],
1d3-1d2], [score3-score2],

In case (2), the four leading bits are all set to O, and the
format 1s:

101(0:3), [length],

1d0], [score0],

1d1-1d0], [scorel-score(],
1d2-1d1], [score2-scorel],
1d3-1d2], [score3-score?],

And 1n case (3), the four leading bits are all set to 1 and the
format is: {1}(0:3), [length], Block0 , Blockl, Block2, . ..

Each Block has the format:
maxSubtreelD[0:32], numPostings[0:15], numWords[0:

15],

1d0], [score0],

1d1-1d0], [scorel-score(],
1d2-1d1], [score2-scorel],
1d3-1d2], [score3-score?], . ..

MaxSubreelD bounds the ordinal size of any subtree 1d
appearing in the block; numPostings bounds the number of
Postings 1n the block and numWords 1s the size of the block 1n
32-bit words.

A search for a given subtree 1d proceeds by scanning down
the list: 1f maxSubreelD 1s smaller than the given 1d, then the
process skips forward to the start of the next block by incre-
menting the list offset by numWords.

The granularity of index 213 will now be described. More
details relating to index 213 and storage of subtree IDs are
disclosed 1n Linblad I-A. Index 213 stores the Sub’Tree 1ds.
The result of searching database 212 with step queries 1s a list
of SubTrees satistying the step queries. The system synthe-
s1Zes per-element search query results by loading whole Sub-
Trees into memory of XQE 200 and then seeking within the
SubTree for specific elements, attributes, text content, or any
of the combinations of elements, attributes and content
described above. The SubTree represents a unit of locality.
The mndexes are designed to speed up queries that can be
resolved by locating a contiguous fragment of the original
XML document and then navigating within that fragment.

In one example, referring to FIGS. 1 and 2, document
processor 204 may receive the document fragment of FIG. 1
and generate step queries of the form:

one step queries:
A.B,C,D.E,F; and
term_1, term_2, term_3, . . . for each term appearing 1n A,
B,C,...;

two-step queries:
A/B, A/C, A/D, C/E, and C/F, and
A/word(term_1), A/word(term_2), A/word(term_3), . . .,

T

three-step queries:
A/C/E, and A/C/F.
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Each of the above step queries may be assigned a hash
value and stored 1n index 213. The results of the step queries
are then computed and stored 1n step query database 216. The
hash value may then be used to look up the step query results,
which point to one or more sub-tree IDs for the XML frag-
ment corresponding to the step query. For example, the step
query A/B includes the sub-tree ID for the citation/title frag-
ment.

Query Processing

One embodiment of query processor 218, which includes
an optimizer 220, a step query generator 222, a composer 224,
and an intersector 226, will now be described. Query proces-
sor 218 receives query 219, generates step queries from query
219, uses the generated step queries to retrieve the pre-com-
puted step query results 1n database 212, and uses the step
queries to output a query result. Thus, when a query 1is
received for documents 202, the results for step queries gen-
crated from the query are already known.

After recerving query 219, query processor 218 sends
query 219 to optimizer 220, which may optimize the query 1f
necessary. The optimization process will be described in
more detail below. The optimized query 1s then sent to a step
query generator 222.

Step query generator 222 generates step queries from
query 219. As described above, with reference to step query
generator 206, step query generator 222 breaks query 219 into
step queries, such as one-step queries, two-step queries,
three-step queries, and four-step queries. For example, step
query generator 222 reduces or decomposes query 219 of a
form:

aa_l/aa_2/aa_3/aa_4/ . . . /aa_(n-1)aa_n (where the
cllipses indicate that any finite number of additional steps
may appear in the query)

to a sequence of two-step queries as follows:

aa__l/aa_2,aa 2/aa_3,aa_3/aa_4,...,aa (n-2)/
aa (n-1), aa_(n-1)/aa_n.

Queries containing trailing attribute specifications, as in
aa_l1/aa_2/aa_3/aa_4/ .. ./(@aa_n, are reduced to a sequence
of two-step queries as follows:

aa_l/aa_2,aa 2/aa 3,aa 3/aa 4,...,aa (n-2)/
aa (n-1), aa_(n-1)/(@aa_n.

Queries containing trailing word specifications, as i aa_1/
aa_2/aa_3/.../aa_n/word::wrd, are reduced to a sequence of
two-step queries as follows:

aa_l/aa_2,aa 2/aa 3,...,aa_(n-1)/aa_n,aa n/
word::wrd.

Queries containing trailing attribute word specifications, as
n

aa_l/aa 2/aa 3/ /aa_(n-1)/(@aa_n/word::wrd, are
reduced to a sequence of two-step and three-step queries as
follows:

aa__l/aa_2, aa_2aa 3, . . . , aa_(n-2)/aa_(n-1),
aa _(n-1)/(@aa n/word::wrd.

The generated step queries are passed to composer 224,
which accesses database 212 to retrieve the results for the step
queries. In one embodiment, composer 224 may reduce the
step queries to their canonical form and generate a hash key
for the step query with methods as described above. Com-
poser 224 references the hash key values 1 index 213 to
retrieve the results from index 213. In one embodiment, the
results may be one or more sub-tree IDs for the elements. In
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another embodiment, the results may be the elements corre-
sponding to the step queries or all of the elements 1n each
subtree.

Intersector 226 detennines a result for the query using the
step query results. The result 1s one or more subtrees that
include all of the step queries. In one embodiment, one or
more subtree IDs are returned. In one example, intersector
226 takes the mtersection of the results of the step queries to
produce a result that includes a result for query 219. An
intersection of the results of the step queries may include
some additional unwanted results. A post-processing step
may be performed by 1ntersector 226 in which the unwanted
results are eliminated. For example, the post-processing step
matches each step query element of the intersection against
the original query. After post-processing, the query result 1s
outputted.

The optimization process implemented by optimizer 220
will now be described. Optimizer 220 may optimize query
119 by rewriting query 119 1n a form that may be used by step
query generator 222 to generate optimized step queries. For
example, optimizer 220 includes rewriting rules where que-
rics 119 are rewritten 1n terms of the pre-computed step
queries.

For example, optimizer 220 may rewrite path expressions
of the form aa_1//aa_2 by consulting a tree structure that
represents the set of relations among the elements described
for document 202 for which the query 1s intended. The /7
operator specifies the set of all nodes appearing below a given
clementnode 1n the document tree. For example, ‘A//B’ speci-
fies the set of all the element nodes labeled ‘B’ which are strict
descendants of ‘A’. In one embodiment, optimizer 220 refer-
ences elements described in XML schema where the schema
includes, for each element that may occur 1n the document, a
name, the type, the set of attributes, and the set of allowable
constituent elements. The relations are represented 1n a graph,
such as the one shown in FIG. 1, with one vertex for each
clement name, and one edge from an element to each possible
constituent.

(Given an XPath location path expression of the form aa_1//
aa_2, optimizer 220 attempts to determine a set of all possible
sequences that interpolate the *//”” (descendent-or-self::) step.
The ‘descendant-or-self::” operator specifies the set of all
nodes at or below a given node 1n the document tree. For
example, ‘A/descendant-or-self::B’ specifies the set of all
descendants, including ‘A’, of the element node ‘A’. For
example, referring to FIG. 2, the expression A//E may be
written as (A/B/E union A/C/E). In some cases, the XPath
location expression A//E may have an unlimited number of
legal expansions. In this case, optimizer 220 does not attempt
to rewrite the expression.

The optimized query 1s then passed to step query generator
222 for processing 1nto step queries. The results to the step
queries are retrieved as described above and the intersection
taken by intersector 226. In post-processing, contiguous por-
tions (maximal sequences of “/” separated steps) are pro-
cessed as described above. Then, the results for the contigu-
ous portions are then post-processed to verily the descendent
relation by following parent links for the residual *“//” steps.
For example, the location path expression A/C//B/E will be
optimized as the pair of index queries A/C, B/E and for each
node returned by the B/E parent links followed, parent links
are followed to verily that some ancestor appears 1n the node
set returned by A/C. The post-processing 1s done by creating,
an auxiliary hash index for the node 1ds occurring 1n A/C.

The post-processing step takes a sequence of subtree 1ds
returned by the query composer and intersector, and scans



US 7,756,858 B2

13

these subtrees for the purpose of resolving general XPath
location path expressions. A general XPath location path has
the following syntax:

Alp_11] . . . [p_la}yB[p_21] . . . [p_2b}
Clp_31]...[p_3¢c)/.../T[p_k1]...[p_kt]

or

Alp_11] . . . [p_la}yB[p_21] . . . [p_2b}
Clp_31]...[p_3c)/.../@T[p k1] ...[p_ki]

Eachof A, B,C, ..., T1sanelement label, and the last step
T may be either an element label, an attribute label, or a
non-element node type selector, e.g., ‘text( )’ for text nodes,
‘comment( )’ for comment nodes, and ‘pi1( )’ for processing,
instruction nodes. Each p_17 1s a predicate expression that
may involve as mputs additional (nested) XPath expressions,
or 1n the case of XQuery, variables from an enclosing scope.
The post-processing step starts with a set of nodes corre-
sponding to the last step. These are extracted from the sub-
trees appearing in the intersection of the pair step query
results. This 1s called the ‘candidate set’. For each node in the
candidate set, the post-processing step moves backwards
through the location path expression—that 1s, the chain of
ancestor nodes 1s obtained. (This may entail additional access
to the database subtree store.) For each ancestor chain, the
location path expression 1s tested 1n 1ts entirety, to verity that
the element node labels correspond, and then that each
sequence of step predicates p_kl, .. ., p_kj evaluates to ‘true’.
The post-processing algorithm 1s a ‘generate-and-test” algo-
rithm: for each element 1n the candidate set, a full path 1s
generated by following parent links, and then this path 1s
tested against the given location path expression in its
entirety. The post-processing generator does not evaluate
predicates for candidates whose ancestor chain fails to match
the node label pattern, (e.g.) A/B/C/ . .. /T. For example, the
location path query

AlpOlBlgO)VCr()J/@D

will be resolved as:

1. Composer 224 takes step queries and forms the set of index
search queries:

Q1 : element-child-descendant-query(“A”, “B”)

Q2 : element-child-descendant-query(“B”, “C”)

Q3 : element-attribute-query(*C”, “D”)

The first step query Q1 corresponds to the canonicalized
term A#/#B, the second step query Q2 corresponds to the
canonicalized term B#/#C, and the third step query Q3 cor-
responds to the canonicalized term C##D. Q1 and Q2 are
‘descendant-queries’, which means that the queries specily a
search among the descendants of nodes matching the given
pattern. In this example, the first step query ‘xqge:element-
child-descendant-query(“A”, “B”)’ specifies a search among
the descendants of B within subtrees containing the node
pattern ‘A/B’.

2. Intersector 226 recerves a search of:

search(and-query(Q1, Q2, Q3), “C”).

A search 1s performed for the intersection of Q1, Q2, and
03, which returns a sequence of nodes labeled C. The Post-
inglLists for the canonicalized terms corresponding to Q1, Q2,
and Q3 are retrieved from mdex 213, and then scanned for
common subtree 1ds. The Postinglist skip list structure is
used to prune the search for common subtree 1ds. A Post-
inglist block will be skipped over in the event that the ‘max-
SubTreelD’ stored in the block 1s actually smaller than any of
the currently smallest remaining subtree 1d in the other Post-
inglists.
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3. Post-processing:;

For each node c labeled C, generate the ancestor path going,
back two steps, and check 1f grandparent(c)=A, parent(c)=B.
If not, discard ¢, and loop around to processes the next node.
If yes, then test the entire XPath expression

Alp_11] . . . [p_la}/Bp_21] . . .
Clp_31]...[p_3al/@D

[p_2a)/

by evaluating the predicate expressions from leftmost (high-
est) to rightmost (lowest) step, as specified 1n the XPath
standard. In this example, the step tests include a test for an
attribute node labeled ‘D’ following C”.

FIG. 10 illustrates a flow chart for a process for generating
database 212 according to one embodiment. In step S400,
relationships among elements in a document are computed. In
step S402, step queries are generated from the relationships
between the elements. For example, one-step, two-step,
three-step, and four-step queries are generated from the rela-
tionship of elements.

In step S404, the step queries are reduced to their canonical
form. In step S406, the process generates a hash key for each
canonical form of'the step queries. Additionally, 1n step S408,
results for the step queries are generated from the relationship
of elements. In one embodiment, the results represent one or
more subtree IDs for the elements relating to each step query.

In step S410, the step query results and the corresponding,
hash keys are stored in database 212.

FIG. 11 1s a flow chart of a process for generating a result
for query 119 according to one embodiment. In step S500,
query 119 1s recerved by XQE 200 at query processor 218. In
step S3502, a query may be optimized. In step S204, the
optimized query 1s then reduced into step queries.

In step S506, a hash key 1s generated for each of the step
queries. In step S508, database 212 1s accessed and step query
results are retrieved using the calculated hash key. For
example, a PostinglList may be retrieved.

In step S510, the itersection of the step query results 1s
taken and a query result 1s generated from the intersection.
For example, results from the Postingl.ist are subtree IDs.
The method determines matching subtree IDs where the
matching subtree IDs would include the step queries associ-
ated with the step query results.

In S512, the query result may be post-processed. In step
S514, the query result 1s outputted.

An example using an embodiment of the present invention
willnow be described. FIG. 12 depicts a PostinglList 1000 that
may be stored for the structure shown in FIG. 8 according to
one embodiment of the present invention. A plurality of step
queries 1002 are shown. Each step query represents a com-
bination of nodes shown 1n FIG. 8 and one or more subtree
IDs 1004 are associated with each step query 1002. For
example, the step query “c/a” 1s found 1n the subtrees “10”
and “30”.

For discussion purposes, the relationships that cross sub-
trees are shown without any link nodes, for example,
<e>—link node(c)—=link node(e)—=<c> 1s represented as
<g>—><c>. Also, the upper node 1n the relationship 1s used to
determine the subtree ID that 1s associated with step query.
For example, the step query <e>—link node(c)—link node
(e) —=<c> 1s associated with subtree “40”.

FIG. 13 depicts Postinglist 1000 with corresponding
scores for each subtree 1D according to one embodiment of
the present invention. As shown, each step query 1002 and
subtree ID 1004 pair has a score 1006 associated with it. Each
score 1006 represents a numeric score that measures the
relevance of step query 1002 to the step query in which 1t
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appears. In one embodiment, the score 1s computed by a
function proportional to the number of occurrences of the
term 1n the subtree divided by the total number of terms of any
kind appearing in the subtree and may be normalized.

FIGS. 14A-14E depict PostinglList structures for each sub-
tree according to one embodiment of the present mvention.
FIG. 14 A shows step queries 1100 that represent each step
query found in the subtree represented by subtree ID <107, A
frequency 1102 1s shown for each step query 1100. A score
1104 1s also shown for each step query 1100. For example, the
step query “c/a” occurs twice 1n subtree 10 and has a score
of .22.

FIG. 14B shows step queries 1100 that represent each step
query found 1n the subtree represented by subtree 1D “207.
FIG. 14C shows step queries 1100 that represent each step
query found 1n the subtree represented by subtree 1D “307.
FIG. 14D shows step queries 1100 that represent each step
query found 1n the subtree represented by subtree 1D “40”.
FIG. 14E shows step queries 1100 that represent each step
query found 1n the subtree represented by subtree 1D “307.

Using the above PostinglLists described in FIGS. 12-14, the
tollowing step query “b/c/a” may be queried. The query is
broken down into the step queries of “b/c” and “c/a”. Table I
shows values that may be retrieved for PostinglList 1000.

TABLE ]
Step Query Subtree ID — Score Subtree ID — Score
b/c 20 = .08 50 — .18
c/a 10 — .22 30 — .18

The intersection of the subtree IDs for each step query 1s then
taken. For example, the subtree IDs “20” and “50” are inter-
sected with the subtree IDs “10” and “30”. The intersection of
these IDs 1s empty.

Although the intersection 1s empty, a further step may be
taken to resolve the query. A query for step queries that may
include link nodes (e.g., link node(c)) 1s then performed.
Thus, step query results for the step query “<b>—link node

(c)” may be retrieved. The results returned would be b/ link
node (c)=subtree 1D 20— (subtree ID 10); subtree 1D 50—

(subtree 1D 20); and subtree ID 50—(subtree 1D 40). The
above means that a “b/c” step query is linked across the
subtrees 20/10, 50/20, and 50/40.

Table Il represents the new results including the linked step
query results.

TABLE 11
Subtree Subtree Subtree
Step Query ID — Score ) — Score ) — Score
b/c 20 — .08 50 — .18
c/a 10 —= .22 30 —= 1%
b/link node ¢ 20(10) 50(20) 50(40)

The intersection of the three lists yields a set of candidate
subtrees where the path b/c/amight occur, in this case, subtree
ID 20—subtree ID 10. As shown in FIG. 8, the path b/c/a 1s
found 1n subtrees 20 and 10. The subtrees are then retrieved
and examined to verily the presence or absence of the path
b/c/a. The path 1s then returned as the result of the query.

Although scores were not used 1n the above example, 1n
one embodiment, scores may be used to determine the rel-
evance of step query results. If many results are returned, the
scores may be used to determine which step query results may
be processed first. For example, 11 a subtree ID has a high
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score, then 1t may be more likely that the subtree correspond-
ing to the ID includes the elements of the query. Additionally,
the subtree may be more relevant for the query. The scores
may thus be used to prioritize processing and also to provide
a list that represents the relevance of subtrees for a query.

In another example, system 200 may process results to
determine 1f any false positives are returned for the results.
Using the query, “c/a/b”, the following step queries are deter-
mined: “c/a” and “a/b”. Table III depicts an example Post-
inglist.

TABLE 111
Subtree Subtree Subtree
Step Query ID — Score ) — Score ID — Score
c/a 10 —= .22 30 —= .18
a/b 10 — .22 30 —= 1% 50 = 27

The intersection of the step query results for the two step
queries vields the subtree IDs of “10” and “30”. The subtree
fragments corresponding to the subtree IDs are then retrieved.
Each subtree fragment 1includes both step queries. However,
the path 1 a fragment may not include the full query. For
example, the “c/a” fragment should end with the “a/b” frag-
ment. The subtree fragments are then traversed to determine
if a fragment includes the query. FIG. 15A shows a false
positive match and FIG. 15B shows a positive match. As
shown in FIG. 15A, the “c/a” element does not connect
directly to the “a/b” element. Thus, the fragment does not
contain a “c/a/b” path. In FIG. 15B, a positive 1s shown as the
path “c/a/b” 1s found in the fragment. This path may be
returned as the result of the query.

In one embodiment, XQE 200 may be used to search for
text 1n documents 202. A text search involves retrieving node
sets (XML document fragments) that are relevant to a given
set of terms. For example, a text search query may have the
form: ‘return all Citation nodes whose text content 1s relevant
to the phrase “knee surgery”.” Complex search query results
may be reduced to the intersection of step query results in
much the same way that location path queries may be reduced
to the mtersection of step queries followed by the generate-
and-test post-processing step. A search for a set of terms
{term_1, term_2, . . ., term_n} or a phrase “term_1 term_
2 ... term_k” within the set of nodes with a given element A
can be directly resolved by doing an mndex lookup for the
terms: A#word(term_1), A#word(term_2), . . . , A#word
(term_k), followed by an intersection of the results. For a
phrase query, a post-processing step will verily that the terms

appear contiguously in the subtrees.

X(QE 200 indexes support full-text search across index 213.
XQE 200 includes a set of built-in functions which resolve a
variety of full-text queries, with methods:

(a) for constructing AND queries that specily a search
within the intersection of any number of subsets speci-
fied by sub-queries,

(b) for constructing OR queries that specity a search within
the union of any number of subsets specified by sub-
queries,

(¢) for constructing AND-NOT queries that specily a
search within the set difference of two subsets specified
by sub-queries,

(d) for constructing WORD queries that specily a search

within elements whose text nodes contain a given
phrase,

(¢) for constructing ELEMENT queries that specily a
search within the set of elements with a given QName,
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(1) for constructing ELEMENT-VALUE queries that
specily a search within the set of elements with a given
QName whose full text value exactly matches a given
phrase,

(g) for constructing ELEMENT-WORD queries that
specily a search within the set of elements with a given
(QName whose text nodes contain a given phrase,

(h) for constructing ELEMENT-ATTRIBUTE queries that
specily a search within the set of elements with a given
(QName which contain an attribute with a given QName,

(1) for constructing ELEMENT-ATTRIBUTE-VALUE
queries that specily a search within the set of elements
with a given QName which contain an attribute with a
given (QName, such that the attribute text exactly
matches a given phrase,

(1) for constructing ELEMENT-ATTRIBUTE-WORD
queries that specily a search within the set of elements
with a given QName which contain an attribute with a
given (QName, such that the attribute text contains a
given phrase,

(k) for constructing ELEMENT-CHILD queries that
specily a search within the set of elements with a given
QName that have a child with a given QName,

(1) for constructing ELEMENT-DESCENDANT queries
that specily a search within the set of descendants of an
clement with a given QName,

(m) for constructing ROOT-ELEMENT-DESCENDANT
queries that specily a search within the set of descen-
dants of an element with a given QName whose parent 1s
a document node with a given QName,

(n) for constructing ELEMENT-CHILD-DESCENDANT
queries that specily a search within the set of descen-
dants of an element with a given QName whose parent
has a given QName,

(0) for constructing ELEMENT-ATTRIBUTE-DESCEN-
DANT queries that specity a search within the set of
descendants of an element with a given QName that has
an attribute with a given QName,

(p) for constructing ELEMENT-ATTRIBUTE-VALU.
DESCENDANT queries that specily a search within the
set of descendants of an element with a given QName
that has an attribute with a given QName, such that the
attribute text exactly matches a given phrase,

(q) for constructing URI queries that specily a search
within the set of documents matching a given URI string.

(L.

A QName 1s a ‘Qualified Name’, which means a name of the
form ‘prefix:name’, where prefix maps to some names pace
URI, and name 1s any well-formed element or attribute name.

In one embodiment, complex text search queries are
assembled by composition of the ‘and-query’, ‘or-query’ and
‘and-not-query’ functions. The value of these functions 1s a
‘query value’, which represents a specification of a search
pattern, which may be stored and evaluated at some subse-
quent point 1n the processing performed by XQE 200. The
query value represents a delayed evaluation—the query value
specification determines a set of element sub-tree i1ds, but
does not actually extract them from the database until passed
to a function ‘search’. The function ‘search’ may take two
arguments: a query value and an element QName, and evalu-
ate the query specified by the query value argument returning
a sequence of element sub-tree 1ds as specified by the QName
argument. The QName argument may be an ancestor (or self)
of the nodes returned by the query value specification.

In one embodiment, the sequence of nodes returned by the
function search may be ordered by a ‘relevance’ score. The
relevance of a node to the specified query 1s a complex func-
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tion that depends on the frequency the query terms appear in
the text of the query nodes, the frequency the query terms
appear across the entire database, and the quality score

attached to a given node. The quality score 1s further
described 1n Linblad IV-A.

In one embodiment, XQE 200 calculates the relevance of a
node relative to any of the previously described precomputed
text queries as the stored ‘score’ value in the Postinglist.
Scores are composed through and-query’s and or-query’s by
summation. The function and-query takes a sequence of any
number of query values as an argument and returns a query
value specitying a search matching all of the argument que-
ries. The function or-query takes a sequence of any number of
query values as an argument and returns a query value speci-
tying a search matching any one of the argument queries. The
function and-not-query takes two query value arguments and
returns a query value specilying a search matching the first
but not the second argument query. Complex queries may be
built by successive application of and-query, or-query and
and-not-query. For example,

and-query(or-query((element-word-query(QName(“A”),
“best”), element-word-query(QName(“A’), “worst’))),
clement-word-query(“A”, “times”)),

specifies a query for elements labeled “A”, containing the
term “times” and either one of the terms “best” or “worst”. In
addition, each of the query value functions can accept an
argument speciiying a relative weight for the query as a
constituent of the composed query. For example,

and-query(or-query((element-word-query(QName(“A”),
ccbesta’j 07)j e]emellt-WOI'd-query(QName(uAn)j
“worst”, 0.4))), element-word-query(“A”, “times”, 0.9))

specifies a query for elements labeled “A”, containing the
term ‘“‘times” and either one of the terms “best” or “worst”,
with the appearance of “worst” given relative weight 0.4, the
appearance of “best” a relative weight ot 0.7, and the appear-
ance ol “times™ given a relative weight of 0.9. The relative
weights are used when assigning an ordering to the resultof a
query.

Embodiments of the present invention provide methods for
generating a pre-computed 1index that 1s used for generating a
result for a query. Step queries are pre-computed and the
results to these step queries generated and stored 1n the mndex
along with the step queries. The step queries include a set of
clements that are related 1n a parent-child relationship and
may be used to generate a result for a query. Embodiments of
the present mvention receive a query and break the query mnto
multiple step queries using elements from the path of the
query. Results from these step queries are then retrieved from
the mndex and the intersection of the retrieved results 1s taken
to generate a result for the query. The result yields a location
or elements that satisiy the query.

In one embodiment, relationships among elements in XML
documents are computed and possible step queries that may
be generated from the XML documents are computed.
Because these step queries are pre-computed, XQueries that
include the pre-computed step queries are satisfied 1n an
cificient manner. Instead of traversing the hierarchical struc-
ture of the XML document on a node-by-node basis to find an
clement of the document, an mndex of pre-computed results
for step-queries 1s used to generate a result for the query.

The above description 1s illustrative but not restrictive.
Many vanations of the mvention will become apparent to
those skilled in the art upon review of the disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should be




US 7,756,858 B2

19

determined with reference to the pending claims along with
their full scope or equivalents.

What 1s claimed 1s:

1. A computer-implemented method for searching a docu-
ment store of electronically stored structured documents and
for generating a result for a query of the document store for
one or more document of elements, using pre-computed step
queries and pre-computed step query results stored in a com-
puter-readable database, using a processor configured to
access the computer-readable database, the method compris-
ng:

using the processor, recerving the query, wherein the query

1s a computer-readable data sequence representing a
path of elements in the document of elements;

using the processor, generating a plurality of step queries

from the query, wherein a step query comprises a rela-
tionship between a plurality of elements determined
from a part of the path of elements;

using the processor, for each of the plurality of step queries,

accessing the computer-readable database and retriev-
ing a pre-computed step query result for a step query 1n
the plurality of step queries by querying the computer-
readable database using the step query as a query to a
query engine, wherein the step query corresponds to a
pre-computed step query for the pre-computed step
query result; and

using the processor, generating the result for the query

using the step query results.

2. The method of claim 1, wherein generating the result
comprises taking the intersection of the step query results.

3. The method of claim 1, wherein the result of the query
comprises a location in the document of elements that
includes the path of elements for the query.

4. The method of claim 1, wherein the result of the query
comprises the path of elements for the query.

5. The method of claim 1, further comprising optimizing,
the query, wherein optimizing the query comprises generat-
ing sequences from the path of elements that interpolate the
path.

6. The method of claim 1, wherein the plurality of step
queries comprise at least one of a one-step query, two-step
query, three-step query, and four-step query.

7. The method of claim 1, wherein reducing the query 1nto
the plurality of step queries comprises reducing the query into
at least one two-step query.

8. The method of claim 1, wherein reducing the query 1nto
the plurality of step queries comprises reducing the query 1nto
at least one three-step query.

9. The method of claim 1, further comprising

computing a hash key for queries in the pre-computed step
queries and plurality of step queries; and
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storing the hash keys for the pre-computed step queries and
the corresponding pre-computed step query results 1n
the database.

10. The method of claim 9, wherein retrieving the pre-
computed step query result comprises using the stored hash
keys for the step queries to retrieve the pre-computed step
query results corresponding to the hash keys.

11. The method of claim 9, wherein the step query results
comprise a ID for one or more elements 1n the document of
clements.

12. The method of claim 9, further comprising post-pro-
cessing the intersection of the step query results to generate
the result for the query.

13. The method of claim 12, wherein post-processing the
result comprises matching each step query 1n the step query
results to the query.

14. The method of claim 9, wherein the relationship
between the plurality of elements comprises a parent/child
relationship.

15. The method of claim 9, wherein the document of ele-
ments comprises an XML document.

16. The method of claim 9, wherein elements 1n the docu-
ment of elements comprise at least one of element, word,
attribute, and string elements.

17. A computer-implemented method for creating a com-
puter-readable database of step queries and step query results
for a structured document of elements using a processor, the
method comprising:

determinming relationships between a plurality of elements

from the structured document of elements:

generating step queries from the relationships;

generating step query results for the step queries, wherein

a step query result for a step query

corresponds to one or more elements 1 the structured

document of elements for the step query; and

storing the step queries and corresponding step query

results 1n the computer-readable database, wherein the
stored step query results are usable to generate a result
for amain query, wherein the main query can be reduced
to a plurality of step queries that correspond to the stored
step queries.

18. The method of claim 17, further comprising generating
an 1ndex for the step queries, the mndex pointing to the corre-
sponding step query results for each step query.

19. The method of claim 17, wherein the step query results
comprise an ID for one or more elements 1n the document of
clements.

20. The method of claim 17, wherein the plurality of step
queries and corresponding step query results are stored 1n a
Posting] 1st.
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