United States Patent

US007739657B2

(12) (10) Patent No.: US 7,739,657 B2
’ ’
Rolfs 45) Date of Patent: Jun. 15, 2010
(54) PIPELINE ARCHITECTURE FOR USE WITH 6,272,674 Bl 82001 Holidayceeennnn, 717/1
NET-CENTRIC APPLICATION PROGRAM 6,279,030 Bl 82001 Brittonetal. 709/203
ARCHITECTURES 6,282,531 Bl 8/2001 Haughton et al. 706/50
(75) Inventor: DamOn Michael ROlij Seatﬂe, WA 6,308,317 Bl 10/2001 Wilkinson et al. 717/5
(US) 6,393,605 Bl 5/2002 Loomans 717/121
(73) Assignee: Accenture Global Services GmbH,
Schafthausen (CH)
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OlHER PUBLICATIONS
U.S.C. 154(b) by 1107 days. o
Geary, D., “Apache Struts: a Web application framework,” Java
o ’ www.javareport.com, Sigs Publications, New York, NY.
(22) Filed: Sep. 16, 2005 (Continued)
(65) Prior Publication Data Primary Examiner—Hyung S Sough
US 2006/0064573 A1~ Mar. 23, 2006 Assistant Examiner—Iuan Dao
(74) Attorney, Agent, or Firm—Brinks Holer Gilson & Lione
Related U.S. Application Data
57 ABSTRACT
(62) Davision of application No. 09/859,763, filed on May (57)
17, 2001, now Pat. No. 6,971,001.
(51) Int.Cl. A robust toolkit provides facilities that can be assembled 1n a
GOGF 0/44 (2006.01) modular manner to specity the fundamental architecture of a
GO6F 3/00 (2006.01) net-centric application. A bootstrapping process assembles
(52) US.CL oo 717/106; 719/314; 719/315 Vvarious facilities within the architecture. A configuration
(58) Field of Classification Search 713/1, lacility defines an API lor getting properties that can be
713/2- 717/139. 170 709/203. 217 706 /56 defined 1n any number of different types of sources. A factory
See application file for complete search history. de-couples how a resource 1s produced from where the
_ resource 1s used. A selector framework applies standard query
(56) References Cited language to contexts other than querying a database. A pipe-
U S. PATENT DOCUMENTS line architecture defines a model view controller-like frame-
work for a processing pipeline. Selectors are used to specily
4,996,662 A 2/1991 Cooperetal. 364/900 when certain portions of a Web conversation should be made
5,727,147 A . 3/1998 Van Hofllccoeeeeen. 395/200.3 available to a user. An authorization facility associates per-
2’822’223 : . 22888 Ehﬁndmtetlal' """""""" 7327;; missions with a user to specily which portions of an applica-
088, elleyetal. : : :
6,199,196 Bl 3/2001 Madany etal.coo....... 717, tomauserisauthorized to use.
6,253,369 B1* 6/2001 Cloudcvveivininnnnn.n. 715/5
6,256,670 Bl 7/2001 Tayloretal. 709/246 26 Claims, 24 Drawing Sheets

INPUT JMS pIPELINE ONMESSAGE

DESTINATION 1402 1404

1400

ACTIVITY GET ACTIVITY
PLAN ACTIVITIES SELECTOR
1406 1408 1410

ACTIVITY

1412

US 7,739,657 B2
Page 2

U.S. PATENT DOCUMENTS

6,470,494 B1 10/2002 Chanetal. 717/166
6,490,578 B1* 12/2002 Burkhard 707/3
6,635,089 Bl 10/2003 Burkett etal. 715/513
6,636,855 B2* 10/2003 Hollowayc.cceuee...... 701/10
6,643,682 B1* 11/2003 Toddetal. 709/202
6,675,381 Bl 1/2004 Yamaguchi 717/168
6,721,777 Bl 4/2004 Sharma 709/101
6,748,591 Bl 6/2004 Lewallen 717/170
0,706,361 Bl 7/2004 Venigalla 709/217
6,971,001 Bl 11/2005 Rolfs .cceveiniiivininninanannns 713/1
7,085,814 B1* 82006 Gandhietal. 709/208
7,092,984 B2* 8/2006 Nishigaya 719/201
2004/0015954 Al 1/2004 Tuerke etal. 717/173
2006/0064574 Al 3/2006 Rolfs .ooveiriviiiiiinininnnn.. 713/1
2008/0052727 Al* 2/2008 Toddccoovvvnivinnnnenen. 719/313
OTHER PUBLICATTONS

Seacord, R.,C., Wallnau, K., Robert, J., Dorda, S.C., Hissam, S.A.,
“Custom vs. Off-The-Shelf Architecture,” Enterprise Distributed
Object Computing Conference, 1999, EDOC 99 Proceedings, Third

International Mannheim, Germany Sep. 27-30, 1999, Piscataway,
NJ, USA, IEEE, US.

Batteram, H.J., Bakker, J-L., Verhoosel, J.P.C., Diakov, N.K.,
“Design and Implementation of the MESH Services Platform,” Tele-
communications Information Networking Architecture Conference

Proceedings, 1999, TINA 99 Oahu, HI USA Apr. 12-15, 1999,
Piscataway, NJ USA, IEEE, US 1998.

Friesenhahn, B., “Autoconf Makes for Portable Software,” BYTE,
McGraw-Hill, St. Peterborough, U.S. vol. 22, No. 11, pp. 45-46, Nov.
1, 1997,

Just, C., Bierbaum, A., Hartling, P., Meinert, K., Cruz-Neira, C.,
Baker, A., “VjControl: An Advanced Configuration Management
Tool for VR Juggler Applications,” Proceedings IEEE 2001 Virtual
Reality (VR) Yokohama, Japan, Mar. 13-17, 2001, Proceedings IEEE
Virtual Reality (VR) Los Alamitos, CA IEEE Comp. Soc. US.

“Java Dynamic Class Loader,” IBM Technical Disclosure Bulletin,
Nov. 1, 1996, vol. 39, No. 11, pp. 107-108.

European Search Report for Application No. 06076312.5-2211 dated
Nov. 17, 2006, 10 pgs.

Canadian Office Action issued Jan. 29, 2010 1n corresponding Cana-
dian Patent Application No. 2,551,059 (2 pgs.).

IBM, “Design and Implement Servlets, JSPs, and EJBs for IBM
WebSphere Application Server,” Aug. 2000, IBM Corp. pp. 1-177.

IBM, “Design and Implement Servlets, JSPs, and EJBs for IBM
WebSphere Application Server,” Aug. 2000, IBM Corp., sec. Con-
tents, pp. 1-XI.

Netscape Application Builder, “User’s Guide,” 1999, Netscape Com-
munications Corp., Chapters 1-10, 254 pages.

Netscape Application Builder, “User’s Guide,” 1999, Netscape Com-
munications Corp., sec. Contents, 12 pages.

* cited by examiner

US 7,739,657 B2

Sheet 1 of 24

Jun. 15, 2010

U.S. Patent

NOLVOIl'lddV

(1HV HOIHd)
SE

00}

2ol
SERVCER

d3am

0L

d3dAd3S J0IAId

IN3I1O

14V YO
¢ Il

T4

US 7,739,657 B2

0ST 9€z ‘1 0L 91T 012

1VAAINI 40553)04d

1)V44INI 1)VA41INI

HAREEE]

1V4d411NI

140d 1vid3S

NJOMLIN 1510 QiVH TV4IND

Sheet 2 of 24

04C

= _ OV4ILNI
. M_whm_%q ﬁwﬁ ¥V ANNOS Em_%hz_ JOWIW
- IaVAOWI
pumy

0bé [AY/

e A LA 9 vhe 2 YA (A

U.S. Patent

US 7,739,657 B2

Sheet 3 of 24

Jun. 15, 2010

U.S. Patent

2ce
MSYL
dvd1S1009
AHOL0VA

8LE
31d1dINOD

dvdl151004d

ALTIOVA

02g
MSVL

dvdl51004d
ONDDOT

\/

¥ee
| MSV1 dvH1S1009g
A0V
_
mmm.\"
LE 80€
HO1dIH0S3Aa NI HO1dI"HOS3A
SMSV1 dvH1S1009 ININAOT43IA

ALNIDY431N03x3 | 9tE

20E
MSV1

dvd151008d
NOILWdNDIANOD

& 9l

ALIIOVd d54dVd

OlE

f 9ct

CiE

3
dvd1S.1004
ALV TNX

00€
HOLdI4OS3d
INIWAOTH3A
ALTIOVH TNX

US 7,739,657 B2

Sheet 4 of 24

Jun. 15, 2010

U.S. Patent

805

L0S
304dN0OS 908G G0OS

Ald3dd0dd J04dN0S 3JOHNOS F1id
WI1SAS 14 TNX ALH3d0OHd

RN eNe

\/
v0S ¢0S
304NOS INIINNOHIANS
NOILWYHNOIANOD 139

v Ol

1401 % cOv 00t
SSVIO SSVY10 SSV10
ALLNZ TOH1INOD AHVYANNOS™

O O O

S Old

00S
NOILWHNDIANOD

739,657 B2

2

US 7

Sheet 5 of 24

Jun. 15, 2010

U.S. Patent

V9 4

01020

PIOA:Ysaljal +
PIOAIU] +
PIOA:J1U] +

uoyyninByuo)spuig:juawuoiirujab +

uoijdadxjuoyninbijuo)spuis) 4 palqQ:auop +

uoydadxguoyoinbyuoyspuig | F0m———————————

uoyydaixjuonninbijuo)spulq , a)1noguolpinbjuo)jspulg

SUITETHT

uoijdaixjuoyninbijuoyspuig
uoydaixgawnunyspuic

3]qDauo|)
9)qDZI|DLIas

91020

uoyniawnu3-spalqouolninbijuo)

Bunys:-bunygo) +
ploA:palqguolyninbijuo)ppo +
palqQ:palgquonninbijuoyab +
palqp:palqouonninbijuo)jab +
ptoa:|jynd +

upajoog:sjnnba +

Juj:apo)ysoy +

palgQ:auop +
juawiuosiaujuolninbijuo)spuic) +
juswuoiiauguoyinBijuo)spuls) +

PI0A:Ysaljal +
PIOA-JIU| +
PIOA:Jiu| +
uoijnsawnuy:sawnNApados Jiab +
01nBijuo)spulg:juswuoliauzjeb +
palqp-auop +

9)1n0GALIad01 JudjsASSpUIS) +

3)1n0SALIad0 JWISASSPUIS) +

juswiuoJjauguonninbyuo)spulg
ajqoauo|)
sa|padoly

a)inog ApadouwajsAsspulg
13780 SANY9

US 7,739,657 B2

Sheet 6 of 24

Jun. 15, 2010

U.S. Patent

d9 Ol

Wnasinduj:ajniaxa +

ABa}D1jSpD0732.N0S
)DLI3U|

@am.__m__a__ |- WDa1SSsyalInosayjab -
saljado. - juawuoliaugpul) -
ULIS-buLSuIDWopgqngajnaln -
butig:Buiygo] op+

PI0A:YSaljol +

PIOA:jiu] +

PIOAZJIu} +

uoyniawnul:sawoNApados giab +
lininbijuo)spuig:juswiuonauiab +
jpalgQ:auop +

9)1n0G3|1{ALad01 JSPuIS) +
9)1n0G3|1JAL3d01 JSPUIS) +

8)1n0G3|14AHadoldspuig
palgospuig

mo.__s:_om"sos__%g._esom_% -
PIOA:S3LIJuuIDWO(a)ojndod -
DIOA:Ju3WuoJIAUUIDWO(]3s.0d -
PI0A: A1JUJ824n0G)3S -
p1oa:doyuoyninbiyuo)piu] -
bunyg:Aayannogpling -
UlS-buliSojop -
PIOA:YSajals
PIOA:jIU| +
PIOA-{iU] +
01nbiyuo)spulg:-juswuoliruieh +
DIOA: D3] DI32INOS|I[)ias +

PI0A: 3| DI(]32N0SIIN0SIY|aS +
DI0A:]3| DI(]24N0S3|1J18S +
palqQ:auop +
3)In0G3|1{|WySpuIg) +
3)IN0G3[1J|wyspuiq +
3)IN0S3|1J|WYSPUIQ +
8)1N0S3|1JjWySpuIS) +
3)IN0S3|1{|WYSPUI) +

3)IN0§a|1J|wyspuin

palqQspuig

UO1JDJAWINUT:$82IN0S

PI10A:$321n0GUIJ0P -

PI0A:S32IN0GHU|OP -

buiag:Butijgoop#

0)SpUIC):JUBLLUOIAUIPAYID)pUL4

IS EIERE

PI0A:32IN0SPpD +

PIOA:Ysaljal

PIOA:JIUj +

PIOA:JIUj +

buniy:-Apadol Jiab +

buns:Apadol Jiab +

J0Inb1ju0)spulg: judwuoliaugieb +

yoanByuo)spulg: juswuoiirugiel +

UD3j00q-SUIDJUO) +

palqQ:auop +

uoiyninbjuo)spuig +

uoyninbyuo)jspuig +

uoyninbyuo)spuig +

PIOA-IUDJSU]Jas +
uoynInbijuo)spulg:aunjsul ja

uoljn.nbijuo)spu.g
Aljnpspuig

Q) @

OR0

US 7,739,657 B2

Sheet 7 of 24

Jun. 15, 2010

U.S. Patent

-3 1 1 1 4 1 1 1 2 & 1 1 1 1 B L]}

a)1noguoljninbyuo)spuig
705

pIoA: (saipadold)jjyind/

JuswuoiiAuguolINGU0)SpuUlg
:(116unigBuLS)iuawuoliaujeb/
(" suinwopuns unwop)

0 <Jopnijsuol>/

juawuo.iaujuolninbyuoyspuig

(11BunysbusiS)iuswuosAupayDIpul/
(" suiowopgns - uiowop)

L
{UBWIU0JIAUTUOLDINDIU0)SpUIG
:(116unySBuLys Jiuswuonauzieb/
juawuosauzuoyninbiyuoyspuig | | uonninByuo)spuig |halqQ
jjnse] uoynInBijucaspuB
005

[914

]
- 901 L
v H3I41LN3al
&
ey i
e
5 L1 Il
T,
=
pOL L
ADILYHLS 2011
YIIHILNIal NOISS3IHJX3 0011
31VNTVA 1831 HOL10313S
~
=
v o
2
7> .08
H3DNA0Hd
NV 1d 908 08
= ALIALLDY ~ H3DNAOHd H3IDNA0Hd
~ TNIX ar3 VOO
O QO C
n__... H B N
— |
p
mov\ w O _m
\J
v08 208 008
43DNAO0Yd 39NA0Hd AHOLOVA

U.S. Patent

U.S. Patent Jun. 15, 2010 Sheet 9 of 24 US 7,739,657 B2

GrndsLocalRetrievalStrategy
+GrndsComponentFactory

+ GrndsLochStutelessSessionEib
+GrndsPseudoSessionContext

+ GrndsComponentFactoryExcepti
+ GrndsStatelessSessionEjbRetre
+ GrndsComponentRetrievalStrat

304’ GrndsObject
m GrndsProducer
T

+GrndsProducer
+ produce: Object
+ getProperty:String
+equals:boolean

+ hashCode:Int
environment:Properties

+ produce: Object
+ addProducer:voi

+addTargetProducer:void

+addTargetProducer:void
+ setEnvironment:void

800’
GrndsException|
GrndsFactoryException
]
+ GrndsFactoryException
+ GrndsFactoryException
+ GrndsFactoryException
805
GrndsLocalProducer GrndsJndiProducer
—————]
+GrndsLocalProducer +GrndsJndiProducer
+ produce: Object + produce: Objedt
806°
GrndsEjbProducer GrndsJdbcProducer
A e
Fl G 9 +GrndsEjbProducer + GrndsJdbcProducer
y + produce: Object + produce:Object

US 7,739,657 B2

Sheet 10 of 24

Jun. 15, 2010

U.S. Patent

. 1t 3 1 3 1 1 1 1 1 2 ' ' 1 2 2 J 1 J 3 2 J ' 1 1 5 1 £ JJ 3 3 J 1 7 J ! 1 ¥y ;2 I ;3 2 J ;B 0 : 1 J J J 5 r 31 1 5 1 2 J J ' J g X 51 ;1 3 2 ;5 ! J ¢4 75 5 1 2 I B _ B F | 3 1 X 1 ;3 3 1 X & X 3 B [}

I
I
.
.
!
)
!
!
!
)
'
'
§
)
§
)
i
4
i
L
|
L)
b
§
.
’
i
i
i
i
L
'
)
I
i
!
)
!
I
|
i
!
!
i
i
i
i
l
i
i
i
i
I
!
J
i
i
i
‘
]
_
|
I
|
i
1
1
’

13)NPo.Jspulq

RO GITep

palg:(sauadoiy'gpalqo’Buiig)anposd/(fjnu’ sbin’ awpu)
_______L&

[jInu: ..._a_

Jauinjuoyainpold: (Buryg)sauinjuoysanposgiaby/(swou)

L
PIOA: c,_____\

palqq:(saadoagDpalqq'Butig)enposd/(xp w’ sbin’ awou)
palqo: (Dpalqg’burg)enpoid/(sbip’ wEE;

13nposgspulg
Jeonpold w palqQ: (pnalqq Burs)enpod/
0l 94 wopogpun | [BoIg
I0J52d0S e

U.S. Patent Jun. 15, 2010 Sheet 11 of 24 US 7,739,657 B2

1100: 1104!

GrndsException | o= GrndsObject GrndsObiject
GrndsSelectorException GrndsSelector GrndsEvaluateldentifier

+ GrndsSelector + GrndsEvaluateldentifier
+ test:boolean +execute: Object
expression: String

+GrndsSelectorException
+ GrndsSelectorException
+GrndsSelectorException

3 X 3 3 B ¥ B N 2 3 1 I] ‘-----_-_“-_-------__'-‘

L1 F 3 1 1 1 L F 1 1 2 ﬂ

1200

GrndsObject
GrndsSelectiveObject -

+ newinstance: GrndsSelectiveObject | |+ Grndsldentifier
+ newinstance: GrndsSelediveObiject | |+ equals:boolean

+ GrndsSelectiveObject hashCode: Int
+ GrndsSelectiveObijed name:String E
+ getObject: Object value:Obiject
+ doesPassSelector:hoolean :
+ equals:boolean 1202 B
+ hashCode: Int

GrndsEvaluateldentifierSupport

P - - - -—-—-—-ﬁ

selector:GrndsSelector

GrndsEvoluateldentitierSupport

+execute: Object .

FIG. 12

U.S. Patent Jun. 15, 2010 Sheet 12 of 24 US 7,739,657 B2

% grndsselediveobjed m selecior
0b'|ecﬂ grndsSeled iVEObiBCT GrndsSeleﬂor

/getObject(Obiject): Object

T
I /doesPassSelector(Object):boolean

/test(object):boolean

FIG. 13

US 7,739,657 B2

Sheet 13 of 24

Jun. 15, 2010

U.S. Patent

coll
A0V
NOILVZ
“TdOHLNV

0cll

31N03X3

OTQ@ Q O/b JARSIE

IV 90/ |
H3141A0N B0} NOLLYL
JONYHOX3 ALIANILOY -N3STHd

SHHIJIAON NOLLYZ AVAl IONVHOXT 3HNYHOXI
HOH LNV HO10313S 139 139

OLLL viLl 0Ll 50/ 1 c0LL
d31dIA0N SHEHIJIAOW ISNOJS3Y NOLLYS-HIANOD FONVYHOX 004}
dONVHOXd dJLNO3X3 NI©39 31 N03X3 131Ad3S
154!
ALIAILOV

i Dl

0Lyl 80v | 90v1 bt oL O0F |
HO.103713S SIIUAILDY NV'1d NOLYNILS3A

739,657 B2

2

OOOO ®

US 7

Buig:suiowopgnsuoyoinbiyuod

VSl 94 Buns: urpwoguoininByjuod

Jabossay - ixajuojuaaigabossaws

uysaq swi-xpanl:uoijouigsaqalinos

palqp-juawa|Jabinssaw

abnssaiy:abnssawu

ojuIpaiin

Jui-apo)ysoy +
uDajooq:s|onba +
PIOA:3)nqLIllyIuawajJabnssayyiab +
)alqQ:ainquiyiuatuajjabossayyieb +
pIoA:ajnqLiyabossayyiab +
palqq:aingLiyabossayyiab +
uoydaxgautjadigspuis) + pIoA:ajnquyyautfadifiab +
uoydadxjauljadigspuis) + palgo:ainquiyauljadigiab +
uoydadxjauijadidspuiq + Jxajuo)auljadidspuie) +

. -_----“n-_----_'—--------------------

Sheet 14 of 24

U
|abpssayyixajuojuaniigabossayy

pIOATaAOWaYqla +

UL Apad0I Jiab +
PI0A:8)n)3X8 +
palgq:auop +

Apmpyauijadijspuiq +
Aumpyaunadigspuig +

r-- AT A D A A s ohis i S S e e e

P10A:36DSSa|UO +
auljadidspuiq +

Jun. 15, 2010

auljadigspuig
----- UDaguaalIgabossay
1aud)sijabossay

palqospuig

Anpyauljadigspuig
9|quauo))

uoydaoxjeuljadigspusg pojuo)eulfadigspuig
palogspuig

uoydaxjspuig palqpspuig

U.S. Patent

US 7,739,657 B2

Sheet 15 of 24

Jun. 15, 2010

U.S. Patent

dsl 9l

sa141ad014: UL
SUNIIS - Ao00I Tt

PIOA: UD|JPUa +
PI0A: U} Juifiag +
1a1powauifadigspuis) +

Joljipoyauljadigspuiq
palqospuig

’ palg:aimexa +

131J1juap|ixaju0)auljadidajon|pAISpuLS) +

--“--_---1

18)jjuapyixajuo)auljadiejon|pagspuls

poddngJa1jljuap|ajpn|naIspuic)

O ®

18201 JUD|JABMIPY|WYSpulS)

133nPOI4Spu.)

O ® ®

’ J3|punyJoli3juawaj3abinssayyiab +
*$31§1A1py 13| pun}o413abnssajyiab +
J|:s3l1AlpY 3| punpjpaianijapayiab +
10J0J3})-saij Py Indingiab +
iDJa)|:saljlAIpyIuawWa|Jabnssayiab +
10J013}J:saljinpyabnssayylab +
PIOA:UD|Jpu? +

ploA:un|duibag +
13|puny10113juawajJabinssayppo +
A-Ajinpyas)punyso113abossayppo +
10A: AJIALPY 13| pUDH paaAl|apayppD +
pIoA:AjIAIpYindjnQppD +
ploA:AjiaIpyjuawajJabossayppo +
PIoA-AjiAIpYyabDssalyppD +
PI0A:JBLIPOWUD|JPPD +
Juj-apojysoy +

una|jooq:sipnba +

palqQ:auo) +

uDjgANALYSpLIG) +
UDjdANAIDYSpUIG +

uDjdANpYSpILIQ

3|qpauo|)
palqpspuig
m 9001

US 7,739,657 B2

Sheet 16 of 24

Jun. 15, 2010

U.S. Patent

V9l 9l

ppalgQ:(saiuadoid
‘palqp‘bunis)exnpod/

)
)
I
)
I
)
)
)
)
)
I
'
I
)
)
I
|
)
I
|
'
)
)
'
I
)
)
)
|
)
i
)
)
I
i
)
)
'
i
i
1
'
i
{
i
i
t
I
]
)
I
b
)
)
)
)
|
'
|
|
I
)
)
I
i
I
I
'
|
|
i
I
i
I
I
|

1npoiduojdAuapyjuyspulg | | Aoppspuig | |AApyauljadidspuig

pioA:{fxajuo)suljadigspuig)psigpain

)8%9/

B_Em_m”Em_:oum:__mn_ﬂ_m_uEovmm_E_tim__u__u_.__uegm_m_sy__%\

unj

2§ ---------_-‘--------“---*----' B A A

UDjAYIADYSPUIY

g

Ezu«%:ééﬁcouam_

unajoog:(fxajuoJeuladigspuig)ssey

p1oA:(1xajuo)sullddigspuiqunjdAuaLpyspuIg un|dpeianljapdyain

400100 }pesonjaFogSWIE

)8%a/

P10A-{}X3jli0)3Ulj3lI4Spuiq HiD|Julbag

149!

- e uan -l-r-_----ﬂ---——-—-

pajuojauladigspuig | | abossayy
mn fsuw

palqQ:(Bulyg)eanposd/
Jodigspuig)unjghlimpray

dop/
—1_

(ofujpaiinbay) < uondnisuod >/

aulfadigspulg

auljedidspuib

[belqQ

US 7,739,657 B2

Sheet 17 of 24

Jun. 15, 2010

U.S. Patent

d9L 9l

- rrrryry-ryyryrxi1r 33 r i ¥ r ;1 31 3 8 3 22 3 1 I 2 : 1 1 1 1 ¥ ;J £ 7 1 2 7 2 3 3 7 ;3 3§ 3 3 2 3§ 7 : B 3 R ;3 1 3 2 B &} & B 1 40 N & 4 .} 1 & 4 & 1 3 B L} L}

PIOA:(}xajuo)duyjadigspuiq)ssardidisodop/
__ -

PI0A: (1xajuo)auljadidspulg)saiiaipyiadingpus/

- _u_oaEPES».E_@H__A_%Ewﬁm_n@o_aﬁm\

10JDJaji: (Ixajuo)auljafidspuig mm___..,_cs.sﬂ_sozm\
pIoA: (jxajuojaujadigspuic) ' un|dAnapyspuig) unjindinpainiexa/

- pioA: (jxajuo’)duijadigspusq’palgg)simaxs/

100401 “cé__sum:__&.mﬁzo 8._,__23@@“32_%\
ploa:(1xajuo)duijadigspuig un|dAHAlyspu.g upjJabossayyainioxs/

- PIOA: %Eouu“:__&_n_%Eoﬁm_a@ 3JMaxa/

10J0J8}1: (1xajuo)aul|adigspuic) Jsauiapyjuswa|Jakossawiab/
PI0A:(1xaju0)autjadigbpulg‘un|gAiapyspu.e) jup| Jiuawa|Jabossadyajnexa/

739,657 B2

2

US 7

Sheet 18 of 24

Jun. 15, 2010

U.S. Patent

ul1)S:suipwopqnsuoljoinbiyuo)jabi4

P

° PIOA:$81100D4pDO] -
PXJspulg:jxajuo)abunydxjajpaln -
PI0A:UOI|DJUBSBIJaJNIBXS -
PIOA:AIAIDY3)N3X3 -
proA:abupyix3ajniaxs -
WUTESTIVENS I RN TETTYENELE
buljS: pubwwo)jsgops

ButljS :awn) uo1jnsIaAu0)|ac)op4
8AU0)d}IHSpul9: uolDSIaAu0)jab
ptoa:abupyx3iso4op+
upajooq:-abubydxjaiop4

PI0A:|SO 40P+

pIoA:1290p4
d}HSpu.9:UOHDSIAAU0)3)DAI)OP+
u19:juatuoliaujuolninbijuoyjabis

buisjS:uinwoquoijonbiju0yjab+
PIOA-fIUl +
jo|uasduHspuig) +

jojasdyHspuI

EITYEIGIT

V8l 9l

P

UDaj00q:-aja|dwo)s| +
PIOA: J1uf +
pulg:uoljojuasal Jabunyixjab +
oyax3puig:Aiapyebunydxieb +
O
PI0A:asu0dsaypua +
ploA:asuodsayuibag +

uoynsiaAuo)dyyspuig
SLTENTT
3|qDZ1|D1I3s 01 DAD|

ORONONO

bunys:suipwopanguoyninbyu
buys:uipwoguonninbiuo)
uoissagdyy: uoissas
buis:buiddoyylaalas
JX8JU07)8|AI8S JXaJUO)|BALBS
asuodsayjajrsagdyy -asuodsas
asuodsays|asagdiH-isanbal
BuniS:swopNpubwwo)
buy1yg:3wnpuOISSaGUONDSI3AUD)
Bu11)C: aWDNUOIDSIAAUO)
ojuipaiinbay +
pioA<jsanbayajnjndod -
bunjg:6unjgo| ops
uoissagdyH-uoissagyab +
uDa[ooq:sjonha +

Juj:apojysoy +

palgQ:suop +
Jajuo)abunyx3spuig +
Jxajuojabunypx3spuliq +
3WDNUOISSaSUOIDSIBAUO)3 +

{xajuo)abunydxgspuig

9]qoauo})
palgospuig

s3149d0. 4 JusWu0liAu
uD3|ooq- pasngAljuapisjpnb3s| +
buniys:Apados Jiab +
pI0A:asuodsaypua +
pioa:asuodsayuibaq +
131Jipoyabunydxgspuig

Ja)yipoyeBunypgspui
palqpspuig

US 7,739,657 B2

Sheet 19 of 24

¢ PIOA-31a}IPOWIIY] -
PI0A:10{3]SpUDWIWOY}IU] -
DIOA:UOIJDJUASALJ PUDLILIO)|IU] -
DIOA: AJIAIPYPUDWIWOIU] -
pIoA:spupwiwo)painbyyuo)iiu) -
DIOA:SpUDWWO)aUI|ujiy| -
PIOA:SUOIIDJUBSBIJBAIIYGB U] -
PIOA: SUOHDjUASAI JWwa)sAGa]1JHu| -
10A-}U] -
9|14:suolbjuasaljdsfieb -
UDWILLO): YIUDIGPUDIILIO)3)DII
PIOA: iUO1}DJuasalJajsibal#
DIOA: pOL§3iyuO!jDjuasalJiajsifials
PIOA:SSD])UOlIDJUaS3I4I2)s10al4

m_queo_a_s_mn_w:ussous__eu..
U16):UOISSILLLIBJUOIDS18AL0)BJDAL) -
SSIWIAJSPUIO):SUOISSIWLIB JJDRI) ~
DIOA: 83D SSaNYPPD -
UD3|00q:aWDNAgaYIn) 8L -
UDaj00g:aydnY}IaY) -

|uoissiuIa -uayo| uoissiuuiaJiab -
dDWUYSDY:Sua)0|ajnal) -

a8l Il

ploA: poyiawAilaipyajsibals proa:sjabip] -

PIOA:SSD[)ANAIDYJa)s1Ba1 4 . PIOA-31] -

C T =nw_oon”wmmcmb::mv_m_c:cmm_ . :um_oo._._uomumb_t_m_u_m_u:_umm_ |
. .- | DIOA:JL{OpA PIOA:asuodsaypua +

DIOA: AIALDY/3}NI2XA + PIOA:UOLDZLIOYINYIBY) -

ploa:asuodsayulbaq +

:uo1JnsI1aAU0)1SDGbUNPOL 4S|4

. 15, 2010

Jun

U.S. Patent

uoljnjuasalJabunydx3spuis)

)Dj8ju|
3|qOZ1|D113S 0! DAD]

90L1

AjnpysBunypx3spuig
8)0laju|
8|qDZ}|DLI3S 01 DAD!

80L1

- G
T T T 1T 1T T T XL I -

Butis:xiyjnguoljnjuasaldiacops

e BuLS:XIYnSAIAIRYIBG 0P+

SSD|):SSD[)UOIJDSIAAL0)}ab
13AUO)PUIL): 04U |U0LDSIAU0) oD+
HHSpUIQUOLDSIaAU0)2INPOIJOP4
YAHHspu.Iguolins1aAu0)3npoad +

Alopn uoinsiaauo)dyyspulg +

Aiopojuoipsiaauo)dyyspuig

palgpspuig

®OO®

1alIpOUOYDZIIoYINYSPLLIL) +

Jaljipoyyuoyjnziioyinyspuig
ALLL

=

US 7,739,657 B2

Sheet 20 of 24

Jun. 15, 2010

U.S. Patent

Ty Y - YOy Y oy O¥F Oy ¥ ¢y ¥ ¥y r g gp ¥y 1 3§ 3¢ ¥ 3§ ¥ 1 ¢ I ¥ 3§y ¥ ¢ 3 r 3 ¥ » XxX ¥ T 3 ¥ X X 3§ §¥ §¢F 3§ J X § ¥ B} F F B B [3 [§ 4 3 R B QI 3 J _§ L} _J)]

191j1popabunyxgspuig

Jxajuo)abuoy)x

U01J0SIGAUO)dYHSpuLe

TLET

spulg(asuod

;
;
|
¥
|
]
’
)
}
)
'
i
d
3
1
4
)
1
1
)
1
|
I
|
i
|
i
I
i
!
i
’
i
B
f
|
i
'
i
'
i
§
'
i
i
i
'
i
1
1
1
1
1
|
'
|
|
i
'
i
i
|
!
-m
I
!
'
i
’
’
’
)
!
)

10p3[3agspuIg

. _: 1 & X 5 1 K 1 T 3 N 3 3 } | --------m

uolnjuasaldabunypxgspuis

d

S —— -~ Wpp———

-E—---‘-ﬂ‘

“:xm_:ou%__aﬁxm_m_use_S_E:WESEE -
:(1xaju0)abup uxm_m_::ammcs__xm_en_%\ -
1 —
(xeyu0)abunyx3spuig) < Joprfsuod >/
butyS:suigwopqnguolninbauo)ieb/ -
. i L
BujsiuinwogquonpinBguoiaby -
. L
Butiis: (1sanbayyajdsagdyp) punww u_mo%\-
Buiig:(isen 3_5_?_mmﬁ_n_._M@Ecz__o__a:?__&_mooE-
m m L=
3__0_2wmﬂ_z_._ue:emm_m_ammﬁ__.f__.:;&:Smmce_u.xm_m_cm:\

_u_o>”waﬁ_ams_m_%m%_._um:umz_m_
Auapyabunypxgspuig
)

L

I 1 1 2 3 1 I | E---- -

-----ﬂ----

-:----—-

S duH)BugyxgIainIeNa)
belqQ

jxaju0)abubyix3spuig

Xp

4 S duh e O W T T T T
e 2 1 11 3 1 T - F I

uoyosiaauo)dyppisngspuig| | 1opuiasdupspuig

) jojuasdyyspusb

US 7,739,657 B2

_------h L 2 & g2 & 1 B 1

Sheet 21 of 24

dol 9l

="

Jun. 15,2010
-

e I 3 o

006l

L x J 3 1 X 3 1 I 1

an:xw,:summcE_Uxm_.%soy:o__s__aw Jeinlaxa/

uoljojuasal Jabunyxgspuig:(ixajuojabuntpx3spusgbuili§)uoynjuasaigabupypx3iaby
PIOA: (1xdju0)aBunypx FspuiqBuyiis uokiosiaauo)dyEpu.g)uolnuasa) Jainaxs/
.

PIGA: {|xaju0)abubydxIspulg)Ajaya)naxa/

apyaBunyxspuig: {xajuo)pbunydxgspuigBurs)Apiapyabioypxgieby
piaa:(ixajuoyabuyixzspuig Burlis’uonnsieauc)duyspuig) Aiiadyelnaxa

p1ciA: (Jxajuo)abubyix3spuig)asubdsayuibiag/

_ :cm_ooa mtm_aov—wm—\ m_.__._.—m” ?EGZ—___._UEEOU_@B
U“E”?EF_S%F_E_sm_%_:Baco_mms_:_mmﬂ

U.S. Patent

US 7,739,657 B2

L 1+ 3 ¥ 3 § 2 X & N B F B B L ;B B L B B
>y 1 1. 7 3 1 R N 2 J 4 X 1 J 4 1 1 X __J

pioa:(ixpjuo)eBunyxispuigjebunipxyifodop{xp)

---------_-“-- 1 2 4 L 3 8 3 1 1 2 J 3 & B 1 [B})

—

M EEH:E__BmmmcE_zm_%:@r_:__m__:HA“Em“_m_nsou“_\
:06L9H

m ” Ewm_ooe:xmgﬁm i =E_§M_%sz”5_n_=_8m_\
10A: (1xaju0)apunypx3spuig)asuodsaypus/

0A:(Jx8Ju0)3Bunydx3spuig)asuodsaypus/

-----------ﬂ@ rrrJ1y 1y 2y bt r Y r e Ry o b o b 1 L b L L L L R L L e

------------l_w

--------E--

U.S. Patent

US 7,739,657 B2

Sheet 23 of 24

0¢ 94

Jun. 15, 2010

U.S. Patent

EE"?@m__33_.w_o_u_Em_q:o_EE2___&%5

T

spuiq)'Buylg)uoynzuoyinypay/(ssann‘awoppun)

Eg“:wm_mamz.S__.ue_n_qco__ﬁ_._e__b
uS:()awoNpubwwo)jaby/

‘Buig)uonnzoynypaip/(ssann’NOILYSYIANOD)
L

3lqQ)pamoj|ysuoissiwiia Jain/

-------ﬂ--------------—---

oSy nsay: (0 uoissiuiagdspuig’

palqQ:(burs)enpoid/

e Bty EELELLS

unajooq:(ixsjud)abunyix3spuig)ayn)yay)/

L
0)abunyxgspuig)puy/(xp) _
L

---------Q

PI0A:{}xa]

l
{
q
{
¢
'
1
1
d
I
!
i
I
!
'
!
.
)
!
)
!
.
!
.
!
l
!
'
l
!
q
l
l
I
.
l
!
l
I
!
.
!
!
!
)
!
'

UoIpo.LsqyuoLDZLIOYINY5pulq

-----—-------E

19)JIpOuOIIDZIIOYINYSPUI)
JeljipowiuoypziLioyjnnspul

Jxajuo)abunyxjspuiq
XD

ploA:(ixaju0)abubydxgspuig)asuodsayuibag/(xp)

1balq0

US 7,739,657 B2

Sheet 24 of 24

L& Ol

Jun. 15, 2010

U.S. Patent

_u_oi__%_oom,_m___.__myum.*

istwa|3duHspu)

Jabibospulg: Emmmo.__mm_a_e $5320yS0Y]
I0)55329yppo/({ssanysoy Junajoogmau’ 8.58@;
UD3j00q: fuolssiwiaspuiq)saijduwi/(d)
A__q___,.._e

_u_e,“cm.m__as_.=QEEEEQ__EN_SF__.&%EQm___:&__o_huN_ho___:ﬁuQ_u\

jasi|nsay 131J1pOJyUOLDZLIOYINYSPUI] [Peiq0

01jue 131JIpOLIUOLDZLIOYNDSPL

US 7,739,657 B2

1

PIPELINE ARCHITECTURE FOR USE WITH
NET-CENTRIC APPLICATION PROGRAM
ARCHITECTURES

PRIORITY INFORMAITON

This application 1s a divisional of U.S. patent application

Ser. No. 09/859,765 filed on May 17,2001, now U.S. Pat. No.
6,971,001 which 1s herein incorporated by reference in its

entirety.

FIELD OF THE INVENTION

The mvention relates to a toolkat for specilying net-centric
application program architectures. More specifically, the
invention relates to various general and reusable components,
facilities, and frameworks for robustly structuring a net-cen-
tric application program 1n a modular manner.

BACKGROUND OF THE INVENTION

Java 2 Platform, Enterprise Edition (J2EE) 1s a platform
that enables solutions for developing, deploying and manag-
ing multi-tier net-centric or server-centric applications. J2EE
utilizes Java 2 Platform, Standard Edition to extend a Java
platiorm to the enterprise level.

Conventlonallyj J2EE-based products have typically been
implemented as “one-oif” implementations on top of the
I2EE platform. A “one-oif” implementation refers to a solu-
tion that 1s focused on a specific set of requirements, with
little or no thought about reuse across other problem domains.
Conventional J2EE-based one-off application architecture
implementations typically include {facilities for logging
errors, setting up configuration behind the application, and
structuring the application 1n accordance with the commonly
known framework or pattern referred to as the model view
controller.

As 1s well-known 1n the art, the model view controller
framework 1ncludes three layers that work together: (1) the
view layer, which describes how information 1s presented to
an application user; (2) the controller layer, which interprets
how user actions are translated into business activities or
work within the application; and (3) the model layer, which
performs complicated computational tasks such as working,
with a database. Activities and Presentations define boundary
points in the Model-View Controller framework. Activities
define the boundary between the Controller and the Model,
while Presentations define the boundary between the Control-
ler and the View. These boundary points define what 1s com-
monly referred to as separation of concerns.

An alternative structural framework relative to the model
view controller 1s message oriented middleware. Message
ortented middleware based applications are essentially
hooked together through a series of work queues for sending,
messages from one processing component to another pro-
cessing component through these queues. The work queues
typically include some type of message send and message
receive mechanisms. Message oriented middleware tasks are
performed by exchanging messages 1n an asynchronous man-
ner, which 1s in contrast to the synchronous nature of the
remote procedure call paradigm. Although the remote proce-
dure call paradigm has been widely used, the message ori-
ented middleware approach 1s beginning to be used more
often than it has 1n the past. The message oriented middleware
structural framework facilitates managing the work per-
formed by such a series of queues by creating a processing
pipeline 1n which work 1s performed on messages that are

10

15

20

25

30

35

40

45

50

55

60

65

2

passed from one processing component to another processing
component. Passing messages or work units between these
processing components 1s managed through a messaging
pipeline.

Unfortunately, conventional one-off J2EE-based, and
other conventional net-centric application, program imple-
mentations tend to be fairly rigidly configured and not well
suited to component and/or facility re-use, ease ol mainte-
nance, and future modification.

Accordingly, there 1s a need for a robust toolkit that pro-
vides facilities that can be assembled 1n a modular manner
thereby enabling an application architect to specity the fun-
damental architecture of a net-centric application program
including specitying which facilities the architect wants, and
which facilities the architect does not want, to use for a
particular net-centric application program.

BRIEF SUMMARY OF THE INVENTION

The invention relates to a robust toolkit or set of compo-
nents for defining a net-centric application program architec-
ture that preferably lies on top of the Java 2 Enterprise Edi-
tion, commonly known as the J2EE. A toolkit or set of
components 1 accordance with illustrative embodiments of
the mvention may be separated 1nto various major compo-
nents or aspects for purposes of discussion, including: (1) the
bootstrapping process; (2) the configuration facility; (3) the
factory; (4) selectors; (35) the pipeline architecture; (6) Web
application control flow; and (7) the authorization facility.

A bootstrapping process in accordance with illustrative
embodiments of the invention may allow a project architectto
use a declarative style for assembling various facilities within
the architecture and 1nitializing them. The bootstrapping pro-
cess may be driven by an XML document at run time. The
XML document could be edited to set up the architecture
differently without having to recompile and/or rebuild the
system. The bootstrapping process can be extended by adding
application-specific bootstrap tasks.

A toolkit and program architecture 1 accordance with
illustrative embodiments of the invention may include a con-
figuration facility having a single API or method for getting
properties that can be defined 1n any number of different
sources. One or more of the sources could be: one or more
properties files on one or more file systems; environment
variables within one or more computers at run time; data
within one or more databases; or any other number of suitable
permutations and/or combinations of suitable sources. A con-
figuration facility 1n accordance with 1llustrative embodi-
ments of the invention enables an architect to assemble any
number of these sources behind the configuration facility API
so that application developers can go against a single API.
The application developers, therefore, do not need to know
where the sources are located. Through the bootstrapping
process a project architect can assemble the configuration
sources that the architect wants to provide to application
developers. Any number of these configuration sources may
be assembled into or, stated differently, included 1n, the con-
figuration facility. The declarative style of the bootstrapping
process advantageously facilitates modification of configura-
tion data.

A factory 1n accordance with illustrative embodiments of
the mvention may allow a developer to de-couple how a
resource 1s produced from where the resource 1s used. This
de-coupling provides significant benefits for maintaining an
application program over a long period of time and facilitat-
ing making changes to the program. A factory in accordance
with 1llustrative embodiments of this mmvention defines a

US 7,739,657 B2

3

simple API that application developers program 1n order to
produce references to resources. How these references are
produced can be plugged 1n according to any number of
various strategies. This 1s unlike conventional factories,
which typically are more rigid and suited to one particular
type of a reference-producing scenario.

The factory facility provides a standard way of coupling
subsystems and increasing the modularity of an application
program thereby facilitating modification of the program.
Advantageously, the factory facility may allow for moving,
access from local to distributed without breaking any higher
level parts of an application. A factory 1n accordance with
illustrative embodiments of the invention can be used to lower
network connectivity-associated overhead by substituting a
lighter weight co-located component for a heavier-weight
distributed component, such as an Enterprise Java Bean
(“EJB™).

A selector framework in accordance with illustrative
embodiments of the invention may allow standard query lan-
guage to be applied 1n contexts other than querying a data-
base. The selector framework advantageously may allow for
defining context-specific ways of evaluating identifiers
within a selector expression. The selector framework may
allow application of these types of expressions in different
contexts that typically will have different types of identifiers.
This 1s unlike the use of SQL expressions in the database
context wherein the identifiers are assumed to be database
fields. A selector facility in accordance with illustrative
embodiments of the invention provides an engine for evalu-
ating selector expressions and preferably offers a way to
extend the selector framework to a number of different con-
texts.

A pipeline architecture 1n accordance with illustrative
embodiments of the invention enables an architect to define a
model view controller-like framework for a processing pipe-
line or message oriented middleware-type application. An
application architect and/or developer can specily how each
processing component does work through a series of fine-
grained activities. The specified activities can be assembled
together 1nto an activity plan. There could be several different
aspects of an activity plan for covering the basic steps that are
commonly performed by processing components. For
instance, processing of messages, processing ol elements
within a message, how output 1s produced, how errors are
handled, how redelivered messages are handled, and the like.

The pipeline architecture provides a structured manner for
specilying these fine-grained activities. The pipeline archi-
tecture provides a significant benefit by allowing developers
to focus on writing these fine-grained activities. Developers
can then re-use these fine-grained activities 1n many different
types of plans. This 1n turn significantly simplifies develop-
ment, testing, integration, maintenance, and modification of
an application built in accordance with various inventive
pipeline architecture principles.

Within a Web application, there are often conversations, or
portions of the application, that should follow a very specific
control flow, such as going from page A to page B to page C
in only that specific order. Web application developers ire-
quently confront this situation, namely, controlling the con-
tinuity of conversations within Web applications. The term
conversation refers to a cohesive set ol pages that act together
to perform some unit of work, such as purchasing an airline
ticket or editing user profile information.

An architecture 1n accordance with 1illustrative embodi-
ments of the imvention provides a way of controlling conver-
sation flow through the use of one or more selectors. Within
the Web application framework context, a selector 1s a logical

10

15

20

25

30

35

40

45

50

55

60

65

4

expression that makes certain portions of a conversation
available when certain specified conditions have been met.
The selectors-based approach provides a significant advan-
tage relative to conventional techniques for controlling web
application flow because the selectors-based approach 1s de-
centralized and relatively lightweight. Selectors advanta-
geously provide a simpler way to control the continuity of
conversations relative to conventional techniques that often
require modeling an application as a finite state machine,
which 1s a relatively complex task.

An authorization facility 1n accordance with illustrative
embodiments of the mvention may be used for associating
permissions with a user to specily which portions of an appli-
cation a user 1s authorized to use and which portions of the

application the user 1s not authorized to use. The authoriza-
tion facility 1s preferably integrated directly into a Web appli-
cation and used to associate required permissions that are
needed to enter certain Web conversations. Advantageously,
the authorization facility can associate requisite permissions
at many levels of detail ranging from specific fine-grained
parts of an application through larger views of the application.
The authorization facility may allow for declaratively asso-
ciating, through a configuration approach, a required permis-
sion to enter a conversation (or a particular page within a
conversation) within a Web application. Advantageously,
these associated requisite permissions can be modified by
changing declarative defimitions. These declarative defini-
tions can be implemented 1n XML or any other suitable for-
mat. The need to edit, compile, and re-build Java code 1in order
to change authorization permissions for the application and/
or various parts of the application can, therefore, be avoided,
thereby facilitating maintenance and/or modification of the
authorization permissions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary distributed computing envi-
ronment 1n which various aspects of the present mnvention
may be embodied.

FIG. 2 depicts an exemplary computer system in which
various aspects of the present invention may be embodied.

FIG. 3 depicts various components and aspects of a boot-
strapping process in accordance with illustrative embodi-
ments of the invention.

FIG. 4 depicts a legend for selected subsequent figures that
are Unified Modeling Language (“UML”) analysis models.

FIG. 5 depicts a UML analysis model for a configuration
facility 1n accordance with 1illustrative embodiments of the
invention.

FIG. 6A depicts a first portion of a UML static class dia-
gram for a detailed 1llustrative embodiment of a configuration
facility 1n accordance with various inventive principles.

FIG. 6B 1s a second portion of the UML static class dia-
gram depicted in FIG. 6A.

FIG. 7 depicts a UML dynamic sequence diagram for a
detailed 1llustrative embodiment of the get environment
operation of the configuration facility of FIG. 5 in accordance
with various inventive principles.

FIG. 8 depicts a UML analysis model, similar to FIG. 5, for
a factory 1n accordance with illustrative embodiments of the
ivention.

FIG. 9 1s a UML static class diagram of a detailed illustra-
tive embodiment of a factory in accordance with various
inventive principles.

US 7,739,657 B2

S

FIG. 10 1s a UML dynamic sequence diagram showing
exemplary steps performed by a detailed 1llustrative embodi-
ment of a factory 1n accordance with various inventive prin-
ciples.

FIG. 11 depicts a UML analysis model for a selector frame-
work 1n accordance with illustrative embodiments of the
invention.

FIG. 12 1s a UML static class diagram for a detailed 1llus-
trative embodiment of a selector framework 1n accordance
with various mventive principles.

FIG. 13 1s a UML dynamic sequence diagram showing
exemplary steps for performing a getObject operation of
GrndsSelectiveObject of FIG. 12.

FIG. 14 depicts a UML analysis model of a processing
pipeline 1 accordance with illustrative embodiments of the
ivention.

FIG. 15A 1s afirst portion of a UML static class diagram for
a detailed illustrative embodiment of a pipeline architecture
in accordance with various inventive principles.

FIG. 15B 1s a second portion of the UML static class
diagram depicted 1n FIG. 15A.

FIG. 16 A 1s a first portion of a UML dynamic sequence
diagram showing exemplary steps for implementing a pipe-
line architecture 1n accordance with a detailed illustrative
embodiment of the invention.

FIG. 16B 1s a second portion of the UML dynamic
sequence diagram depicted in FIG. 16A.

FIG. 17 depicts a UML analysis model for controlling Web
application flow 1n accordance with illustrative embodiments
of the mvention.

FIG. 18A 1s afirst portion of a UML static class diagram for
a detailed 1llustrative embodiment of a Web application
framework 1n accordance with various mventive principles.

FIG. 18B 1s a second portion of the UML static class
diagram depicted 1n FIG. 18A.

FIG. 19A 1s a first portion of a UML dynamic sequence
diagram showing exemplary steps performed by a servlet for
handling a request from a Web browser 1n accordance with a
detailed 1llustrative embodiment of the invention.

FIG. 19B 1s a second portion of the UML dynamic
sequence diagram depicted i FIG. 19A.

FI1G. 19C 1s a third portion of the UML dynamic sequence
diagram depicted 1n FIG. 19A.

FIGS. 20 and 21 are UML dynamic sequence diagrams

showing exemplary steps performed by an authorization
modifier 1n accordance with a detailed 1llustrative embodi-

ment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

I. Introduction

The mvention relates to a robust toolkit or set of compo-
nents for defining a net-centric application program architec-
ture that preferably lies on top of the Java 2 Enterprise Edi-
tion, commonly known as the J2EE. A toolkit or set of
components 1n accordance with illustrative embodiments of
the mvention may be separated into various major compo-
nents or aspects for purposes ol discussion. These major
components or aspects will be presented herein 1n an order 1n
which they build on one another to the extent possible. These
components or aspects are presented below generally 1n the
tollowing order: (1) the bootstrapping process; (2) the con-
figuration facility; (3) the factory; (4) selectors; (5) the pipe-
line architecture; (6) Web application control flow; and (7) the
authorization facility.

10

15

20

25

30

35

40

45

50

55

60

65

6

Belore discussing these major components or aspects in
detail, a brief introductory description of these aspects or
components will be provided. The bootstrapping process may
allow a project architect to specily 1n a declarative manner
which facilities should be included within a net-centric appli-
cation program architecture. The configuration facility pro-
vides a mechamsm for plugging-in any number of various
types of configuration sources. The factory can be used for
producing references to any number of different types of
resources and for de-coupling how the resource references are
produced from the context 1n which the resource references
are used. Selectors are essentially logical expressions that can
be used 1n various contexts, such as controlling conversation
flow within a Web application. The pipeline architecture can
be used for defining a model view controller-like framework
in a message oriented middleware-type context. The authori-
zation facility can be integrated into a Web application and
used for associating permissions with a user of the Web appli-
cation program thereby specitying which portions of the pro-
gram a user 1s authorized to use and which portions the user 1s
not authorized to use.

I1.

Exemplary Distributed Computing Environment

Various aspects of the present invention may be embodied
on a distributed computer system, such as the system shown
in FIG. 1. Any of client device 100, web server 102, applica-
tion server 104, and data server 106 could be a computer, such
as computer 200 depicted 1 FIG. 2. As will be apparent,
although only a single client device 102, application server
104, and data server 106 are depicted in FIG. 1, a distributed
computer system could include multiple loosely coupled
instances of any of these distributed computer system com-
ponents. Client device 100 could be a desktop PC, a smart
phone, a handheld computer and/or the like. In accordance
with certain inventive principles described 1n more detail
below, a web application architecture framework could define
a model view controller framework such that the view and the
controller are implemented on web server 102 via Java Server
Pages (JSPs) and Java servlets, respectively; and the model 1s
implemented on the application server 104 via Enterprise
JavaBeans (EJB) and/or business domain objects.

Referring to FIG. 2, computer 200 includes a central pro-
cessor 210, a system memory 212 and a system bus 214 that
couples various system components including the system
memory 212 to the central processor unit 210. System bus 214
may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. The
structure of system memory 212 1s well known to those
skilled 1n the art and may include a basic input/output system
(BIOS) stored 1n a read only memory (ROM) and one or more
program modules such as operating systems, application pro-
grams and program data stored in random access memory
(RAM).

Computer 200 may also include a variety of interface units
and drives for reading and writing data. In particular, com-
puter 200 includes a hard disk interface 216 and a removable
memory mterface 220 respectively coupling a hard disk drive
218 and a removable memory drive 222 to system bus 214.
Examples of removable memory drives include magnetic
disk drives and optical disk drives. The drives and their asso-
ciated computer-readable media, such as a floppy disk 224
provide nonvolatile storage of computer readable instruc-
tions, data structures, program modules and other data for
computer 200. A single hard disk drive 218 and a single
removable memory drive 222 are shown for illustration pur-

US 7,739,657 B2

7

poses only and with the understanding that computer 200 may
include several of such drnives. Furthermore, computer 200
may include drives for interfacing with other types of com-
puter readable media.

A user can interact with computer 200 with a varniety of 5

input devices. FIG. 2 shows a serial port interface 226 cou-
pling a keyboard 228 and a pointing device 230 to system bus
214. Pointing device 228 may be implemented with a mouse,
track ball, pen device, or similar device. Of course one or
more other input devices (not shown) such as a joystick, game
pad, satellite dish, scanner, touch sensitive screen or the like
may be connected to computer 200.

Computer 200 may include additional interfaces for con-
necting devices to system bus 214. FIG. 2 shows a universal
serial bus (USB) interface 232 couphng a video or digital
camera 234 to system bus 214. An IEEE 1394 interface 236
may be used to couple additional devices to computer 200.
Furthermore, interface 236 may be configured to operate with
particular manufacturers’ interfaces such as FireWire devel-
oped by Apple Computer and 1.Link developed by Sony. Input
devices may also be coupled to system bus 214 through a
parallel port, a game port, a PCI board or any other interface
used to couple and mnput device to a computer.

Computer 200 also includes a video adapter 240 coupling
a display device 242 to system bus 214. Display device 242
may include a cathode ray tube (CRT), liquid crystal display
(LCD), field emission display (FED), plasma display or any
other device that produces an 1image that 1s viewable by the
user. Additional output devices, such as a printing device (not
shown), may be connected to computer 200.

Sound can be recorded and reproduced with a microphone
244 and a speaker 266. A sound card 248 may be used to
couple microphone 244 and speaker 246 to system bus 214.
One skilled 1n the art will appreciate that the device connec-
tions shown in FIG. 2 are for illustration purposes only and
that several of the peripheral devices could be coupled to
system bus 214 via alternative interfaces. For example, video
camera 234 could be connected to IEEE 2394 interface 236
and pointing device 230 could be connected to USB interface
232.

Computer 200 can operate in a networked environment
using logical connections to one or more remote computers or
other devices, such as a server, a router, a network personal
computer, a peer device or other common network node, a
wireless telephone or wireless personal digital assistant.
Computer 200 1includes a network interface 250 that couples
system bus 214 to a local area network (LA\T) 252. Network-
ing environments are commonplace 1n offices, enterprise-
wide computer networks and home computer systems.

A wide area network (WAN) 254, such as the Internet, can
also be accessed by computer 200. FIG. 2 shows a modem
unit 256 connected to serial port interface 226 and to WAN
254. Modem unit 256 may be located within or external to
computer 200 and may be any type of conventional modem
such as a cable modem or a satellite modem. LAN 252 may
also be used to connect to WAN 254. FIG. 2 shows a router
258 thatmay connect LAN 252 to WAN 254 1n a conventional
mannet.

It will be appreciated that the network connections shown
are exemplary and other ways of establishing a communica-
tions link between the computers can be used. The existence
of any of various well-known protocols, such as TCP/IP,
Frame Relay, Ethernet, FTP, HI'TP and the like, 1s presumed,
and computer 200 can be operated 1n a client-server configu-
ration to permit a user to retrieve web pages from a web-based
server. Computer 200 could also be operated in a more
loosely coupled distributed computing environment. Further-

10

15

20

25

30

35

40

45

50

55

60

65

8

more, any of various conventional web browsers can be used
to display and manipulate data on web pages.

The operation of computer 200 can be controlled by a
variety of different program modules. Examples of program
modules are routines, programs, objects, components, data
structures, etc., that perform particular tasks or implement
particular abstract data types. The present invention may also
be practiced with other computer system configurations,
including hand-held devices, multiprocessor systems, micro-
processor-based or programmable consumer electronics, net-
work PCS, minicomputers, mainirame computers, personal
digital assistants and the like. Furthermore, the invention may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules may be
located 1n both local and remote memory storage devices.

I11. Bootstrapping Process

In accordance with illustrative embodiments of the mven-
tion, a bootstrapping process may allow a project architect to
use a declarative style for assembling various facilities within
the architecture and initializing them. A set of facilities may
be provided. Generally, each facility 1s focused on a particular
problem, such as logging, configuration information, produc-
ing references to other components, or managing the life
cycle of a facility.

In accordance with illustrative embodiments of the inven-
tion, a bootstrapping process may be driven by an XML
document at run time. Such an XML document could be
edited to set up the architecture differently without having to
recompile and/or rebuild the system. Alternatively, the
declarative approach to the bootstrapping process could be
encapsulated within a specific class that would need to be
edited and re-bwilt to change a particular strategy.

FIG. 3 depicts various components and aspects of a boot-
strapping process in accordance with illustrative embodi-
ments of the mnvention. XML facility deployment descriptor
300 1s an XML document that details the facilities and their
components and how those facilities should be set up for a
particular application. The XML facility deployment descrip-
tor 300 preferably contains elements for multiple facilities,
such as logging, life-cycle management, authorization, and
factory. The XML facility deployment descriptor 300 also
preferably contains sub-elements that specily any behind-
the-scenes components for each facility thereby defining how
those facilities will work. For instance, there 1s a configura-
tion bootstrap task 302 for setting up the configuration facil-
ity. There could be sub-elements for plugging in a properties
configuration source, a database configuration source, a ““.1n1”

1ni
file, and the like. The configuration task and the sub-element
tasks for each of the sources essentially define a resulting
configuration facility produced by the configuration boot-
strap task 302.

XML facility bootstrap 304 represents an entity that per-
forms work. Dashed arrow 306 represents a dependency by
the XML {facility bootstrap 304 upon the XML {facility
deployment descriptor 300 for performing the XML facility
bootstrap’s work. A parse facility deployment descriptor step
308 parses XML facility deployment descriptor 300, which 1s
ted 1nto the parse facility deployment descriptor step 308 via
the XML facility bootstrap 304 as indicated by arrows 310
and 312. The execute facility bootstrap tasks in descriptor
step 314 operates on the XML facility deployment descriptor
300 broken down nto 1ts elements and iterates over those
clements. Each of these elements will typically correspond to

US 7,739,657 B2

9

a bootstrap task class. Referring back to the configuration
bootstrap task 302 example, configuration bootstrap task 302
preferably: (1) understands the XML {facility deployment
descriptor elements that were parsed; and (2) does the work of
setting up the configuration sources and plugging them into
the configuration facility. The XML bootstrap facility may
define, as part of its tasks, a framework through which sub-
clements are provided to the facility bootstrap task 324
through, for example, a set of simple set-value operations.
Following the execute facility bootstrap tasks in descriptor
step 314, the facility bootstrap process 1s complete, as
depicted at 318 1n FIG. 3, and the configuration facility 1s set
up.

Application-specific facilities that could be unique to a
particular project could also have their own corresponding
bootstrap tasks. The facility bootstrap task 324 defines a
common API for facility bootstrap tasks. Configuration boot-
strap task 302, logging bootstrap task 320, and factory boot-
strap task 322 are specific implementations of the facility
bootstrap task API 324, as depicted by the hollow arrowhead
leading from the configuration bootstrap task 302, the logging
bootstrap task 320, and the factory bootstrap task 322 to the
tacility bootstrap task 324. Ellipses 326 1n FIG. 3 represents
that the bootstrap process can be extended by adding new
bootstrap tasks. Dashed arrow 328 leading from the execute
tacility bootstrap tasks i descriptor step 314 to facility boot-
strap task 324 represents a dependency of the execute facility
bootstrap tasks in descriptor step 314 upon the specific imple-
mentations of the facility bootstrap task common API 324.

IV. Notation Used 1n Figures

FI1G. 4 1s essentially a legend for FIGS. 4-5, 8, 11, 14, and
17, which depict Umfied Modeling Language (“UML”)
analysis models. FIGS. 4-5, 8, 11, 14, and 17 show major
entities within a model of various aspects of a toolkit and a
net-centric application program in accordance with the
present invention and how those major entities relate to one
another. The different types of entities shown in these figures
are depicted in FIG. 4. A boundary class 400 defines an API or
an interface. A control class 402 defines a process or an
operation for doing some work. An entity class 404 1s a
concrete thing. An entity class could implement an interface,
or 1t could be a database or something else. In FIGS. 4-5, 8,
11, 14, and 17, arrows between these three major types of
components represent either associations or transiers of con-
trol similar to a process flow.

V. Single Simple API

A common principal, which preferably appears in multiple
contexts within a toolkit and/or an architecture 1n accordance
with 1llustrative embodiments of the invention, 1s the use of a
single simple API for application developers to use. Such an
API preferably hides a server-provided interface that can have
different implementations plugged in and/or composed
behind the server-provided interface. The configuration facil-
ity 1s one example 1 which programmers can get properties
of the system through a single get environment operation. The
specific details about how such information 1s retrieved are
preferably completely hidden. For example, the GrndsCon-
figurationSource 1nterface, set forth below, defines a simple
API, which concrete configuration sources may implement to
provide their view of the system’s configuration environment.
The example Concrete class, GrndsSystemPropertySource,
set forth below, implements getEnvironment(), which returns
a set of In-memory system variables. Normally, sources par-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

tition the configuration environment into domains and sub-
domains, but 1n the example below, the GrndsSystemProper-

tySource assigns all system variables to every configuration
domain and sub-domain combination. The other operations 1n
the interface, 1 particular mit(), {ini(), clone() and refresh(
), are implemented to perform various lifecycle operations
that may need to be performed by the source.

public interface GmdsConfigurationSource
extends Serializable, Cloneable
{
public abstract GrndsConfigurationEnvironment getEnvironment(
String domain__,
String| | sub-domains_)
throws GrndsConfigurationException;
public abstract void mmit{ String[| args_) throws Exception;
public abstract void fini() throws Exception;
public abstract void refresh();
public abstract Object clone();
h
public final class GrndsSystemPropertySource
extends GmdsObject implements GmdsConfigurationSource

1

public GrndsSystemPropertySource()

1
super();

)

public GrndsSystemPropertySource(GrndsSystemPropertySource
rhs_)

1
super();

h

public Object clone()

{

return new GrndsSystemPropertySource(this);

;

public GrndsConfigurationEnvironment getEnvironment(
String domain__,
String[| sub-domains__)

1

GrndsConfigurationEnvironment result =

new GrndsConfigurationEnvironment();
result.putAll{ System.getProperties());
return result;

h

public Enumeration getPropertyNames(String domain__,
String| | sub-domains_)
{

return System.getProperties().keys();

h

public void mit(String[| args_)

1)
public void fini()

1]

public void refresh()

1

V1. Configuration Facility

A toolkit and program architecture 1 accordance with
illustrative embodiments of the invention may include a con-
figuration facility having a single API or method for getting
properties that can be defined 1n any number of different
sources. One or more of the sources could be: one or more
properties files on one or more file systems; environment
variables within one or more computers at run time; data
within one or more databases; or any other number of suitable
permutations and/or combinations of suitable sources. A con-
figuration facility 1n accordance with 1illustrative embodi-
ments of the invention enables an architect to assemble any
number of these sources behind the configuration facility API
so that application developers can go against a single API.
The application developers, therefore, do not need to know

US 7,739,657 B2

11

where the sources are located. Through the bootstrapping
process a project architect can assemble the configuration
sources that the architect wants to provide to application
developers. Any number of these configuration sources may
be assembled 1nto or, stated differently, included in the con-
figuration facility.

The declarative style of the bootstrapping process advan-
tageously facilitates modification of configuration data. For
instance, a configuration facility could be used to define con-
figuration data, such as a destination URL of a hyperlink.
Rather than hard coding the URL, which would require re-
compilation and rebuilding of all the code to change the
destination URL, the configuration facility preferably asso-
ciates the URL with a key. Then, the destination URL of the
hyperlink can be changed by changing the value associated
with the key, which does not require re-compilation and
rebuilding of all the code. A configuration facility 1n accor-
dance with illustrative embodiments of the invention enables
an architect to plug different configuration nformation
sources 1nto the configuration facility, as desired, during the
bootstrapping process. The configuration facility preferably
depends on an abstract configuration source interface, but is
provided concrete implementations of that interface, via the
bootstrap process, to implement the get environment opera-
tion differently, such as to retrieve information from the sys-
tem environment, from properties file from xml files, and/or
the like. Example contents of an XML {facility deployment
descriptor document are provided 1n section VIII below.

FIG. 5 depicts a UML analysis model for a configuration
framework 1n accordance with 1illustrative embodiments of
the invention. The sources, or where the configuration comes
from, are de-coupled from the act of getting to or accessing
the configuration. The get configuration environment opera-
tion 502 1s the main operation behind configuration API 500.
The get environment operation 302 uses configuration source
interface 504 to build a single environment based upon data
from one or more configuration sources, such as property file
source 305, XML file source 506, and system property source
507. Ellipses 508 1n FIG. 5 represents additional configura-
tion sources that can be plugged into an architecture via
specific implementations of configuration source interface
504. The concrete implementations of configuration source
interface 504, namely, property file source 505, XML file
source 506, and system property source 507, are depicted 1n
FIG. 5 with entity class symbols 404 to convey that these
implementations ol configuration source interface 504 per-
form respective operations of obtaining configuration infor-
mation from various configuration sources. The configuration
sources are plugged 1nto the configuration API 500 via the
bootstrap process, which 1s depicted in FIG. 5 and discussed
above. Configuration sources may be specified via the con-
figuration bootstrap task 502, or configuration sources may be
specified 1 an XML file or the like to dictate how the con-
figuration 1s assembled together.

The configuration facility builds the configuration environ-
ment by iterating over each configuration source, requesting,
its view of the environment. The configuration facility com-
bines each source’s environment view 1nto a whole, prefer-
ably taking into consideration these precedence rules: con-
figuration sources are ordered within the facility based on
when they are added with earlier sources taking precedence
over later sources. Configuration environments are organized
into domains and sub-domains, which are logically defined,
and sub-domains override information specified at the
domain level.

FIG. 6 depicts a UML static class diagram for a detailed
illustrative embodiment of a configuration facility in accor-

10

15

20

25

30

35

40

45

50

55

60

65

12

dance with various mventive principles. FIG. 6 shows major
components of such a configuration facility, including Grnd-
sPropertyFileSource 505", GrndsXmlFileSource 506', and
GrndsSystemPropertySource 507" objects, which are con-
crete implementations of GrndsConfiguration common API

definition 500",

FIG. 7 depicts a UML dynamic sequence diagram for a
detailed illustrative embodiment of the get environment
operation 502 in accordance with various inventive prin-
ciples. FIG. 7 shows exemplary steps for delegating work

from gmdsconfiguration 500" API to GrndsConfiguration-
Source S04'.

The bootstrapping process preferably defines a mechanism
to actively set up application architecture facilities, whereas
the configuration facility 1s typically one of the facilities set
up by the bootstrap mechanism. The configuration facility
preferably defines a mechanism to get information about the
application and 1ts environment at runtime. The bootstrap
mechanism 1s preferably capable of setting up the configura-
tion facility first, and then using data retrieved from the con-
figuration facility to configure other facilities. While the boot-
strap mechanism may use the configuration facility to help set
up other facilities, the other facilities do net necessarily
depend on the configuration facility. In fact, facilities are
preferably defined to be independent of the configuration
tacility thereby enabling the bootstrap mechanism to use any
means for getting environment information.

VI1I. Factory

A factory 1n accordance with illustrative embodiments of
the mvention may allow a developer to de-couple how a
resource 1s produced from where the resource 1s used. This
de-coupling provides significant benefits for maintaining an
application program over a long period of time and facilitat-
ing making changes to the program. A factory in accordance
with 1llustrative embodiments of the invention defines a
simple API that application developers program 1n order to
produce references to resources. How these references are
produced can be plugged 1in according to any number of
various strategies. This 1s unlike conventional factories,
which typically are more rigid and suited to one particular
type of a reference-producing scenario.

FIG. 8 depicts a UML analysis model, similar to FIG. 5, for
a factory 1n accordance with illustrative embodiments of the
invention. The produce operation 802, which produces a ret-
erence to a resource, 1s the main operation behind the com-
ponent factory API 800. Various producers, such as those
represented by local producer 8035, EJB producer 806, and
XML activity plan producer 807 are concrete implementa-
tions of the producer intertace 804. These producers produce
references to resources. These producers are plugged into
factory API 800 through the bootstrap mechanism. Alterna-
tively, the factory could assemble various producers under-
neath 1t by using information located 1n a Java standard Prop-
erties class, such as one created using the configuration
tacility.

FIG. 9 1s a UML static class diagram of a detailed 1llustra-
tive embodiment of a factory in accordance with various
inventive principles. FIG. 9 depicts the relationship among
various components including GrndsFactory 800', GrndsPro-
ducer 804', produce 802', GrndsLocalProducer 805', and
GrndsEjbProducer 806', which correspond to the following
entities depicted in FI1G. 8: component factory API 800, pro-

ducer interface 804, the produce operation 802, local pro-
ducer 8035, and EJB producer 806.

US 7,739,657 B2

13

FIG. 10 1s a UML dynamic sequence diagram showing
exemplary steps performed by a detailed 1llustrative embodi-
ment of a factory 1n accordance with various inventive prin-
ciples. FIG. 10 depicts exemplary steps for identifying a
producer corresponding to a logical key or, 1f there 1s no
corresponding producer, delegating to a default producer,
which 1s preferably set up through a bootstrapping process in
accordance with various inventive principles.

The factory facility provides a standard way of coupling
subsystems and increasing the modularity of an application
program thereby facilitating modification of the program.
Advantageously, the factory facility may allow for moving
access from local to distributed without breaking any higher
level parts of an application. In other words, higher level
portions of the application are not directly dependent upon
particular resource references. Accordingly a generalized
factory facility 1s provided that may allow for changing out
different producers behind the scenes.

A Tfactory 1n accordance with 1llustrative embodiments of
the mvention can be used to lower network connectivity-
associated overhead by substituting a lighter weight co-lo-
cated component for a heavier-weight distributed component,
such as an Enterprise Java Bean (“EJB”). EJB’s are typically
maintained by an application server for performing tasks such
as working with databases and/or legacy application sofit-
ware. A Tactory in accordance with 1llustrative embodiments
of the mvention advantageously may allow for the inter-
changeability of co-located components and distributed com-
ponents without requiring modification of the code of either
the co-located components or the distributed components. A
factory 1n accordance with 1illustrative embodiments of the
invention can also be used to facilitate production of various
other types of resources including, but not limited to, access-
ing database connections and simplifying access to a central
naming service.

VIII. Example Contents of an XML Facility
Deployment Descriptor Document

Example contents of an XML facility deployment descrip-
tor document 1n accordance with illustrative embodiments of
the 1nvention are set forth below.

<7xml version="1.0"7>
<1--DOCTYPE gmds-web-app SYSTEM “DTD/grnds-web-app.dtd”-->
<grnds-facility-deployment>
<facilities™
<configuration>
<source
classname="org.grnds.facility.config. GrndsPropertyFilesource™/>
<source classname=
“org.grnds.facility.config. Grnds XmlFileSource™>
<domain name="webapp™>
<config-sources=>
<source-~
<file>C:/bin/grnds-web-app-resrc.xconf</file>
<dialect-
class>org.grnds.structural.web.config. GrndsWebAppXmlDialect</
dialect-class>
</source>
</config-sources>
<sub-domain name="fo0’">
<config-sources>
<resource>grmds-web-app-resrc.xconf</resource>
<dialect-
class>org.grnds.structural.web.config. Grnds WebAppXmlDialect</dialect-
class>
</conflg-sources>
</sub-domain>

10

15

20

25

30

35

40

45

50

55

60

65

14
-continued
</domain>
</source>
<source
classname="org.grmds.facility.config. GrndsSystemPropertySource™/>

</configuration>
<factory>

<producer name="default”
classname="org.grnds.facility.factory.GrndsLocal Producer™/>
<producer>
<name>foo</name>
<classname>org.grmds.facility. factory.GrndsEjbProducer</classname>
<init-param=>
<param-name>java.naming.factory.initial</param-name=>
<param-value>weblogic.ind1. T3Initial ContextFactory <Y/
param-value>
</1nit-param=>
<init-param>=>
<param-name>java.naming.provider.url</param-name>
<param-value>t3://localhost:7001</param-value>
</1nit-param=>
</producer>
<producer name="XmlPipeline”
classname=
“org.grndsx.structural.pipeline.GrndsXmlActivityPlanProducer”/>
<target name="Authorization” producer="{00”/>
<target name="alpha” producer="default’”>
<1nit-param>>
<param-name>classname</param-name=
<param-
value>org.grnds.foundation.util. GrndsSerializableObject</param-value>
</1nit-param=>
</target>
<target name=""Plan” producer="XmlPipeline’>
<init-param=>
<param-name>plan.file</param-name>
<param-value>C:/grnds-test/test/grndsx/pipeline/plan-
descriptor.xml</param-value>
</1nit-param>=>
</target>
</factory>
</facilities>
</grnds-facility-deployment>

As described above 1n connection with FIG. 5, XML Facil-
ity Bootstrap class 504 1s preferably responsible for parsing
an XML facility-deployment descriptor file 500 and {for
executing each facility bootstrap task. In the sample XML
code set forth above, two facilities are bootstrapped: a con-
figuration facility and a factory facility. The configuration
facility 1s setup with three configuration sources of the type
shown 1n FIG. 5: a property {ile source 505; an XML f{ile
source 506, which 1s further configured with a collection of
XML files organized into domains and sub-domains; and a
system property source 507.

In the example provided above, the factory facility 1s setup
with a set of producers and targets. The producers are named,
given an implementation class, and may be provided with
additional configuration information. The factory targets are
given a logical name, which can be used by developers to
identify what should be produced, a named producer, and
may be given additional properties to aid production. In this
example, there 1s a named producer, XmlPipeline, which 1s
assigned a single target, Plan. The Plan target 1s given a
property, plan file, that the producer parses to produce an
activity plan object, Grnds ActivityPlan.

IX. Selectors

The selector framework may allow standard query lan-
guage to be applied in contexts other than querying a data-
base. The selector framework advantageously may allow
defining context specific ways of evaluating 1dentifiers within

US 7,739,657 B2

15

a selector expression. A Standard Query Language (“SQL”)
expression 1includes three major elements: 1dentifiers, which
are like variables; operators, such as a string comparison
operator to check equality; and literals, such as numbers or
character strings. The selector framework may allow appli- 5
cation of these types of expressions 1n different contexts that
typically will have different types of identifiers. This 1s unlike
the use of SQL expressions 1n the database context wherein
the 1dentifiers are assumed to be database fields.

A selector facility 1n accordance with 1llustrative embodi- 10
ments of the mvention provides an engine for evaluating
selector expressions and preferably ofifers a way to extend the
selector framework to a number of different contexts. In addi-
tion to the Web application scenario, such as the airline ticket
purchase example discussed below 1n section X1I, the selector 15
framework can be extended to the pipeline architecture, dis-
cussed below 1n section X. In the context of the pipeline
architecture, selectors can be applied to various activities
assembled 1nto an activity plan to determine whether various
activities should be applied to a message and/or to various 20
clements within a message.

FI1G. 11 depicts a UML analysis model for a selector frame-
work 1n accordance with illustrative embodiments of the
invention. Selector API 1100 can be used for testing whether
an expression 1s true or not, as depicted by the test expression 25
operation 1102. Test expression operation 1102 uses the
evaluate 1identifier strategy API 1104 for applying selectors to
different problems. For example, there could be a special
identifier strategy for the pipeline for pulling identifiers from
the pipeline context, from the message, or from other areas. 30
This 1s different from the Web application context where
identifier information could be pulled from an HTTP request
or from some diflerent parts ofa Web session. Test expression
1102 applies the evaluate 1dentifier strategy 1104 to the 1den-
tifier entity 1106. Based upon the value of identifier 1106 and 35
any literals 1n test expression 1102, a determination is made as
to whether the test expression 1102 1s true or false.

FI1G. 12 1s a UML static class diagram for a detailed illus-
trative embodiment of a selector framework 1n accordance
with various inventive principles. GrndsSelector 1100', Grnd- 40
sEvaluateldentifier 1104', and Grndsldentifier 1106' corre-
spond to the selector API 1100, the evaluate identifier strategy
1104, and the identifier entity 1106. GrndsSelectiveObject
1200 includes a getObject operation 1202, 1llustrative steps of
which are depicted 1n FIG. 13. 45

Through various implementations of the evaluate 1dentifier
strategy API1 1104 an application developer can specily which
identifiers can be used within selector expressions thereby
facilitating tailoring the selector framework to any number of
different contexts. 50

A toolkit 1n accordance with illustrative embodiments of
the 1nvention preferably includes two separate and unique
concrete implementations of the evaluate identifier strategy
1104, with one implementation corresponding to the pipeline
and another implementation corresponding to the Web appli- 55
cation. These unique strategies are passed 1nto selector 1100
during the building of selector expression 1102. Selector
expressions are built when the web application XML map and
pipeline activity plan are constructed; such as, during inter-
pretation of XML configuration data for each respective 60
framework.

X. Pipeline Architecture

Under certain circumstances, a message oriented middle- 65
ware approach facilitates integrating disparate computing
systems by allowing one system to publish data to a work

16

queue and by allowing a second system to subscribe to mes-
sages from the queue. In this manner, the two computer sys-
tems are advantageously able to remain relatively de-coupled.

A pipeline architecture 1n accordance with illustrative
embodiments of the invention enables an architect to define a
model view controller-like framework for a processing pipe-
line or message oriented middleware-type application. An
application architect and/or developer can specily how each
processing component does work through a series of fine-
grained activities. In general, a processing component will
receive a message as an input and produce a message as an
output.

The specified activities can be assembled together 1into an
activity plan. There could be several different aspects of an
activity plan for covering the basic steps that are commonly
performed by processing components. For instance, process-
ing of messages, processing of elements within a message,
how output 1s produced, how errors are handled, how rede-
livered messages are handled, and the like.

The pipeline architecture provides a structured manner for
specilying these fine-grained activities. The pipeline archi-
tecture provides a significant benefit by allowing developers
to focus on writing these fine-grained activities. Developers
can then re-use these fine-grained activities 1n many different
types of plans. This 1n turn significantly simplifies develop-
ment, testing, integration, maintenance, and modification of
an application built 1n accordance with various 1nventive
pipeline architecture principles.

FIG. 14 depicts a UML analysis model of a processing
pipeline in accordance with illustrative embodiments of the
ivention. JMS 1s a standard Java API for message oriented
middleware. Destinations are a major component of the JMS.
Destinations are code that plugs into the JMS middleware for
receiving messages. The pipeline 1402 subscribes to and
receives messages and/or events from 1nput JMS destination
1400. When the pipeline 1402 receives a message, pipeline
1402 invokes the onMessage process 1404, which uses an
activity plan 1406.

The activity plan 1406 1s an entity that describes the various
activities that are used for processing the incoming message.
In this manner, the activity plan defines the plan for perform-
ing that processing. Activity plans are described in more
detail below.

The get activities operation 1408 uses activity selector
1410, which 1s similar to the selector framework used for Web
application flow, to execute one or more activities 1412.
These activities will typically be application-specific con-
crete implementations of Activity interface 1412 for perform-
ing tasks within an application. Typically, there will be many
different activities within an activity plan 1406. Activities can
be filtered or used based upon a selector expression wherein
the selector expression 1s based upon mformation in the
received message, some state of the application, or the like.
Accordingly, not all activities 1n an activity plan will neces-
sarily be executed for a particular message. Instead, activities
may be selectively executed for a particular message.

FIG. 15 1s a UML static class diagram for a detailed 1llus-
trative embodiment of a pipeline architecture in accordance
with various inventive principles. GrndsPipeline 1402,
GrndsActivityPlan 1406', and GrndsPipelineActivity 1412
correspond to pipeline 1402, activity plan 1406, and activity
interface 1412.

FIG. 16 1s a UML dynamic sequence diagram showing
exemplary steps for implementing a pipeline architecture 1n
accordance with a detailed 1illustrative embodiment of the
invention. F1G. 16 depicts steps for abstracting various details
of message oriented middleware so that developers are able to

US 7,739,657 B2

17

focus on developing activities for processing messages to
perform specific tasks, thereby facilitating re-use of these
activities 1n various types of activity plans.

XI. Activity Plan

An activity plan, which 1s described 1n more detail below,
essentially defines the steps to perform some process. The
processing pipeline 1402 1s an engine that recerves events or
messages. The pipeline 1402 does work through activities. An
activity plan, such as activity plan 1406 tells the pipeline 1402
which activities should be performed and under what condi-
tions those activities should be performed. In this manner, the
activity plan 1406 ties specific tasks or activities together into
a cohesive process.

An activity plan 1n accordance with 1llustrative embodi-
ments of the invention, such as activity plan 1406, may
include several different sections. One section could be a
redelivered section for handling a situation 1n which a mes-
sage 1s being redelivered, which may occur when a server
shuts down and 1s restarted. Under these circumstances, mes-
sages may be sent more than once, which 1s not a normal
operating condition.

For more common situations, an activity plan may include
a message section, which performs activities on a recerved
message at the message level or, 1n other words, performs
activities on a recerved message as a whole. Messages, how-
ever, could contain many elements. Accordingly, an activity
plan may include a message element section that executes a
series of activities on individual elements within a received
message. For example, 11 a message has five elements within
its body, then the message element section would be applied
to each of these five elements. Stated another way the mes-
sage elements section would be applied five times.

An activity plan may also include an output section for
doing work to produce output or results of the process at the
message level. Accordingly, the output section would typi-
cally be executed one time per message. An activity plan may
also 1nclude a set of error handling sections that may be
applied at the message level and/or the message element level
for handling situations 1n which errors are thrown while pro-
cessing a message.

XII. Web Application Framework Control

Within a Web application, there are often conversations, or
portions of the application, that should follow a very specific
control flow, such as going from page A to page B to page C
in only that specific order. For instance, when a person uses a
Web application to purchase an airline ticket and reserve a
seat on a particular airline flight, the person should not be able
to reserve a seat without already having purchased a ticket. A
person, however, could bookmark a page for reserving a seat
and could potentially reserve a seat on another flight by
returning to the book-marked page without having first pur-
chased a ticket for this other tlight. This scenario 1s possible
under certain circumstances due to the relative lack of control
of the manner in which users enter Web applications via the
Internet. Web application developers frequently confront this
situation, namely, controlling the continuity of conversations
within Web applications. The term conversation refers to a
cohesive set ol pages that act together to perform some unit of
work, such as purchasing an airline ticket or editing user
profile information.

An architecture 1n accordance with 1illustrative embodi-
ments of the imvention provides a way of controlling conver-
sation flow through the use of one or more selectors. Within

10

15

20

25

30

35

40

45

50

55

60

65

18

the Web application framework context, a selector 1s a logical
expression that makes certain portions of a conversation
available when certain specified conditions have been met.
For example, 1n the context of the airline ticket purchase and
seat reservation example, an application could set a flag, or a
variable, to indicate that the user has purchased a ticket before
sending the user to the seat selection page. A corresponding,
selector could be associated with producing the seat selection
page. The selector could then be evaluated and used for mak-
ing the seat reservation page available 11 and only 11 the user
has actually purchased a ticket for a particular flight. Accord-
ingly, 1f a user book-marked the seat selection page and
entered the application directly into the seat selection page
without first purchasing a ticket for the flight, the web appli-
cation would not allow the user to select a seat because the
selector would evaluate to false thereby causing an error page
to be displayed to the user and/or some other appropnate
action to be taken.

The selectors-based approach provides a significant advan-
tage relative to conventional techniques for controlling web
application tlow because the selectors-based approach 1s de-
centralized and relatively lightweight. Selectors advanta-
geously provide a simpler way to control the continuity of
conversations relative to conventional techniques, which
often require modeling an application as a finite state
machine. Modeling Web applications as finite state machines
1s a relatively complex task.

FIG. 17 depicts a UML analysis model for a Web applica-
tion 1n accordance with illustrative embodiments of the inven-
tion. Servlet 1700 1s a standard API within the Java language.
Servlet 1700 1s a plug-in point for the server. When a Web
request comes from a browser to a Web server, the elements
that do work to process the request are implemented behind
the servlet API 1700. Accordingly, the remainder of FIG. 17
implements that API and plugs into that engine.

FIG. 17 shows how processing ol a Web request may be
structured 1n accordance with 1llustrative embodiments of the
invention. The execute exchange operation 1702 1s the main
operation behind the Servlet 1700 API. The execute exchange
operation 1702 implements specific details of 1ts algorithm
using the conversation interface 1704. The conversation inter-
tace 1704 provides access to get exchange presentation 1706
and get exchange activity 1708. These elements define the
separation of concerns within the model view controller
framework. The implementation of Servlet 1700 depicted 1n
FIG. 17 translates user events, such as a user clicking on a link
or a button, mto application commands. The processing of
those application commands 1includes two main units of work.
The first main unit of work 1s performing some business
activity in conjunction with the model layer, which defines
the business logic. The activity defines the application logic,
while the model layer defines the more detailed business
logic, which may span applications. The second main unit of
work 1s that the results of the activity are displayed through a
presentation, which defines the view layer. The conversation
defines associations between the activity and presentation
clements with their corresponding user events.

When execute exchange 1702 begins running, 1t tells the
conversation 1704 to do whatever work the conversation
needs to do before the exchange’s activity and presentation
are processed. The beginresponse operation 1710 looks to see
whether there are any selectors 1712 registered for the
received event/command. If a selector 1s 1dentified for the
recerved event/command, it 1s evaluated. I1 the selector evalu-
ates to true, the event/command 1s processed further, other-
wise an 1llegal state exception 1s thrown, which may be routed
by the J2EE platform to an error page presented to the user.

US 7,739,657 B2

19

Once one or more selectors 1712 have been evaluated, an
execute modifiers sub-process 1714 of the begin response
operation 1710 transfers control to the execute modifiers
operation 1714 and the exchange modifier 1716 API, which
defines one or more extensions to the conversation, such as
the authorization exchange modifier 1718. The execute modi-
flers operation 1terates over each configured exchange modi-
fler and executes them sequentially. The authorization
exchange modifier 1718 checks whether the user has an
appropriate permission to work with a particular part of an
application or to perform a particular command, which 1s
done through authorization facility 1722, which 1s described
in more detail below.

There 1s preferably an XML document that describes the
Web application structure. Such an XML document prefer-
ably ties: conversations to Servlets; commands to conversa-
tions; and activities and presentations to those commands.
Such an XML document also preferably ties one or more
selectors to those commands, and, with respect to the autho-
rization facility 1722, the XML document may allow for
specification of a mimmimum set of permissions that a user
needs to have 1n order to execute a conversation and/or any
specific command within a conversation.

IT all of these authorization permission checks pass, then
the conversation will return the configured exchange activity,
which the servlet will run, and the servlet will work with
various components within the business model to do work
such as looking up all the seats that are available 1n the airline
ticket purchase and seat reservation example. The servilet will
then execute the presentation or, stated otherwise, output
results to the user.

FI1G. 18 1s a UML static class diagram for a detailed illus-
trative embodiment of a Web application framework 1n accor-
dance with various inventive principles. Entities depicted 1n
FIG. 18 with prime reference numbers correspond to entities
having corresponding non-prime reference numbers.

FIG. 19 1s a UML dynamic sequence diagram showing
exemplary steps performed by a servlet for handling a request
from a Web browser 1n accordance with a detailed 1llustrative
embodiment of the invention.

Contents of an example XML document for describing the
structure of a web application 1n accordance with illustrative
embodiments of the mnvention are set forth below.

<9xml version="1.0""7>
<1--DOCTYPE grmds-web-app SYSTEM “DTD/grnds-web-app.dtd™”-->
<grnds-web-app>
<servlet mapping="gallery”>
<conversations>
<conversation>
<default-conversation/>
<conversation-class>
homesite.HomesiteConversation
</conversation-class>
<commands>
<command>
<command-name>default</command-name>
<!--
-- command 1s available iff configuration property,
-- 1sGalleryAvailable, equals ‘true’
_>

<selector>
<I[CDATA[config.1sGalleryAvailable = ‘true’]|>
</selector>
<activity type="method”>default xa</activity>
<presentation type="‘url”>
/grnds-docs/gallery/default/default.jsp
</presentation>
<presentation type="‘url” branch="error’>

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

/grnds-docs/ gallery/default/default.error.sp
</presentation>
</command>
</commands>
<modifiers>
<modifler>
<modifier-class>
org.grnds.structural.web.GrndsAuthorizationModifier
</modifier-class>
<!-- Apply permission at conversation level -->
<init-param=>
<param-name>conversation.permission.class</param-
name-=
<param-value>homesite.GalleryPermission</param-
value>
</1nit-param=>
<init-param=>
<param-name>conversation.permission.resource</
param-name-~
<param-value>*-</param-value>
</1nit-param=>
<init-param=>
<param-name>default.permission.actions</param-name=>
<param-value>read</param-value>
</1nit-param=>
<!-- Apply permission to default command -->
<init-param=>
<param-name=>default.permission.class</param-name>-
<param-value>homesite.GalleryPermission</param-
value>
</1nit-param=>
<init-param>
<param-name>default.permission.resource</param-
name-
<param-value>*-</param-value>
</1nit-param=>
<init-param=>
<param-name>default.permission.actions</param-name=>
<param-value>read</param-value>
</1nit-param=>
</modifier>
</modifiers>
</conversation>
</conversations>
</servlet>
</grnds-web-app>

In the example set forth above, there 1s a single servlet,
called “gallery”, comprising a single conversation. The con-
versation contains one command and i1s protected by an
authorization modifier. The command, default, has a selector
that prevents 1t from being available if the configuration prop-
erty, 1sGallery Available, 1s not set to “true”. The default com-
mand 1s associated with a single activity, implemented by the
conversation method “default_xa()”. The default command
1s associated to two presentations: a standard path i1mple-
mented via the /grnds-docs/gallery/default/default.jsp file;
and an alternative implemented via the /grnds-docs/gallery/
default/default.error.jsp file. The alternative presentation
branch 1s used if the activity set the presentation branch by
calling the conversation’s setPresentationBranch(*“‘error”).
The authorization modifier sets two permissions, one for the
conversation and one for the default command.

XIII. Authorization Facility

Authorization facility 1722 may be used for associating
permissions with a user to specily which portions of an appli-
cation a user 1s authorized to use and which portions of the
application the user 1s not authorized to use. The authoriza-
tion facility 1s preferably integrated directly into a Web appli-
cation and used to associate required permissions that are
needed to enter certain Web conversations. A user attempting,

US 7,739,657 B2

21

to enter a Web conversation without the requisite permissions
could be denied access to the Web conversation. Advanta-
geously, the authorization facility can associate requisite per-
missions at many levels of detail ranging from specific fine-
grained parts of an application through larger views of the
application. The authorization facility may allow for declara-
tively associating, through a configuration approach, a
required permission to enter a conversation (or a particular
page within a conversation) within a Web application. Advan-
tageously, these associated requisite permissions can be
modified by changing declarative definitions. These declara-
tive definitions can be implemented in XML or any other
suitable format. The need to edit, compile, and re-build Java
code 1n order to change authorization permissions for the
application and/or various parts of the application can, there-
fore, be avoided, thereby facilitating maintenance and/or
modification of the authorization permissions.

Referring to FIG. 19, plug-in point 1900 1s the point at
which the Web application authorization integration UML
dynamic sequence diagram of FIG. 20 plugs into the steps
shown in FIG. 19.

FIGS. 20 and 21 are UML dynamic sequence diagrams
showing exemplary steps performed by the beginResponse
and check Authorization operations of an authorization modi-
fier 1n accordance with a detailed 1llustrative embodiment of
the 1nvention.

XIV. Variations and Permutations

While the mvention has been described with respect to
specific examples including presently preferred modes of
carrying out the imnvention, those skilled in the art will appre-
ciate that there are numerous variations and permutations of
the above described architecture and techniques that fall
within the spirit and scope of the invention as set forth in the
appended claims and their equivalents.

I claim:

1. A computer readable storage medium operable to store
computer executable instructions for a pipeline architecture
for defining a model view controller-like framework 1n a
message oriented middleware-type context, the computer
readable medium comprising:

a plurality of activities specilying how a pipeline process-
ing component should handle a particular type of mes-
sage or message sub-clement, each of the activities
being a specific task executed to process the particular
type ol message, or to process the message sub-element
of the particular type of message;

an activity plan comprising a subset of the plurality of
activities, the activity plan assembled together to define
how a recerved message having message sub elements
should be processed; and

a selector framework defining at least one logical selector
expression comprising a variable and an operator, the at
least one logical selector expression specifying at least
one condition upon which to selectively filter the plural-
ity of activities included in the activity plan such that less
than all of the plurality of activities included in the
activity plan are assembled by the selector framework
into a series of tasks forming a cohesive process, the
activities included in the cohesive process executed with
the selector framework to address a particular message
related circumstance by application of the series of tasks
to at least one of the received message and the message
sub-clements.

2. The computer readable storage medium of claim 1

wherein the activities included 1n the activity plan are config-

10

15

20

25

30

35

40

45

50

55

60

65

22

ured to be selectively assembled into any one of a plurality of
sections, each of which include an assembled series of activi-
ties, the plurality of sections selected from the group consist-
ing of: a redelivered message section, a message processing
section, a message element section, an output section, a mes-
sage error handling section, and a message element error
handling section.

3. The computer readable storage medium of claim 1
wherein the selector framework provides a mechanism for
speciiying a plurality of variables of different types that are
used within a plurality of selector expressions thereby mak-
ing the selector framework customizable to assemble less
than all of the plurality of activities included 1n the activity
plan into a number of diflerent series of tasks forming respec-
tive different cohesive processes used 1n a plurality of con-
texts.

4. The computer readable storage medium of claim 1
wherein the at least one logical selector expression 1s
expressed using standard query language.

5. The computer readable storage medium of claim 1
wherein the activity plan 1s assembled to include a message
clement section comprising a series ol activities that are
executed on mdividual message sub elements, the series of
activities executed for each of the individual message sub
clements applied based on the logical selector expression.

6. The computer readable storage medium of claim 1
wherein the activity plan 1s selectively filtered to assemble
any ol a plurality of different sections, each of the different
sections including a series of activities performed on a
received message, wherein a first section 1includes activities
performed on the received message as a whole, and a second
section includes activities performed on the message sub-
clements.

7. The computer readable storage medium of claim 1
wherein the at least one logical selector expression 1s at least
one first logical selector expression comprising a first variable
and a first operator, and the cohesive process 1s a first cohesive
process, and the computer readable medium further com-
prises the selector framework defining at least one second
logical selector expression comprising a second variable and
a second operator, the at least one second logical selector
expression speciiying a condition upon which to selectively
filter the plurality of activities included 1n the activity plan
such that less than all of the plurality of activities in the
activity plan are assembled by the selector framework 1nto a
second cohesive process.

8. The computer readable storage medium of claim 1 fur-
ther comprising an activity plan producer executable to pro-
duce the activity plan from an XML source file external to the
pipeline architecture.

9. A method of defining a model view controller-like
framework 1n a message oriented middleware-type context,
the method comprising:

receving a message with a server computer executing des-
tination code included 1n a message oriented middle-
ware application;

retrieving with the server computer an activity plan that
includes a plurality of activities, wherein the activity
plan 1s associated with the message oriented middleware
application;

the server computer applying a first selector expression
comprising a first variable and a first operator to the
activity plan to identify a first subset of the activities
included in the activity plan, the first selector expression
associated with the received message or a state of the
message oriented middleware application;

US 7,739,657 B2

23

the server computer assembling the first subset of activities
into a first series of tasks forming a first cohesive process
and executing the 1dentified first subset of activities as
the first series of tasks to process the recetved message;

the server computer applying a second selector expression
comprising a second variable and a second operator to
the activities i the activity plan to identify a second
subset of the activities 1n the activity plan;

the server computer assembling the second subset of activi-
ties 1to a second series of tasks forming a second cohe-
stve process and executing the 1dentified second subset
of activities as the second series of tasks to develop an
output message based on the results of the processing of
the recetved message with the first series of tasks; and

generating the output message with the server computer for
receipt by an application.

10. The method of claim 9, wherein retrieving the activity
plan further comprises producing the activity plan from an
XML document external to the message oriented middleware
application.

11. The method of claim 9, wherein the first selector
expression comprises a plurality of selector expressions and
the method further comprises applying the plurality of selec-
tor expressions to the activity plan to 1dentity a plurality of
first subsets of activities included 1n the activity plan, execut-
ing at least one of the plurality of first subsets of activities for
application to the received message as a whole at a message
level, and executing at least one of the plurality of first subsets
of activities for application at a message element level to a
message sub-element included in the message.

12. The method of claim 9, wherein the server computer
applying the first selector expression comprising the first
variable and the first operator to the activity plan to identify
the first subset of the activities included 1n the activity plan
comprises filtering the activities 1n the activity plan using the
first selector expression to determine activities that should be
applied to the recerved message as a whole and activities that
should be applied to a message sub-element included 1n the
message.

13. The method of claim 9, wherein the server computer
applying the second selector expression comprising the sec-
ond variable and the second operator to the activity plan to
identify the second subset of the activities imncluded in the
activity plan comprises filtering the activities in the activity
plan using the second selector expression to determine activi-
ties that should be applied to the results of processing the
received message with the first series of tasks.

14. The method of claim 9, wherein the first variable com-
prises a plurality of variables, and the server computer apply-
ing the first selector expression comprises retrieving one of
the plurality of first variables from the message, and retriev-
ing an other ofthe plurality of first variables from the message
oriented middleware application, the other of the plurality of
first variables indicating a context of the message oriented
middleware application.

15. The method of claim 9, wherein executing the identi-
fied first subset of activities as the first series of tasks and
executing the identified second subset of activities as the
second series of tasks comprises performing tasks within an
application with the first subset of activities and the second
subset of activities via an activity interface to the application.

16. The method of claim 9, wherein the first selector
expression comprises a plurality of selector expressions and
the method further comprises the server computer evaluating,
the plurality of selector expressions to identily at least one of
the selector expressions that applies to the message.

10

15

20

25

30

35

40

45

50

55

60

65

24

17. The method of claim 16, wherein evaluating the plu-
rality of selector expressions comprises determiming whether
cach one of the selector expressions 1s true or false based on
at least the first variable.

18. The method of claim 9, wherein each of the activities in
the activity plan include a specific task executed to process the
message, or to process a message sub-element included in the
message.

19. A system for defining a model view controller-like
framework 1n a message oriented middleware-type context,
the system comprising;:

a computer having a memory;

an application stored 1n the memory and executable on the

computer;

a message oriented middleware module stored in the
memory and executable on the computer, the message
ortented middleware module configured to receive an
Incoming message;

an activity plan stored 1n the memory and executable on the
computer with the message oriented middleware mod-
ule, wherein the activity plan includes a plurality of
activities that are selectively useable to process the
incoming message each of the activities being a specific
task executed to process a particular type ol message;

a selector facility engine included 1n the message oriented
middleware module and executable on the computer, the
selector facility engine configured to evaluate a plurality
of selector expressions in view of at least one of a state of
the application or information in the incoming message,
or combinations thereof, each of the selector expressions
comprising a variable and an operator; and

an activity selector included in the message oriented
middleware module and executable on the computer, the
activity selector configured to test for those selector
expressions that are applicable to the activities in the
activity plan, the activity selector further configured to
filter the activity plan using at least one of the applicable
selector expressions 1dentified from the test to assemble
a subset of the activities from the activity plan as a series
of tasks, the activity selector further configured to
execute the subset of the activities 1n the activity plan to
process the incoming message.

20. The system of claim 19 further comprising an activity
interface executable on the computer, the activity interface
being an executable activity operable to interface with the
application and perform a task within the application.

21. The system of claim 19 wherein the message oriented
middleware module 1s configurable to allow one system to
publish data to a work queue 1n communication with the
computer, and allow a second system 1n communication with
the computer to subscribe to messages that are generated
based on the published data, wherein the messages are pro-
cessed by the message oriented middleware module and out-
put from the message oriented middleware module for receipt
by the second system.

22. The system of claim 19 wherein the activity plan
includes activities directed to a plurality of different process-
ing components that are selectively assembled into the series
of tasks in response to the incoming message, wherein the
processing components include a message processing com-
ponent, an output message production component, an error
handling component, and a message redelivery component.

23. The system of claim 19 wherein the activity plan com-
prises a message section that includes a first series of activi-
ties that are selectively assembled and executable on the
incoming message as a whole, and a message element section

US 7,739,657 B2

25

that includes a second series of activities that are selectively
assembled and executable on elements included 1n the incom-
Ing message.

24. The system of claim 19 wherein the activity plan com-
prises an error handling section that includes activities that
are selectively assembled and executable on the mmcoming
message as a whole, or on elements included 1n the incoming,
message, or combinations thereof.

25. The system of claim 19 wherein the activity plan com-
prises an output section that includes activities that are selec-

26

tively assembled and executable to produce an output mes-
sage 1n response to processing of the ncoming message.

26. The system of claim 19 wherein the selector facility
engine 1s operable to evaluate the value 1dentifier 1n a pre-
defined context specific way as part of the test based on a

context provided by the message oriented middleware mod-
ule.

	Front Page
	Drawings
	Specification
	Claims

