US007739224B1
a2 United States Patent (10) Patent No.: US 7.739.,224 B1
Weissman et al. 45) Date of Patent: Jun. 15, 2010
(54) METHOD AND SYSTEM FOR CREATING A 5,428,776 A * 6/1995 Rothfield 707/4
WELL-FORMED DATABASE USING 5,550,971 A * 8/1996 Brunneretal. 707/3
SEMANTIC DEFINITIONS 5,659,724 A * 8/1997 Borgidaetal. 707/3
5,675,785 A * 10/1997 Halletal. 707/102
(75) Inventors: Craig DaVid WEissmanj]3611110[[11::J CA 5,706,495 A : 1/1998 Chadhaetal. 707/2
(US): Gregory Vincent Walsh 5,721,903 A 2/1998 M@d etal. ...l 707/5
> I " 5,806,060 A * 9/1998 Borgidaetal. 707/3
Cupertino, CA (US); Eliot Leonard 5,832,496 A * 11/1998 Anand etal. ..o........... 707/102
Wegbreit, Palo Alto, CA (US) 5,870,746 A * 2/1999 Knutson etal. 707/101
| 5,905,985 A * 5/1999 Malloyetal. 707/100
(73) Assignee: Infor Global Solutions (Michigan), 5978811 A 11/1999 Smiley
Inc., Bingham Farms, MI (US) 5,995,958 A * 11/1999 XU .ovivirviiniiiiiiieeiiiinnnns 707/3
6,014,670 A * 1/2000 Zamamanetal. 707/101
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1251 days. OTHER PURI ICATIONS
(21) Appl. No.: 09/073,748 Brachman, Ronald J., Khabaza, Tom, Kloesgen, Willi, Piatetsky-
Shapiro, Gregory, and Simoudis, Evangelos; “Mining Business Data-
(22) Filed: May 6, 1998 bases,” vol. 39, issue 11; Nov. 1996, pp. 42-48.*
(51) Int.Cl. (Continued)
GO6F 7/00 (2006'O;~) Primary Examiner—Ella Colbert
GO6F 17/00 (2006.01) (74) Attorney, Agent, or Firm—Blank Rome LLP
GO6F 17/30 (2006.01)
GO6F 15/16 (2006.01) (57) ABSTRACT
(52) US.CL ..., 707/102;°707/3; 70°7/8;
707/10; 707/101; 707/103 R; 707/104.1; A method of defining a well-formed database system by
709/201 defining the organization of the data 1n the database, and by
(58) Field of Classification Search 707/1-10, defining the operations for that data, is described. The defi-
707/100-104, 200206, 104.1; 717/5, 116, nition can be used to automatically create and populate the
717/102, 104, 105, 12, 135 705/10, 36; 345/741, well-formed database system. The well-formed database sys-
345/700, 781, 764; 715/203, 205, 738, 751, tem conforms to rules of correctness and produces results that
o 706/ 4‘5; 709/201 conform to the rules. The organization 1s defined by a data
See application file for complete search history. organization definition that specifies tables, their columns,
(56) References Cited and the relationships between tables. The operations define

U.S. PATENT DOCUMENTS

5,249,300 A 9/1993 Bachman et al.
5,272,628 A 12/1993 Koss
5,295,256 A * 3/1994 Bapatcocoeeviiinininnnnn. 717/5
5,380,556 A * 1/1995 Hedinetal. 707/4
EEm—— Ef;gr 4—— HTTP ——
hh-__Suun::llﬂﬂyslem JEEE
:
Exiraction Eﬂﬁ’::; Query/Reportin
Frﬁ?m Staging Tables f:‘j;“fmmf:ﬂ ' F. ' gr[;guf "
L 13 -~ !) -3
Enterprise A?r_?gata
Mngger " “ffr

Glce
Sysism
Inkarmalkan
164

Metadata 160

'

Infnatiun fHionath
168

Semantic
Definltlons
163

Connectors
162

procedures that operate on the tables and the table columns.
Importantly, the operations are defined along with the tables,
columns, and relationships, so that the resulting system 1s

well-formed.

54 Claims, 45 Drawing Sheets

/ Browser 182

QueryResulis

/" Interface 184

Flacal Years

1406

1956

1587

1958

ACustormer Marne Hera

A Cushornar Marme Hers
A Customar Mame Here
A Customar Mama Hera

27 /K

15, 264K

JEZK| $25. 168K
| £3. 700K
83, ok

Ea

33, 762K

A Custoimar Name Here
A Cstomar Name Here

HEE

$15,069K | 53.762K |

525 168K | $15 964K

7. SRR

$2.3431

315, 954K

$20, 168K

$27, TO4K FCER XX,

A [B00K XL

PARAHAX

SXEE XXX,

TR
SRR (1000 X0 SHHRRK

LA

T 00
OO0 | 500 XK

[] checkTop10 [Select AN 10508

H you salect &ome: of the
RIOWS ahave, you can drll i

CGREATE DRILL_
1 |_DOsYH REFORT

dowmn furthar,

Cormioad
Apraadaiag

Sawe curmant
satlirgs

Usar Compulter 180

—-—— — e aam SN N NEN SN NN NEN SN N N N N N NN NN NN N N N S e il

T

.

4

et
Oga

daka
zalion

Consultant Compautsr 190

|

Enterprise Manager Interface
192

US 7,739,224 B1
Page 2

U.S. PATENT DOCUMENTS

6,032,158 A * 2/2000 Mukhopadhyay et al. ... 707/201
6,055,541 A * 4/2000 Soleckietal. 707/103 R
6,085,198 A 7/2000 Skinner et al.
6,108,004 A * §2000 Medl ..cccvvvvviiniiiiinnnnn. 715/804
6,128,624 A * 10/2000 Papiermaketal. 705/10
6,161,103 A 12/2000 Rauer et al.
6,167,405 A * 12/2000 Rosensteel, Jr. et al. 707/102
6,189,004 Bl 2/2001 Rassen et al.
6,212,524 Bl 4/2001 Weissman et al.
6,263,341 Bl 7/2001 Smuley
6,282,544 Bl 8/2001 Tse et al.

OTHER PUBLICATIONS

Friedland, Liam; “Accessing the Data Warehouse: Designing Tools to
Facilitate Business Understanding™; vol. 5, 1ssue 1; Jan. 1998; pp.
25-36.%

Michael Krippendorf and Il-Yeol Song; “The Translation of Star
Schema into Entity-Relationship Diagrams”; IEEE; Sep. 1-2, 1997;
pp. 390-395.*

Matteo Golfarelli, Dario Maio, and Stefano Rizzi;*“Conceptual
Design of Data Warehouses from E/R Schema”; IEEE; Jan. 6-9,
1998; pp. 1-10.*

Ralph Kimball; “DBMS Online Data Warehouse Architect: Is Data
Staging Relational? Or does 1t have more to do with sequentil pro-
cessing?”’; Apr. 1998; pp. 1-6.*

Ralph Kimball; “DBMS online Data Warchouse Architect:
Turbocharge Your Query Tools™; Sep. 1997; pp. 1-5.*

Star Schema; From Wikipedia, the free encyclopedia; http://en.
wilipedia.org/wiki/Star _schema; Unknown date; pp. 1-4.*

PR Newswire; “Influence Software to Integrate Aperio With Silicon
Graphics MineSet for Web-Based Data Mining/Data Warchouse

Suite”; Apr. 14, 1998; pp. 1 and 2.*

Diane Vint-Johnson and Deborah Henderson; “A Short Course on
OLAP Tools”; Apr. 1998; pp. 15-17.%

Tim Fielden; “Speedware’s Media Makes OLAP Easy”; Mar. 23,
1998; p. 124.*

Shawn Willet; “Beyond the Warehouse: IBM Banks on Channel to
Restructure Now Corporations Organize, Store and Access Data Via
Business Intelligence”; Mar. 16, 1998, pp. 111 and 113.*

Business Wire; “Hyperon Software Announces New Family of
Multi-Dimensional Business Analysis Applications; Purpose-Built
Applications Move Beyond Raw OLAP Tools and Technologies”;
Mar. 2, 1998; pp. 1-5.%

Kimball, R., “The Data Warehouse Toolkit”, (1996) John-Wiley &
Sons, Inc., 388 pages (includes CD ROM).

Chawathe, S. et al., “Change Detection in Hierarchically Structured
Information”, SIGMOD Record, vol. 25, No. 2, Jun. 1996, pp. 493-
504.

Chawathe, S. et al., “Meaningtul Change Detection in Structured
Data”, Proceedings of the 1997 ACM SIGMOD International Con-
ference, ACM Press, 1997, pp. 26-37.

Labio, W. et al., “Efficient Snapshot Differential Algorithms for Data
Warehousing™, Department of Computer Science, Stanford Univer-
sity, (1996), pp. 1-13.

Wiener, I. et al., “A System Prototype for Warehouse View Mainte-

nance”, The Workshop on Materialized Views, pp. 26-33, Montreal,
Canada, Jun. 1996.

Kawaguchi, A. et al., “Concurrency Control Theory for Deferred
Materialized Views”, Database Theory—ICDT *97, Proceedings of
the 6th International Conference, Delphi, Greece, Jan. 1997, pp.
306-320,

Zhuge, Y. et al., “Consistency Algorithms for Multi-Source Ware-
house View Maintenance”, Distributed and Parallel Databases, vol.
6, pp. 7-40 (1998), Kluwer Academic Publishers.

Zhuge, Y. etal., “View Maintenance 1n a Warchousing Environment”,
SIGMOD Record, vol. 24, No. 2, Jun. 1995, pp. 316-327.

Widom, J., “Research Problems 1in Data Warehousing™, Proc. of 4th
Int'l Conference on Information and Knowledge Management
(CIKM), Nov. 19935, 6 pages.

Yang, J. et al., “Maintaining Temporal Views Over Non-Historical
Information Sources for Data Warehousing”, Advances in Database
Tlechnology—FEDBT 98, Proceedings of the 6th International Con-
ference on Extending Database Technology, Valencia, Spain, Mar.
1998, pp. 389-403.

Quass, D., “Maintenance Expressions for Views with Aggregation™,
Proceedings of the 2 1st International Conference on Very Large Data
Bases, IEEE, Zurich, Switzerland, (Sep. 1995), 9 pages.

Mumick, I. et al., “Maintenance of Data Cubes and Summary Tables
in a Warchouse”, Proceedings of the 1997 ACM SIGMOD Interna-
tional Conference, ACM Press, 1997, pp. 100-111.

Huyn, N., “Multiple-View Self-Maintenance 1n Data Warehousing
Environments”, Proceedings of the 23rd International Conference on
Very Large Data Bases, IEEE, (1997), pp. 26-35.

Quass, D. et al., “Making Views Self-Maintainable for Data Ware-
housing”, Proceedings of the Fourth International Conference on
Parallel and Distributed Information Systems, IEEE, Dec. 1996, pp.
158-169,

Quass, D. et al., “On-Line Warchouse View Maintenance™, Proceed-
ings of the 1997 ACM SIGMQOD International Conference, ACM
Press, 1997, pp. 393-404.

Gupta, H., “Selection of Views to Materialize in a Data Warehouse”,
Database Theory—ICDT 97, Proceedings of the 6th International
Conference, Delphi, Greece, Jan. 1997, pp. 98-112.

Harimnarayan, V. et al., “Implementing Data Cubes Efficiently”,
SIGMOD Record, vol. 25, No. 2, Jun. 1996, pp. 205-216.

Gupta, H. et al., “Index Selection for OLAP”, IEEE Paper No. 1063 -
6382/97, IEEE (1997), pp. 208-219.

Labio, W. et al., “Physical Database Design for Data Warehouses”,
IEEE Paper No. 1063-6382/97, IEEE (1997), pp. 277-288.

Gupta, A. et al., “Aggregate-Query Processing in Data Warehousing
Environments”, Proceedings of the 21st VLDB Conference, Zurich,
Switzerland, Sep. 1995, pp. 358-369.

O’Nelll, P. et al., “Improved Query Performance with Variant
Indexes™, Proceedings of the 1997 ACM SIGMQOD International
Conference, ACM Press, 1997, pp. 38-49.

McAlpine, G. et al., “Integrated Information Retrieval in a Knowl-
edge Worker Support System”, Proc. of the Intl. Conf. on Research
and Development in Information Retrieval (SIGIR), Cambridge,
MA, Jun. 25-28, 1989, Conf. 12, pp. 48-57.

Tsuda, K. et al., “IconicBrowser: An Iconic Retrieval System for
Object-Oriented Databases™, Proc. of the IEEE Workshop on Visual
Languages, Oct. 4, 1989, pp. 130-137.

“Multiple Selection List Presentation Aids Complex Search”, IBM
Technical Disclosure Bulletin, vol. 36, No. 10, Oct. 1993, pp. 317-
318.

Mike Feuche, “Index Interface Links CASE and IBM’s DB2.” Oct.
24, 1988, Index Technology Corp., Computer-aided Software Engi-
neering, Product Announcement, MIS Week, V9, N43, p. 23(2).

* cited by examiner

U.S. Patent Jun. 15, 2010 Sheet 1 of 45 US 7,739,224 B1

Fig 1

e SyEe STEEY TS IS ST NS EEEE SIS S S e s ol e miiee s SR s ol

S=— <> Server [——— HTTP ——
R ———eser
Source System 186
110 %
v - Jai:a
" Semantic .
Extraction Query/Reporting
Program CL?\TE:E:; > 3 Program l
120 | Staging Tables 150 104
- Program 140
L 130 i y

Aggregafe
S Builder

Enterprise
Manager
102

Query
[Reporting

""W ation

System 100

Semantic

Definitions
163

Schema

Definitions
161

Connectors

167 Information

167

Information
164

Metadata 160

U.S. Patent

Jun. 15, 2010 Sheet 2 of 45 US 7,739,224 B1

Query/Results

Browser 182
oW Interface 184

o
Epiphany Clarity Results - Netscape

[TSP ewnany 50 I

Fiscal Years

Customers

| A Customer Name Here |

1904 [1995 | 1996 1007 1998 Total
$3,762K| $25,168K | $27,704K [$15964K [$XXXXXX

A Customer Name Here

$27,704K] $27.704K | $3.762K | $27.704K | XXX XXX

A Customer Name Here |

SOK| $3762K| $3,762K | $25,168K | $15,064K | $XOO{ XXX

A Customer Name Here
A Customer Name Here

‘Remaining 10498

A Customer Name Here |

A Customer Name Here

33,762K| $15,964K | $27.704K [$3762K | $XOCXXX

$4.342K] $15,964K | §3,762K | $27,704K [FXXX XXX
$4,342K| $25,168K | $15,964K | $25,168K IO XXX

$2,342K| $15,964K | $25,168K | $27,704K | $XXOLXXX
$300 30000 $XOCXXX | SXOXK | SIKXXHXK | XK XXX

—ly

Total

CS00C IO XX XK XXX | SOOI | SXIXK XXX | $300C XXX

[] CheckTop10 [] SelectAll 10508

If you select some of the

down further.

. CREATE DRI LL_|
ROWS above, you can drill ﬁ NOWN REPORT

Download
spreadsheet

Save current
settings

User Computer 180

Enterprise Manager Interface

= | 192

> Metadata
o — Organjzation

Figure 18

Consultant Computer 190

U.S. Patent Jun. 15, 2010 Sheet 3 of 45 US 7,739,224 B1

Define Schema Using Metadata }
210

Generate Table Generation SQL
According to Metadata
220

Build Datamart

Process
202

Generate Datamart from Table
Generation SQL
230

Load Staging Tables Using
Connectors

260

Extraction Process

Move Staging Table Data into 204

Datamart Using Templates
270

Build Aggregates

Create Aggregates
275

205
Define Query Mechanism
Schema
277
Query and Reporting

Generate Query > Process
280 206
Provide Answer Set
290

Figure 2

U.S. Patent Jun. 15, 2010

Fig 3

[Fig 3A | Fig 38 | Fig 3C |

Sheet 4 of 45

Schema Definition
300

fact col nbr 314

fact col nbr

fact_agg_operator 312

fact_agg_operator

fact table
fact_table_key

semantic_instance_key

| extraction_node_key (FK)
" © fact_table_key (FK)

dim_base_key (FK)
O | semantic_type_key (FK) [

O

304

¢
|
|
|
|
I
|
I
|

fact_col ® 310
fact_col_key

fact_table_key (FK)

fact _col name

_ ————@) physical_type (FK)
fact_agg_operator (FK)

fact_col_nbr (FK)

cleanse_flag

description

e

actual tbl type 336

actual_tbl_ype

334

meta col @
meta_col_key

actual_table_tyge (FK)
physical_type (FK)

meta col _name
listorder

constellation_key (FK)
fact_table_name <
build_aggregate_flag [~
truncate_stage flag

| cleanse_flag
description

h#_—.

fact_index_key

fact_index_nbr (FK)
fact index name
fact_table_key (FK)

=

fact_ir%ex_nbr 382

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
- |
fact index_nbr :
I
I
I
l
I
I
|
I
I
|
I
I
I
4

translation_string 332

translation_string

physical_type 330

| physical_type (FK)
database_physical_type (FK) |

default_value
special_type

L] L] L] L] L —l_ L

US 7,739,224 B1

U.S. Patent Jun. 15, 2010 Sheet 5 of 45 US 7,739,224 B1

-———-

agg_group 342
— ——<| agg_group_key
|
|
I

constellation_key (FK) [O— -
agg_group_name

enabled

default_flag

description

special_dim_base_key (FK)

dim_role_key (FK)
agg_dim_type (FK)

?
I
I
I
I
I
I

“agg_dim_key (FK)

I
I
I
I
I
I
I
l
I
I
I
I
I
I
|
|
|
|
agg_dim_set_key I
!
|
|
|
{
!
|
|
|
|
|
]
|
|
I
I

o
I :
: constellation<>302 dim_col_set_key (FK)
| constellation_key
: - Ajconstellation_name > ——-
I description dim_col_set_key
I dim_base_key (FK)
| dim_col_set_name
:
-
| fact_dim_cleanse 316 : |
, dim_col_set_def ! 374
I

J fact_dim_cleanse_key

dim_role_key (FK)
fact_table_key (FK)

dim_col_key (FK)

dim_col_set_key (FK)

|
dim role 320

fact index def 384

fact_index_def_key
| fact_index_key (FK)
special_dim_base_key (FK)|g
dim_role_key (FK)
listorder

[m—————— =

FK)

constellation_key (
dim_role_name

dim_role_nbr (FK)
degen_nbr (FK)

I
degen_nbr < 322 dim_role_nbr¢324

I

- -F--/]|)-"|-"-"-"-"-"-"F"-"F-"-"-"-"-"7"="-"7""”"""=""="”"®=""""""""9y-""-""="-"""""""Fr"~" """ """""""""""/™“~"“~“"""/""/""™/T™A~"—""7

U.S. Patent Jun. 15, 2010 Sheet 6 of 45 US 7,739,224 B1

—#—————___--_—_—-_-_____—__'—'__—'_____h“_ﬁ__

include base

I
I
I
I
I
I
I
include others :
I
I
I
I

O <

special_dim_base 391

dim_base_key (FK)
physical_type_of key (FK)

__O dim_base_key

agq_key_operator (FK)
dim_base_type (FK)
dim_base_name
truncate_stage_flag

default_agg_dim_type (FK)
always_include_in_agg
index_flag

|

|

I

I

I

I

I

I

I I
I I
I I
I I
' :
i cleanse_flag :

description o
i_ 7S % © } | dim_base_type 328 :
L _ S S HEE . AJdim_base_type :
T : s
I
: ! dimc_)node 326 :
L dim_node_key :
- dim_base_key (FK) :
| ___) hode_name .
- | node_tnbrd X |
arent_node_nbr

' | dim_col 3200 O P |
" dim_col_key dim_col_nbr 321 |
|1 [dim_base_key (FK) ~| dim_col_nbr |
| dim col name |
- [dim_node_key (FK) :
: thSICaIUItf)De F(IEK) cleanse_type 323 cleanse_map_def 327
I el o] cleanse_type cleanse_map_def key | !
" | primary_key_flag cleanse_map_key (FK) | !
| group_by_ﬁekj Cleanse_map_l_nt__ld |
| cleanse label cleanse_map 325 cleanse_value .
: cleanse_map_key (FK) -1 cleanse_map_key | :
: ggfsacl:!t_yalue cleanse_map_name [' :
| ption |
:
I I
- mmmmmm oo el _

~igure 3C

U.S. Patent

Fig 4 4
iob_step 404

system_call 405

job_step_key ®- - job_step_type 481
system_ call_key job_step_type (FK)

. _ @ — — — O| Job_step_type
g job_step_key (FK) |@- | job_key (FK) ob_step_ type_nams

name connector_key (FK)

command_stnng listorder |

on_error_type (FK) phase extraction_node_type 491
description enabled

description

connector 406
connector_key

name
description

ppaiis mees s sl mislilh s Sass e s s Shhilh A . s sliees AEEER T A e O peees sl

connector_timestamp407
connector_timestamp_key

connector_key (FK)
last_max_date

current max date

last_max_timestamp
current_max_timestamp

connector_key (FK)
extraction_node_key (FK)

listorder
phase

enabled

connector col latch 409

connector_col_latch_key

connector_key (FK)
tbl_name

col_name

sql_statement 420

sql_statement_key O —— -

extraction_code_key (FK)
last max value sql_statement_name

current_max_value dim_base_key (FK)

external_col 424 fact_table_key (FK)
external_col_key external_table_key (FK) |

. sql
physical_type (FK) exec_against_input_flag
external_table_key (FK) execute_only_flag

description

!

' b

I

1 $
-

l

|

I

l

external col name

listorder
description

physical_type 330 X external_tbl "~ 422

physical_type (FK)
ohysical_type (FK)
database_physical_type (FK)

default_value
special_type

truncate_stage_flag

description

_——————————————————__'

Jun. 15, 2010 Sheet 7 of 45 US 7,739,224 B1

U.S. Patent Jun. 15, 2010

_job_key
job_name
enabled
initial_load_flag
truncate_flag

maIIto_on_success
mailto on error

check databases
check tables

logfile_width
description

listorder
phase

debug_level row
enabled

I S A s Taae el A A T T ke e

Sheet 8 of 45 US 7,739,224 B1

job_log 401

g job_key (FK)
data_store_key (FK)
job_store_role

connector_store_role_key
| connector_key (FK)

_____ @| extraction_node_type (FK_)_
extraction_group_type (FK)
parent_extraction_node_key (FK)

data_store_key (FK)
)

store_role_name (FK

i)

I
I
I
I
I
I
I
l
_
I
I
connector store role 448 :
I
|
|
I
I
I
I
I
I
|
I

store_role_name (FK)
store_type (FK)
sql_statement_key (FK)

dim_base_key |

debug_level 415

"""""""" % agg_key_operator (FK)
dim_base_type (FK)
dim_base_name

truncate_stage_flag

| semantic_instance_key

extraction_node_key (FK)
fact_tbl_key (FK)
dim_base_key (FK)
semantic_type_key (FK)

debug_level
debug_level_name

cleanse_flag
description

fact tbl name 6
build_aggregates_flag [4)a1"bl_type 336
truncate_stage_flag ™

cleanse_flag
description

I

I

I

I

I |
l I
constellation_key (FK) : :
I

I

I

I

I

U.S. Patent Jun. 15, 2010

source_system 442

Sheet 9 of 45

US 7,739,224 B1

file store 441

source_system_key

source_system_name
description

name

o datamart_flag

description

| store_role_name (FK)
“| data_store_key (FK)

store_type (FK)

source_system_key (FK) |~ @

3! sqlserver_store_key

file_store_key

data_store_key (FK)

directory_name
fllename

data_store 440

oracle_store_key

M| data_store_key (FK)
username

password

sginet_name

version (FK)

J——

Server

username
password

version (FK)

_ listorder
_| semantic_type_key (FK)
| actual_tbl_type (FK)

semantic_type | 430

semantic_type_key
— <
| semantic_type_name
I
I

data_store_key (FK)

database name

semantic_type_key (FK)
adaptive_template_key (FK)

adaptive_template

odbc_store 458

odbc_store_key

data_store_key (FK)
dsn

driver
username

_ G password
dialect_store_type (FK)
version (FK)

adaptwe___tempIate_keX
adaptive_template_name

.

Block 439

adaptive_template_block_key

adaptive_template_key (FK)
— — — —@j block_name

| sql

: listorder

| on_error_type (FK)
|

I

semantlc_type_key (FK)
"| actual_tbl_type_name

T T T P I ST T ____—ﬁ

Extraction 400
Schema

U.S. Patent Jun. 15, 2010 Sheet 10 of 45 US 7,739,224 B1

Fig 5 Date_0 560
date_key
day__nam%

I

|

|

I

|

I
day_name_char :

| day_name_char_weekday :
Runtime Schema day_number_in_week .
500 day_number_!n_month :
day_number_in_cq |

day_number_in_fq |

day_number_in_fy :

day_number_in_cy |

day_number_til_end_cq :

day_number_til_end_fq |

day_month_end :
l

|

I

I

I

|

|

|

I

|

I

I

I

|

|

I

I

I

I

day_month_begin
day_fq_end
day_cqg_end
day_fy_end

day_cy_end
bus_process 570 day_fq_begin

process_key day_cq_begin

process_name day_fy_begin
day_cy_begin
week_number

week_number_fy

week_number_cy
week_number_fq

adaptive_template_profile 580
token_name week_number_ca

week_number_til_end_fq
qumber_rows week_number_til_end_cq
listorder week_number_til_end_fy
week_number_til_end_cy
week_monday
week_friday
week_saturday
week_sunday
weekday
month_name
month_number
transtype_0 590 month_number_in_{q
= month_number_in_cq
transtype_key month_number_in_fy
name month_number_in_cy
description month_and_fy_name I

month_and_cy_name
month_number _til_end_cy

fg_name
fy_name
fq_and_fy_name
cq_name

Figure 5A | G

cq_and_cy_name

U.S. Patent Sheet 11 of 45

Jun. 15, 2010 US 7,739,224 B1

fact_agg_dim 514

fact_agg_dim_key

actual_dim_role_key (FK) IC
dim_base_agg_key (FK)

fact_agg_key (FK)

dim_base 306
dim_base_key

fact_agg_key

agg_key_operator (FK)
dim_base_type (FK)

datamart_letter (FK) |- — _

actual_tbl_key (FK)

dim_base_name agg_number
truncate_stage_flag agqg_size
cleanse_flag enabled
descripton. = K»r———-—---- |
|
l
O
I
T T T T T T T T T T T T T T T T T 1":
fact_tbl 304 & !
fact_tbl_key !
constellation_key (FK) B
fact_tbl_name |y

build_aggregates_flag
truncate_stage_flag
cleanse_flag S

description external thl 442

external_tbl_key
external tbl name

truncate_stage_flag
description

transaction actual 539
transaction_string (FK)

translation_string 332
translation_string 332

store_type (FK)

actual_string
C

store_type 450

store_type

- TEE ST T S T T ST S T T S S O G S A A I S O B I A e O R g e A i R N el ey =k ol T T T G D G A O A A A e ol el 0 il G

Figure SB

U.S. Patent Jun. 15, 2010 Sheet 12 of 45 US 7,739,224 B1

dim_base_agg 576

dim_base_agg_key dim_base_agg_col 578
“datamart_letter (FK) A ~| dim_base_agg_col_key

— ’ ______________
agg_number “actual_col_key (FK)
GCtUBI. tbl_key (FK) dim_base_agg_key (FK)
agqg_size
enabled
> ;
|
: datamart_ Ietter 570 E
—————————— é————--——--O datamart_letter
actual_tbl 502
-— _bl_
: actual_tbl_type (FK) actual_tbl_type 336
. fact_tbl_key (FK}
- dim_base_key (FK)
~ =" external_tbl_key (FK)
physical_type_def 530
physical_type (FK)
actual_tbl_type (FK)
- = default_flag
actual_tbl_type (FK)
actual colname |- ______________ | _____ .

physical_type (FK)
actual_col_type (FK)
listorder
foreign_tbl_key (FK)
dim role name
primary_key_flag
group_by_field

timenav_field
hierarchy S
parent_hierarchy actual “col_type 540

L____-

default value S
physical_type 330
database_physical_type 595 physical_type (FK)

database_physical_type |G- --—-- hase_physi
database_physical_name default_value
special_type

S - T - - -"-"-"’r-"-=-"-"-"-""]""-"""""-"-""-"/"-""’r+rTr--"""""""""7T""“~""“""“"“"¥"“~"¥"~"“""“""“"r-~"—"—"™"="=

U.S. Patent Jun. 15, 2010 Sheet 13 of 45 US 7,739,224 B1

Fig 6 fact_col 310

| Fig 6A | Fig 68 | Fig 6C | fact_tbl 304 fact_col_key

fact_tbl_key fact_tbl_key (FK)
constellation_key (FK) fact_col_name
fact_tbl_name physical_type (FK)
build_aggregates_flag fact_agg_operator (FK)
truncate_stage_flag fact_col_nbr (FK)

cleanse_flag cleanse_flag
description description

option_value 664

option_value_key

option_name_key (FK)
value

label N N
?_icttiogary_key o i measureterm 630
istorder —
——————- ® measure_term_key |_
| term_operator 632 measure_key (FK) ~
| term_operator | listorder &
| | rpn_operator (FK)
<’> - —@ transtype_key (FK)
| |
S e vl
nzme — S transtype_key fact_tbl_key (FK)
label ®- + - name P
dictionary_key (FK) description i

L L ___ , <>dictionary¢640

| b -@ options_location (FK)
option_display_type 668 ticksheet_type (FK)

option_display_type _| option_name_key (FK)
VU~~~ @ option_display_type (FK)

listorder
filter element 656 & ---—-—————————————
filter_element_key

filter_group_key (FK)
listorder

—_ Ll e e e e e e e e (L e—m—m—mm—m

filter_block_type 652
filter_block_type

value
label

dictionary_key (FK) 1@ __ _ ~Ifilter_block_key (FK)

Sql_Statement label

dictionary_key (FK)
listorder
description

~igure 6A

I

?@

U.S. Patent Jun. 15, 2010 Sheet 14 of 45 US 7,739,224 B1

backlog_type 638

|
|
I
_O ba_cklog_type :
I
|
I
|
I
|

| measure unit 624

measure unit
O

-
measure 620 g & dataset 606

dataset_key

dataset_name

Name

- - - - rrf - T~ -"--"""""=""""="""="=""”"/7/77"/=-"¥"7"=""==7=

™ listorder | constellation_key (FK)

~ ™ constellation_key (FK) label
measure_unit (FK) description
description listorder
S ' _____
rpn_operator 636 |
’
. |
: o ticksheet_key
- —-Oconstellation 302 & | dataset_key (FK) kS —————_
| - constellation_key | name
- constellation_name t|cks?e|;atftypel((F@K
| description consteflation _key(FK) 1&- - - - - - B
* label
| : label_detail
: . listorder -—-
: ticksheet_type : gleangetTﬂag :
___ ==l application_type (FK) |.._ ! ukaak s I TR :
| : ticksheet_type_name S ®Q |
- template ®] | |
| : | : | i application_type 691 :
B filter_block 650 | | application_lype :
L ® | | I
| filter_block_key &' | I
m dataset_key (FK) i :
| ticksheet_key (FK | i
| _key (FK) g - | dim_role_key
I
I

|
d_im_role_key (FK) : | dim_role_name
dim_col_key (FK) | dim_base_key (FK)
filter_block_type (FK) : o br]

l

I

columns dim_role_nbr (FK)
_ ol label degen_nbr (FK)

plural description

mapping_flag

dictionary_key (FK)
' description

k

U.S. Patent Jun. 15, 2010 Sheet 15 of 45 US 7,739,224 B1

———m——————-
I

~————{{ measure_key (FK)
ticksheet_key (FK)
combination_id

measure_mapping 627 Query Mechanism
measure_mapping_key Schema
600

ticksheet _col element 612

ticksheet_col_element_key

ticksheet_col_key (FK)
name
(] abbreviation

ticksheet_key (FK)

listorder label
description dictionary_key (FK)
listorder

Of description

tip 601

attribute role 603

name attribute role

description ticksheet_key (FK)
listorder

attribute 610
attribute_key

ticksheet_key (FK)
A listorder
dim_col_key (FK)
dim_role_key (FK)
label
| dictionary_key (FK)
abbreviation

dim_col 329 hyperlink
dim_col_key

dim_base_key (FK)
dim col name
dim_node_key (FK)

attribute_key (FK)
ticksheet_key (FK)
attribute_role (FK)

<&

agqg_key_operator

physical_type (FK) dim_base_type (FK)

dim_col_nbr (FK)
timenav_field
primary_key_flag
group_by_field
cleanse_type (FK)
cleanse_label
cleanse_map_key (FK)

default_value
description

truncate_stage_flag
cleanse_flag
description

U.S. Patent

Server Eﬁicenter Constellation Extraction §eaﬁ; Help

Jun. 15, 2010 Sheet 16 of 45 US 7,739,224 B1
Enterprise
___ Manager
| Epicenter Enterprise Manager — 7] %]| Interface
en 192

(@) Servers

B EEREIME NS QRIS IR
@

A yet
3--*0 Epicenters
1%y epitest

Base
Dimensions
Definitions

710

--m:.-...-...---.....---------.-.---.----.........--...
'@: BB ERE RN
* .

J----& Extraction
[+]----=3 Security

(-3 Base Dimensions

4) Account
4) Application
4) CostCenter
-4) Customer

r===r

1) GLTranstype
1) Product

) Program

) Project

1) SubAccount
1) Territory
Transtype
nstellations

. G} Aggregates
" -] Dimensions

G}--(] Dimensions (Degefierate) 721
- B-OFacts
. -] Measur | |
' (-] Ticksheets Sales Dimensions
EP Sales 723
E}% Aggregates
- C}-- Dimensions
Constellations S CustomerBillTo
712 Product
Application
Pro%ram |
ustomerShipTo
- Territory

(] Dimensions (Degenerate

S Facts
i) Order
@ SellThruMonth

SellThrM 778
G3---(_) Measures

—— — Sales Ticksheets

—_ 729
Extraction Definitions |

(- Ticksheets

Sales Constellation
720

Sales Aggregates

Sales Degenerate
Dimensions
725

Sales Facts
726

Sales Measures

740

YETI epitest

| 4

Figure 7

U.S. Patent Jun. 15, 2010 Sheet 17 of 45 US 7,739,224 B1

Enterprise

Server Ep|cenler Constellation Extraction Security Help

Manager
| Epicenter Enterprise Manager —[[J%]| Interface

192

(]| ¥ |=-|©| I#Iiiiilol@l\l Q|| Q|f"’.‘t2? A0

[}-- {"“., epitest
E} £\ Base Dimensions

-4) Account

4. Application
-- {l CostCenter

-- "_D Entity
-4) FormatPos

-4) GLTranstype
-4) Product

i St niniais hubabal Iakai Ry Rataind Zaiaie Rk ik
i 3]] "

"D Territory

2 Transtype

| Er @Constellahons

|‘ EP %X Expense

| ' [Aggregates
-] Dimensions

{1 Dimensions (Degenerate)
~-{] Facts
{1 Measures

- Ticksheets
X | Sales |

-] Aggregates
-3--<3 Dimensions
— omeBiliTc

Dimension Table: CustomerBillTe s
i | Base Name: |CustomeF: ‘@ New. ..

Dimension Name: | CustomerBillTo

B

--utﬂﬂﬁﬁﬂﬂ

Description: %

N

!

Base
Dimension
810

Dimension

L~ 820

Dimension
Table
Definition
Window
800

OK | Cancel |

U.S. Patent

Jun. 15, 2010 Sheet 18 of 45

| Epicenter Enterprise Manager
Server Epicenter Constellation Extraction Security Help

US 7,739,224 B1

Enterprise

ERiREERIEMEeAN BREE

C+--(@) Servers

A yet
1] Epicenters
E}{_"; epitest
.3 Base Dimensions
E%} @ 4) Account
~-4) Application
4) CostCenter

4) Customer
Date

4) Entity
2) FormatPos

-4 GLTranstype
,== Product

Program
Project
SubAccount

b it it sinind a4

Base

Dimension
810

Base
Dimension

| Customer
| Slowly Changing Dimensions

Base Name:

Semantic Type:

=]

Description:

B

- v
"] Cleanse This Dimension

New Node |
New Column |

Remove I

| Truncate Stage on Extract

P[5t

..... < base name

-6 L1

-----£3 region_code
=---£3 region_name
-3 tier_name
0 type_code

-----£3 type_name

/ Window
| |

900
| Dimension
Data
Semantic
910

| Dimension
Columns
920

| 4

U.S. Patent

Jun. 15, 2010 Sheet 19 of 45 US 7,739,224 B1
Enterprise
Manager
|_ Eplcenter Enterprlse Manager _[[731]| Interface
Server Eplcenter Constellation Extraction Security Help 192
QIR HEREMMEENEEIE EE ST
@ Servers
[} yet
13 Epicenters
G} epitest
G} @Base Dimensions
. +-4) Account
-4) Application
-4 CostCenter
---4) Customer
-4 Date
D Entity
---4) FormatPos | Base
8 Brodan ™ Dimensior
49 Program Window
Q) Project 900
. +-4) SubAccount
. —4) Territory o
[Base Dimension: Customer | Dimension
- — — Column
l Window
Base Name: I Customer 1000
Semantic Type: | Slowly Changing Dimensions E
Description: Column
7 1010
| Dimension Column: Custor_ngr._r
'] Truncate Stage o
&P BASE | ~
-3 base_name I E':]

3 Tegi0 Cleanse Type: None IE"
_______ B1e90| (eanse Label I——_ﬁ
-------- £ tier — —
""""" WPl Cleanse Map: | E"
-------- S type E—
Description
B
]
>

| B OK | ‘ Cancel |

Figure 10

U.S. Patent Jun. 15, 2010

Sheet 20 of 45

US 7,739,224 B1

Enterprise
< Manager

Epiéenter Enterprise Manager

_iZ]] || Interface

Server Epicenter Constellation Extracti

on §ecur}ty Help

192

DNEHECEMEEN _

@ Servers
(- yet
-3+ Epicenters
[}y epitest

Z2) Account
4) Application
-4) CostCenter
-4) Customer

-4) Entity
-4) FormatPos

Base
Dimensions
Definitions

710

| | I
|

1) Product
-4) Program
Project

obl Ab L Al R dd S
I] | 1

4 é@ Base Dimensions

-4 GLTranstype

-€) SubAccount

Base Dimension: Date

Base Name: [Date -
Semantic Type: |
Description:

Built-in time dimension

L] Truncate Stage on Extract

@]

-----£3 ¢q_and_cy_name
43 cq_name

b3 cy_name
-3 date_key
----- €3 day_cqg_begin
%@ day_cq_end
---£3 day_cy_begin
.---£3 day_cy_end

["] Cleanse This Dimension
New Node

New Column

Remove

Propagate

-3 day_fq_begin

Base
Dimension
Window
900

| OK l | Cancel I

N

U.S. Patent Jun. 15, 2010 Sheet 21 of 45 US 7,739,224 B1
Enterprise
N Manager
L Epicenter Enterprise Manager _][x|} Interface
' Server Epicenter Constellation Extraction Security Help _ 192
AR EEREMEN S S SR
@) Servers
(- yet
1< Epicenters
E}{:]'; epitest
7 - Base Dimensions
E} @ 4) Account
r--4) Application
+--4) CostCenter
-4) Customer
Base -4 Date
Dimensions @) Entity
Definitions < " f: E?.T::ﬁi?yspe Base
| 710 Eroduct Dimension
+--4) Program -
-4 Prolgect [~ Window
---4) SubAccount / 900
Base Dimension: Date] |
Base Name: I Date Dimensjon
. - _ |
Semantic Type; ‘ [~] v%?nlégs
Description: 1000
Built-in time dimension |

(1 Group By Field
[

|| Truncate Stage on|

& [BASE |
gy cq_and_cy n
43 cq_name
{:;9 cy_name
-3 date_key
----- £ day_cq_begq:
- day_cq_end
-----8 day_cy_begi

Time Navigation Field

R

—

Dimension Column: Date.day cq_end

L] Primary Key Field l

Description:

- day_cy_end
- day_fq_begin|

[+]

OK

| |

Cancel

Figure 12

U.S. Patent Jun. 15, 2010 Sheet 22 of 45 US 7,739,224 B1

Enterprise
__ —_ Manager
[Epicenter Enterprise Manager ![m Interface
Server Epicenter Constella@ion Extraction Security Help 192
20| M4t =6] & |Ole)N\| [0l [2]~ O] [0 ¢
@) Servers N
[}--A yet
[-}-- Epicenters
[-}-- f"'“w epitest
Base Dimensions
EE} a Account Fact Table
4D Application Window
---4) CostCenter 1300
---4) Customer
-4 Date
:-4) Entity Fact Table
+--4) FormatPos .

. — —_— ‘/ 1310
Fact Table: Order J J o Dot
Fact Name: rder] r Semantic

Semantic Type: [fransactional/StatelikelForceCIOsp/Un'oined id 1320
| Description:
T Fact
V] Truncate stage on Extract Cleanse Group: Columns
'] Build aggregates for this Fact 1330
| Cleanse this Fact
Fact Columns:
net_price

number units

X|BILI=

| OK | Cancel |

=---[llg| Order

==l SellThruMonth
=-lllll SellThruWeek
+}--{] Measures

&}---(] Ticksheets

@ Extraction
-23 Security
Ready YET! epitest | 4

Figure 13

U.S. Patent Jun. 15, 2010 Sheet 23 of 45 US 7,739,224 B1

Enterprise

I : Manager
| Epicenter Enterprise Manager ~] X|| Interface

Server Epicenter Constellation Extraction Security Help 192

2[el[alr =] [&[OCleN @] [~ [wO] [f]

}--@) Servers

(- yeti
-} Epicenters
(}-- i”}, epitest
Base Dimensions
'3} ‘51 2 e Fact Table
;-* épp{l((::atl?n Window
ostCenter
r--4) Customer 1300
- Date
. +—-4) Entity
. -4 FormatPos
Fact Table: Order \
Fact Name: Order] |
Semantic Type: Transactional/Statelike/ForceClose/Unjoined
Description:

|

Fact
v|Truncate stage on Extract Cleanse Group: @?:323
v] Build aggregates for this Fact |Add Dim 1400
| Cleanse this Fact Remove
Fact Columns:
net_price
number_units ! Fact

lj Column
= _ L1410
Fact Column: Order.net_price
— Physical
— | Column Name: [net_price Type
—1{|Physical Type: ~ [FACTMONEY 1420
. || Aggregate Operator: [SUM | v
Ei} i Aggregate
' [} intinn: Cleanse This Column | Operation
- &> Exira Description:] 1430
[}---a3 Secu
OK I | Cancel
Ready ‘ 7

Figure 14

U.S. Patent Jun. 15, 2010 Sheet 24 of 45 US 7,739,224 B1

Enterprise

i . < Manager
| Epicenter Enterprise Manager __|Z] x|l Interface
Server Epicenter Constellation Extraction Security Help B 192
EREEEREMe NS EEE IR E
CH-@) Servers |
- yel

C}--+N Epicenters
E}{:.} epitest
1<y Base Dimensions

: Account Fact Table
- Application Window
. CostCenter 1300
+--4) Customer
&) Date
. @) Entity Fact Table
. @) FormatPos] (1310
Fact Table: Order i \
Fact Name: [Order]
Semantic Type: [Transactional/Statelike/ForceClose/Unjoined [<| Fact Da?a
Descrip[ion: TranSaCtionamnVentorylForcezero = Semantic
Transactional/inventory/ForceZero/Unjoined 1320
Transactional/lnventory/Unjoined
Transactional/Statelike
Transactional/Statelike/ForceClose
1 ransactional/Statelike/ForceClose/Unjoingt Fact
| Truncate stage on By ansactional/Statelike/Unjoined Columns
| Build aggregates fo| Transactional/Unjoined — 1330
v] Cleanse this Fact 4
Fact Columns:
net_price ~_——
number_unifs

s | =

---llill Order

% Seli ThruMonth
- _-{lhtl SellThruWeek
[+ Measures

i (3 Ticksheets
----& Extraction

-2 Security

Ready | YET! epitest Y

gure 15

U.S. Patent Jun. 15, 2010 Sheet 25 of 45 US 7,739,224 B1

Enterprise
- Manager

f_ “Epicenter Enterprise Manager _ 2] x|l Interface
Server Epicenter Constellation Extraction Secunity Help 192

[ia =0 [#]IO@N 3019

- Servers
-2 yet
+--< Epicenters
[} epitest
£ Base Dimensions
E} @ 4, Account
: -4) Application
-4) CostCenter

-4) Customer
%) Date
-4) Entity
-4) FormatPos
-4) GLTranstype | Batch

;: ’f:' Product Operation
= Window
30 SubAccount 1600

Base
Dimensions

Definitions
710

] i]

B

i | Description: |
; Successfully generated the following objects: B

Created: Account 0_A
Created:; Account 0 B
Created: AccountStage |

Created: AccountMap_A
Created: AccountMap_B

Created: Application_0_A
Created: Application_0_B
Created: ApplicationStage

Created: ApplicationMap_A
Created: ApplicationMap_B |

[] I O

Idle

Figure 16

U.S. Patent Jun. 15, 2010 Sheet 26 of 45 US 7,739,224 B1

Enterprise
__ B _ Manager
Epicenter Enterprise Manager — [m Interface
Server Epicenter Constellation Extraction Security Help 192
AR EE RN E N &) B E i E R
G- @ Servers
(- yet
£33 Epicenters
[-}-- {“ epitest
E} @Base Dimensions
—-4) Account
+-4) Application
--4) CostCenter
) Customer
Base -4 Date
Jimensions @ := EgmatPos
Definitions J GLTranstype Job
710 . +--4) Product Definition

1
ST

. +--4) Program -
Rk indon
. i4) SubAccount 1700
i r--4 arritqn

| Job: Default l
General Job Steps

Job Name: [Default ' | [<]Enabled

NN LAY Y

Description: -
B
| 4

Initial Load [] Check Databases
Truncate Staging Tables [] Check Tables Log Width:

Mail On Success:[|

Mail On Error:]
Data Store Role; [Log |
Data Store: —
Eorat] L ——
Eleeta Log
Job Log Working Directory |_Remove
Update ‘

Cancel
Figure 1/

U.S. Patent Jun. 15, 2010 Sheet 27 of 45 US 7,739,224 B1

Enterprise
£ Manager
Epicenter Enterprise Manager 71 %]} Interface
Server Epicenter Constellation Extraction Secunty Help 192
ARECEHEREMeENREREEE L
Gl .Servers
(A yet
-3 Epicenters
[}-- {“., epitest
@Base Dimensions
@) Account
-4 Application
i4) CostCenter
r--) Customer
-4 Date
=--4) Entity
~-4) FormatPos
-4 GLTranstype Job
-4 Product Definition
3

Window
/ 1700

l Job: Default |
Job Steps
l General [‘JOb Steps_]l L —T 1810

|| Job Steps: (Checkbox indicates Enabled)

VIConnector PreMia_ sl yp

v| Connector: PreMfgExp "_

v| Connector: MfgExp Down ‘
Connector; Progress —

V| Connector: mm

Remove I
Connector: mm?2 I =

Connector: Mfg
Connector; All Semantics [Update |
v| System Call: d:\dev\buildtree\aggbuilder\releasetaggbuilder < |

|Add Connector | PreMfg ' | [~]
| Add System Call

System Call Name: ‘

On System Call Error: ‘ Abort |:||

Command:;

l Cancel | j

-igure 18

U.S. Patent Jun. 15, 2010 Sheet 28 of 45 US 7,739,224 B1

Enterprise

_ - — Manager
|| Epicenter Enterprise Manager _ W7 xllinterface
‘Server Epicenter Constellation Extraction Security Help 192
A EEEIE N N E RIS ST

-{@) Servers
[F--A yet
1<) Epicenters
9{:; epitest
= Base Dimensions
E} @ 4) Account
-4 Application

) CostCenter
—-4) Customer

---4) Entity

Il St sty
N
O
=4
q)

| -4 FormatPos
4 GLTranstype Connector
i: Z) Product Definition

Window
/ 1900

‘ Connector: All Semantics |

Connector Name:
|All Semantics - | | Edit Steps... | |
Description:

Run all semantic transformations 3

I

Input Data Store:
| Epimart [<]
Output Data Store:

OK I Cancel

Ready YETI epitest y/

e E—— . —r] — T T T

Figure 19

U.S. Patent Jun. 15, 2010 Sheet 29 of 45 US 7,739,224 B1

Enterprise
< Manager
| Epicenter Enterprise Manager _ 71 % |fInterface
Server Epicenter Constellation Extraction Security Help 192
s[6][Da[=[=le] Lo} [O@][e[~Olfil7] |

--{©) Servers
(£ yet
(- Epicenters
E}{J} epitest
-}--<yBase Dimensions
. 4) Account

-4) Application
-4) CostCenter

%) Date Data Store

30 Entit .
"% FormatPos Window

-4) GLTranstype 2000
-4) Product

| Data Store: Epimart _
General \ Properties |

Name:

Epimart | Datamart
Description:

Default data-store for the datamart itself N

— Data Store Type —
(=) Microsoft SQL Server

(O Oracle

() Generic ODBC Data Source
|| O File
-— Data Flow
Allow Use as Input Data Store

Sour@ System: New SS
| Datamart Source <] Remove SS 1

Allow Use as Qutput Data Store

_ [v] Allow Use as Logging Data Store N
1 oK Cancel [-
Figure 20

U.S. Patent

Jun. 15, 2010 Sheet 30 of 45

US 7,739,224 B1

Enterprise

Epicenter Enterprise Mlanager

Interface

Server Epicenter Constellation Extraction Secunty Help

Manager
]

192

[+ [=|0)| (2110 (90§

(@ Servers

- yet
13- Epicenters

[}y epitest
El T Base Dimensions

--4) Account
-4 Application
'-?_D CostCenter

-
)
)

4) Entity
-4) FormatPos

-4) Gl Transtype
4) Product

A
UJ
-
1=y
:D-
C)
]
-
=
— |
el

All Steps
Window

2100

H Connector Steps |

Eﬂ All Extraction StepS'

Connector: IMfg

{\
38¢

Connector Steps: (Checkbox Indicates Enabled) '

Order Dim Stage
[] Order Fact Stage

! Reseller Customer Stage
L_2 SQL: Tier 2 Customer Stage

r/ SQL: Other Customer Stage
+-# SQL: Unknown Customer

L./ SQL: Product Stage
.--/ SQL: Unknown Product
L_» SQL: SalesPerson Teritories
! Up I : .7 SAL: Unknown Territory
. +./ SQL: State Teritories

Down L. SQL: Unknown Product Line
} -7 SQL: Product Line Stage 2

-7 SQL: Sub Account Product Lines
! : 1.2 SQL: Unknown Channels
' : L SQL: Channel Stage
El Order Fact Raw

* Order Fact Semantic

-F3&! Order Fact Stage

i+ SQL.
.+ SQL

<<

I >>

_: Open Order Stage
Invoices as Bookings Stage
¢ e SQAL
i i SO _: GL Orders Stage
. YION{T Nipme uﬂ

_: Shipments Stage
n—-nl

New Group |

| NewSQL |

‘ New Semantic \

" Remove |
U]
L Down_J

[_ Close

(=2 Se cunty

‘ YETI epitest

Ready

Figure 21

U.S. Patent Jun. 15, 2010 Sheet 31 of 45 US 7,739,224 B1

Enterprise
L _ Manager
Epicenter Enterprise Manager , _ |7 || Interface
Server Epicenter Constellation Extraction Security Help 192
20| =0 #(|O@N EIEEIEITE
}--@) Servers
(1A yet
[j----@ Epicentgrs All Steps
-4y epitest .
| Window
;3--.@ Base Dimensions 2100
, -4) Account
; 4) Application
i 4D CostCenter
i 4D Customer | SQL
i r-- % Date
i i) FormatPos Window
| Connector Steps 2200
Conned| SQL Statement: Tier 1 Customer Stage
General Properties — Table References
9onnector Name: mwmer Stage | O Does not populate a table
[1Order | | Description: [] Execute Against Input Data Source
(] Order -_ AR
() Populates dimension table
(O Populates fact table
On Error. . Enabled () Populates external table
Debug Level: o
Debug Row: E] | Customer [<]
Use Only with These Input Store Types ——— — Use Only with These Output Store Types ———————— '
Add Type | Add Type
Remove Type Remove Type SUL
P —|| Field
2210
SELECT
cm_addr customer_sskey,
ISNULL (cm_sort, UNKNOWN') :base name;,
ISNULL (cm_type,'UNKNOWN') type_code,
ISNULL (type_code_mstr.code_cmmt, 'UNKNOWN'") type_name,

ISNULL (cm_region, UNKNOWN') region_code,

ISNULL (region_code_mstr.code_cmmt, 'UNKNOWN') region_name,

Tier1 tier_name

CONVERT { VARCHAR, CONVERT (DATETIME, cm_mod_date)) date_modified

FROM

(cm_mstr LEFT OUTER JOIN code_mstr type_code_mstr ON
type_code_mstr.code_fldname ='cm_type' AND
type_code_mstr.code_value = ‘cm_type)

LEFT QUTER JOIN code_mstr region_code_mstr ON

region_code_mstr.code_fldname = ‘cm_region’ AND
region_code_mstr.code_value = ‘cm_region’

Ready|[(T

U.S. Patent Jun. 15, 2010 Sheet 32 of 45 US 7,739,224 B1

Enterprise
_ — : — Manager
(Epicenter Enterprise Manager Interface
Server Epicenter Constellation Extraction Security Help 192
2o [[alr[=e) [#o@l\] e[|~ =S i §
CH-@ Servers
(-2 yeti
|1 [+ Epicenters All Steps
i iﬂ"'"ﬁl} eplt&St '
5 | | Window
;}--<x Base Dimensions 2100
| i 4@ Account
;. 4) Application
| i i~4) CostCenter
i -4 Customer sqL
42 Date
i -4 Entity Statement
i =-4) FormatPos - Window
Connectar Stene — : — L 2200
SQL Statement: Open Order Stage
Conne General Properties - - Table References
Name: | Open Order Stage T O Does not populate a table
Connecto Descrintion M
escription: .
= Order 1|+ P Execute Against Input Data Source
] Order () Populates dimension table
z (*) Populates fact table
I On Error: ‘- [<] Enabled O Populates external table
Debug Level: =
Debug Row: - [Order — — To]
Use Only with These Input Store Types Use Only with These Qutput Store Types
|
[Add Type | [| Add Type |
l [Remove Type] Remove Type|
SELECT o
sod_nbr + '-' sod_line ss_key,
CONVERT(CHAR(11), CONVERT{ SMALLDATETIME, so_ord_date)) date_key,
CASE WHEN SUBSTRING(sod_nbr, 1,1) = 'R* THEN 2 ELSE 1 END transtype_key,|
2 process_key,
so_cust customerbillto_sskey,
sod_part product_sskey, I
so_channel application_sskey,
sod_prodline program_sskey
so_cust customershipto_sskey
so_sIspsn81 territory_sskey
CONVERT (VARCHAR, CONVERT ({ MONEY,
CONVERT (FLOAT, sod_gty_ord) - CONVERT (FLLOAT, sod_qty_ship } + CONVERT (FLO
CASE CONVERT (FLOAT, sod_price) / CONVERT (FLOAT, so_ex_rate))) net_price,
WHEN sod_type = ‘M’ THEN "O'
ELSE CONVERT (VARCHAR, CONVERT (DECIMAL (16.,4), sod_qty_ord) -
CONVERT (DECIMAL (16,4), sod_gty_ship) + CONVERT (DECIMAL (16,4}, sod_qty_inv))
END number_units
FROEA d
S0Q_det
Ready
Ll

Figure 23

U.S. Patent Jun. 15, 2010 Sheet 33 of 45 US 7,739,224 B1

Enterpnse
. _ _ 2 Manager
| Epicenter Enterprise Wlanager — [@]E Interface
Server Epicenter Constellation Extraction Security Help 192
A EBEEEE M N RIBEEESITEE
@) Servers B
(1A yet
- Epicenters
(143 epitest
C}-- Base Dimensions
. @) Account
. @) Application
B ;; gos%Center All Steps
L) ousiomer i
. -0 Date Window
;=€) Entity 2100
. +-4) FormatPos Al
. @) GlTranstype |
P - 4: IF:i'roduc’[Semantics
. -4) Program C
LY onnector
. —4) Project 2410
. 19 SubAccount 1
[Connector Steps] |
| Connector: { All Semantics]| All Extraction Steps:
Expense Dim Semantic;
| . -3 Semantic: Account l—l
Connector Steps: {Checkbox Indicates Enabled) | ! --3 Semantic; CostCenter ew Lroup ;
. . 380 tic: Entit -
[¥] Order Fact Semantic | -3 Semantic: GL Transtype |
[] Expense Dim Semantic >> \ i ;--ugemantic: Emtl;idk» | New Semantic \
— . i ~-3¢ Semantic: SubAccount
[-] Expense Fact Semantic Expense Dim Stage
‘ Up Expense Fact Raw
[}l Expense Fact Semantic Remove
‘ Down ||i -3 Semantic: Budget
i “-¥¢Semantic: Expense Up
% Expense Fact Stage
Hotswap
Order Dim Raw _____DOL
Order Dim Semantic
~-3% Semantic: Application
i -3 Semantic; Customer
i -3 Semantic: Product
i --¥¢Semantic. Program
i -3¢ Semantic: Territory
Bl Order Dim Stage
§) Order Fact Raw >
[]----a8 Security
Ready \ YETI epitest y/

Figure 24

U.S. Patent Jun. 15,2010 Sheet 34 of 45 US 7,739,224 B1
Enterprise
—_—_ _ __ Manager
| Epicenter Enterprise Manager _IZJ] x]| Interface
Server Epicenter Constellation Extraction Security Help 192
EREOHEREMe NS RIEEIC) R
@Servers
[--£ yet
13- Epicenters
(1% epitest
|3 @Ease Dimensions
. -4 Account
. =4 Application
4 : gosECenter All Steps
; ~--) Lustomer -
.) Date Window
. =4 Entity 2100
. @) FormatPos All
.) GLTranstype |
. +-@) Product Semantics
' Connector
f) SubAccount 2410
Connector Steps) |
Connector: | All Semantics <] All Extraction StepS'
B]
Connector Steps: (Checkbox Indicates Enabled) --ﬁ Semanllc CostCenter l New Group |
. . . . -3¢ Semantic: Entity
(] Order Dim Semantic << -3¢ Semantic: FormatPos ‘ New SQL I
[} Order Fact Semantic -3¢ Semantic: GL Transtype
[-] Expense Dim Semantic >> i &gemanttlc stmtj)idr%t ‘ New Semantic \
. ,] --ﬁ emantic; SUbDACCOUN
Expense Fact Semantic Expense Dim Stage
‘ \ Expense Fact Raw -
P -}8] Expense Fact Semantic ‘ Remove \ Semantic
Dgwﬂ * -3¢ Semantic: Budget Transfor
¢ -3 Semantic. Expense I I -
% Expense Fact Stage op m_atlon
Hotswap — Window
Order Dim Raw ____I 2500
-H3) Order Dim Semantic | |
i +-3% Semantic: Application
Lo MSemantm Customer
i _--3& Semantic. Produc!
Semantic Transformation I‘
Customer
(9 References dimension table Semantic
(O References fact table - 1 2510
| Ready|| ©On Error: | Abort (-] [v] Enabled y

U.S. Patent Sheet 35 of 45

Jun. 15, 2010

US 7,739,224 B1

Enterprise
Manager

‘ Epicenter Enterprise_i\ﬁanager

Server oerver Epicenter Constellation Extraction Security Help

a2l [alr =6 & [O@]\ [B@] e W] [Bi ¢]

@ Servers
E} A=, yet
}--< Epicenters
}--1%) epitest
E—} £ Base Dimensions

~-4) Account
4) Application

4) CostCenter
-4) Customer

-- *’_D Entity
-4) FormatPos

-4) GLTranstype
-4) Product

+--4) Program
+-4) Project
-4 SubAccount

Intertace
192

All Steps
Window

| Connector Steps
Connector: |AII §emantics < All Extraction Steps ‘
| i Semantic: Account E New G l
Connector Steps: (Checkbox Indicates Enabled) | : ;r-g Semantic: CostCenter \ ew aroup
- . . i ~-3¢ Semantic: Entity h
-] Order Dim SemantlF << | | -3¢ Semantic: FormatPos l New SQL \
(] Order Fact Semantic '\ +-y& Semantic: GL Transtype :
~] Expense Dim Semantic »2] P xgemantm gm]eclr%ﬂ New Semantic ‘
- 1 -3¢ Semantic: SubA I
[+] Expense Fact Semantic Expense Dim Stage
‘ Up \ Expense Fact Raw
-H&] Expense Fact Semantic \ Remove ‘
‘ Down I { -3¢ Semantic: Budget
i --3& Semantic. Expense \ Up]
-#] Expense act Stage
*| Hotswap D ‘
Order Dim Raw own
Order Dim Semantic
: '"MSemanllc Application
-3¢ Semantic; Customer
i -3 Semantic: Product
I Semantic Transformation I
_——
| (O References dimension table
(=) References fact table
LOder e
Ready|| OnError. | Abort EI [+] Enabled
OK Cancel

2100

All
Semantics

Connector
2410

Semantic
Transfor
mation
Window
2500

Order
Semantic
2610

U.S. Patent Jun. 15, 2010 Sheet 36 of 45 US 7,739,224 B1

Enterprise
_ < Manager
| Epicenter Enterprise Manager |— [%]| Interface
Server Epicenter Constellation Extraction Security Help 192
26| TAF[=l6]RILOeN O] 2 IO L
E--_?eéwil:ﬂ Operation
- Window
‘Batch Operation: Generating Datamart Schema 1600
Description:
3/10/98 11:22:.39 PM | | -]
Successfully generated the following objects:
Created: Warehouse_Q_A
Created: Warehouse 0 B
Created: WarehouseStage
Created: WarehouseMap_A
Created: WarehouseMap_B R
Modified: Order_0_A
Modified: Order 0 B |
Created: OrderStage
Modified: SellThruWeek _0_A =
o
ldle:
IE Go]\ Close |
. G--{_1Measures
: pr--{ 3 Ticksheets
[-}-XeX | Sales |
3] Aggregates
3--<3 Dimensions
() CustomerBillTo
() Product | |
----C) Application New Dimension
-) Program 2700
- Territory
O {Warehouse:
-----{_) Dimensions (Degenerate)
- Facts
i P-(llf Order
5 ﬁ SellThruMonth
.- SellThruWeek
. +F---L_] Measures
i =}--{] Ticksheets
[1----< Extraction
[1---=8 Security
Ready YET! epitest | 4

U.S. Patent Jun. 15, 2010 Sheet 37 of 45 US 7,739,224 B1

Enterprise
_ Manager
l Epicenter Enterprise Manager !@B Interface
Server Epicenter Constellation Extraction Security Help | 192
2le| 4 |=l6]&[||O@N| 0@ o~ O] §q ¢
- S HE —_— —
[1--& yel
[3--<3) Epicenters
EQ} epitest
..<Base Dimensions
E} @ 4) Account
-4) Application
--4) CostCenter
--4) Customer
+-4&2 Date
~--4) Entity
---4) FormatPos
--4) GLTranstype
-4) Product
---4) Program
--4) Project Aggregate
-4 %ubﬁccount Group
~-4) Territory .
) Transtype Window
.~ Warehouse 2800
33 Constellations
. __ 1-¥2Y Fynonae
Aggregate Group: Default
Aggregate ‘ Default —‘ Enable
GroupName: Y
o [] Delete
Description: B
-
Aggregate
Facts in this [Order ["Add Fact | nge e
Aggregate. SellThruMonth = 9810
SellThruWeek l Remove I
Aggregate Type: [NoneOrOthers =] | AddFgpe |
- A—JW N
Change BaseAndOthers I Remove I
Setings BaseOn
~ |CustomerBillTo [Noneroase — 1 [Update
CustomerShipTo 5 Lp———l
Date OthersOnl
Product No_ne!O'rU[hers
Program NoneOrOthers
Territory NoneOrQthers
1 4
[Cance

Figure 28

U.S. Patent Jun. 15, 2010 Sheet 38 of 45 US 7,739,224 B1

Enterprise

Manager

X || Interface

| Epicenter Enterprise Manager _!Eil \l
Server Epicenter Constellation Extraction Security Help

AR EECEMME N EIEE EEISIEE]

(1A yet
-3 Epicenters
(- epitest
[:}--<-3 Base Dimensions

4) Account
+--4) Application

-4) CostCenter
--4) Customer

Entity

1) FormatPos
-4) GLTranstype
1) Product
+--4) Program
+--4) Project

--4) SubAccount
=) Territory

) Jiiul S il Tl S, B
;]) d

-4 Transtype
--4) Warehouse

I Configuration

Configuration

Name] Key I Description [~] |
[BOOK] t Normal Bookings - posit
BOOK_RETURN 2 Returned Bookings - neg
LOST 3 De - bookings - for intern
LEAD_LOST 4 Indicates that a pipeline
SHIP 101 Normal Shipment - negat
SHIP_RETURN 102 Returned Shipment - pos
SHIP_ADJUST 103 An adjusting shipment, i
SHIP_RADJ 104 An adjusting return ship

GL 105 A general ledger entry s
INV_ADJUST 201 An Inventory adjusting] < |
a >
Name: |BOOK . | \ Add Type |

Key: |1—— —I [_W l

Description: "Nyormal Bookings - positively B Update |
signed

4

N Giose
Figure 29

182

Configura
tion
Window
2900

Transaction
Types
2910

U.S. Patent Jun. 15, 2010 Sheet 39 of 45 US 7,739,224 B1

Enterprise
_____ _ Manager
| Epicenter Enterprise Manager —]| X || Interface
‘Server Epicenter Constellation Extraction Securlty Help | 192
26][@ IIIIIIAI?F——-@I EMeENERIE @l‘ﬁMlol 00] §
A yetl
B---Eﬂ Epicenters | User
G---{""‘._, epitest | Interface
£} -C3Base Dimensions | Definition
- :: ﬁcc?”"t Window
--4) Apphcation
--4) CostCenter 3000
+--4) Customer
-4 Date
—--4) Entit

| Web Builder -yeti\epimm —)x

File Edit System Ticksheet Window Help

Measure
— — — __ Definition
Measure Builder R xfir” Window
Measure Selectons —4—m ————— 3010
Name; its; Constellation:
ASPBacklogOrderGross [=] |ICURRENCY [=]|[Sales (=]
[New...][Rename |[Remove]
Measure Terms
Operator: Fact Table: Fact Column: Transaction Type: Backlog Type:
\ Order [=]]finet [=](BOOK =lEND gl
[FEIXIZ][Update]| Add | -
Order - Calculation
Step [Operator | Fact Table | Fact Column JTransaction... ‘Backlog Type| A for
1 SUM Order nel_ price BOOK END]| Measure
2 SUM Order net_ price SHIP END 'l 3020
3 add .
4 SUM Order number_units SHIP END
Il 5 SUM Order number_units BOOK END
6 add - |
[div
| ‘ Close \
.]
Ready | YETI epitest y

Figure 30

U.S. Patent Jun. 15, 2010 Sheet 40 of 45 US 7,739,224 B1

Enterprise
- Manager
Epicenter Enterprise Manager =71 x||Interface
Server Epicenter Constellation Extraction Security Help 192
2[0)| &7 =] EIoeN ©@] [~ O] Hif]
- yet |
-3 Epicenters User
}-- x"“ epitest Interface
E} @Base Dimensions Definition
. ﬁcc?unt Window
- pplication
42 CostCenter 3000
-—-4) Customer
- Date
) Entit

| Web Builder -yeti\epimm | _IOx]|

File Edit System Ticksheet Filter Group Window Help

Executive [Type: clarity / Constellation: Saies] o 0 x

Attnbutes
| [Selectal |

[Fiscal Year @
Clear] x\
Tickshee

,-E1§9.a.l.99.art_et ____________________ @
Definition

o

Assign selected attribute to:
(v} ClarityColumn
‘w1 ClarityRow

Business Unit

Product Supergroup
Product Line

Platform

Product Description

Product
Sales Rep

Window
3400

e

Columns —

Column 3;

1 [Booked at MM A
Shipped by MM :I
2 | Sell-Through
Revenue Adjustments QI Total Extended Price in US Dollars
x]

3 Total Revenue

Filters

Filter blocks: Filter groups for block Fiscal items in group 1996
FiscalYear A]11995 ... e LA [Q1 1996
iFiscal Quarter] &2 4996 E Q2 1996
Business Unit 1997 Q3 1996
Platform | [D] | 1998 [Q4 1996
Channe|

Customer Tier \1 l E
Customer Region , %
Including NFR's and Marketing

}

‘ Ready) YETI epitest

US 7,739,224 B1

Sheet 41 of 45

Jun. 15, 2010

U.S. Patent

¢ aInB

oquwewnoog | |

H . _ ol yoday
B g)ealn
1H04d3d sbumas
J1¥3YD SA0Ge SUOJNG 3N|q aY) YIIM 3N JSJE| 10§ S3SI0YD INOA SABS UBD NOA)3} Jaddn sy ul nuaw ay) woyy suondo 2] | JU8LINS
Aedsiq Jo $Ja)|14 BWOS }99[8S ISJY JO ‘Y3] JAMO| BY) UI UORNG [MO4IN JLYIHD 9U} ¥oi[0 ‘9A0qe sasioyo Buiyew sspy aj9jeq 4 38 7 SAI3G
RVENE N
SUETNEEITELET I d@H o
_ SNTENERDEYE|
gonoigr-ies [} 5V A HINISY BN PUB SY4N o
— | — LEREN S)
W Aapadas [BN [N (7] oy OERRTIY ©
WWETE [S5) 18] JAUI0JShY) ©
IR BUUEY) ©
'MO[] UWN|OD YJBS WO 8UO ISE3)| & 198]8S (30 YOS Ul 5|08} aY) 104 544454040 — IoNed o

IO sseuisng o

[=]) ._.mm& [SI | [=] BUeny [edsly ¢
TESA [Edsi ©
(doj ay) ssoJoe) | | (3pIs 8y} umop) ST
SUINOD 8y) U 'SMOJ 9L} U |
jasiq @
007€ (199 Yoea ul S)o.) pue Suwn|od pue smod Yim 3|qe) e 1ab |im nok ‘uodal e a)eald noA Uaypa SJOE4 SUWNJOY) SMOY &
wio4 Asnp B3] e
- Alelwlwng aANN2AXJ SWOH AED) ©
.l %h”“ﬁww_ Aueydids @
aoBLAY [a] - - W)Y 8anaax3/uinjes/; dpy | -Uocledn ~ syeuwnjoog

Li0)S Aundag Julld 3pIng (oJeaS 3WoOH Ppeoy plemiod Yoeg

__

Z9) sesmaig (IO~ ~adessjop - Aiewung aARnax3

U.S. Patent Jun. 15, 2010 Sheet 42 of 45 US 7,739,224 B1
Enterprise
Manager
_Epicenti Enterprise Manager _I77 %l interface
Server Epicenter Constellation Extraction Security Help 192
20| [Jar =6l loeN O (¢~ O] 7)
-, yet
3 Epicenters User
[}-- {‘“ epitest Interface
@Base Dimensions Definition
-4) Account Window

@) Application
--4) CostCenter
-4 Customer
-4 Date

—--4) Entity

3000

File Edit System Ticksheet Window Help

Measure Builder

I Web Builder -geti\eﬁimm

' =IO

Measure

Definition
x it Window

3010

Measure Selections
NdAlTIe, I’II];S.

Constellation:

[y ™ -] Inaloiraderlarnss <

[l Sales

[o

Measure Mappings

‘ Dollar Amount ‘ : |
| Gross E

Pri

¢ Sell-Through ™~

e e sle ol ok e alle e O B e ol E_ B K ¥ _F W W N N I N N kN _§ W J ¥ 3 I N J |

<<Prev | Next> |

Pri
Pri

Pri

Pri
Pri
10
Pri

ASPDeclGrossWeek
ASPShipGrossMonth
ASPShipGrossWeek
ASPShipNetMonth
ASPShipNetWeek
ASPShippedOrderGross
| ASPShi
ASPShi
ASPShi
ASPShi

ppedOrderNet
ppedOrderReturn
pReturnMonth

pReturnWeek

ceAd|GrossMonth

ceAd|
ceAd

CeAd]

ceAd‘

Pr
PriceBacklogOrderGross

Pri
Pri

Pri
Pri
PnceNetRevTotal

- A B A e e ple e B e oy ar B B B W W U e e o el B B ol ol ol e ol ale e ol B ol el O e ol e mm e miw

Y [
e —— "'"5 g Measure

ceAd

GrossWeek
NetMonth
NetWeek
ReturnMonth
ReturnWeek

ceBacklogOrderNet

ceBa

cklogOrderReturn

ceBookedOrderGross
ceBookedOrderNet
ceBookedOrderReturn
ceDeclGrossWeek
ceNetRevAd;

| Calculation|

| for

Measure |;
3020

/él

Mapping

Window
3300

auo(luswnaog

US 7,739,224 B1

H_,H O . Ad Hodsy 8jesl) sBumes
L] JuaLno
18043 | [@eea][esn | | ewss | .
J1Y3¥HD eAoge suoyng anjq aul YIm asn Jaje| 10} Sasioyd IN0A SABS UBD NOA “Jat Jaddn ay) ul nusw au) wolj suondo di3H
Ae|ds|Q 10 s18}}14 SWOS J0BI8S JSIY 1O 'YB] JAMO|) U UCHNG | HOTH J1YIHD 8l %219 '9A0qe Sasioyd Hunjew Jayy BuoEny ©
uoibay JSWo)snY) ©
301 JaWojsN) ©
EFIET oI
| | ©
< sumay [sopoeg [v O GENEETES .
__ ONpo!
S N L paddus 12 N L 3ben :_WW_ “o:”“_“ ®
er;
-t 55019 (7] payoog [] junowy Jejjoq [~} oo ©
> Z474 44 v/.um ®
O 'MO[BQ ULUN|CO YOES WOJ) BUO JSBA] JB J93]3s ‘|[32 YoBa Ul SJOB) 8y} 104 po4o4s40ot— NOIDIadNS JoNPoid
- & 3Ur onpoig
— . IO SSURTG
[=] 1ea A [BOSH | | e U0}y JEpUaEy) ©
- PEND) [0S M
m (doy 8 ssoloe) (8pIs aY) umop} ICEYNERSE
g SUWINOJ sy U| .SMO.I Y] U] SENE ®
- — _ — SUBNA0 ABdSTg O
= 00Z¢€ 1189 YJ€9 Ul S}OB} PUB SUINOD PUB SMOJ UJIM 8iqe) B Jab [Im noA ‘Lodai e ajeala nok usup SPE] SN0, "SWoyg ©
= wio4 Asanp 5 ©
= B sajesg Joj Ajue}) STOH ATE ©
91eM}JOS
val _\ Buiaxiep Aueydids L @ 2
a0BH8)U| _M_L..r r jwjy sispio/uinjes;dyy | -UOhedQT SHEWN00G R

FI0)S AUN3aS Juld oping UoleaS SWOH PEojey pJemio] Yoeq

synsax/Alanp __m

A | doH_joeaunuwod 05 MeA wp3 and
79| Jasmoig |[xIO0] _ adeas)aN - ssjes 104 Ajue|d

U.S. Patent

US 7,739,224 B1

Sheet 44 of 45

Jun. 15, 2010

U.S. Patent

GE aInbid

3U0Q JusWNI0(] B
n - - I — A e —— —
_. 14043y IBWosN) 34U UMOP
aoyspesids sbuyes < - |
ﬁnm_.“u_maoo ua) 5%93 NMOQ 1A SMOJ I U] lup ueo nof ‘anoqe SMOY
J1Y3IND 3} JO SWOS 28]9S NOA J|

80504 Iiv308les [| 01 doL%oaud []
XXX XXXS XXX XXXS$ XXX XXXS$. XXX XXX S L=21e3]
XXX XXX$ XX XXX XXX XXX$ XXX XXX$ 86701 Dululeway
XXX XXX MZ9.'€$ | aJoH SWEN JAWOJSNY
YOO XXX S LGP LS Mi0L' LS 919H aleN JaWo)sna v
XXX XXXS AY96 GL$ 10681 alaH SWEN JoWOolSn) v
XOOXXXXS Xp0. 123 MGELTS 10698 | aloH sWeN JaWojsny Yy
XXX XXX$ Y562 2$ Y891'52$ WZve TS i B15H QWEN JaL0JSND Y
XXX XXXS %891} 'GZ$ M671GS MZ9L'ES 9JoH BWEN Jewosn) |
XXX XXXS M909'GS M8¢2 9% AT | A0 __ 9I9H SWEN JaWOo)sSn) v
XXX XXX S JAT AR JAARES AC6GS | ©leH SWEN JaWOIsNY Y
XXX XXXS NLONIA) MGEZ'Z$ MZVZ TS 818K BWeN Jawolsn) | |
XXX XXX M796'G1$ Mp0L'£2 %89} G2 292°€$ 219 aWeN JBWolsN) | |

12J0] 8661 L661 9661 G661 66} slswoisn)
00GE SIE3A [BISI)
S INSay 00:00:00 £6/02/Z 1 O S $s019 | paddpig / junowy JejjoQ
-
3IeM0S
BUnoNEN Aueydids @
moMWME_ P o Wiy siepio/uniesyydjy | “UONesoT syewyoog
Snsax/Alent z 0IS AuUndag Uil aping UJJEaS OWOH PEO[Y PIJEmio] PEg
7| i daH Joesunwwoy 08 MaA wp3 9l

13SMOIG x L]~ adeosjan - synsay Auej) Aueydida

US 7,739,224 B1

Sheet 45 of 45

Jun. 15, 2010

U.S. Patent

009¢

wio4 uondo

12:1" [lq

303U

au0(] JUsaWnNO0(]

i _ 1oday s1eal) 7 .
sbunjes

aweumol AQ O Jnowe AQ ©
v O 00LdoL O 06dcl O 02001 O gl dol O gdol O

siea) easid iy [#] O JUSLIND
38 OAIBS

IO 9bley) o
NEE RS,
358(] PUE 9oualajoy 1) ©

gonduossq 19 ©
dnoJg) Junoxy ©

N0JDJ3ANS JUN02DY ®
JJQUINN JIDIp-¢ TUN030Y ©
BWEN JUN030y ©
JaquIiny JUNooy ©
oS @

JSqUINN 781087 1507 ©

'M013q S¥Y3 1714 2y Buisn Aq ejep ay) jo ued e Ajuo 0) spodas INoA Jw uBd NOA uoouny 181087 1507 @

SWEN JojUa7) 1507) @

JaqUINN SUTT RAPAId @

'SMOJ JI0S JWeN aur] Pnpoid @

:SMOJ U21UM

ON O 0Z O 0 O]
saoeid jewidap gz O ssoedewinep | O saocedewnspg ©

U] SSoUIShg @

SHEYS 3pnjou TIUOW JEpUSTe) @

~UOISIDa.I

BYIBU O %001 S[BI0] Uwnjod Ydoed O %001 SIB10) MOI YJes O |
WOJOQ SSOJOE) Suwn(oa jo @ (b ie) smosjo A

TopEND) [E0SI ©

FEEEIEN TE9) 95 @

'SWINS apnjou|

S3U0 O M)spuesnoyl © (W) Suolin_ O]

pajussaid ale s10B) BY) MOY BUILLIBIBP SNOILDO AV1dSIa Bumoiioy sy

SOIEN-

Suondo Aedsig e

SO 'SUWN[O7) SM0Y @
B9 @

SWOH AU @

Junowe Aouauny

Ilm._mgzow
SUENEN Aueydids @

1 — -

\wiy-esuadxgjuines;; dypy | uoneoo SHEWN00G

STIESE e E

z8) Josmarg (XIOC]

\\\\\\

0}S UnoeS jUlld °pIing ydieeS =2WOH PeEOIBY pJemioq ijoeg

dof Jojeownwwod 05 MEIA JIp3 9jId

adeas)apN - sosuadxg 0} Ajue)n

o
i

US 7,739,224 Bl

1

METHOD AND SYSTEM FOR CREATING A
WELL-FORMED DATABASE USING
SEMANTIC DEFINITIONS

CROSS REFERENCES TO RELATED
APPLICATIONS

This application relates to the following group of applica-
tions. Each application 1n the group relates to, and ncorpo-
rates by reference, each other application in the group. The
invention of each application 1s assigned to the assignee of
this invention. The group of applications includes the follow-
ing.

U.S. patent application Ser. No. 09/073,752, entitled
“Method and Apparatus for Creating and Populating a Data-
mart,” filed May 6, 1998, and having inventors Craig David
Weissman, Greg Vincent Walsh and Lynn Randolph Slater, Ir.
(now U.S. Pat. No. 6,212,524).

U.S. patent application Ser. No. 09/073,733, entitled
“Method and Apparatus for Creating Aggregates for Use 1n a
Datamart,” filed May 6, 1998, and having inventors Allon
Rauer, Gregory Vincent Walsh, John P. McCaskey, Craig
David Weissman and Jeremy A. Rassen (now U.S. Pat. No.
6,161,103).

U.S. patent application Ser. No. 09/073,733, entitled
“Method and Apparatus for Creating a Datamart and for
Creating a Query Structure for the Datamart,” filed May 6,
1998, and having inventors Jeremy A. Rassen, Emile Litvak,
AbhiA. Shelat, John P. McCaskey and Allon Rauer (now U.S.
Pat. No. 6,189,004).

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by any one of the patent disclosure, as 1t appears 1n the
Patent and Trademark Office patent files or records, but oth-
erwise reserves all copyright rights whatsoever.

THE FIELD OF THE INVENTION

This invention relates to the field of databases. In particu-
lar, the 1nvention relates to creating databases, and loading
and accessing data 1n the databases.

BACKGROUND OF THE INVENTION

Many different types of databases have been developed. On
line transaction processing (OLTP) databases are examples of
typical databases used today. OLTP databases are concerned
with the transaction oriented processing of data. On line
transaction processing 1s the process by which data 1s entered
and retrieved from these databases. In these transaction-ori-
ented databases, every transaction 1s guaranteed. Thus, at a
very low level, the OLTP databases are very good at deter-
mimng whether any specific transaction has occurred.

Another type of database 1s a data warehouse or datamart.
A datamart transforms the raw data from the OLTP databases.
The transformation supports queries at a much higher level
than the OLTP atomic transaction queries. A data warchouse
or a datamart typically provides not only the structure for
storing the data extracted from the OLTP databases, but also
query analysis and publication tools.

The advantage of datamarts 1s that users can quickly access
data that 1s important to their business decision making. To
meet this goal, datamarts should have the following charac-

10

15

20

25

30

35

40

45

50

55

60

65

2

teristics. First, datamarts should be consistent in that they give
the same results for the same search. The datamart should also
be consistent 1n the use of terms to describe fields in the
datamart. For example, “sales™ has a specific definition, that
when fetched from a database, provides a consistent answer.
Datamarts should also be able to separate and combine every
possible measure in the business. Many of these 1ssues are

discussed in the following book, Ralph Kimball, The Data
Warehouse Toolkit, John Whiley and Sons, Inc., New York,
N.Y. (1996).

Multi-dimensional datamarts are one kind of datamart.
Multi-dimensional datamarts rely on a dimension modeling
technique to define the schema for the datamart. Dimension
modeling 1nvolves visualizing the data in the datamart as a
multi-dimension data space (e.g., image the data as a cube).
Each dimension of that space corresponds to a different way
of looking at the data. Each point in the space, defined by the
dimensions, contains measurements for a particular combi-
nation of dimensions. For example, a three dimensional cube
might have product, customer, and territory dimensions. Any
point 1 that cube, defined by those three dimensions, will
represent data that relates those three dimensions.

The data in the datamart 1s organized according to a
schema. In a dimensional datamart, the data 1s typically orga-
nized as a star schema. At the center of a standard star schema
1s a fact table that contains measure data. Radiating outward
from the fact table, like the points of a star, are multiple
dimension tables. Dimension tables contain attribute data,
such as the names of customers and territories. The fact table
1s connected, or joined, to each of the dimension tables, but
the dimension tables are connected only to the fact table. This
schema differs from that of many conventional relational
databases where many tables are joined. The advantage of

such a schema 1s that it supports a top down business approach
to the definition of the schema.

Present datamarts have a number of drawbacks that are
now discussed. First, datamarts are typically difficult to build
and maintain. This 1s because of the requirements that they be
consistent and flexible. A related drawback of present day
datamarts 1s that they do not allow the consultants of the
datamart to make changes to the schema simply and easily.
Because datamarts support very high level queries about the
business processes 1n the business, they require a great deal of
consistency in the use of data from the OLTP systems. Addi-
tionally, the datamarts need to be very flexible to address
changes in the types of high level queries supported. Chang-
ing typical datamarts require the changing of hundreds, or
potentially thousands, of lines of SQL code. For example, it a
fact column 1s added to a fact table, the change propagates
throughout the datamart. These changes are typically imple-
mented by hand, a very time consuming and error prone
process. As a result of the hand coding involved, 1t 1s quite
possible to construct the database 1n an arbitrary fashion that
does not conform to good rules for constructing datamarts.
Thus, well-formed datamarts may not result.

Thus an improved data warehousing technology 1s desired.

BRIEF SUMMARY OF THE INVENTION

One embodiment of the mnvention includes a method of
defining a well-formed database system by defining the orga-
nization of the data in the database, and by defining the
operations for that data. The definition can then be used to
automatically create and populate the well-formed database
system. The well-formed database system conforms to rules
of correctness and produces results that conform to the rules.
The organization 1s defined by a data organization definition

US 7,739,224 Bl

3

that specifies tables, their columns, and the relationships
between tables. The operations define procedures that operate
on the tables and the table columns. Importantly, the opera-
tions are defined along with the tables, columns, and relation-
ships, so that the resulting system 1s well-formed. Without
this ivention, database systems can be constructed in an
arbitrary and inconsistent fashion which can result 1n an
incorrectly constructed database system.

In some embodiments, when the database system is cre- 10
ated, 1t automatically includes the following capabilities: for-
eign key tracking, automatic indexing, time and date infor-

mation inclusion. By including some or all of such
capabilities 1n the database system, the system will operate to

comply with the rules of correctness. 13

The following are aspects of various embodiments of the
invention. The constructed well-formed database system can
automatically guarantee the following. (1) Two columns
related by a relational join will be from the same domain. (2) 5,
If table A has a many-to-one relationship to table B, then table
A has a foreign key that corresponds to table B. (3) A many-
to-many relationship, between two tables A and B, 1s always
expressed by an associative table that 1s created 1n a uniform
way. For each umique many-to-many relationship, a unique 25
value 1s created 1n the associative table and reused whenever
that many-to-many relationship occurs. Denormalization 1s
always done correctly. (4) Pulling information from one table
to be put into another table, for access elliciency, 1s done

correctly. 30

In some embodiments of the invention, the data organiza-
tion definition includes a schema description for a datamart.
The datamart automatically includes the inclusion of trans-
action type information and the mapping of source system .
keys. In these embodiments, the operation definitions define
one or more of the following sets of operations: datamart
population operations, aggregate creation and maintenance
operations, query and result interface operations.

Although many details have been included in the descrip- 40
tion and the figures, the invention 1s defined by the scope of

the claims. Only limitations found 1n those claims apply to the
invention.

BRIEF DESCRIPTION OF THE SEVERAL 45

VIEWS OF THE DRAWINGS

The figures illustrate the invention by way of example, and
not limitation. Like references indicate similar elements. 50

FIG. 1 illustrates a datamart system representing one
embodiment of the invention.

FIG. 2 illustrates an embodiment of a method of defining,
the datamart, loading the datamart, and then querying the
data.

FI1G. 3 illustrates a schema used 1n the system of FIG. 1 to
define schemas for the datamart.

55

FIG. 4 1llustrates a schema used 1n the data extraction and
loading process. 60

FIG. § 1illustrates a runtime schema including aggregates.

FIG. 6 illustrates a query mechanism and user interface
schema.

FI1G. 7 through F1G. 29 describe a user interface that can be 45
used to define a schema, build a datamart, load the datamart,
and query the datamart.

4

FIG. 30 through FIG. 36 describe a user mterface that can
be used by a consultant to set up the query interface for a user
and to provide the reporting interface.

DETAILED DESCRIPTION OF THE INVENTION

The following describes a system according to various
embodiments of the invention. Generally, the system allows a
consultant to define a well-formed datamart. The system
includes tables and columns that conform to the definition of
the datamart. The system also includes additional columns for
foreign key tracking, source system key mapping, time and
date tracking. The System has automatic indexing. The sys-
tem enforces typing information about the data stored 1n the
datamart. These additional features cause the datamart to
operate 1n a consistent manner. One benefit of such consistent
operation 1s that results are consistent in meaning from query
to query.

Focusing on the datamart creation, the System allows a
consultant to build a datamart from a schema definition and a
definition of the sources of the data. From the schema defi-
nition, the system automatically builds the tables needed in
the datamart. Also, from the schema definition, and the
sources definition, the system can automatically extract the
data from those sources. Depending on the semantic meaning
of the data, as defined by the schema definition, the system
automatically converts the data from the sources into forms
that are readily usable in the datamart. Once the datamart has
been created, and the data has been loaded, users can then
perform queries on the data.

As part of the datamart creation, the system allows the
consultant to define aggregates for the datamart. The aggre-
gates correspond to pre-computed query results for different
types of queries. For example, an aggregate can be created for
a query that asks for all sales, by region, by quarter. The
corresponding aggregate table would include a set of rows
that have the results for this query (e.g., each row includes the
quarterly sales for each region). The aggregates are specified
using the schema definition. This makes defining and chang-
ing aggregates relatively simple.

To allow a user to query the datamart, the system includes
an iterface for defining what fields can be used by the user to
query the datamart. Additionally, by allowing the consultant
to define measure and related information, the system allows
the consultant to specily how the results are to appear to the
users.

The following description first presents a system level view
of primarily one embodiment. Then, an example use of the
system 1s presented. Next, the metadata used in the system 1s
described. This metadata description 1s broken into four parts:
a top level description of the metadata used 1n defining sche-
mas, a description of the metadata used during the extraction,
a description of the metadata used while the datamart 1s
running, and a description of the query interface metadata.
Next, an example set of user interface screen shots illustrates
how consultants can quickly and efficiently define schemas,
aggregates, and query interfaces, and how users can query the
datamart. Next, additional alternative embodiments are

described.

DEFINITIONS

Datamart or Data Warehouse—is a database.

Schema—is a description of the organization of data in a
database. Often, the schema 1s defined using a data definition
language provided by a database management system. More
abstractly, the schema can be the logical definition of a data
model for use 1n a database.

US 7,739,224 Bl

S

Metadata—is data that defines other data. This 1s not the
actual data 1n the datamart, but 1s the data that defines the data
in the datamart.

Constellation—a grouping of dimension definitions, fact
definitions, like-structured facts (all facts 1n a constellation
have the same dimensional foreign keys), or stars, and other
metadata definitions. Often the grouping relates to a business
process (e.g., sales).

Fact Table—the central table of a star schema. It stores the
numeric measurements of the business that 1s supplying the
information to the datamart.

Measurement—i1s a piece of data 1n a fact table, or an
arithmetic combination of data.

Dimension—the tables that link to the fact table 1n a star
schema. The tables store the descriptions of the dimensions of
the business. Examples of dimensions are product and terri-
tory.

Attributes—are the fields of a dimension table (e.g., prod-
uct name, country name).

User—any end user who would normally wish to query a
datamart, but would not usually be concerned with the imple-
mentation or maintenance of the datamart.

Consultant—is a person responsible for the creation and
maintenance of a datamart.

Source System—1s any computer system that holds the raw
data used by the system. Examples of such source systems are
OLTP database systems.

Data Store—any data storage (physical or logical) from
which data 1s received or to which data 1s stored. Examples of
a data store are files, a database, etc.

Computer—is any computing device (e.g., PC compatible
computer, Unix workstation, etc.). Generally, a computer
includes a processor and a memory. A computer can include
a network of computers.

Program—a sequence of instructions that can be executed
by a computer. A program can include other programs. A
program can include only one 1nstruction.

Datamart System

FIG. 1 illustrates a datamart system representing one
embodiment of the invention. The system supports the cre-
ation of a well-formed datamart. This system allows consult-
ants to use metadata to define schemas for a datamart. From
the definition of the schema, the system can automatically
generate the tables in the datamart. Further, the system can
automatically extract the data from the source systems, per-
form conversions on that data and populate the datamart. The
system supports the automatic creation and processing of
aggregates from aggregate definitions. The system also sup-
ports the creation of the query mechanisms from query defi-
nitions.

The following description first lists all the elements of FIG.
1, then describes each of those elements, and then discusses
how those elements operate together.

System Element List

FIG. 1 includes the following elements: source systems
110, a system 100, a web server 186, a consultant computer
190, and a user computer 180. The system 100 includes the
metadata 160, an enterprise manager 102, an extraction pro-
gram 120, staging tables 130, a semantic template conversion
program 140, a datamart 150, an aggregate builder 170, and a
query and reporting program 104. The metadata 160 includes
the following data: schema definitions 161, connectors 162
(connectors are also referred to as extractors), semantic defi-
nitions 163, source system information 164, aggregate infor-
mation 167, measurement information 168, and query/report-
ing information 169. The user computer 180 1s shown running

10

15

20

25

30

35

40

45

50

55

60

65

6

a browser 182. The browser 182 includes a query/results
interface 184. The consultant computer 190 shows the enter-
prise manager interface 192 which shows the metadata orga-
nization of the System 100.

System Flement Descriptions

The following describes the metadata 160, then the other
clements of the system 100, and finally, the elements that are
external to the system 100. These elements are all described 1n
greater detail below.

Metadata Overview

The metadata 160 includes many different types of data
and information. This information can be broken down into
information related to (1) the definition of the schema for the
datamart 150, (2) the data needed during the extraction from
the source systems 110 and loading of the datamart 150, and
(3) the information used 1n the querying of the datamart 150
and supplying the result sets. The relationships between the
clements of the metadata 160 are described 1n greater detail
below. However, the following provides brief descriptions of
these elements.

The schema definitions 161 hold the definition of the
schema for the datamart 150. Typically, a consultant, using
the consultant computer 190, can interface with the enterprise
manager 102 to define the schema definitions 161 for the
datamart 150. In particular, the consultant can use the enter-
prise manager interface 192 to define a star schema for the
datamart 150. This star schema 1s organized around the busi-
ness processes of the business for which the datamart 1s being
created. What 1s important i1s that the consultant can easily
define a schema for the datamart 150 and that definition 1s
kept 1in the schema defimitions 161. From the schema defini-
tions 161, not only can the tables in the datamart 150 be
generated, but also the automatic extraction and conversion of
the data from the source systems 110 can be performed,
aggregates are set up, arid a query mechanism 1s generated.

The connectors 162, the semantic definitions 163, and the
source system nformation 164, are all related to the extrac-
tion of the data from the source Systems 110. The connectors
162 define the access routines for extracting the source sys-
tems data 110. The semantic definitions 163 define how that
extracted data should be converted when 1t 1s loaded 1nto the
datamart 150. The semantic definitions 163 provide impor-
tant advantages to the system 100. In particular, the semantic
definitions 163 allow for a simplified definition of the data-
mart 150, consistent meaning of the data 1n the datamart 150,
and allow for complex changes to the schema to be easily
propagated to the datamart 150. The source system informa-
tion 164 defines how to extract the data from the systems 110.

The aggregate information 167 defines how data in the
datamart 150 1s treated once 1t 1s extracted. The aggregate
information 167 allows for the creation of aggregates. Aggre-
gates are aggregations of various fields of data 1n the datamart
150. Aggregates support more complex and powerful queries
to be executed on the datamart 150. The aggregates also
improve the performance of the system during the querying
process and allow for time navigation of the data 1n the data-
mart 150. Time navigation 1s the process of creating backlog
result sets by hopping through date aggregates from the
beginning of time in the datamart 150 to the present.

The measurement information 168 and the query/reporting,
information 169 support the querying of the datamart 150. A
measure 1s a piece ol numeric data in the datamart 150 that 1s
useful to a user. That 1s, individual fact columns from source
systems can be very implementation specific. These columns
may not correspond to what users would prefer to see. For
example, a user may want to see a net price added with a total

US 7,739,224 Bl

7

cost. However, the fact table may only include the net price or
the total cost. The measurement information 168 allows the
consultant to define the abstract notion of the calculation
associated with the net price added to the total cost.

In some embodiments of the invention, the metadata 160
also 1ncludes security information. The security information
defines the level of access for various users to the various
tables and fields 1n the datamart 150. This security informa-
tion automatically restricts access to that data.

System Overview

The system 100 can be implemented on a network of com-
puters running Windows NT and UNIX. The datamart 150
can be implemented on top of an Oracle (SQL Server, or
ODBC) database. However, this physical structure of the
system 100 can be implemented in any number of ways, and
the invention does not require this specific hardware configu-
ration.

The enterprise manager 102 1s a program that 1s respon-
sible for supporting the definition of the schema, and the
creation of the tables in the datamart 150 from the schema
definitions 161. The enterprise manager 102 also controls the
extraction program 120. (In some embodiments, 1s the extrac-
tion program 120 and the semantic template conversion pro-
gram 140 are included 1n the enterprise manager 102). During
the execution of the extraction program 120, the extraction
program 120, the staging tables 130, the semantic template
conversion 140, and the datamart 150 are all used. The extrac-
tion program 120 uses the connectors 162 and the source
system information 164 to extract the mnformation from the
source systems 110. The extracted data 1s loaded into the
staging tables 130.

The staging tables 130 are temporary tables used to hold
the source system data before performing any semantic con-
versions on that data. The staging tables 130 also allow for the

conversion of the source system data prior to moving the data
into the datamart 1350.

Once the staging tables 130 have been loaded, the semantic
definitions 163 can be accessed from the enterprise manager
102 to convert the information 1n the staging tables 130 to
predefined data semantics. These predefined data semantics
allow for powertul queries, consistency 1n the definition of the
meaning of the data in the datamart 150, and allow for
changes to be made to the schema. Generally, the semantic
template conversion 140 takes data stored 1n the staging tables
130, performs a conversion of that data according to a corre-
sponding semantic definition (defined in the schema defini-
tions 161), and populates the datamart 150 with the converted
data.

Importantly, the predefined data semantics substantially
simplily the creation and population of the datamart 150. In
previous systems, the consultant would have to implement all
of the data mamipulation and population programs by hand.
By selecting a particular semantic definition for a particular
fact, or dimension, 1n the schema, the consultant has auto-
matically defined the access and manipulation for populating,
programs for that table. Allowing the consultant to select a
predefined data semantic not only reduces the tedious coding,
previously required of the consultant, but also allows for the
automatic insertion of foreign keys, transaction types, date,
and other information into the schema, and therefore the
datamart 150. This additional information causes the data-
mart 150 to be well-formed.

The aggregate builder 170, as mentioned above, aggregates
data 1n the datamart 150 according to the aggregate informa-
tion 167 and the schema definitions 161. The results of the

10

15

20

25

30

35

40

45

50

55

60

65

8

aggregate builder 170 allow for more powerful and faster
queries to be performed on the datamart 150.

The query/reporting program 104 supports the querying of
the datamart 150 and presents results of those queries. The
query and reporting process 104 uses the measurement infor-
mation 168 and the query and reporting information 169, in
addition to the schema definitions 161, to query the datamart
150 and provide that information to the web server 186. The
query/reporting information 169 includes filters and form
definitions. The filters allow the user to filter different fields
out of the datamart 150. The forms allow the users to indicate
which fields a user 1s particularly interested 1n.

Themetadata 160, although including many different types
of definitional data, importantly includes the schema defini-
tions 161 and the semantic definitions 163. The enterprise
manager 102 can use the schema definitions 161 to build the
tables in the datamart 150. Through the combination of these
two pieces of metadata 160, the enterprise manager 102 can
take data from a source system 110, perform semantic con-
versions on that data and populate the datamart 150. Thus, 1n
some embodiments of the invention, the system includes only
the schema definitions 161 and the semantic definitions 163.

FExternal Elements

The source systems 110, as defined above, represent large
databases from which data for the datamart 150 1s pulled.
Examples of such systems include large on line transaction
processing (OLTP) systems. Typically these source systems
110 are relational databases having multiple tables and rela-
tions between those tables. The source systems 110 do not
generally support powertul queries that provide high level
information about the business in which the source systems
110 are used. Thus, the system 100 1s used to extract the data
from the source systems 110 and to provide an improved
schema for querying that data. In some embodiments, the
source systems 110 include non-relational databases such as
object databases. In other embodiments, the source systems
110 can include flat file systems or combined relational and
object databases. What 1s important 1s the source systems 110
can provide data to the system 100 through the connectors
162 and the source system information 164.

The consultant computer 190 represents any computing,
device that allows a consultant to access the system 100.
(Access to the system 100 can be through a network.) What 1s
important 1s that the consultant computer 190 allows the
consultant to interface with the enterprise manager 102. Note,
that the enterprise manager 102 can run on the consultant
computer 190.

The user can access the web server 186 through the user
computer 180. In this example, the user computer 180 can
access the web server 186 through an HI'TP connection. The
user computer 180 sends a file request to the web server 186.
This file request represents a request for a query of the data-
mart 150. The web server 186 runs a Java program upon
receiving the request. The query and reporting program 104
converts the information from the Java program into a query
that the datamart 150 will understand. In one embodiment,
the query/reporting program 104 converts the query into a set
of SQL Statements. The SQL statements are run against the
datamart 150. The results of the statements are processed and
provided back to the user computer 180.

Example Method of Defining and Using the Datamart

FIG. 2 illustrates an embodiment of a method of defining
the datamart 150, loading the datamart 150, and then access-
ing the data in the datamart 150. This example can be broken

into four subparts: a build datamart process 202, an extraction

US 7,739,224 Bl

9

process 204, a build aggregates process 205, and a query and
reporting process 206. This example can be implemented
using the system 100.

Atblock 210, a consultant uses the enterprise manager 102
to define the schema. The schema 1s defined using the meta-
data 160. This process 1s illustrated 1n greater detail in FI1G. 7
through FIG. 35. Generally, defining the schema involves
determining the business processes of the organization for
which the system 100 1s being implemented. The consultant
then defines the star schema for those business processes. The
star schema has a fact table and a number of dimensions. The
consultant also defines from where the data 1n the schemai1s to
be derived. That 1s, the consultant defines from which fields
and tables the information 1s to be extracted from the source
systems 110. The consultant also defines how that data 1s to be
put mto the datamart 150. That 1s, the consultant associates
cach piece of data with a semantic meaning. This semantic
meaning defines how the data from the source system 1s to be
manipulated and how 1t 1s to populate the datamart 150. At
this point, the consultant can also define the aggregates that
can be used 1n the datamart 150.

Once the datamart 150 has been defined, 1t can then be
automatically built. At block 220, the enterprise manager 102
generates table creation SQL statements according to the
definition of the metadata. In one embodiment of the mven-
tion, block 220 1s accomplished by performing queries on the
schema definitions 161 to generate the fact table creation
statements, the fact staging table creation statements, the
dimension table creation statements, the dimension staging
table creation statements, and the dimension mapping table
creation statements. These tables are described 1n greater
detail below. From the results of these quenies, SQL CREATE
TABLE statements are created. Importantly, the schema defi-
nitions 161 provide the information the enterprise manager
102 needs to build the datamart 150.

Note that this process can also be used to modily the
schema of an existing datamart 150. Therefore, at block 220,
the SQL tables being created will cause the existing datamart
150 to be modified without losing the data in the datamart
150.

At block 230, the enterprise manager 102 1ssues the table
generation statements to the database upon which the data-
mart 150 1s being created. That database creates the tables,
which correspond to the datamart 150. After block 230, the
build the datamart process 202 1s complete.

Now the extraction process 204 can be performed. The
extraction process 204 1s run on a periodic basis to load data
from the source systems 110 into the datamart 150. This
process can be run multiple times for the datamart 150.

At block 260, the connectors 162 are used by the enterprise
manager 102, and in particular, they are used by the extraction
program 120 to extract the data from the source systems 110.
The connectors 162 can include SQL statement templates
(not to be contfused with semantic templates, as described
below) for extracting data from the source systems 110. The
extraction program 120 uses these templates, 1n addition to
the source system information 164, to generate SQL state-
ments. These SQL statements are 1ssued to the source system
110 and the results are loaded into the staging tables 130. (The
staging tables 130 had been created as a result of block 230.)
Once the staging tables have been loaded, the data can then be
moved 1nto the datamart 150.

At block 270, the staging table data 1s moved into the
datamart 150 using the semantic definitions 163. The seman-
tic definitions 163 are templates for converting the staging,
tables 130 data according to predefined data semantics. These
predefined data semantics, as described below, provide

-

10

15

20

25

30

35

40

45

50

55

60

65

10

semantic meaning to the data being loaded from the staging
tables 130. Note that the data from the staging tables 130, as
processed by the semantic template conversion 140, 1s placed
in the tables 1n the datamart 150.

Thus, the schema definition and the semantic definitions
163 are used to generate and populate the datamart 150 such
that the datamart 150 1s well-formed. Examples of the well-
formedness of the datamart 150 are as follows. (1) Two col-
umns related by a relational join will be from the same
domain. (2) If table A has a many-to-one relationship to table
B, then table A has a foreign key that corresponds to table B.
(3) A many-to-many relationship, between two tables A and
B, 1s always expressed by an associative table that 1s created
in a uniform way. For each unique many-to-many relation-
ship, a unique value 1s created 1n the associative table and
reused whenever that many-to-many relationship occurs.
Denormalization 1s always done correctly. (4) Pulling infor-
mation from one table to be put into another table, for access
eificiency, 1s done correctly. Previous systems cannot guar-
antee such a well-formed database system because hand cod-
ing of the creation and population operations 1s required. This
hand coding can easily introduce errors into datamart creation
and population processes.

Once the extraction process 204 has completed, the aggre-
gates can be built in the build aggregates process 205. The
agoregates are tables of pre-calculated combinations of
dimensions and facts. Importantly, they greatly increase the
speed of queries. Generally, the aggregate definitions, stored
in the aggregate information 167, are accessed and built using
the aggregate definitions (which interface with the schema
definitions). At block 275, the aggregate builder 170 accesses
the metadata 160 to build the aggregates. Often, the aggregate
building 1s done at night.

After aggregates are built, the querying and reporting pro-

cess 206 can be performed. The querying and reporting pro-
cess 206 can be performed anytime after the creation of the
datamart 150. Importantly, when an aggregate is created, the
appropriate operation for that aggregate 1s used. For example,
revenue elements are added to produce an aggregate, while
daily account balances are averaged to produce an aggregate.

At block 277, the consultant defines the query mechanism
schema for the system 100. In particular, the consultant
defines the query/reporting information 169 and the measure-
ment mformation 168. These two pieces of metadata 160
allow the system 100 to report meaningfully consistent infor-
mation to users. Also, the consultant 1s not burdened with
having to hand create the possible reports.

At block 280, a query 1s generated. In one embodiment of
the mvention the query 1s generated at the query/reporting
program 104. In other embodiments, the query can be gener-
ated at the user computer 180 through the HT TP, web server
186, Java coupling to the query/reporting program 104. What
1s important here 1s that some query 1s generated that can be
used to access the datamart 150. Importantly because the
schema definitions 161 are available to the query and report-
ing program 104, the user can be presented with forms from
which a query can be easily and automatically generated.

At block 290, the answer set (the results) 1s created by the
datamart 150. This answer set 1s then propagated back
through the query/reporting program 104, and ultimately to
the user computer 180. The results are formatted according to
the query/reporting information 169.

Top Level Metadata Schema

As noted 1n the background, multi-dimensional datamarts
use star schemas. The system 100 uses star schemas 1n a larger
organization that allows for the sharing of dimension tables

US 7,739,224 Bl

11

by sets of similar facts. This larger organization 1s called a
constellation. FIG. 3 illustrates a schema for the schema
definitions tables that support constellations. (The schema of
FIG. 3 1s labeled the schema for schema definitions 300.) That
1s, F1G. 3 illustrates a schema used 1n the system 100 to define
schemas for the datamart. FIG. 3 also illustrates some of the
aggregate information 167 schema.

The following describes the meaning of the various graphi-
cal elements 1n FIG. 3 through FIG. 5. Each box 1n the figure
represents a table having one or more attributes. A first table
having a diamond graphic extending to second table (with a
dot on the end) indicates that that second table has a foreign
key pointing to the first table. This can be thought of as a
parent child relationship.

It 1s 1important to remember that FIG. 3 through FIG. 5
illustrate the schema of the system used to generate and run
the datamart 150. Rows 1n these tables define the schema for
use 1n the datamart 150. From these rows, create table, table
query, etc., commands are created. These commands are used
to create the tables in the datamart 150 and to access that
datamart.

Also, as mentioned previously, the datamart 150 1s well-
tformed because, among other reasons, the system 100 auto-
matically includes additional columns 1n the table created in
the datamart 150. For example, source system key, foreign
key, and time and date columns are automatically added
(where appropriate). The rest of the elements of the system
can then rely on the existence of these columns. This prevents,
for example, the creation of an inconsistent schema where
only some of the tables include date and time 1information.

The following first lists all of the elements 1n FIG. 3 and
then describes those elements and their relationships.

Top Level Metadata Laist

FIG. 3 includes the following elements: a constellation
302, a fact table 304, a dimension base (dim_base 306), a
semantic instance 308, a fact column (fact_col 310), a fact
aggregate operator (fact_agg operator 312), a fact column
number (fact_col_nbr 314), a fact dimension cleansing (fact_
dim_cleanse 316), a dimension role (dim_role 320), a degen-
crative number (degen_nbr 322), a dimension role number
(dim_role_nbr 324), a dimension node (dim_node 326), a
dimension column (dim_col 329), a dimension column num-
ber (dim_col_nbr 321), a cleanse type 323, a cleanse map
definition (cleanse_map_detl 327), a cleanse map 3235, a
physical type 330, a transaction string 332, a metacolumn
(meta_col 334), an actual table type (actual_tbl_type 336), a
dimension base type (dim_base_type 328), a special dimen-
s1on base (special_dim_base 391), an aggregate key operator
(agg_key_operator 392), an aggregate dimension type (agg_
dim_type 393), an aggregate dimension (agg dim 344), an
aggregate group (agg group 342), an aggregate fact (agg
fact 340), a aggregate dimension set (agg dim_set 372), a
dimension column set (dim_col_set 370), a dimension col-
umn set definition (dim_col_set_det 374), a fact index 380, a
fact index definition (fact_index_def 384), and a fact index
number (fact_index_nbr 382).

Top Level Metadata Descriptions

It1s important to remember that the tables in FI1G. 3 are only
used to define the schema 1n the datamart 150. Thus, a fact
table 304 1n FIG. 3 1s not the actual fact table 1n the datamart
150, but the definition of that fact table. Fach row 1n a table

corresponds to an instance of that table.

The constellation 302 defines the orgamization of the
schema 1n the datamart 150. It 1s the top level table 1n the
schema definition.

10

15

20

25

30

35

40

45

50

55

60

65

12

Fact Related Tables
The fact table 304 defines the metadata 160 table describ-

ing all of the fact tables within a given constellation 302. The
attributes of the fact table 304 include a build aggregates flag,
a cleanse flag, a constellation key, a description, a fact table
key, a fact table name, and a truncate stage flag. Each attribute
corresponds to a column in the fact table 304. The build
aggregate flag indicates whether or not to build aggregates for
a particular fact on the next execution of the aggregate builder
170. The cleanse tlag 1s a flag that 1s used in many of the tables
to obliterate the actual measures within a table 1n the datamart
150 (particularly useful 1n demonstrations of the system 100
where sensitive data would otherwise be revealed). The con-
stellation key points to the parent constellation 302 for a given
fact table 304. The fact table name 1s the name of the fact table
used 1n constructing the corresponding physical table names
in the datamart 150. The truncate stage flag 1s used to indicate
whether or not to truncate the fact staging table on the next
extraction.

The fact column 310 lists all of the fact attributes within a
single fact table 304. The fact column 310 1includes a cleanse
flag, a description, a fact aggregate operator, a fact column
key, a fact column name, a fact column number, a fact table
key, and a physical type. The fact aggregate operator 1s an
SQL operator used to aggregate this fact column in the data-
mart 150. The fact column key 1s the primary key for the fact
column. The fact column name 1s the physical name of the
fact column. The fact column number counts and orders the
number of columns 1n the fact table. The fact table key points
to the fact table to which the corresponding fact column
belongs. The fact table key points to the fact table to which the
fact column belongs. The physical type 1s the database type
tor the fact column. This type 1s alogical type and provides for
independence of implementation of the datamart 150 from
the underlying database used.

The fact column number 314 and the fact aggregate opera-
tor 312 are used by the fact column 310. These have already
been described 1n the context of the fact column 310.

The fact dimension cleanse table 316 has rows that indicate
the dimension foreign keys 1n a fact that should be cleansed.
The fact dimension cleanse table 316 includes a dimension
role key, a fact dimension cleanse key, and a fact table key.
The dimension role key indicates that this dimension role 320
1s part of the “group by” set for cleansing a fact table without
distorting trends 1n the data. The fact dimension cleanse key 1s
the primary key for the fact dimension cleanse table 316. The
fact table key 1s the fact table having its cleansing properties.

Dimension Related Tables

The dimension base 306 1s the metadata 160 describing all
the dimension tables that can be used 1n a given constellation
302. These dimension bases can then be used in multiple
constellations. The dimension base 306 includes the follow-
ing attributes: an aggregate key operator, a cleanse tlag, a
description, a dimension base key, dimension base name, a
dimension base type, and a truncate stage flag. The aggregate
key operator 1s an SQL operator used by the aggregate builder
170 to build aggregates from a dimension. The cleanse tlag
and description act similarly to those attributes in other tables.
The dimension base key 1s the primary key for the dimension
base 306. The dimension base name 1s the name of the base
dimension used in constructing real tables 1n the datamart
150. The dimension base type indicates the type of a dimen-
sion base, either default or special (special includes “date”
and “transaction type,” which are used by the system 100).
The truncate stage flag operates 1n the manner similar to other
1s truncate stage tlags.

US 7,739,224 Bl

13

The dimension column 329 defines the list of dimension
attributes that are valid for a single base dimension 306 and
inherited by a dimension usage. The dimension column 329
includes a cleanse label, a cleanse map key, a cleanse type, a
description, a dimension base key, a dimension column key, a
dimension column name, a dimension column number, a
dimension number key, grouped by field, a physical type, a
primary key, a time navigation field, and a default value. The
cleanse label 1s a label presented to users after this column has
been cleansed. The cleanse map key 1s for use when cleansing,
using value mapping. The cleanse map key indicates the
mapping group to use. The cleanse type 1s the method for
cleansing the dimension column 329. The description is for
documenting the dimension column 329. The dimension base
key 1s the numbered base 1n which the column resides. The
dimension column key 1s the primary key for the dimension
column 329. The dimension column name 1s the physical
name of the column. The dimension column number 1s the
count of the dimension columns (to prevent too many from
being created 1n the datamart 150). The dimension node key
1s the aggregate hierarchy group 1n which the column resides.
The “group by field 1s used for special dimensions to indicate
whether or not this column needs to be “grouped by” during
the processing by the aggregate builder 170. The physical
type 1s a logical database type for this dimension column 329.
The primary key 1s used 1n special dimensions to indicate
whether or not this column 1s the primary key. The time
navigation field 1s for the date special dimension to indicate

whether or not time navigation should use this field. The
default value 1s the default value for the dimension column.

The dimension column number 321 1s a look up table for
the valid number of dimension columns that can be created.
The dimension column number counts the number of dimen-
sion columns to make sure there are not too many being
defined by the consultant.

The dimension role 320 1s a metadata 160 table that
describes all of the dimension tables used 1n a constellation
302. The dimension role 320 includes a constellation key, a
degenerative number, a description, a dimension base key, a
dimension role key, a dimension role name, and a dimension
role number. The constellation key points to the constellation
302 in which the dimension role 320 resides. The degenera-
tive number defines the order of degenerate columns within
fact tables 1n a constellation. The description 1s a documen-
tation field for describing a dimension role. The dimension
base key 1s the dimension base that this dimension role refers
to. The dimension role key 1s the primary key for the dimen-
sion role 320. The dimension role name 1s the name of the
dimension role and 1s used when constructing the foreign
keys 1n the fact tables 1n the datamart 150. The dimension role
number defines the order of the dimension roles within a
constellation. That 1s, a constellation may have multiple
dimension roles and the dimension role number allows for an
ordering of those dimension roles.

The dimension node 326 1s a table used for defining and
grouping hierarchical dimension attributes that are used by
the aggregate builder 170. The dimension node includes a
dimension base key, a dimension note key, a node name, a
node number, and a parent node number. The dimension base
key points to the dimension base being defined. The dimen-
s1ion node key 1s the primary key for the dimension node. The
node name 1s the logical name for the aggregate hierarchy
group being defined. The node number 1s the logical number
for the aggregate hierarchy group being defined. The parent
node number 1s a logical number for the parent of the aggre-
gate hierarchy group being defined.

10

15

20

25

30

35

40

45

50

55

60

65

14

The degenerative number 322 and the dimension role num-
ber are defined as described 1n the dimension role 320.

The dimension base type 328 1s defined as described 1n
relation to the dimension base 306.

Semantic Instance Table

The semantic instance 308 1s a single record that represents
the manner 1n which a fact or dimension table 1s extracted
from staging tables, manmipulated, and then used to populate
the corresponding table 1n the datamart 150. The semantic
instance 308 includes an extraction node key, dimension base
key, a fact table key, a semantic instance key, and a semantic
type key. The extraction node key points to the extraction
node that a particular semantic instance belongs to. The
dimension base key 1s the dimension base table owning this
semantic mstance. The fact table key points to the fact table
owning this semantic mstance. Only one of the dimension
base key and the fact table key 1s filled 1n for a semantic
instance 308 because the semantic instance can only be
applied to one or the other. The semantic mnstance key 1s a
primary key for the semantic instance 308. The semantic type
key 1s the indicator of the type of transformation necessary to
construct this type of semantic instance in the datamart 150.

Aggregate Related Tables

The aggregate builder 170 1s a program that uses the aggre-
gate tables and the schema definitions 161 to build aggre-
gates. Often this will be done on a nightly basis.

The aggregate group 342 defines a set of aggregates to be
built for a constellation. An aggregate group 342 will cause a
combinatorial creation of many aggregate tables 1n the data-
mart 150. The consultant defines for which dimensions aggre-
gates are to be built (e.g., the consultant will define that one,
none, all, etc. columns of a dimension are to be aggregated on
in an aggregate group). The aggregate filtering done by the
query and reporting program 104 will select the most appro-
priate aggregates for a given query.

The aggregate group 342 includes an aggregate group key,
an aggregate group name, a constellation key, a default flag, a
description, and an enabled field. The aggregate group key 1s
the primary key for the aggregate group 342. The aggregate
group name 1s the logical name of this aggregate group. A
constellation key points to the constellation 1n which this
aggregate group resides. The default flag indicates whether or
not this group 1s the default group within a constellation.
Default groups have facts and dimensions automatically
added to them. They can also not be deleted. The description
contains the documentation for this aggregate group. The
enabled field indicates whether or not the aggregate builder
170 will actually build this group.

The aggregate fact table 340 tracks the membership of a
fact within an aggregate group. The aggregate fact table 340
includes an aggregate fact key, an aggregate group key, and a
fact table key. The aggregate fact key 1s the primary key for
the aggregate fact 340. The aggregate group key 1s the aggre-
gate group being defined by the aggregate fact. The fact table
key points to the fact table that 1s being made a member of the
group.

The aggregate dimension 344 indicates the membership of
a dimension within a constellation 1n an aggregate group. The
agoregate dimension 344 includes an aggregate dimension
key, an aggregate dimension type, an aggregate group key, a
dimension role key, and a special dimension base key. The
aggregate dimension key 1s the primary key for the aggregate
dimension 344. The aggregate dimension type indicates the
manner in which this dimension (special or role) will be
included 1n the aggregate group. The aggregate group key
indicates the aggregate group being defined. The dimension

US 7,739,224 Bl

15

role key points to the dimension role being included. It 1s
possible that this key 1s null. The special dimension base key
indicates the special dimension being included. The special
dimension base key can also be null.

The aggregate key operator 392 1s defined as described in
the dimension base 306.

The fact aggregate operator 312 1s a look up table of valid
fact aggregation operations. Each operator1s an SQL operator
used to aggregate a fact column.

A special dimension base 391 provides details about spe-
cial built-in dimensions 1n the system 100. The special dimen-
s1on base mcludes an “always include an aggregate™ field, a
default aggregate dimension type, a dimension base key, a list
order in fact, a physical type of key, an index flag, and a
special dimension base key. The “always include an aggre-
gate” field indicates whether or not this dimension table must
always be included 1n all aggregates. The default aggregate
dimension type 1s the default manner 1n which this dimension
1s included 1n aggregate groups. The dimension base key 1s
the one to one relationship to a dimension base. The list order
in fact 1s the order 1n fact tables that the foreign key to this
table will be listed. The physical type of key 1s the logical
database type that foreign keys 1n the fact tables that point to
this special dimension will be. The index flag 1s used in
indexing. The special dimension base key 1s the primary key
tor the special dimension base 391.

Data Store Related Tables

Thephysical type 330 defines a look up table of logical data
types that are relational database management system
(RDBMS) independent. The physical type 330 1s a logical
data type that works across various source systems storage
types. The physical type 330 includes a database physical
type, a default value, and a special type.

The translation string 332 defines a list of strings that are
translated for different RDBMS’s. The translation string is a
logical string that can be converted to specific strings for
different storage types. Each storage type would correspond
to a different source system 110.

Cleansing Related Tables

The cleanse type 323 1s a look up table to indicate how to
cleanse a dimension column.

The cleanse map 325 1s a mapping table for mapping real
names to cleanse names. The cleanse map 325 includes a
cleanse map key, which 1s the primary key, and a cleanse map
name, which 1s the name of a set of mapping pairs for the
purpose ol scrambling data.

The cleanse map definition 327 defines the details of what
should be mapped to which fields. The cleanse map definition
327 includes cleanse map character 1D, a cleanse integer 1D,
a cleanse map definition key, a cleanse map key, and a cleanse
value. The cleanse character 1D 1s a character value for index-
ing into this mapping group. The cleanse integer ID 1s a
numeric value for indexing into this mapping group. The
cleanse map definition key 1s the primary key for the cleanse
map definition. The cleanse map key 1s the mapping set to
which this particular cleanse map defimition belongs. And the
cleanse map value 1s the translation value after the mapping.

Additional Tables

The metacolumn 334 is a column that occurs by default in
tables 1n the datamart 150. The metacolumn 334 includes an
actual table type, a list order, a metacolumn key, a metacol-
umn name, and a physical type. The actual table type 1ndi-
cates the type of physical table 1n which this special column
should appear. The list order 1s the order this column occurs 1n
tables of the appropriate type. The metacolumn key 1s the

10

15

20

25

30

35

40

45

50

55

60

65

16

primary key. The metacolumn name 1s the physical name of
the column when 1t 1s used. The physical type 1s the logical
data type for this column.

The actual table type 336 1s a look up table for actual table
types. Actual table types can be fact, dimension stage, fact
stage, dimension map, or dimension.

The aggregate group 342, the aggregate fact 340, the aggre-
gate dimension set 372, the dimension column set 370, the
dimension column set definition 374, the fact index 380, the
fact index definition 384, and the fact index number 382 are
for future use and are therefore optional. Each of these tables
provides greater tlexibility when defining the metadata 160,
improves the performance of the system 100, or may other-
wise enhances the system 100.

Top Level Metadata Use

Now that all of the elements in FIG. 3 have been listed and

described, their relationships and workings are now
described.

It 1s important to note that many of the tables 1n FIG. 3 are
actually used 1n providing layers of abstraction to allow for
the reuse of information and non-abstract tables. Therefore, a
consultant will often only deal with only some of the tables 1n
the FIG. 3. For the purposes of describing how the metadata
160 can be used to define a schema for the datamart 150, these
grouping and levels of abstraction tables will be described
where approprate.

Generally, a consultant will create a new datamart 150 by
defining instances of the dimension bases 306, and constel-
lations 302. Each instance corresponds to a row 1n the dimen-
sions bases 306 table or the constellation 302 table. The
constellation instances are defined by defining aggregates,
dimensions, facts, measures, and ticksheets. The following
describes the definition of a schema using the metadata 160.
This corresponds to block 210 of FIG. 2. Beginning with the
facts 1n a constellation, the consultant defines a fact table 304
row that will define the hub table 1n a star schema supported
by the constellation. Again, 1t 1s important to remember that
the fact tables 1n FIG. 3 are for definitional purposes, and are
not the real fact tables 1n the datamart 150. A row 1n the fact
column 310 holds the details of what columns will be created
for place holders of actual values 1n a corresponding fact
table. Thus, for each fact, the consultant defines the various
fact columns.

Once the facts have been defined, the consultant can then
define the dimensions of the constellation.

Remember that the dimension base 306 holds the informa-
tion to define the actual dimensions of the tables in the data-
mart 150. The dimension role 320 allows for the reuse of the
dimension base tables. Thus, different dimension roles can
refer to the same dimension base. This provides an important
feature of some embodiments of the invention where the same
dimension bases can be used 1n multiple constellations or
within the same constellation. The dimension columns 329
define the columns on which queries can be performed 1n the
datamart 150. The dimension node table 326 helps relate the
dimension columns 329. Thus, the consultant will have
defined the basic schema for the datamart 150.

The aggregate group 342 defines how particular facts or
dimensions are to be aggregated by the aggregate builder 170.

These aggregated facts provide much faster queries 1n the
datamart 150.

The cleansing map tables are for scrambling the data 1n the
datamart 150 for presentations to people who want to see the
functionality of the system 100, without having to reveal the
actual data 1in the datamart 150.

US 7,739,224 Bl

17

The special dimensions are the transaction type table and
date values that are included 1n s every fact table. Because this
1s included 1n every fact table, the system 100 can rely on the
existence of the transaction type during the various stages of
datamart 150 creation, modification, querying, and the like.

Thus, the elements of FIG. 3 can be used to allow the
consultant to define the schema definitions 161 for creating
the tables 1n the datamart 150.

Extraction Metadata

The following describes the metadata 160 used in the
extraction process 204. This metadata, represented as extrac-
tion schema 400, 1s shown 1n FIG. 4. The extraction process
focuses around the job and connector tables. In general, these
tables define the various steps 1n extracting the source system
data 1nto the staging tables 130 and performing the desired
semantic conversions on that data.

Extraction Metadata List

FIG. 4 includes the following elements: a job 402, a job
step 404, a system call 405, a connector 406, a connector
timestamp 407, a connector step 408, a connector column
latch (connector_col_latch 409), and an extraction group 411,
an extraction note 410, an SQL statement 420, and error
handling type 413, an external table (external_tbl 422), an
external column 424, the physical type 330, the fact table
(fact_tbl 304), a debug level 415, the semantic mstance 308,
a semantic type 430, a dimension semantic type (dim_seman-
tic_type 432), a fact semantic type 434, the actual table type
(actual_tbl_type 336), a semantic type definition (semantic_
type_det 436), an adaptive template 438, and adaptive tem-
plate block 439, the dimension base (dim_base 306), a job log
401, a connector store role 448, a store role 446, a statement
type enabled 428, a store role allow 444, a data store 440, a
source system 442, a file store 441, and Oracle store 454, a
store version 452, and SQL server store 456, and ODBC store
4358, and a store type 450.

Extraction Metadata Descriptions

Job Related Tables

The job 402 1s a top level object for controlling the work
flow during the extraction and loading process 204. The job
402 1ncludes a check databases field, a check tables field, a
description, a label, an 1nitial load flag, a job key, a job name,
a log file width, a mail to on error, a mail to on success, and a
truncate flag. The check databases field indicates whether or
not an attempt should be made to log into all the data stores
before executing the job. The check tables flag indicates
whether or not to check for the existence of all the tables 1in the
datamart 150 before executing the job. The description 1s for
documenting the job (usually done by the consultant). The
enabled flag indicates whether or not a particular job can be
run. The 1mitial load flag indicates whether or not to 1ignore all
previous time stamped constraints when running a particular
10b. The job key 1s the primary key for the job table 402. The
10b name 1s the internal name of the job. The log file width
indicates how many characters wide to make rows 1n the log
file output. The mail to on error, and the mail to on success
indicate where E-mail messages should be sent after failure or
success of the particular job. The truncate flag indicates
whether or not to truncate any tables when running a job.

The job log 401 1s the location where the running job 1s
logged. That1s, the location of the output that will be provided
to the consultant indicating what occurred during the extrac-
tion (e.g., what errors occurred). The job log 401 includes a
data store key, a job key, ajob log key, and a job storerole. The
data store key indicates the data store having a role defined
within the job. The job key 1s a reference to the particular job,

5

10

15

20

25

30

35

40

45

50

55

60

65

18

the job log key 1s the primary key for the job log 401. The job
store role 1s the role being assigned to that particular job log
401. An example job store role 1s “<working directory>,”
indicating the path to the working director where job log files
are stored.

The job step table 404 includes the detailed steps that make
up a job. This includes connectors and system calls. The job
step table 404 includes the following attributes: a connector
key, a description, an enabled flag, a job key, a job step key, a
list order, a phase, a job step type, and a system call key. The
connector key indicates the connector being included 1n any
particular job step. The connector key can be null. The
description 1s for documenting the job step. The enabled flag
indicates whether or not a particular step 1s enabled. The job
key points to the job being defined by the job step 404. The job
step key 1s the primary key. The list order indicates the order
of a particular job step. The phase also indicates the order of
a particular step. By supporting both list order and phase,
alternative embodiments of the invention can support parallel
extraction. Steps 1n the same phase can then be executed
simultaneously. The job step type indicates the type of the job
step (which are defined in the job step type table 481). The
system call key points to a system call included 1n a particular
10b step. The system call key can be null.

The system call 4035 1s a table including external OS system
calls. These external system calls can be used to perform any
number of external system functions. The system call 4035
includes the system call key, a command string, a description,
a name, and an on-error type. The system call key 1s the
primary key for the system call. The command string 1s the
actual operating system command to be run as a result of the
system call. The description 1s for documenting the system
call. The name 1s the logical name of the system call being
defined. The on error type 1s an indicator to point to what to do
if the system call fails.

Connector Related Tables

The connector 406 defines a name and a description. The
connector 406 1s a grouping mechanism for extraction state-
ments and a specification for input and output data stores. The
description 1s used for documenting the connector. The name
1s the logical name of the connector. The connector 406 rep-
resents an ordered collection of connector steps 408.

The connector step 408 defines steps within a connector.
The connector step table 408 includes the {following
attributes: a connector key, a connector step key, an enabled
flag, an extraction node key, a list order, and a phase. The
connector key points to the connector being defined. The
connector step key 1s the primary key. The enabled flag 1ndi-
cates whether a particular connector step 1s enabled. The
extraction node key points to an extraction node that 1s, the
extraction group of statements and semantics that make up
this connector step. The list order 1s the order of steps 1n the
connector. The phase 1s also the order of the steps in the
connector.

The connector time stamp 407 relates to information about
incremental extraction. An incremental extraction 1s where
increments of the data 1n the source system 110 are extracted.
The connector time stamp includes a connector key, a con-
nector time stamp key, current max date, a current max time
stamp, a last max date, and a last max time stamp. The
connector key points to the connector to which the connector
time stamp applies. The connector time stamp key 1s a pri-
mary key. The current max date 1s an indicator o the proposed
new system date of the last successtul extraction. The current
maximum time stamp 1s the proposed new SQL server time
stamp field for the last successtul extraction. The last maxi-

US 7,739,224 Bl

19

mum date 1s the system date of the last successtul extraction.
The last maximum time stamp 1s the SQL server time stamp
field for the source system databases at the last successiul
extraction.

The connector time stamp 407 1s particularly useful when
only updated data should be pulled from the source systems
110.

The connector column latch 409 defines information about
incremental extraction based on a database column. The
incremental extraction iformation 1s thus kept in the data-
base and can be retrieved. The connector column latch 409
includes the following attributes: a column name, a connector
column latch key, a connector key, a current maximum value,
a last maximum value, and a table name. The table name 1s the
name in the mput data store for the corresponding connector.
The column name 1s the column name within that table. The
connector column latch key 1s the primary key. The connector
key points to the connector to which this latch applies. The
current max value represents the proposed new maximum
value for the incremental extraction. This number 1s pushed
into the last maximum value 11 the currently executing extrac-
tion succeeds. The last maximum value 1s the maximum value
that was extracted during the last run of the extraction.

The connector store role 448 defines the usage of a data
store for a particular connector. It indicates whether the data
store 1s 1nput or output. The connector store role points to the
connector and the data store. The connector store role also
indicates the type of storage usage being defined for this
connector (1nput or output).

Extraction Group Related Tables

The extraction group 411 defines a group of extraction
steps. The extraction group 411 includes a description, and a
name of the set of extraction steps.

The extraction node 410 1s a single node, or step, in the
extraction tree. The extraction tree defines the order of extrac-
tion steps. An extraction node includes an extraction node
type, a debug level, a debug level row, an enabled flag, an
extraction group key, an extraction node key, a list order, and
on error type, a parent extraction node key, and a phase. The
extraction node type defines the type of extraction node (as
defined 1n the extraction node type table 491). This relation-
ship 1s important and allows for the conversion of data 1n the
staging tables for use 1n the datamart 150. The debug level
indicates how to debug a particular step during execution. The
debug level row 1indicates which row to start debugging at for
SQL statements. The enabled flag indicates whether or not to
execute a particular SQL statement associated with the
extraction node. The extraction group key points to, if not
null, the name of the group. The extraction node key 1s a
primary key. The list order and the phase define the order of
the corresponding step within an extraction node’s parent.
The on error type indicates what to do 1f there 1s an error
during the execution of the step associated with the extraction
node. The parent extraction node key points to the parent
extraction node of the present extraction node.

SQL Statement Related Tables

The SQL statement 420 defines a single step 1n an extrac-
tion run. A row 1n the SQL statement 420 table represents an
SQL statement. The columns 1n the SQL statements match
those 1n the corresponding dimension base definition or fact
table definition. In one embodiment the consultant supplies
the SQL source in SQL statements.

The SQL statement 420 includes an extraction node key, a
description, a dimension base key, and execute against input
flag, an external table key, a fact table key, SQL source and
SQL statement key, and an SQL statement name. The extrac-

10

15

20

25

30

35

40

45

50

55

60

65

20

tion node key points to the extraction node associated with a
particular SQL statement 420. The description 1s for docu-
menting the SQL. The dimension base key points to the
dimension base for the corresponding SQL statement. The
execution against input flag indicates whether or not to
execute this SQL statement against the source or destination
data store of the connector that 1s calling this SQL statement.
The external table key points to the external table, if any,
being extracted into. The fact table key points to the fact table,
il any being extracted into. The SQL source 1s the actual SQL
source to be executed during the SQL statement execution.
The SQL statement key 1s the primary key. The SQL state-
ment name 1s the logical name for an extraction SQL state-
ment.

The statement type enabled 428 defines which RDBMS
types use this extraction statement. The statement type
cnabled 428 includes the following attributes. An SQL state-
ment key, a statement type enabled key, a store role name, and
a store type. The SQL statement key points to the SQL state-
ment. The statement type enabled key 1s the primary key. The
store role name 1s the role name for which this SQL statement
should be used. The store type 1s the store type for which this
statement should be executed.

The external table 422 defines the user defined destination
table for use during a multiphase extraction. This user defined
destination table can be used to temporarily store data during
an extraction. The external table 422 defines the physical
name of the external table and whether or not to truncate this
external table on the next job run.

The external column 424 defines a column 1n a user defined
extraction table. The external column 424 includes the
attributes for documenting a particular external column, and
the column name 1n the external table. A pointer to the exter-
nal table, a list order of appearance 1n the external table, and
a physical type of the logical database for this column are
included 1n the external column 424.

Error Handling

The error handling type 413 1s a look up table to define how
to respond to a particular error. An error handling type can be
a default action to take when an error occurs.

The debug level 4135 defines ways 1n which extraction steps
can be debugged. The debug level includes a logical name for
users to pick a debugging behavior. The default level also
includes a default flag.

Data Semantic Related Tables

The semantic type 430 defines a set of predetermined
semantic types for use in defining a schema. The semantic
type includes a logical name for a particular transformation.
Associated with the semantic type are a dimension semantic
type 432 and a fact semantic type 434. The dimension seman-
tic type table 432 defines the ways 1n which dimension data in
the staging tables 130 can be extracted and put 1nto the data-
mart 150. Sitmilarly, the fact semantic type defines the ways in
which the information in the staging tables 130 can be put into
the fact tables of the datamart 150. Both the fact semantic type
434 and the dimension semantic type 432 include pointers to
an actual table type and are used to subset the full list of
semantic types.

Each semantic type 430 1s made up of a semantic type
definition. The semantic type definition table 436 defines the
set ol adaptive templates used 1n any given semantic type. The
semantic type definition 436 includes the semantic type key
that points to the semantic type 430 for a particular semantic
type defimition. The semantic type definition also points to the
adaptive template 438 used. The semantic type definition also
includes a list order for the ordering of the adaptive templates.

US 7,739,224 Bl

21

The adaptive template 438 1s a semantic transformation
template (e.g., an SQL program) that 1s used 1n the extraction
of the data 1n the staging tables 130 to turn all source data into
transactional data. The adaptive template 438 includes
attributes 1indicating a logical name for an adaptive program
used within semantic transformations.

The adaptive template block 439 defines the individual
pseudo-SQL statements that make up a template. The adap-
tive template block 439 has the following attributes: the adap-
tive template block key, an adaptive template key, a block
name, a list order, an on error type, and SQL source. The
adaptive template block key 1s the primary key. The adaptive
template points to the adaptive template to which this block
belongs. The block name 1s the internal logical name for this
block of pseudo-SQL source code. The list order 1s the order
of this block within the template. The on error type indicates
what to do 11 this block causes an SQL error when executed.
The SQL source includes a template of pseudo SQL source
code. This template 1s described 1n greater detail below.

Data Store Related Tables

The store type 450 defines the types of RDBMS’s sup-
ported by the system 100. The data store 440 defines a logical
data source, or sink, used during the extraction. The data store
440 1includes the following attributes: the data store key, a data
store flag, a description, a name, a source system key, and a
store type. The data store key 1s the primary key. The datamart
flag indicates whether or not this data store 1s the special
datamart store. Since the datamart 150 and the metadata 160
can reside in the same database or different, the data mark
helps resolve the location of the datamart 150. The descrip-
tion 1s for documentation of the particular data store. The
name 1s the logical name of the data store. The source system
key points to the source system 1dentifier to which this data
store belongs. This allows live, and backup, source systems to
share the same 1dentifier. The store type indicates the store
type of this data store.

The source system 442 1s a logical identifier for a source
system 110 from which data can be pulled. This allows two
physical databases to act as one master database and one
backup, for example. The source system 442 includes a
description attribute, a source system key and a source system
name. The description 1s for documentation to describe the
source system. The source system key 1s a primary key for this
table. This number also becomes 1dentified source system
field 1n the staging tables 130 being filled. The source system
names 1s a logical name for a source system 110 from which
the system 100 1s pulling data.

The following store tables are subtypes of the data store
table 440. They address specific data stores.

The file store table 441 defines the files 1in which data can be

stored. The file store 441 defines a directory and file name for
cach file.

The Oracle store 454 defines information about particular
Oracle databases. The Oracle store 454 includes the follow-
ing attributes: a data store key, an instance name, an Oracle
store key, a password, an SQL network name, a user name,
and a version. The data store key 1s a one to one relationship
key to the data store being defined. The Oracle store key 1s the
primary key. The password and user name are used to access
a specific Oracle system. The version number 1s the Oracle
vendor version number. The SQL network name 1s the SQL
net instance name. The store version 1s a version of the store
type (the database vendor’s version for example) that the
system recognizes. The store version has a pointer to the store
type being defined and also includes a version number
attribute.

10

15

20

25

30

35

40

45

50

55

60

65

22

The SQL server store table 456 defines details about an
SQL server system. The SQL server store includes the fol-
lowing attributes: a data store key, a database name, a pass-
word, a server, an SQL server store key, a user name, and a
version. The data store key 1s a one to one relationship to a
data store entry. The database name 1s an SQL server database
name ($SDEFAULT means the database in which this role
resides). The password i1s the SQL server password. $$
DEFAULT again means the password currently logged into to
read this data. The server 1s the SQL server name. The SQL
server store key 1s the primary key. The user name 1s the SQL
server user name. The version 1s the vendor’s version number
of this SQL server. $$DEFAULT means use the default value
for the current database being used. For example, the database
name means the database in which this role resides.

Extraction Metadata Use

The following describes the tables of FIG. 4 1n the context
ol the extraction process 204. The job, the job step, and the
connector, group extraction steps for extracting information
from the source systems 110 and cause that information to be
placed 1n the datamart 150. This organization allows for a
very tlexible extraction process. For example, where a two
phase extraction 1s required, one connector could be used to
extract the information from the source system 110, while a
second connector could then be used to take this extracted
data from an external table.

The job defines the order of the execution of the connec-
tors. The job also allows for the runming of an external pro-
gram, such as system call, between connector executions.
Thus, each job step 1na job can be a system call or a connector.

The following 1s an example i1llustrating the orgamization of
a job. Assume that a consultant wants to extract information
from a source system that provides a raw set of home
addresses. A system call could be run as part of a job step. The
system call would determine the zip codes associated with
those addresses. The zip codes could then be included 1n the
datamart 150.

The relationship between the connector 406, the connector
step 408, and the extraction node 410 1s that the connector 406
allows for the reuse of extraction nodes 1n multiple connec-
tors (through the connector step). This relationship 1s particu-
larly 1mportant where similar connectors are created. For
example, assume that a consultant wants to create a connector
that runs some steps Monday through Friday and different
steps on Saturday and Sunday. Most of the steps in the con-
nector will be common, however some will be different.
Through the use of the connector step, the consultant can
reuse many of these connector steps in each connector.

As noted before an extraction node can be a leaf or a
grouping mechanism for extraction. It can correspond to an
SQL statement extraction step or a semantic conversion step.
During the definition of the schema, the consultant defines the
specific SQL statements for extraction and the specific
semantic 1instances for the facts and dimensions.

An SQL statement 1s a single step 1n an extraction run that
represents a data push or a data pull. The SQL source code
dictates the action for a given extraction node. After the SQL
statements are run, the staging tables 130 are ready. The
semantic conversion of the data 1n the staging tables 130 can
OCCUL.

The semantic instance represents the use of a single generic
template on one fact or dimension table. The semantic type
associated with the semantic instance 1s one of a number of
pre-defined recognized data meanings within the system 100
(e.g., an “order”). The semantic types correspond to programs
for converting the data in the staging tables 130 1nto data for

US 7,739,224 Bl

23

use in the datamart 150. An example of a semantic type 1s a
“slowly changing dimension” type.

The semantics types, as mention previously, are made up of
a series of templates. These templates include tokens that can
be replaced with information from the corresponding dimen-
s1on base or fact table. An example of an adaptive template 1s
one that would be used 1n re-indexing of a fact table. This
could be used as the last step 1n the semantic transformation of
facts. The re-indexing will help speed the operation of the
datamart 150. Importantly, this same 1indexing 1s performed
for each fact table. No matter which semantic type 1s chosen
for a given fact table, the same indexing 1s performed. Thus,
this adaptive template can be used in each semantic type
through 1ts semantic type definition.

The following describes the slowly changing dimension
semantic type. (See Appendix A.) In this semantic type are an
isert dimension and an index dimension adaptive template.
Each adaptive template has a corresponding set of pseudo-
SQL statements. During the semantic template conversion
140 this pseudo-SQL will be transformed into real SQL
source code. This 1s done by converting the pseudo-SQL
tokens 1nto actual dimension column names, etc. (the column

names and table names are derived from the schema defini-
tions 161).

Thus, during the extraction, the extraction node associated
with a particular semantic type instance 1s processed. This
causes the adaptive template blocks associated with the
semantic mstance to be processed. The dimension informa-
tion associated with that semantic instance, or 1s the fact table
information associated with the semantic instances, can then
be used to replace the tokens with the specific information
associated with that dimension or that fact.

Some embodiments of the imvention correspond to only
one or more semantic templates and a computer readable
media, a computer, an electromagnetic wavetorm, or the like.

Further Discussion of Templates

The following describes the pre-parsed template and the
post-parsed results 1n greater detail. Each token begins with a
3. In the example template, for the slowly changing dimen-

sion semantic type, a number of tokens begin with $$ DIM
KEY. Similarly, tokens appear that begin with SFSTGTBL]
|. In the post-parsed template, the dimension key tokens have
been changed to cost center keys, account key, subaccount
keys, etc. Note any tokens, and their surrounding text, that are
not replaced are removed from the post-parsed text. If more
tokens need to be replaced then are available 1n the template,
then an error flag will be set. In other embodiments of the
invention, the templates are dynamically generated according
to the number of columns defined in the schema definitions
161. In other embodiments, templates are not used but the
“post-parsed SQL” results are dynamically generated from
the schema definitions 161 and the semantic instance types.

In this example, the net price corresponds to a fact column
in a fact table. This indicates that the table entitled SSA 1n the
post-parsed example imncludes one fact called net price.

In some embodiments, the pre-parsed templates include
additional tokens to deal with specific data stores. For
example, the “select into” statement 1s a token 1n the pre-
parsed version. This compensates for whether the data store 1s
in Oracle database or an SQL server.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

Another feature of the pre-parsed language 1s that “—#be-
gin#’ 1s used to break the pre-parsed version into adaptive
template blocks.

EXAMPLES

Appendix A illustrates semantic types that may be sup-
ported and their corresponding adaptive template names. For
example, the Pipelined semantic type 1s made up of, in this
order, the map_keys the pipe_state and the index fact adaptive
templates. The example pre-parsed and post parsed SQL
adaptive templates are then provided.

As mentioned previously, the use of the semantic types
significantly reduces the amount of work needed to 1mple-
ment the datamart 150. By selecting a semantic type for a
particular fact table or dimension table, the consultant auto-
matically selects the corresponding pre-parsed SQL adaptive
templates. The selected adaptive templates are then automati-
cally converted into post-parsed SQL statements that include
the schema specific information for the datamart 150. Addi-
tionally, these post-parsed SQL statements include the SQL
for converting the data 1n the staging tables 130 into data that
can be used 1n the datamart 150 tables.

Additional Templates

Two types of templates not described in Appendix A are
“team” templates and “denormalized” templates.

The team template 1s used to properly populate an “asso-
ciative” dimension table. Such a table 1s used whenever there
1s a one-to-many relationship between an individual fact row
and a dimension. For example, 1f multiple salespeople can
split the credit for an order, one needs some way to represent
this situation in the datamart. In a star schema, one normally
associates a tuple of dimension values with a fact row (e.g.
product, customer, salesrep dimensions for the fact row con-
taining price, quantity etc.). Since there 1s only a single sales-
rep_key, one could normally have only one salesrep associ-
ated with this transaction. There are two solutions. One 1s to
introduce multiple fact rows for a transaction involving one to
many relationships. I there were three salesreps on a specific
order, there would be three fact rows for this order stored in
the database. This has the disadvantage of multiplying the
data size by a factor of three and slows queries. Also queries
that are concerned with the total number of transactions
become more difficult to process since duplicate rows, due to
the multiplication by the number of salesreps, must be elimi-
nated.

Another solution i1s to introduce an associative table
between the actual salesrep dimension table and the fact table.
Conceptually, the associative table contains “teams™ of sales-
people. If salesreps A, B and C often sell products together,
they will be associated with a unique team key. The team key
will be stored 1n each fact row for orders sold by the A, B, C
team. The associative table will associate the team key with
the three rows for A, B and C in the salesrep table. The
associative table will have 3 rows representing this team
(A-key, team1-key), (B-key, team1-key) and (C-key, team1-
key). If the team of A, B, D and Q also sold products together,
the associative table would have four additional rows (A-key,
team2-key), (B-key, team2-key), (D-key, team2-key),
(Q-key, team2-key). The team template scans the staging
table used to load the fact table and generates the appropriate

rows for entry mto the associative table, only for those teams
THAT ACTUALLY OCCUR 1n the fact rows being loaded.

Also, i a team 1s already present 1n the associative table 1t
will be reused.

US 7,739,224 Bl

25

In real world situations, the number of teams that actually
occur 1s much smaller than the total space of all possible
teams.

Note that this team template can be used wherever there 1s
a one to many relationship between fact and dimension rows.

Another example 1s 1n a Sales Force Automation system
where the fact rows correspond to a sales “opportunity™.

An opportunity may be associated with the dimensions of
Sales Lead Source, Product and Customer Contact. All of
these may be one to many relations, amenable to the “team”™
concept.

As mentioned above, the other type of template 1s the
denormalized data template. This 1s a variant of the “Team”
template where instead of introducing the extra associative
table between the dimension and fact tables, the dimension
table 1s a combination of the associative table and the actual
dimension table. This effectively flattens the data. In the
above example the dimension table would contain rows like
(“Greg Walsh™, A-key, team 1-key), (“Craig”, B-key, team1 -
key), (“Ben”, C-key” team1-key), (*“Greg Walsh”, A-key”,
team2-key) etc. Greg Walsh 1s a member of both teams 1 and
2 and his name (and other attributes) rather than just his key
(A-key) 1s stored twice. Used judiciously this can result 1n
faster queries than the associative table case but results 1n
duplicate data being stored.

The population of both the denormalized team dimension
and the associative table are difficult to code properly. This 1s
especially true if this 1s done incrementally (e.g., on nightly
extracts) and if you want to be independent of team order (e.g.
A, B, C) 1s the same as (A, C, B). Thus, allowing the consult-
ant to simply select this data semantic provides a significant
improvement over previous systems.

Runtime Metadata

FIG. 5 illustrates the schema for the runtime environment
within the system 100. The runtime schema 500 represents
the schema description for the schema of the running data-
mart 150. That 1s, when the datamart 150 1s created or modi-
fied, the schema definition 1s propagated into the runtime
schema 500. Thus, the runtime schema 500 allows for the
datamart 150 to be changed without having to rebuild all the
tables and repopulate all of those tables. Additionally, the
runtime schema 500 provides the support for aggregate navi-
gation. Aggregate navigation involves determining which
aggregate to use 1n response to a query. Schema modification
and S aggregate navigation will now be explained in greater
detail.

The schema modification involves comparing the changed
schema definition with the present schema definition. As will
be seen below, an actual table 502 keeps track of all of the
dimension tables and the fact tables in the datamart 150.
When a change 1s made to the schema definition, a compari-
son 1s made between the old definition and the new definition.
The difference between these definitions defines the set of
tables, columns, and rows that need to be added, deleted or
modified, 1n some way. Importantly, the modifications can
often be made without losing any data 1n the datamart 150.

The aggregate navigation process determines which aggre-
gate most closely suits a particular query. The runtime meta-
data 160 keeps track of the aggregates available in the data-
mart 150. The query and reporting program 104 initiates a
view ol the runtime schema 500 (in particular, the tables
holding the aggregate tables definitions). The view results
indicate which aggregates are available to answer the particu-
lar query. The view results are further examined to determine
the best aggregate to use (the one that most closely corre-
sponds to the query).

10

15

20

25

30

35

40

45

50

55

60

65

26

Importantly, the query machinery does not need to be
aware ol aggregates to be able to take advantage of them.
Aggregates are simply presented to the query machinery as a
solution to a, query.

Additionally, aggregates can use other aggregates to build
themselves. This 1s because the schema definition can be used
to determine the relationship between aggregates.

Runtime Metadata List

The runtime schema 500 includes the following elements:
an actual table (actual tbl 502), an actual column (actual_col
504), a fact aggregate table (fact_agg 512), a fact aggregate
dimension (fact_agg dim 514), a dimension base aggregate
(dim_base_agg 3516), a dimension base aggregate column
dim_base _agg col 518), a datamart letter 510, the dimension
base (dim_base 306), the fact table (fact_tbl 304), the external
table (external_tbl 442), an actual column (actual col 504), a
physical type defimition (physical_type_detf 530), an actual
table type (actual tbl_type 336), an actual column type (actu-
al_col_type 3540), the physical type 330, a database physical
type 595, the translation string 332, a translation actual 539, a
store type 4350, a date (Date 0)_560, a business process (bus_
process 570), an adaptive template profile 580, and a trans-
action type (transtype_0) 590.

Runtime Metadata Descriptions

The actual table 502 corresponds to metadata 160 that
describe which dimension base and fact tables “actually™
exist 1n the datamart 150.

The actual table 502 includes the following attributes: an
actual table key, an actual table IS name, an actual table type,
a dimension base key, an external table key, a fact table key, an
index flag, a mirror flag, and a logical table name. The pri-
mary key 1s the actual table key. The actual table name cor-
responds to the physical name of this table 1n the database
implementing the datamart 150. The actual table type 1s the
logical type of thus physical table. For example, 11 this 1s a
dimension staging table or a fact staging table. The dimension
base key points to the dimension base table defimition that
defined the corresponding physical table. The external table
key points to the external table definition that defined the
physical table. The fact table key points to the fact table
definition that defined the corresponding physical table. The
index tlag and the mirror flag are used 1n mndexing and mir-
roring, respectively. The logical table name defines the logi-
cal name for this table.

The actual column 504 1s metadata describing a physical
column 1n a physical table 1n the datamart 150. The actual
column table latches this definition information when the
physical tables are built 1n the datamart 150. The actual col-
umn 3504 includes the following attributes: the actual column
key, an actual column name, an actual column type, an actual
table key, a dimension role name, a foreign table key, a group
by field, a hierarchy, a list order, a parent hierarchy, a physical
type, a primary key, and a time navigation field. The actual
column name 1s the name of the physical column 1n the
physical table 1n the datamart 150. The actual column type 1s
the logical type of the column. The actual table key points to
the actual table 1n which the actual column lives. The dimen-
s1on role name 1s the logical role name of the dimension in the
fact table for dimension foreign keys inside of a fact table. The
foreign table key points to the actual dimension base tables 1n
the actual tables 502 (the foreign table key 1s applicable to fact
actual columns that are foreign keys to dimensions). The
group by field, for dimension table, 1s true when this column
should be 1included 1n an aggregate builder group. The hier-
archy for dimension, for dimension columns, indicates that
aggregate builder group to which this column belongs. The

US 7,739,224 Bl

27

list order 1s the order of the column 1n the actual table 502. The
parent hierarchy, for dimension columns, indicates the parent
aggregate builder group to which this column belongs. The
physical type 1s a logical data type of the column. The primary
key, for dimension tables, 1s true when this column 1s the
primary key of the actual table 502. The time navigation field,
for the database dimension, 1s true 11 this field can be used by
the time navigator. The fact aggregate table 512 includes a list
of fact aggregates in the datamart 150. The fact aggregates
includes attributes that point to the actual fact table 1n which
this aggregate belongs.

The fact aggregate table 512 indicates which numbered
aggregate represents the fact table in question, the number of
rows 1n this aggregate, a datamart letter, and an enabled flag.
The datamart letter indicates the mirrored datamart to which
this fact aggregate belongs. Mirror 1s used to ensure that
partially completed extractions from the source systems 110
do not cause the database to become 1nconsistent. The fact
aggregate dimension 514 lists which aggregates contain
which dimensions. The fact aggregate dimension includes the
tollowing attributes: an actual dimension role key, a dimen-
s10n base aggregate key, a fact aggregate dimension key, and
the fact aggregate key. The actual dimension role key 1s the
dimension foreign key in this fact aggregate that 1s being
defined. The dimension base aggregate key 1s the dimension
agoregate that this fact aggregate points to for this foreign key.
The fact aggregate dimension key 1s the primary key. The fact
aggregate key points to the fact aggregate being defined.

The dimension base aggregate table 516 lists all the dimen-
sion aggregates 1n the datamart. The dimension base aggre-
gate includes the following attributes: an actual table key, an
aggregate number, an aggregate size, a datamart letter, a
dimension base aggregate key, and an enable flag. The actual
table key points to the physical header for this dimension
base. The aggregate number, for the dimension table 1n ques-
tion, 1s the number of this particular aggregate. The aggregate
s1ze 1s the number of rows in the aggregate. The datamart
letter indicates which mirrored database this aggregate lives
in. The dimension base aggregate key 1s the primary key. The
enable flag indicates whether or not the aggregate navigator
should work with this aggregate.

The dimension base aggregate column 518 1s a list of
columns 1n a given dimensions aggregate. The dimension
base aggregate column includes attributes which point to
which column 1s included in this dimension aggregate, and a
pointer to a dimension aggregate being defined.

The datamart letter 510 indicates which of two mirrored
datamarts a particular aggregate belongs to. This 1s an
optional element which may not be required 1f mirroring does
not occur 1n the datamart 150. Mirroring duplicates the tables
in the datamart 150. Changes can then be made to one copy of
the datamart 150, while the other datamart 150 continues
running. These changes can then be propagated when pos-

sible.

The actual column type 340 15 a logical description of the
role a column plays in the system 100. The actual column type
540 includes attributes that define the default value to be used

in a database for a column of this type.

The physical type definition 530 defines which physical
types are allowed for which table types. The physical type
definition 530 includes attributes which point to an actual
table type. The actual table type 1s a logical type of a physical
table (for example, dimension, fact etc.) being defined. The
physical type definition also includes an attribute that 1ndi-
cates whether to select this item by default when giving the
consultant or user a choice.

10

15

20

25

30

35

40

45

50

55

60

65

28

The database physical type 595 defines the name of the
physical database.

The translation actual table 539 defines the actual values of
translations strings for a single relational database manage-
ment system. These translations strings are the real strings to
use for a given translation string within a store type. The
translation actual table 539 also includes attributes that point
to the store type.

FIG. § also 1llustrates additional tables used 1n the system
100.

The date table 560 1s used to track date information 1n the
datamart 150. Importantly, times and dates are always treated
corrected 1n the datamart 150. This can be guaranteed because
the consultant cannot change the definition of dates in the
datamart 150. Thus, for example, the month of September
will always have 30 days, and leap years will be handled
correctly.

The transaction type table 590 1s a list of the available
transaction types within the system 100.

The adaptive template profile 580 1s used as a communi-
cations mechanism for templates. The adaptive template pro-
file 580 includes a number of rows being communicated back
to the calling program. The adaptive template profile 380 also
indicates the logical name for information being communi-
cated back from an adaptive template to the calling program.

The business process table 370 1s a look up table for sup-
ported business process types during the extraction. The busi-
ness process 370 includes a business process key and a pro-
cess name. The process name corresponds to a logical name
for a business process to which fact staging table belongs. The
process key identifies a business process record in a fact
staging table.

Time Navigation

An 1mportant feature of some embodiments of the mven-
tion 1s the ability to compactly store and rapidly query “his-
torical” backlog/balance/inventory quantities. By historical
we mean the amount of backlog or inventory as 1t existed at a
given point 1n time—not necessarily today. Note that back-
log/balance/inventory quantities are diflerent than transac-
tional quantities. For example, your bank balance at the end of
Q1 1997 1s not the sum of your bank balances at the end of
January, February and March. It 1s computed by adding all of
the deposit transactions and subtracting all the withdrawals
from the balance at the end of Q4 1996. One could compute
balances by this method when a user queries the system but
because this method requires rolling forward all of the appro-
priate transactions “from the beginning of time,” the queries
will likely be slow.

The traditional solution in datamarts 1s to store periodic
“snapshots™ of the balance. The snapshots are often stored at
daily intervals for the recent historical past, and at greater
intervals (e.g. weekly or monthly) for less recent history. This
approach has two big disadvantages. The first 1s an enormous
multiplication of data volume. If, for example, you are keep-
ing track of inventory 1n a store you must store a snapshot for
cach product you hold 1n inventory for each day, even 1f you
only sell a small fraction of all of your products on a given
day. If you sell 10,000 different products but you only have
500 transactions a day, the “snapshot™ datamart 1s times larger
than the transactional datamart. The second disadvantage
relates to the most common solution for alleviating the first
problem, namely storing snapshots at less frequent intervals
for less recent history. This results 1n” the inability to compare
levels of inventory in corresponding time periods since the
same level of detail 1s not present 1n earlier data. For example,
in manufacturing companies it 1s often the case that much

US 7,739,224 Bl

29

business 1s done near the end of fiscal quarters. If one wants to
compare mventory levels between Q1 1995, Q1 1996 and Q1
1997, and focus on the most important changes which occur
near quarter end, one cannot use the s approach of storing the
snapshots at coarser levels of detail since daily data would be
required.

In some embodiments of the system, the aggregate tables
are used to answer queries about backlog/balance/inventory
quantities. In order to answer such queries, the previously
described rolling forward from the beginning of time 1s done.
However, this 1s performed efficiently through the accessing
of the appropriate time aggregates. For example, assume the
datamart 150 has five years of historical transaction data
beginning 1n 1993. Assume that one desires the inventory of
some specified products on May 10, 1996. This would be
computed by querving all of the transactions 1n the 1993,
1994 and 19935 year aggregates, the 1996 Q1 quarter aggre-
gate, the April 1996 month aggregate, the May 1996 week 1
aggregate and finally 3 days of actual May, 1996 daily trans-
actions. These transactions (additions and subtractions from
inventory) would be added to the known starting inventory 1n
order to produce the mnventory on May 10. Note that this time
navigation “hops” by successively smaller time intervals
(vear, quarter, month, week, day) in order to minimize the
number of database accesses. What 1s important 1s the exploi-
tation of aggregate tables that already exist in the system in
order to answer transactional queries rapidly (e.g. What were
the total sales of product X 1n April 19967). This avoids the
need to build what 1s essentially a second data datamart with
the balance/imnventory/backlog snapshots.

Query Mechanism Metadata

The following describes the metadata 160 used 1n the
query/reporting program 104. This metadata 1s shown i FIG.
6. Generally, the query mechanism metadata can be broken
into ticksheet metadata, measurement metadata, filtering
metadata and display options metadata. The ticksheet meta-
data defines the user interface objects for user interaction with
the datamart 150. The ticksheet defines how users can imitiate
queries and how results are presented back to the user. The
measurement metadata defines a logical business calculation
that can be presented to a user. Typically, the measurement
metadata defines a format for presenting information to user
that 1s more easily understood by the user or provides a more
valuable result to the user. The filtering metadata defines how
a user can filter results. Filtering allows the results set to be
limited to particular dimension values. The display options
metadata defines display options that can be provided to the
user.

The following describes some important features of the
user interface. The user interface allows the user to drill down
through data. Also, portions of the query forms can be
dynamic based upon values 1n fields (e.g., a list box can be
dynamically updated because it 1s tied to a field 1n the data-
mart 150, that when changed, cause the values 1n the list box
to change). Also, a query 1s guaranteed to be consistent with
the schema because the query 1s tied to the schema defimition.

Query Mechanism Schema List

FIG. 6 includes the following elements: the constellation
302, a ticksheet 602, a data set 606, a ticksheet column (tick-
sheet_col 608), a tip 601, an attribute role 603, an attribute
610, a ticksheet attribute 605, a ticksheet type 604, a measure
620, a measure term 630, a measure unit 624, a term operator
632, a transaction type 590, an RPN operator 636, the fact
column (fact_col 310), the fact table (fact tbl 304), a backlog
type 638, a measure mapping 622, a ticksheet column ele-
ment (ticksheet_col_element 612), a dictionary 640, a filter

10

15

20

25

30

35

40

45

50

55

60

65

30

block 650, a filter block type 652, a filter group 654, a filter
clement 656, a ticksheet type options 660, an option location
662, an option value 664, an option name 666, an option
display type 668, an application type 691, the dimension role
(dim_role 320), the dimension column (dim_col 329), and the
dimension base (dim_base 306).

Query Mechanism Schema Metadata Descriptions

Ticksheets Metadata

Under the constellation 302, the ticksheet i1s a top level
object for defining the user interface objects for user interac-
tion. The ticksheet 602 table includes a data set key, a name,
a ticksheet type, a constellation key, a label, label detail, a list
order, a cleanse flag, and a description. The cleanse flag
indicates whether or not to cleanse the filter data on this
ticksheet. The constellation flag indicates the constellation in
which the dimensions and measures for this ticksheet reside.
The data set key indicates the page in which the end user
makes report selections. The data set key represents a logical
grouping ol similar ticksheets. The description 1s for docu-
mentation purposes. The label is the string for the name of the
ticksheet. The list order indicates the ticksheet list order. The
name 1s the hidden name of the ticksheet. The ticksheet
includes a primary key. The label detail allows for more
verbose documentation. The ticksheet type indicates the type
of application that interprets the selections made on this tick-
sheet.

The data set table 606 1s a grouping mechanism for tick-
sheets 1nto sets that describe their contents. The data set table
606 includes the following columns: a data set key, a data set
name, S a label, a description, and a list order. The data set
name 1s a logical name for top level user definition of like
ticksheets across ticksheet types. The description 1s the
description of the data set.

The ticksheet column 608 defines a single column for
displaying measure choices on a ticksheet. The ticksheet col-
umn table 608 includes the ticksheet column key, the list
order, the ticksheet key, and the description. These columns
and the ticksheet column table 608 operate 1n a manner simi-
lar to such columns 1n other tables 1n this metadata.

The ticksheet column element 612 1s a single value within
a measure display column on a ticksheet. The ticksheet col-
umn element 612 includes an abbreviation, a description, a
dictionary key, a label, a list order, a name, a ticksheet column
clement key, and a ticksheet column key. The ticksheet col-
umn element key 1s the primary key for this table. The tick-
sheet column key points to the ticksheet column 608 entry.
The name 1s the hidden name for the column element. The
abbreviation 1s the shortened name for the user display. The
dlctlonary key 1s the key for help text entry for this element. It
1s a key into the dictionary 640. The other columns act 1n a
manner similar to columns 1n other tables of similar names.

The tip table 601 includes a ticksheet key, a name, a
description, and a list order. The tip 1s a definition of user tips
for using a particular ticksheet.

The attribute table 610 defines the dimension attribute
choices within a ticksheet. These choices are tied to a single
dimension column in the schema defimition of the datamart
150. The attribute table 610 includes an abbreviation, an
attribute key, a dictionary key, a dimension column key, a
dimension role key, a hyperlink, a label, a list order, a name,
and a ticksheet key.

The abbreviation 1s the shortened user string for the
attribute. The attribute key 1s the primary key for this attribute.
The dictionary key 1s a pointer to the dictionary 640 that
includes help message for a particular attribute. The dimen-
sion column key i1s the dimension column in which this

US 7,739,224 Bl

31

attribute refers. For degenerate dimensions this reference 1s
null. The dimension usage, within a constellation, 1s defined
by the dimension role key. The hyperlink 1s an html text for
navigating return values for this attribute to other web sites,
such as a company name look-ups etc. The label 1s what the
user sees for a particular attribute. The list order defines a sort
order on pop-up menus where one 1s the topmost 1in the list.
The name 1s the mternal name for the attribute. The ticksheet
key indicates the ticksheet to which this attribute belongs.

The attribute role 603 table 1s a lookup table list of valid
roles for attributes within a ticksheet type. The attribute role
includes the attribute role key and the ticksheet type.

The ticksheet attribute 605 i1ndicates the roles played by
dimension attributes within a ticksheet. The ticksheet
attribute 605 includes the attribute key, an attribute role, a
ticksheet attribute key, and a ticksheet key. The attribute key
indicates the attribute 1n the attribute table 610 which has a
role define on the ticksheet. The attribute role 1s the role being,
granted. The ticksheet attribute key 1s the primary key. The
ticksheet key 1s the ticksheet being defined.

The application type 691 1s the top level grouping for
ticksheet types.

The ticksheet type table 604 lists the applicable applica-
tions that can use ticksheets. Examples may be simple report-
ing applications or relevancy applications or trend type of
applications. The ticksheet type 604 includes the application
type, a ticksheet type, a template, and a ticksheet type name.
The application type 1s the definition of the high level appli-
cation 1 which a particular ticksheet type resides. The tick-
sheet type 1s the logical name for a program that interprets
ticksheets. The template 1s the template for the ticksheet. The
ticksheet type name 1s the name displayed for a particular
ticksheet type.

Measurement Metadata

The following describes the measures used in the query
mechanism schema 600. The measure table 620 defines a top
level object for a logical business calculation. The measure
table 620 includes a constellation key, a description, a mea-
sure key, a measure unit, and a name. The constellation key
points to the constellation 1n which the measure resides. The
description 1s for documentation purposes. The measure key
1s the primary key for the measure table 620. The measure unit
1s an indicator of the manner in which numbers are to be
displayed. The name 1s the logical name of the measure.

The measure unit table 624 1s a lookup table of the valid list
of measure unit types. An example of such unit types is
currency.

The measure term table 630 indicates a single component
ol a measure. The measure term can be combined arithmeti-
cally to construct a measure. The measure term table 630
includes a backlog type, a fact column key, a fact table key, a
list order, a measure key, a measure term key, an RPN opera-
tor, a term operator, and a transaction type key. The backlog
type indicates the type of backlog operation to use for a
particular term (e.g., “beginming of period” and “end of
period”). This can possibly be none. The backlog types are
defined 1n the backlog type table 638. The fact column key
points to the particular numeric column to operate on 1n the
fact table. The fact table key indicates the fact table being
operated on. The list order 1s the order of this term in the
measure 620. The measure key 1s the measure being defined.
The measure term key 1s the primary key for this table. The
RPN operator 1s for the measure terms that perform arith-
metic operations on other terms. (The RPN operator table lists
the valid arithmetic operations to use when constructing a
measure.) The term operator 1s an SQL operator to use on a set

10

15

20

25

30

35

40

45

50

55

60

65

32

of fact rows. (The term operator table 632 indicates the valid
set of SQL operators to use on a measure term.) The transac-
tion type 1s the transaction type values to filter on for the fact
in question.

The relation between measures and ticksheets 1s handled
through the measure mapping table 622. The measure map-
ping table 622 includes the measure key, the ticksheet key,
and the combination ID. The measure key points to the par-
ticular measure that 1s related to the particular ticksheet. The
combination ID identifies a set of ticksheet column elements
being defined.

Filtering Metadata

Filtering allows results to be limited to only particular
dimension values. For example, a user may want to limait the
results to particular customer names.

The following describes the filtering tables. The filter block
650 1s a top level grouping table for filter area within a
ticksheet. The filter block 650 1s tied to a particular dimension
column in the schema definition. The filter block 650 includes
columns, a description, a dictionary key, a dimension column
key, a dimension role key, a filter block key, a filter block type,
a label, a list order, a name, a plural, a mapping flag, and a
ticksheet key. The columns field indicates the number of
columns 1n this filter block. The description 1s for documen-
tation. The dictionary key points to the help dictionary. The
dimension column key points to the actual column name and
the datamart to be filtered on. A null value here means degen-
erate dimension as determined by the dimension role key. The
dimension role key points to the dimension role in the con-
stellation of the ticksheet that 1s the form key to filter on for all
facts 1n this constellation. A null value here means that a
special dimension shared by all constellations 1s being used.
The filter block key 1s the primary key for this table. The filter
block type points to the filter block type table 652 which
defines the ways 1n which this filter block 1s displayed to the
user (e.g., a checkbox or a radio button). The label 1s the text
that appears to the user for the filter block. The list order 1s the
order that the filter block should appear 1n a list. The name 1s
the name of the filter block. The plural field 1s the text that
appears to the user for the filter block. The mapping flag 1s
used in mapping. The ticksheet key points to the ticksheet that
this filter block belongs.

The filter group 654 1s a mid-level grouping for a filter on
a ticksheet. This groups individual selections into logical
units.

The filter element table 656 defines individual values for a
dimension attribute within a filter block. The filter element
table 656 includes a dictionary key, a filter element key, a filter
group key, a label, a list order, a name, an SQL statement, and
a value. The dictionary key points to the user help text for a
particular filter element. The filter element key 1s the primary
key. The filter group key points to the filter group to which this
clement belongs. The label 1s the user displayed string for the
clement. A list order 1s the order of this element within a filter
group. The name 1s the hidden name of this element. The SQL
statement 1s an SQL statement used to build the list of values
for a dynamic list box filter group. The value 1s the database
value that this element translates mto 1 a SQL “WHERE”
clause.

Display Options Metadata

To control the method 1n which information 1s displayed
with a ticksheet, a set of options are supplied. The ticksheet
type option table 660 helps support this feature. The ticksheet
type option table 660 includes a list order, an option display
type, an option location, an option name key, a ticksheet type,
and a ticksheet type option key. The list order 1s the order to

US 7,739,224 Bl

33

display options for a ticksheet type. The option display type is
an html control type to use when displaying a particular
option. The option location 1s the location of the option on the
ticksheet. (The option location table 662 holds the list of
possible locations of options on a ticksheet.) The option name
key 1s the option being included in a ticksheet type. (The
option name table 666 defines an option that has meaning for
one or more applications that can be used by users.) The
ticksheet type 1s the ticksheet type being defined. The tick-
sheet type option key 1s the primary key for this table.

The option name table 666 includes option name key, a
name, a label, and a dictionary key. The option name key 1s the
primary key. The name is the logical name for the option. The
label 1s the label seen by the user as the name of the option.
The dictionary key 1s the pointer to the help text dictionary.

The option value table 664 defines single valid values for
options. The option value table 664 includes the dictionary
key, a label, a list order, an option name key, an option value
key, and a value. The dictionary key 1s the help text dictionary
key. The label 1s the label seen by the user for this option
choice. The list order 1s the order of the valid values for the
option. The option name key 1s the option set being defined.
The option value key 1s the primary key for this table. The
value 1s the hidden value for the option.

The option display type table 668 1s a lookup table indicat-
ing the valid way that options can be displayed.

The dictionary table 640 1s a table for help text for users.

User Interface Example of Defining Metadata

General Schema Definitions User Interface

The following describes a constellation used 1n a business.
In this example a new dimension 1s added very simply and the
changes are automatically propagated into the datamart 150.
The enterprise manager interface 192 1s used by the consult-
ant to define and manipulate the system 100.

FIG. 7 1illustrates the enterprise manager interface 192.
Multiple system 100°s can be connected to through that inter-
face. Many of the objects and tables 1n the system 100 are
shown. The base dimensions definitions 710 correspond to
the base dimensions available under the “epitest” datamart.
The constellations 712 for this datamart include an expense
constellation and a sales constellation 720. Thus, the sales
constellation 720 would appear as a row 1n the constellation
table 302. Under the sales constellation 720 appear the defi-
nitions for the sales aggregates 721, the sales dimensions 723,
the sales degenerate dimensions 723, the sales facts 726, the
sales measures 728, and the sales ticksheets 729. Also, the
extraction definitions 740 and security definitions for the
“epitest” datamart are accessible. The sales dimensions 723
define rows 1n the dimension role table 320. These rows
include customer billed to, product, application, program,
customer ship to, and territory.

FIG. 8 1llustrates the dimension table defimition window
800 (presented to the consultant as the result of selecting the
customer billed to dimension role under dimensions). A
dimension table definition window 800 show that the dimen-
sion 820 1s customer bill to and the base dimension 810, to
which the dimension 820 points to, 1s named customer.

FIG. 9 1llustrates a base dimension window 900 showing
the definition of the base dimension 810 named customer. In
this case, the customer base dimension has a “slowly chang-
ing dimensions” dimension data semantic 910. In this
example, the dimension base 810 customer has a number of
dimension columns 920. L1 1s an example of a dimension
node.

FI1G. 10 illustrates the dimension column window 1000 for
the customer region code column 1010. The physical type 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

34

the type of data defining that dimension column. The VAR -
CHAR_50 physical type 1s then mapped to an actual type
through the physical type table 330. The translation 1s depen-
dent on the store type.

FIG. 11 illustrates the base dimension window for the base
dimension date (substantially un-editable). The user interface
indicates that the date dimension 1s not an editable base
dimension (shown as black circles under “Base Dimen-
sions”), and grayed out 1n the base dimension window 900.
The transtype (transaction type) 1s similarly not editable and
1s similarly shown 1n the user interface.

FIG. 12 shows the dimension column “date day quarter
end”. Note that column cannot be edited.

FIG. 13 1llustrates a fact table window 1300 that 1s open on
the fact table 1310 definition. The fact data semantic 1320 1s
transactional/state like/force close/unjoined. The transac-
tional/state like/force close/unjoined means that the mvoice
part ol an order 1s transactional, the booking 1s state like,
orders that are not otherwise dealt with, are closed out, and the
data may become dirty and so 1t needs to be cleansed, thus, 1t
1s unjoined. This semantic type 1s described 1n detail 1n
Appendix A. Note that the user can select from many different
types of facttable semantics. The fact table window 1300 also
shows the fact columns 1330 for the order fact table.

FIG. 14 illustrates a fact column window 1400 opened on
the definition of the net_price fact column 1410. Here the fact
column 1410 has a physical type 1420 called FACTMONEY
and an aggregate operation 1430 called a SUM.

FIG. 135 1llustrates how the consultant would select the
semantic type for the fact table 1310.

FIG. 16 1llustrates the results of a request by the consultant
to generate the datamart 150 from the definitions of the data-
mart. The results show that a number of tables have been
created in the datamart 150. Importantly, FIG. 16 illustrates
the results of an 1nitial build process. In subsequent modifi-
cations, only those elements of the datamart that have
changed will be changed. In other words, the subsequent
changes are handled as an update process. An example of the
update process 1s described below.

Extraction Intertace Elements

The following describes the creation of the connectors 162.
Once the schema definitions 161 are set, the consultant then
defines the connectors 162 to the source systems 110. The
connectors, as noted above, define how information 1s to be
extracted from the source systems 110 and how that informa-
tion 1s to be placed into the datamart 150.

These connectors are defined under the extraction defini-
tions 740. FI1G. 17 illustrates the job definition window 1700
presented when the consultant has selected a particular job.

FIG. 18 illustrates the job steps 1810 within the default job.
The checkbox indicates whether the particular job step 1s
enabled for that job. The list of job steps 1s shown 1n the order
that they are executed. The two foreign keys within the job
step are shown 1n the dialog box of FIG. 17 to indicate
whether the job step 1s a connector or a system call.

FIG. 19 illustrates the All Semantics connector as defined
in the connector definition window 1900. This connector
includes the description and a definition of the input and
output data stores. In this case, both of the data stores are the
“epimart” (which 1s the datamart 150).

FI1G. 20 illustrates the data store window 2000 interface for
showing a data store. This 1s the data store that 1s referenced
in the connector All Semantics.

Returning to the discussion of connectors, FIG. 21 1llus-
trates the connector entitled MFG. The MFG connector has
two major steps: (1) order dimension staging, and (2) order

US 7,739,224 Bl

35

fact staging. The results of these extraction steps are put in the
staging tables 130. (The all extraction steps window 2100

illustrates all the possible steps in the system that can be
used.)

FI1G. 22 1llustrates the SQL statement window 2200. The
SQL statement window 2200 has an SQL field 2210 that
includes the SQL statements that loads a customer table. As
shown 1n the dialog box, the table references for the SQL
statement includes the customer dimension table column
definitions. That 1s, this SQL statement 1s going to be used to
populate the customer dimension table.

In this example, the base name, type code, type name,
region code, region name and tier name corresponds to the
column names within the customer dimension. The date
modity 1s an additional field that 1s to be used to indicate when
this field was last modified 1n the database. Additionally, there
1s a source system key that 1s automatically included 1n every
dimension. The source system key helps ensure that the data-
mart 150 1s well-formed.

In one embodiment of the invention, these names can be
automatically propagated into the SQL field 2210 window via
a template that 1s generated from the corresponding base
dimension. This allows the consultant to more easily define
the SQL selection statement.

FIG. 23 1llustrates the SQL statement for the Open Order
Stage for populating the order fact table.

At this point the steps for generating the staging table
information are complete. Now the semantic conversion steps
are defined.

In FIG. 24, returning to the connector steps window, we
have switched to an All Semantics connector 2410. The All
Semantics connector 2410 causes the semantic conversion of
the information 1n the staging table for use in the datamart

150.

FIG. 25 illustrates the semantic transformation window
2500 showing the dimension table customer semantic 2510.

FIG. 26 1llustrates the order fact semantic 2610 definition.

FI1G. 27 illustrates the results of a consultant adding a new
dimension 2700 (called warehouse) to the sales constellation
720. The batch operation window 1600 1llustrates the changes
that are being made to the datamart that was created 1n FIG.
16.To achieve these results, the consultant need only perform
the following steps:

1. Define the new dimension.

2. Define the connector steps, including the SQL Statement
to extract the warechouse data from the source systems
110.

3. Add the warehouse information to the Open Order Stage
SQL Statement.

4. Define a semantic transformation for the warehouse,
¢.g., slowing changing dimension.
Have the enterprise manager 102 update the datamart 150.

10

15

20

25

30

35

40

45

50

36

Thus, changing the schema definition of the datamart 150
1s significantly simpler than previous systems.

Additional Interface

FIG. 28 illustrates the aggregate group window 2800,
where aggregates can be defined. For a given aggregate
group, the consultant can define which fact share the aggre-
gate, and which type of aggregate (defined 1n the Aggregate
Type List 2810) should be built for a given dimension in the
aggregate. Additionally, dimensions can be added to, or
removed from, an aggregate group.

FIG. 29 1llustrates a portion of the configuration window
2900. In this example, a partial list of the transaction types
2910 1s shown. Thus, the consultant can determine which
transaction types will be available to him/her.

End User Interface Definition and Example

FIG. 27 1llustrates the interface used to define a user inter-
face for the end user. FIG. 30 includes a user interface defi-
nition window 3000 which can be used to define measures
and ticksheets. In this case, the measure definition window
3010 1s shown.

The measure definition window 3010 allows the consultant
to define which measures will be available 1n the system. The
consultant defines the name, units, and constellation for a
particular measure. The measure 1s further defined by defin-
ing the list of measure terms that make up a measure (the
calculations for the measure 3020). In this example, the ASP-
BacklogOrderGross measure has seven calculation steps,
some of them arithmetic (e.g., SUM) and others RPN (Re-
verse Polish Notation).

FIG. 31 1llustrates the ticksheet definition window 3400.
The ticksheet definition window 3400 allows a consultant to
define a ticksheet that will be used to generate a query form
for a user. The consultant defines the attributes, the columns,
and the filters for a ticksheet. FIG. 32 illustrates the query
form 3200 generated from the ticksheet defined 1n FIG. 31.

FIG. 33 illustrates the measure mappings window 3300,
that allows the consultant to map measure definitions to user
friendly measure names. In the example of FIG. 33, the Price
ShipGrossMonth measure 1s mapped to a combination of the
dollar amount, gross, and sell-through being selected 1n the
query form 3200.

FI1G. 34 1llustrates another query form 3200 generated from
a different ticksheet definition. When the user selects the
create report button, the query 1s 1ssued against the datamart
150. F1G. 35 illustrates some sample results 3500 from such
a query.

The following query log illustrates the actual query that
was executed against the datamart 150. The query log 1llus-
trates that an aggregate and navigation process determined
which aggregate would be the most appropriate. The aggre-
gate builder had created these aggregates. The most appro-
priate aggregate for the requested query was selected. The
results were then returned.

R R R R R RR R R R R R R RR R R R R R R R R R R R R R R R R R R AR R ARR RR R R R RR R R R R R R R R R AR R R R R R R R R

R R R R R RR R R R R R R RR R R R R R R R R R R R R R R R R R R AR R ARR RR R R R RR R R R R R R R R R AR R R R R R R R R

Query log

time : <A Date Here>

addr : 192.0.0.210

host : 192.0.0.210

user ;

agent : Mozilla/4.01 [en] (WinN'T; U)

Datebase information: DRIVER=(SQL SERVER);SERVER=bigfoot;DATABASE=macromedia
Keys and values coming 1n from the browser:

file =

US 7,739,224 Bl
37

-continued

fileDesc =

queryaction = QUERY
hidden_ queryaction = QUERY
OK_ callback =
NOK__callback =

ticksheet = Orders

hidden_ ticksheet = Orders
Rows = Customer

hidden_ Rows = Customer
Columns = Fiscal Year
hidden_ Columns = Fiscal Year
units = Price

hidden_ units = Price

facttype = Shipped

hidden_ facttype = Shipped
facttype2 = Gross
hidden_facttype2 = Gross
stage = Orders

hidden_ stage = Orders
currencyunits = Thousands
hidden_ currencyunits = Thousands
rowtotal = yes

hidden_ rowtotal = yes
columntotal = yes

hidden_ columntotal = yes
percent = none

hidden_ percent = none
precision = 0

hidden_ precision =0

charts = 30

hidden_ charts = 30

maxrows = 10

hidden_ maxrows = 10
rowsorttype = value

hidden_ rowsorttype = value
Fiscal_ Years = All

hidden_ Fiscal Years = All
Fiscal_ Quarters = All
hidden_ Fiscal Quarters = All
Calendar Months = All
hidden_ Calendar Months = All
Business_ Units = All

hidden Business Units = All
Product_ Lines = All

hidden_ Product_Lines = All

Product__Supergroups = All

hidden_ Product_ Supergroups = All
Platforms = All

hidden_ Platforms = All

Product__Languages = All

hidden_ Product_ Languages = All

Product_ SKUs = All

hidden_ Product_ SKUs = All

Product_ SKU =

Sales_ Reps = All

hidden_ Sales_ Reps = All

Channels = All

hidden_ Channels = All

Customer__Types = All

hidden_ Customer_ Types = All

Customer_Regions = All

hidden_ Customer_ Regions = All

Customers = All

hidden_ Customers = All

Customer =

sqStyle = classic

hidden_ sqStyle = classic
Contents of %FormData:

Columns = Fiscal Year

rowsorttype = value

ticksheet = Orders

Customers = All

charts = 3D

Customer Types = All

Product SKUs = All

Customer Regions = All

Fiscal Quarters = All

Rows = Customer
Channels = All

precision = 0
Product Supergroups = All
percent = none
maxrows = 10
Sales Reps = All
columntotal = yes
Calendar Months = All
queryaction = QUERY
sqStyle = classic
Fiscal Years = All
Product Languages = All
Platforms = All
Product Lines = All
rowtotal = yes
currencyunits = Thousands
Business Units = All
The colheaders are:
The Cellitems are:
Price Shipped Gross Orders
The Cellitems abreviated are:

Dollar Amount Shipped Gross Orders

pid 1s: 310

spid 1s: 25

The valid collheaders are:

The invalid colheaders are:

The valid cellitems are:
Price Shipped Gross Orders

The 1nvalid cellitems are:

The unitstack 1s:
CURRENCY

The celistack 1s:
-SUM (Order.net__price)

The selectstack 1s:
-SUM (Order.net__price)

The typestack is:
SHIP

Transtypes are:
“BEGIN RETURN” = 1007
“END__GROSS” =1004
“END__SRBOTH” =1018%
“END__SRADJI”=1012
“BOOK” =1
“BEGIN_ANET” =1013
“END_TADI” =1024
“END ICOMP” = 1022
“BEGIN__GROSS” = 1003
“BEGIN_SRBOTH” =1017
“END__SBOTH” =1016
“END” = 1002
“BEGIN__SRADJI”=1011
“END__SADJ” =1010
“BEGIN_IADJI”=1023
“BEGIN ICOMP” = 1021
“END__NET” = 1006
“SHIP__ADJUST” =103
“LOST” =3
“END_ SAIL”=1020
“BEGIN__SBOTH” = 1015
“BEGIN” = 1001
“BEGIN_SADJ” = 1009
“BOOK RETURN” =2
“END__FADJ” = 1026
“BEGIN_NET” = 1005
“BEGIN__SAILL”=1019
“GL” =105
“SHIP_ RETURN” =102
“SHIP RADJ” =104
“SHIP” = 101
“END__RETURN” = 1008
“INV_ADIJUST” = 201
“LEAD T1.OST” =4
“BEGIN FADIJI” =1025
“FINV_ADJUST” = 202
“END_ANET” =1014

The facttable 1s:

Order

The limitvalues are:

The access limitations are:

The limitvalues are:

-continued

US 7,739,224 Bl

40

US 7,739,224 Bl
41

-continued

The header took 261 milliseconds.
Parsing took 160 mulliseconds.
Generating the header took O milliseconds.
Building user limits took O milliseconds.
Phase O0: Aggregate navigator initialization.
Phase 1: Getting dimensions from SQL. (10)
Phase 2: Getting fields available from SQL. { 90)
Phase 3: Getting degenerate fields from SQL. (0)
Phase O: Preparing for query building and execution.R2(0 -> 0)= (SUM(20))
R1(1) = SUM(20)
The column router:
Cell location O will be returned 1n column O when Type 1s SHIP.
The result router:
Result location 0 1s (SUM(Z0)) 0
The unique facttables are:Order
The number of unique facttables are: 1
The unique types are:SHIP
Table to unique number lookup
Order=>_0__
Begin work on the query based on the facttable Order
Phase 1: Table Order. Creating table aliases (10)
JOIN__FIELD IS CUSTOMER__BILLTO__KEY FOR Customer
JOIN__FIELD IS FOR Fiscal Year

SQL table aliases:
Order[]:T3
Datel |: 12

Customar JCUSTOMER__BILLTO_KEY : Tl
Table aliases:
tablealiaslookup(T1) = Customer
tablealiaslookup(T2) = Date
tablealiaslookup(T3) = Order
selectalias:
Customer: T1.base_ name
Fiscal Year: T2.1fy_ name
selectstackalias:
-SUM(Order.net_ price): -SUM(T3.net_ price)
joinalias:
Customer: T1l.customer_key = T3.customer_ billto_ key
Phase 2: Building SELECT clause (0)
Phase 3: Building FROM clause (O)
P]

hase 4: Building WHERE clause (0)
Phase 5: Building GROUP BY clause (0)
SQL before going through the aggregate navigator:
SELECT
Columns = T2.fy_ name,
Type = T3.Transtype__key,
CO =-SUM(T3.net_ price),
Rows = T1l.base_ name
INTO #tmp_ 0__
FROM
Customer T1,
Date 12,
Order T3
WHERE
T1.customer_ key = T3.customer_ billto_ key and
T2.datekey =T3.date_ key and
T3. Transtype__key imn (101)
GROUP BY
T1.base_ name,
T2.4y_ name,
T3. Transtype_ key

SRR R R R RR R R R RR RR R R R R R R R R R RR R R R AR R R R R R R R R

Selecting appropriate aggregate for the query.

ek R Rh Rk kR Rk R kR R R Rk sk e sk R vk kR sR R sk sk s kR R sk sk sReR R sR sk R s R sk R sk sl s e sRosR sk ROk
Phase 0: Aggregate navigator. Preparing for query building and execution.
hase 1: Spliting query into clauses. (0)

hase 2: Construction of aliases. (0)

hase 3: Extracting neededfields from where clause. (O)

hase 4: Extracting neededfields from group by clause. (O)

hase 5: Extracting neededfields from select clause. (0)

hase 6: Unaliasing. (O)

hase 7: constructing the SQL to fetch smallest aggregate. (20)

hase 8: Running the big SQL. (20)

hase 9: Extracting results from the big SQL. (O)

hase 10: Adjusting input with aggregate information. (O)

Phase 6: Aggregate Navigating (40)

ook check dkckok Rk ckekokok ek ke kiR dek ckekekok ok ke sk kokok ek sk ok kR ek ek ook ok kR ke ik Rk sk ok ek ek kool ok ok R ok

Appropriate aggregate determined (CUSTOMER_ 0, DATE_ 4, ORDER__86), now select

ook check dkckok Rk ckekokok ek ke kiR dek ckekekok ok ke sk kokok ek sk ok kR ek ek ook ok kR ke ik Rk sk ok ek ek kool ok ok R ok

v oY v ¥ Y w T YUY

US 7,739,224 Bl

43

-continued

SQL after going through the aggregate navigator:
SELECT
Columns =T2.fy_ name,
Type = T3. Transtype_ key,
CO =-SUM(T3.net_ price),
Rows = Tl.base_ name
INTO #tmp_ 0__
FROM
CUSTOMER_ 0 T1,
DATE 4 T2,
Order_ 86 T3
WHERE
T1.customer__key = T3.customer__billto__key and
T2.date_ key = T3.date_ key and
T3. Transtype__key 1n (101)
GROUP BY
T1.base_ name,
T2.fy__name,
T3. Transtype_ key
Phase 7: Building results table in sql { 10435)
Phase 15: splitting tables by type (needed =0) (0)

SQL: SELECT count(Rows) FROM #mpAllRows

Phase 16: Merging results mto one table (needed =0) (0 YGR__COLS = CO =
SQL: SELECT Rows INTO #mpAllRows FROM #tmp_ 0 GROUP BY Rows ORDER BY SUM(C0) DESC

SUM(CO)

Phase 17: Extracting rows and doing number of total records (10508/10499) (1022)

SQL: set rowcount 10
SELECT Rows INTO #tmpTopRows FROM #tmpAllRows
set rowcount O
Phase 19: Sorting, Top (needed = 10498) (10)
-- creating row totals
SELECT
#tmp_ 0 .Rows,
C0O = SUM(CO)
INTO #tmpRows
FROM #tmp_ O0__, #tmplopRows
WHERE #mp_ 0 .Rows = #tmplopRows.Rows
GROUP BY #tmp_ 0_ .Rows
-- creating col, grand totals
SELECT
Columns,
CO = SUM(CO)
INTO #tmpColumns
FROM #tmp_0__
GROUP BY Columns
Checking ADJ of GRAND
SQL: SELECT C0O = SUM(CO0) INTO #tmpGrand FROM #tmpColumns
-- final results table
SELECT #tmp_ O__.Rows, Columns, CO
INTO #tmpFinalResults
FROM #tmp_ O0_ , #tmplopRows
WHERE #mp_ 0 .Rows =#tmplopRows.Rows
Phase 20: Filtering results (841)
Phase 21: Reading Row Totals (10)
Phase 22: Reading Column Totals (10)
Phase 23: Reading Grand (10)
SQL:
-- calculate remaining columns
SELECT
Columns = #tmpColumns.Columns,
CO = #tmpColumns.CO - ISNULL(SUM#tmpFinalResults.C0),0)
INTO #tmpRemaining
FROM #tmpFinalResults, #mpColumns
WHERE #tmpColumns.Columns *= #tmpFinalResults.Columns
GROUP BY #tmpColumns.Columns, #tmpColumns.CO
select CO = SUM(CO) from #tmpRemaining
Phase 24: Reading Remaining Column Totals (needed = 10498) (20)

Phase 25: Final Results (30)
Phase 26: Sorting columns by time (1f necessary) . (20)

Phase 27: sorting rows by time or name (if necessary). (0) ERR FROM BU
Getting results took 12658 mulliseconds.

Phase O: Begining output generation.

Phase 3: performing cumulative (if necessary). (0)

Dollar Amount / Shipped / Gross

The columns are: 1994

1995

1996

1997

1998

D__AND__EXEC:0

44

US 7,739,224 Bl

45

-continued

he rows are: *****%* A number of customer names here ***#*#x & &% %=
he table headers are:

he contents of the results array are:
L T i

—

A number of customer name, value pairs
L T i

The contents of the rowtotal array are:<
key: *#FFER ow totals™ ****<

The contents of the coltotal array are:
1995 FEFFEE A amount™ ** ***

996 =I==I==I‘-‘=I==I‘-‘=I‘-‘A_—[1 amﬂuntbkbkbkbkbkbk
997 $$$$$$AH amﬂunt$$$$$$
998 =I==I==FFI==I==I=A_—[1 amﬂunt-‘-i”ﬁﬂ”ﬁ?kbk
994 $$$$$$AI1 MGUHt$$$$$$
The contents of the grdtotal array are:

Grand: *****%% A orand total amount’™ *** #%*
Processing and formatting results took 220 milliseconds.
Total time was 13299 mulliseconds.

Processing sylk took 81 milliseconds.

FIG. 36 1llustrates the options form 3600 that the user can
use to select the display options for a result.

Alternative Embodiments

The following describes alternative embodiments of the
invention.

Importantly, various embodiments of the invention do not
necessarily include all of the features described above. For
example, some embodiments of the invention do not include
the first phase of the extraction process (loading the staging
tables) because the source system data i1s provided to the
system 100 directly by other extraction programs. Another
example 1s where the datamart 150 1s created, but a separate
query interface 1s used to query the datamart 150. The query
interface could use only a different communications protocol
(e.g., mstead of HT'TP), or could be a completely different
front end.

Other embodiments of the invention are configured ditter-
ently than the embodiments described above. For example,
the extraction node key 1n the semantic mstance table 308 1s
not included, but the extraction node 410 includes a semantic
instance key.

Some embodiments of the invention build a database sys-
tem, not necessarily a datamart. Additionally, these embodi-
ments do not have to conform to a star schema definition in the
metadata 160.

An object database system could be generated instead of a
relational database system.

Some embodiments of the invention comprise only a com-
puter readable media (e.g., a CD, a tape, a hard drive or other
storage media) that has the programs that implement all, or a
portion of, the system 100. Some embodiments of the inven-
tion include an electromagnetic wavelorm having the pro-
grams. Some embodiments of the mvention include only the
computer system running the datamart, other embodiments of
the invention include only the computer system that creates,
accesses, and queries the datamart, but does not include 1n the
datamart 1tself.

Additional, or different, data semantics can be included 1n
other embodiments of the invention.

Some embodiments of the invention include different user
interfaces for the enterprise manager interface 192 and the
query/results interface 184. For example, in the enterprise
manager interface 192, the semantic types need not be

25

30

35

40

45

50

55

60

65

46

selected 1n the fact and dimension base windows, but can be
selected 1n the semantic instance window.

What 1s claimed 1s:
1. A method of generating one or more database systems,
the method comprising;:

providing a metadata system that includes a metadata
schema, a facility for entering instructions into the meta-
data schema, and a facility for mampulating the meta-
data schema:;

receving instructions for generating a database system for
business from a user, the recerved instructions including
semantic definitions, wherein the received instructions
are entered into the metadata schema and are used to
create the database system for business; and

generating the database system for business automatically
using the semantic defimtions included 1n the received
instructions, whereby the database system for business
1s well-formed.

2. The method of claim 1, wherein automatically generat-
ing the database system for business further comprises:

generating tables automatically according to the received
instructions.

3. The method of claim 1, further comprising;

building aggregate tables according to the received instruc-
tions.

4. The method of claim 1, further comprising;

recerving further mstructions defining a query mechanism
from a user; and

generating queries according to the received further
instructions.

5. The method of claim 1, further comprising:
generating reports according to the received instructions.
6. The method of claim 1, further comprising;

recerving a modification of the metadata schema; and

adjusting the database system for business automatically
according to the modification.

7. The method of claim 1, further comprising loading data
into the database system for business according to the
received instructions entered into the metadata schema.

8. The method of claim 7, further comprising operating on
the database system for business according to the received
instructions entered into the metadata schema.

US 7,739,224 Bl

47

9. A method of generating one or more database systems,
the method comprising:
providing a metadata system that includes a metadata
schema, a facility for entering instructions into the meta-
data schema, and a facility for manipulating the meta-
data schema;
receiving instructions for generating a database system for
business, the received instructions containing semantic
definitions for the metadata schema: and
generating the database system for business automatically
using the semantic defimtions included 1n the received
instructions, whereby the database system for business
1s well-formed.
10. The method of claim 9, wherein automatically gener-
ating the database system for business further comprises:

generating tables automatically according to the received
instructions.

11. The method of claim 9, further comprising:

building aggregate tables according to the recerved instruc-
tions.

12. The method of claim 9, wherein operating on the data-

base system for business further comprises:

receiving further mstructions defining a query mechanism
from a user; and

generating queries according to the received further
instructions.

13. The method of claim 9, wherein operating on the data-
base system for business further comprises:

generating reports according to the received instructions.
14. The method of claim 9, further comprising:
receiving a modification of the metadata schema; and

adjusting the database system for business automatically
according to the modification.

15. The method of claim 9, further comprising loading data
into the database system for business according to the
received instructions.

16. The method of claim 15, further comprising operating
on the database system for business according to the recerved
instructions.

17. A computer system, comprising:
a computer including a processor and a memory;

a computer program stored 1in the memory and executed by
the processor, wherein the computer program includes
computer nstructions for:

providing a metadata system that includes a metadata
schema, a facility for entering instructions into the meta-
data schema, and a facility for manipulating the meta-
data schema;

receiving instructions for generating a database system for
business from a user, the recerved instructions including
semantic definitions, wherein the received instructions
are entered 1nto the metadata schema and are used to
create the database system for business; and

generating the database system for business automatically
using the semantic definitions included in the recerved
instructions, whereby the database system for business
1s well-formed.

18. The computer system of claim 17, wherein the com-
puter program further includes computer instructions for:

generating tables automatically according to the received
instructions.

19. The computer system of claim 17, wherein the com-
puter program further includes computer instructions for:

building aggregate tables according to the received instruc-
tions.

10

15

20

25

30

35

40

45

50

55

60

65

48

20. The computer system of claim 17, wherein the com-
puter program further includes computer instructions for:

recerving further mstructions defining a query mechanism
from a user; and

generating queries according to the received further
instructions.

21. The computer system of claim 17, wherein the com-
puter program further includes computer instructions for:

generating reports according to the received instructions.

22. The computer system of claim 17, wherein the com-
puter program further includes computer instructions for:

recerving a modification of the metadata schema; and

adjusting the database system for business automatically
according to the modification.

23. The computer system of claim 17, wherein the com-

puter program further includes computer instructions for
loading data into the database system for business according
to the recerved mstructions entered mto the metadata schema.

24. The computer system of claim 23, wherein the com-
puter program further includes computer instructions for
operating on the database system for business according to
the received mstructions entered into the metadata schema.

25. A computer system, comprising:
a computer including a processor and a memory;

a computer program stored 1n the memory and executed by
the processor, wherein the computer program includes
computer instructions for:

providing a metadata system that includes a metadata
schema, a facility for entering instructions into the meta-
data schema, and a facility for mampulating the meta-
data schema:

recerving instructions for generating a database system for
business, the recerved instructions including semantic
definitions for the metadata schema: and

generating the database system for business automatically
using the semantic defimtions included 1n the received
instructions, whereby the database system for business
1s well-formed.

26. The computer system of claim 25, wherein the com-
puter program further includes computer instructions for:

generating tables automatically according to the received
instructions.

277. The computer system of claim 25, wherein the com-
puter program further includes computer instructions for:

building aggregate tables according to the received instruc-
tions.

28. The computer system of claim 25, wherein the com-
puter program further includes computer instructions for:

recerving further mstructions defining a query mechanism
from a user; and

generating queries according to the received further
instructions.

29. The computer system of claim 25, wherein the com-
puter program further includes computer instructions for:

generating reports according to the received instructions.

30. The computer system of claim 25, wherein the com-
puter program further includes computer instructions for:

recerving a modification of the metadata schema; and
adjusting the database system for business automatically
according to the modification.

31. The computer system of claim 25, wherein the com-
puter program further includes computer instructions for:

loading data into the database system for business accord-
ing to the received instructions.

US 7,739,224 Bl

49

32. The computer system of claim 31, wherein the com-
puter program further includes computer instructions for:

operating on the database system for business according to
the recetved instructions contained in the metadata
schema.

33. A computer readable storage medium encoded with
software 1nstructions, wherein execution of the software
instructions comprises:

providing a metadata system that includes a metadata
schema, a facility for entering instructions into the meta-
data schema, and a facility for manipulating the meta-
data schema;

receiving istructions for generating a database system for
business from a user, the recerved instructions mcluding
semantic definitions, wherein the received instructions
are entered 1nto the metadata schema and are used to
create the database system for business; and

generating the database system for business automatically
using the semantic defimitions included 1n the received
instructions, whereby the database system for business
1s well-formed.

34. The computer readable storage medium of claim 33,
wherein execution of the software instructions further com-
Prises:

generating tables automatically according to the received

instructions.

35. The computer readable storage medium of claim 33,
wherein execution of the software instructions further com-
Prises:

building aggregate tables according to the recerved instruc-

tions.

36. The computer readable storage medium of claim 33,
wherein execution of the software instructions further com-
Prises:

receiving further mstructions defining a query mechanism

from a user; and

generating queries according to the received further
instructions.

37. The computer readable storage medium of claim 33,
wherein execution of the soitware instructions further com-
Prises:

generating reports according to the received instructions.

38. The computer readable storage medium of claim 33,
wherein execution of the software instructions further com-
Prises:

receiving a modification of the metadata schema; and

adjusting the database system for business automatically
according to the modification.

39. The computer readable storage medium of claim 33,
wherein execution of the software instructions further com-
prises loading data into the database system for business
according to the recerved nstructions entered into the meta-
data schema.

40. The computer readable storage medium of claim 39,
wherein execution of the software instructions further com-
prises operating on the database system for business accord-
ing to the received instructions entered into the metadata
schema.

41. A computer readable storage medium encoded with
software instructions, wherein execution of the software
instructions comprises:

providing a metadata system that includes a metadata
schema, a facility for entering instructions into the meta

10

15

20

25

30

35

40

45

50

55

60

65

50

data schema, and a facility for mampulating the meta-
data schema;

recerving instructions for generating a database system for
business, the received nstructions containing semantic
definitions for the metadata schema; and

generating the database system for business automatically
using the semantic defimtions included 1n the received
instructions, whereby the database system for business
1s well-formed.

42. The computer readable storage medium of claim 41,
wherein execution of the soitware instructions further com-
Prises:

generating tables automatically according to the received

instructions.

43. The computer readable storage medium of claim 41,
wherein execution of the software instructions further com-
Prises:

building aggregate tables according to the received instruc-

tions.

44. The computer readable storage medium of claim 41,
wherein execution of the software instructions further com-
Prises:

recerving further imstructions defining a query mechanism

from a user; and

generating queries according to the received further
instructions.

45. The computer readable storage medium of claim 41,
wherein execution of the software instructions further com-
Prises:

generating reports according to the recerved instructions.

46. The computer readable storage medium of claim 41,
wherein execution of the software instructions further com-
Prises:

recerving a modification of the metadata schema; and

adjusting the database system for business automatically
according to the modification.

4'7. The computer readable storage medium of claim 41,
wherein execution of the software instructions further com-

prises loading data into the database system for business
according to the received instructions.

48. The computer readable storage medium of claim 47,
wherein execution of the software instructions further com-
prises operating on the database system for business accord-
ing to the recetved 1nstructions.

49. A method of automatically generating a database sys-
tem for business, the method comprising:

providing a metadata schema;

entering instructions for generating the database system
into the metadata schema, the entered instructions hav-
ing semantic definitions; and

generating the database system for business automatically
using the semantic definitions of the entered instruc-
tions, whereby the database system for business 1s well-
formed.

50. The method of claim 49, further comprising loading
data into the automatically-generated database system for
business according to the instructions entered into the meta-
data schema.

51. The method of claim 50, further comprising operating,
the database system for business according to the instructions
entered 1nto the metadata schema.

US 7,739,224 Bl

51

52. A method of automatically generating a database sys-
tem for business, the method comprising:

receiving instructions for generating a database system for
business, the received instructions having semantic defi-
nitions; and

generating the database system for business automatically
using the semantic definitions of the recerved instruc-
tions, whereby the database system for business 1s well-
formed.

5

52

53. The method of claim 52, further comprising loading
data 1nto the generated database system for business accord-
ing to the received instructions.

54. The method of claim 53, further comprising operating,
the database system according to the received instructions.

	Front Page
	Drawings
	Specification
	Claims

