United States Patent

US007735066B1

(12) (10) Patent No.: US 7,735,066 B1
Myers et al. 45) Date of Patent: Jun. 8, 2010
(54) DEBUGGING INTERFACE 7,353,427 B2* 4/2008 Batesetal. 714/38
2004/0078784 Al* 4/2004 Batesetal. 717/129
(75) Inventors: Brad A.Myers, Pittsburgh, PA (US);
Andrew J. Ko, Pittsburgh, PA (US) OTHER PUBLICATIONS
Mikhail Auguston, Clinton Jetfery, Scott Underwood, A Framework
(73) Assignee: Carnegie Mellon University, Pittsburgh, for Automatic Debugging, Dept. of Computer Science, New Mexico
PA (US) State Umiversity, NMSU TR-CS-004/2002, pp. 1-10.
Alan Blackwell, Margaret Burnett, Applying Attention Investment to
(*) Notice: Subject to any disclaimer, the term of this End-User Programming, Proceedings of the IEEE 2002 Symposia on
patent 1s extended or adjusted under 35 Human Centric Computing Languages, 310(1)123 pp- 1-3. 1 Tack
J. S. Briggs, S. D. Jamieson, G. W. Randall, I. C. Wand, Task time
U.S.C.154(b) by 1024 days. lines as a debugging tool, ACM Ada Letters, Mar./Apr. 1996, pp.
(21) Appl. No.: 11/246,331 30-69,vol. XV1, No. 2.
(Continued)
(22) Filed: Oct. 7, 2005
Primary Examiner—We1Y Zhen
Related U.S. App]ication Data Assistant Examiner—Phillip H Ngﬁyen ;
74) Att Agent Firm—T Reed & Armst
(60) grgx(;igional application No. 60/617,314, filed on Oct. £LE)’; Dai:zl?ﬁ. \%i?f’ o P B PHOTE
(51) Int.Cl (57) ABSTRACT
Goot 9/44 (2006.01) A software tool and method 1s provided 1n which a user can
(52) US.CL i, 717/125; 717/128; 717/130 ask ques‘[ions about their computer programs. As the subject
(58) Field of Classification Search 71°7/125 program 1s executed, mformation is collected about the units
See application file for complete search history. of code that are executed and the changes to data. The user can
(56) Ref Cited pause the program, for example by pressing a button labeled
eferences Cite

U.S. PATENT DOCUMENTS

4,589,068 A * 5/1986 Hemen, Jr. .ccocvvenvene.... 717/127
5,732,273 A * 3/1998 Srivastavaetal. 717/128
6,128,774 A 10/2000 Necula et al.

6,658,653 B1* 12/2003 Batesetal. 717/131
6,788,933 B2 9/2004 Boehmke et al.

7,047,442 B2* 5/20006 Suttoncoeevviniinnnns 714/25
7,110,936 B2* 9/2006 Hiewetal. ...cccoevvnnen.. 703/22
7,266,809 B2* 9/2007 Tsubataetal. 717/129

201

Why did... P
203— Why didn't... »| Pac...

“Why”, which will prompt the user to select what they want to
ask about. For example, the user can ask about why units of
code did or did not get executed. The tool and method provide
answers that can be in the form of prepared statements and
interactive data and control flow visualizations that show the
values of data and the particular units of code that caused the
execution to occur or not occur. The user can ask further
questions using the visualization.

20 Claims, 5 Drawing Sheets

move forward 37

p | resize .57

US 7,735,066 B1
Page 2

OTHER PUBLICATIONS

Simon P. Davies, Models and theories of programming strategy, Int.
J. Man-Machine Studies (1993) 39, 1993 Academic Press Limited,
pp. 237-267.

Paul Gestwicki, Bharat Jayaraman, Interactive Visualization of Java
Programs, Proceedings of the IEEE 2002 Symposia on Human Cen-
tric Computing Languages and Environments (HCC’02) 2002, pp.
1-10.

David J. Gilmore, Models of debugging, Acta Psychologica 78, 1991,
pp. 151-172, North-Holland, Elsevier Science Publishers B.V.

T. R. G. Green, M. Petre, Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimentions’ Framework, Journal of
Visual Languages and Computing (1996) 7, pp. 131-174, 1996 Aca-
demic Press Limited.

T. R. G. Green, Cognitive Dimensions of Notations, (1989) People
and Computers V, Cambridge, UK; Cambridge University Press, pp.
443-460.

Colleen Kehoe, John Stasko and Ashley Taylor, Rethinking the evalu-
ation of algorithm animations as learning aids: an observational
study, Int. J. Human-Computer Studies (2001) 54, pp. 265-284, Aca-
demic Press.

Andrew J. Ko and Brad A. Myers, Development and Evaluation of
Model of Programming Errors, Proceedings of the IEEE 2003 Sym-
posia on Human Centric Computing Languages and Environments
(HCC’03), Auckland, New Zealand, October 28-31, pp. 1-8, IEEE.
Raimondas Lencevicius, URS Holzle, Ambuj K. Singh, Dynamic
Query-Based Debugging of Object-Oriented Programs, Automated
Software Engineering, 10, pp. 39-74, 2003, 2003 Kluwer Academic
Publishers, Manufactured in The Netherlands.

Henry Lieberman, The Debugging Scandal and What to Do about It,
Communications of the ACM, Apr. 1997/vol. 40. No. 4, pp. 27-29.
Gregg Rothermel, Mary Jean Harrold and Jeinay Dedhia, Regression
Test Selectio for C++ Software, Journal of Software Testing, Verifi-
cation, and Reliability, V. 10, No. 2, Jun. 2000, pp. 1-35.

RTI, Planning Report 02-3, The Economic Impacts of Inadequate
Infrastructure for Software Testing, Final Report May 2002.
Andreas Zeller, Isolating Cause-effect Chains from Computer Pro-
grams, SIGSOFT 2002/FSE-10, Nov. 18-22, 2002, Charleston, SC,
USA, pp. 1-10.

Xiangyu Zhang, Rajiv Gupta and Youtao Zhang, Precise Dynamic
Slicing Algorithms, The University of Arizona, Dept. of Computer
Science, Tucson, Arizona 85721, 2003 IEEE, pp. 319-329.

Simon P. Davis, Display-Based Probelm Solving Strategies in Com-
puter Programming, Empirical Studies of Programmers: Sixth Work-
shop, Published by Intellect Books, 1996, ISBN 1567502628,
9781567502626.

Hugh Beyer, Karen Holtzblatt, Contexual Deisgn, Defining Cus-
tomer-Centered Systems, 1998, pp. 29-39, Morgan Kaufimann Pub-
lishers.

Anneliese Von Mayrhauser and A. Marie Vans, Program Undertand-
ing Behavior During Adaptation of Large Scale Software, Computer
Science Department, Colorado State University, Fort Collins, CO
80523, 1998, pp. 1-9.

James Reichwein, Gregg Rothermel, Margaret Burnett, Slicing
Spreadsheets: An Integrated Methodology for Spreadsheet Testing
and Debugging, Proceedings of the 2nd Conference on Domain-
Specific Languages, Austin, TX, Oct. 3-5, 1999, pp. 25-38.

Pablo Romero, Richard Cox, Benedict Du Boulay, Rudi Lutz, A
survey of external representations employed 1n object-oriented pro-

gramming environments, Journal of Visual Languages and Comput-
ing 14 (2003), pp. 387-419, Elsevier LTD.

Frank Tip, A Survey of Program Slicing Techniques, CWI, P.O. Box
94079, 1090 GB Amsterdam, The Netherlands, 1995, pp. 1-58.
Internet article: Mike Crissey, Debugging for Dummies, CBS News,
CBSNews.com, Jul. 27, 2004, pp. 1-2.

Internet article: U.S. Commercial Service Your Global Business Part-
ner, , Software—Industry Profile, BuyUSA, pp. 1-3 (URL: http://
www.buyusainfo.net/info.cim?1d=32605
&keyx=348EB12C2CC324D9C6438ACF0953FCED&dbi=
mrsearch1& loadnav=no&archived=yes&addid=yes), report dated
Dec. 7, 2000.

Internet article: Wylie Wong, Software Toolmakers Struggle in
Shrinking Market, CNET News, Sep. 7, 1999, pp. 1-4 (URL: http://
news.cnet.com/Software-toolmakers-struggle-in-shrinking-market/
2100-1001__3-230696.html).

Internet article: Amateur/Independent Game Development Tools
Market 2004-2008, Research and Markets, 2004-2008, pp. 1-10
(URL: www.uresearchandmarkets.com/reports/45530), reference
undated, printed Oct. 8, 2008.

Internet article: Market Dynamics: The Testing Tools Market
Computerwire MarketWatch, May 26, 2004, Issue 034, pp. 1-16
(URL: www.computerwire.com).

Internet article: Java Integrated Development Environments (IDEs)
and Editors, Java Programming Resources, pp. 1-4 (URL: http://
www.apl.jhu.edu/-hall/java/IDEs html), reference undated, printed
Oct. 8, 2008.

Internet article: Rob Wright, Software Tools Storm The Market,
Chanelweb, Jan. 31, 2002, pp. 1-8 (URL: http://www.cm.com/1t-
channel/18827872).

Internet article: Martin Lamonica, Eclipse Llights Up Java Crowd,
CNET News, Feb. 28, 2005, pp. 1-2 (URL: http://news.cnet.com/
Eclipse-lights-up-Java-crowd/2100-7344_ 3-559084°7 html).
Internet article: Andrew Binstock, The End Of IDE Competition,
SDTimes on the Web, Sep. 15, 2004, pp. 1-5 (URL: http://www.
sdtimes.com/SearchResult/28154).

Internet article: Chris Lanfear and Steve Balacco, The Embedded

Software Strategic Market Intelligence Program.,
WindowsForDevices.com, Mar. 6, 2003, pp. 1-5 (URL: http://www.

windowstordevices.com/articles/ AT6475045334 html).

Internet article: John P. Desmond, 2004 Software 500: Growth Came
In Segments, The Software 500, Oct. 2004, pp. 1-4 (URL: http://
www.soltwaremag.com/L.cim?Doc=2004-09/2004-09software-
500).

Internet article: Developers: We Need More Tools!, DataBased Advi-
sor.Magazine, pp. 1-4 (URL: http://my.advisor.com/doc/06257),
Mar. 29, 2000; doc # 06257.

Internet article: Kevin Taylor, Top 7 JavaIDEs, Focus on Java, pp. 1-2
(URL: http://web.archive.org/web/20051220233845/java.about.
com/od/1desandeditors/tp/top__1des.htm), reference undated, printed
Oct. 8, 2008.

Internet article: Jacob Lehraum and Bill Weinberg, IDE evolution
continues beyond Eclipse, EETimes, Jun. 7, 2004, pp. 1-4 (URL.:
http://www.eetimes.com/showArticle.jhtml?articleID=21400991).
Internet article: Glen Kunene, Eclipse: The Last IDE You’ll Ever
Need?, Devx, pp. 1-2 (URL: http://www.devx.com/opensource/ Ar-
ticle/27502/1954), reference undated, printed Oct. 8, 2008.

* cited by examiner

U.S. Patent Jun. 8, 2010 Sheet 1 of 5 US 7,735,066 B1

201

202 move forward 37

203—1 Why didn't... »| Pac... p |resize .57
Big Dot... »

204

U.S. Patent Jun. 8, 2010 Sheet 2 of 5 US 7,735,066 B1

true '-—-——-.3-1 0
if both (Pac is within 2 meters of Ghost} and (not big dot.isEaten)
309 Pac resize 0.5 _
else
FPac move torward 3
3(|)1
I
Question: Why didn't Pac resize 0.57? 311 — (Questions I've asked... |
3.8540711
Answer: /306 308
Cne or more of these ’ N
actions prevented Pac (BigDot.isEaten set to true)—b{isEaten frue %’& 307
resize 0.5 from / ®
happening. Try | _
following the arrows 304 305 (and W28
and checking each 303 / o /
action to find out what Bac o Wit 2 of Ghoot 210
went wrong. ~
|
302

Fig. 2

¢ "1

US 7,735,066 B1

8uUnNNIaXa

LWo.J JUSWSI0IS
SIYY SIUA34G SUILION,
WO} 3Y1 JO Jamsue
JUBLIBAUI UR 2PIAOI]

'9IND3X3 0] JUBLISIDIS
3L pasnDpl SUoID
3say| , WO} 3y}

1O JAMSUB MO|JeIep
DUE [OJJUQD B 3PIACIY

}933S JO
$So|pJedad ‘93ndaxa
SABM[E JUDUIRIEIS

341 $390(]

SO

Ol
W
= (PIA AUM
e
.m REPERE [OMSUB o}
= PID UBLWIIDIS 3L} jINIOXD ;DS SEM Ul B1Ep 23U} JNOgE
AlIoNOY,. WJAOoL 9Y] O JURUIIE]S uonssnb jo cm_ﬁmzc JaYIny
Jamsue uoiisodoud SI\ U1 PI(] 1.UPIC] AUMA 2dA] JTeYAA B IS8 ABW 435
- 5|8} B SpIAOUIY
= cOb LLY
)
)
=
=
—

‘WweJdoud ayy ul
JUSwIa]e1s B 3UND3|aS
'UoIISaIND B SUJIO)

"BUINNDIXD WOJ) JUSWSIE]S 3Y)
pajuaAaLd JBUL [BUOIIPUOD
2yl JO uonndaxa shbiun

OB3 JOJ JOMSUB MOJJEIEP

PUE [OJJUOD B BPIAOIJ

907 40]7

UALWIBIDIS SILY]

S3NDaX3 BUILION,
WO} 3} JO JOMSUE
JUBLIBAUI UB 3PIAOI

GOV

j9INJAX 0}
1USUIS]RIS BU)
10j 9jqissod Y §|

U_c._m COH_._Jm :%S\/\/:
3y sassaud uasn

ON N

U.S. Patent

U.S. Patent Jun. 8, 2010 Sheet 4 of 5 US 7,735,066 B1

502
f

Prepare program so that
information may be
500 recorded as the program

“\‘ executes.

. 504 When a statement is
When a variable changes, executed, record what

record ”)9 statement Execute subject previous statement caused
responsible for the change program. the statement to execute

and record the old value of and record the data used by
the variable. the statement.
506 508 -~/

Pause execution of the ™\
subject program. 510
Identify things that have Identify things that have I
517> | happened. not happened. 514

Prompt the user to select
desired information. 516

Display information in ™
response to the selections 518
by user.

Fig. 4

US 7,735,066 B1

G 3L
laindwiod
0L9 77T msmmmsnosnsnn s s

- m
: m
5 !

l21ndwo?d _
= w 209
m 0l9 m l0ssanoud
< 29
m la1ndwo? m

| m 909 809
: | @21A9p Indul 201Aep INdING
019

U.S. Patent

009

US 7,735,066 Bl

1
DEBUGGING INTERFACE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority from U.S. Provisional
Patent Application No. 60/617,314, filed Oct. 8, 2004, and

which 1s incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH AND DEVELOPMENT

This research was funded in part by the National Science
Foundation under grants I15-0329090 and I'TR-03247770. The
government may have certain rights 1n this invention.

FIELD OF THE INVENTION

This 1nvention relates to apparatuses, methods, and sys-
tems for debugging or otherwise interrogating or ivestigat-
ing software interactively, such as through asking specific
questions about the software using menus.

BACKGROUND OF THE INVENTION

Among all programming activities, debugging still
remains the most common and most costly. A recent study by
the NIST found that software engineers in the U.S. spend
70-80% of their time testing and debugging, with the average
error taking 17.4 hours to find and fix (Tassey, G., “The
economic 1mpacts of mnadequate infrastructure for software
testing.” National Institute of Standards and Technology, RT1
Project Number 7007.011, 2002). Software engineers blamed
inadequate testing and debugging tools.

One reason for this might be that the feature sets of com-
mercial debugging tools have changed little 1n the past 30
years: programmers’ only tools for finding errors are still
breakpoints, code-stepping, and print statements.

Research describes debugging as an exploratory activity
aimed at mvestigating a program’s behavior, mvolving sev-
eral distinct and 1nterleaved activities:

Hypothesizing what runtime actions caused failure;

Observing data about a program’s runtime state;

Restructuring data into different representations;

Exploring restructured runtime data;

Diagnosing what code caused faulty runtime actions; and

Repairing erroneous code to prevent such faulty runtime
actions.

Current debugging tools support some of these activities,
while hindering others. For example, breakpoints and code-
stepping support observation of control flow, but hinder
exploration and restructuring; visualization tools help
restructure data, but hinder diagnosis and observation.

There have been many attempts to design more usetul
debugging paradigms and tools, including automatic debug-
ging, relative debugging, program slicing, and visualizations.
For example, Lencevicius et al. discuss Query-Based Debug-
ging [Lencevicius, R., Holzle, U., and Singh, A. K.,
“Dynamic query-based debugging of object-oriented pro-
grams,” Journal of Automated Software Engineering, 10(1),
2003, 367-3770], where programmers form textual queries on
objects” runtime relationships. However, it forces program-
mers to guess what relationships might exist, and requires
learning an unfamiliar query language. Briggs et al. discuss a
task timeline [Briggs, J. S., et al., “Task time lines as a debug-
ging tool,” ACM SIGAda Ada Letters, XVI(2), 1996, 50-69]

tor debugging distributed Ada programs. Their visualization

10

15

20

25

30

35

40

45

50

55

60

65

2

highlights a dynamic slice, but i1t does not relate runtime
actions to code. Zeller’s work on cause-efiect chains and the
Asklgor debugger [Zeller, A., “Isolating cause-etlect chains
from computer programs,” International Symposium on the
Foundations of Software Engineering, 2002, Charleston,
S.C., 1-10] 1s a related diagnosis tool. However, Zeller’s
approach requires both a failed and successiul execution of a
program.

However, few of these have been shown to be usable, let
alone to reduce debugging time. This 1s because debugging
activity always begins with a question, and to use existing
tools, programmers must struggle to map strategies for
answering their question to the tools” limited capabilities.
Furthermore, none of these tools support hypothesizing
activities. If programmers have a weak hypothesis about the
cause of a failure, any implicit assumptions about what did or
did not happen at runtime will go unchecked. Not only do
these unchecked assumptions cause debugging to take more
time, but studies have shown that many errors are due to
programmers’ false assumptions in the hypotheses they
formed while debugging existing errors.

In two studies of both experts” and novices’ programming,
activity, programmers’ questions at the time of failure were
one of two types: “why did” questions, which assume the
occurrence of an unexpected runtime action, and “why
didn’t” questions, which assume the absence of an expected
runtime action. There were three possible answers:

1. False propositions. The programmer’s assumption 1s
false. The answer to “Why didn’t this button’s action hap-
pen?” may be that 1t did, but had no visible effect.

2. Invaniants. The runtime action always happens (why
did), or can never happen (why didn’t). The answer to our
button question may be that an event handler was not attached
to an event, so it could never happen.

3. Data and control flow. A chain of runtime actions led to
the program’s output. For example, a conditional expression,
which was supposed to fire the button’s action, evaluated to
talse 1nstead of true.

Therefore, the need exists for a new debugging technique
which allows programmers to directly ask the questions they
naturally want to ask and receive appropriate answers in
response.

SUMMARY OF THE INVENTION

The present mvention 1s directed generally to a software
tool that can be used, for example, to debug or otherwise
investigate computer programs interactively. The computer
programs which are the subject of the present application will
be referred to as “subject programs”. The present invention
includes various apparatuses, methods, and systems for
implementing such software tools. The present mmvention
describes a new debugging paradigm called Interrogative
Debugging (ID), in which programmers can ask questions
such as “why did” and “why didn’t” directly about a subject
program’s behavior, and view answers 1n terms of directly
relevant runtime data. For example, 1 a programmer was
testing a graphical button and observed that clicking 1t had no
elfect, an ID interface would allow her to ask, “Why didn’t
this button do anything?” By allowing questions about the
subject program output, any implicit assumptions about what
did or did not happen at runtime can be explicitly addressed 1n
the answer.

To investigate the merits of ID, we designed a visualization
called the “Whyline”—a Workspace that Helps You Link
Instructions to Numbers and Events. By comparing six 1den-
tical debugging scenarios from user tests with and without the

US 7,735,066 Bl

3

Whyline, a study showed that the Whyline reduced debug-
ging time by nearly a factor of 8, enabling programmers to
complete 40% more tasks.

In one embodiment, the present invention includes a
method for interrogating a subject program, comprising
determining whether a unit of code of the subject computer
program failed to execute, and providing an answer indicating,
why the unit of code failed to execute.

In another embodiment, the present invention includes a
method for interrogating a subject program, comprising
executing the subject program, recording a {irst unit of code
responsible for a first data item changing, recording a second
data item used by a second unit of code that executed, record-
ing a third unit of code that caused the second unit of code to
execute, pausing the execution of the subject program,
prompting a user to select information related to the subject
program, and providing an answer in response to the user
selecting information related to the subject program, wherein
the answer 1ncludes at least one of: units of code, data items,
and prepared statements related to the information selected
by the user.

In another embodiment, the present invention includes a
computer software tool which, when executed, performs
steps comprising executing a subject program, recording a
first umt of code responsible for a first data item changing,
recording a second data 1tem used by a second unit of code
that executed, recording a third unit of code that caused the
second unit of code to execute, pausing the execution of the
subject program, prompting a user to select information
related to the subject program, and providing an answer in
response to the user selecting information related to the sub-
ject program, wherein the answer includes at least one of:
units of code, data 1tems, and prepared statements related to
the information selected by the user.

In another embodiment, the present invention includes a
computer software tool which, when executed, performs
steps comprising executing a subject program, recording a
first unit of code responsible for a first data item changing,
recording a second data i1tem used by a second unit of code
that executed, recording a third unit of code that caused the
second unit of code to execute, pausing the execution of the
subject program, prompting a user to select imnformation
related to the subject program, and providing an answer in
response to the user selecting information related to the sub-
ject program, wherein the answer includes at least one of:
units of code, data 1tems, and prepared statements related to
the information selected by the user.

Accordingly, the present invention provides for new
debugging techniques, which reduce debugging time and
increase the productivity of programmers. The present inven-
tion also provides tools which have applications beyond
debugging, such as for investigating how unfamiliar pro-
grams work. Those and other advantages of the present inven-
tion will be described 1n more detail hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS

For the present invention to be easily understood and
readily practiced, embodiments will now be described, for
purposes of 1llustration and not limitation, 1n which:

FIG. 1 1s a screen representation of the “Why” question
menu;

FI1G. 2 1s a screen representation of the code of the subject
program and the visualization of the answer;

FIG. 3 1s a flowchart illustrating one aspect of the present
invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 1s a flowchart illustrating another aspect of the
present invention; and

FIG. 5 1s a block diagram 1llustrating one embodiment of a
computer that may be used with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be described 1n terms of a soft-
ware tool called the “Whyline” that can be used, for example,
to debug computer programs. Before describing the
Whyline’s implementation, one embodiment of 1ts design 1s
illustrated through the following debugging scenario:

The user 1s creating a Pac-Man game world, and trying to

make Pac shrink when the ghost 1s chasing and touches
Pac. She plays the world and makes Pac collide with the
ghost, but to her surprise, Pac does not shrink

Pac did not shrink because the user has code that prevents
Pac from resizing aiter the big dot 1s eaten. Either the user did
not notice that Pac ate the big dot, or she forgot about the
dependency.

The Question Menu

When the user played the world, she would see the subject
program’s output and animations. In this example, the user
can select a button (referred to as the “why” button) to utilize
the present invention. As shown in FIG. 1, the user presses the
“why”” button 201 after noticing that Pac did not shrink, and a
menu appears with the items “why did” 202 and “why didn’t”
203. If the user selects one of the “why did” or “why didn’t”
menus, then additional submenus are displayed. The sub-
menus contain the objects in the world that were or could have
been aflected 204. The submenus may contain all objects, or
only a subset of objects. For example, the submenus may
contain only objects which have been acting on most recently,
or other criteria may be used for selecting the objects in the
submenus. Because the user expected Pac to resize after
touching the ghost, the user selects the “Why didn’t” 203
menu option, which provides the user with a submenu 204
including several objects that contain methods that were not
executed. In this case, one of the options 1s the object
“Pac . ..”, which the user selects. The user 1s next presented
with another submenu 1dentifying property changes and ani-
mations that could have happened 205, but didn’t. An analo-
gous set of menus would be presented to a user who selected
the “why did” 202 menu option.

Many variations of the menus and submenus are possible.
In one embodiment, the “Why” button 1s linked to a code
editor and question answer area, shown 1n FIG. 2. When the
user hovers the mouse over a menu i1tem 205, the code that
caused the output 1n question 1s highlighted and centered 1n
the code area of the code editor 309.

The Answer

FIG. 2 1llustrates a screen representation according to one
embodiment of the present invention. The user asks “Why
didn’t Pac resize 0.57”. The Whyline answers the question by
analyzing the runtime actions that did and did not happen, and
provides the answer shown 1n FIG. 2. The question asked 1s
shown at the top of the visualization pane 301, and a descrip-
tion of the answer 302 1s shown to the visualization’s lett. The
visualization itself combines both data flow and control flow
items to explain the answer. The actions included are only
those that prevented Pac from resizing: the predicate whose
expression was false 305, the operators that formed the predi-
cate’s expression 304 and the actions that defined the prop-
erties used by the expression 303. By excluding unrelated
actions, the system supports observation and hypothesizing
by increasing the visibility of the actions that likely contain

US 7,735,066 Bl

S

the fault. However, 1n other embodiments, more or less infor-
mation may be displayed, and that information may be dis-
played in the same or different formats and orientations to that
illustrated in FIG. 2.

The arrows show either data tlow 306 or control flow 310
causality. Datatlow arrows 306 are labeled with the data used
by the action to which they point. The arrows help the user
follow the runtime system’s computation and control flow.

Along the x-axis 1s event-relative time. Along the y-axis are
event threads: this allows co-occurring control flow actions to
be shown. The user interacts with the timeline by dragging the
time cursor 307. Doing so changes all properties to their
values at the time represented by the time cursor’s location;
this time 308 1s displayed above the time cursor. This supports
exploration of runtime data. When the user moves the cursor
over an action, the action and the code that caused it become
selected 309, supporting diagnosis and repair. These features
allow the user to rewind, fast-forward, and even “scrub” the
execution history, receiving immediate feedback about the
state of the world. This exposes hidden dependencies
between actions and data that might not be shown directly on
the Whyline, and between properties’ current values and pro-
gram output.

Additional features and variations are also possible with
the present invention. For example, to reduce the difficulties
of exploration, the user can double-click on an action to ask,
“what caused this to happen?” and actions causing the runt-
ime action are added to the visualization. The user can also
hover her mouse cursor over expressions in the code to see
properties’ current values and to evaluate expressions based
on the current time 308. This improves the visibility of runt-
ime data and supports progressive evaluation. Finally, the
Whyline supports provisionality by making previous answers
available through the “Questions I've Asked . . . ” button 311.
Although FIG. 2 illustrates that answer being provided in
written form 302 along with a visualization to explain the
answer, the answer 1s not limited to this form. Rather, provid-
ing an answer to the user may take many forms including text,
graphics or visualizations, other forms, or combinations of
forms. In addition, the information 1n the answer can also
vary. For example, the answer may include references to units
of code or data items, the answer may 1nclude prepared state-
ments, the answer may include only information which did or
did not happen, or the answer may include other information
to assist the user.

Using these mechanisms, the user discovers her misper-
ception using the Whyline:

“So this says Pac didn’t resize because BigDot.1s Eaten 1s
true Oh! The ghost wasn’t chasing because Pac ate
the big dot. Let’s try again without getting the big dot.”

Without the Whyline, the misperception could have led to
an unnecessary search for non-existent errors.

Implementation

The present invention 1s a software tool that may be used to
debug the subject programs. It may be implemented using the
Java programming language as part of a graphical, integrated
soltware development environment that runs on Mac and PC
operating systems. The invention can be implemented 1n
many other forms, including as a stand-alone application or as
a soltware plug-in for development environments such as
Visual Studio, Eclipse, or Macromedia Flash. It can use any
processor and operating system, such as Microsoit Windows,
Macintosh or Unix, and can support any type of programming
language, including object-oriented, procedural, functional,
and graphical programming languages. The 1mvention could
be implemented with special hardware that might record the

10

15

20

25

30

35

40

45

50

55

60

65

6

required information during execution so as to run programs
quicker, or 1t may be implemented as part of an emulator or
simulator, 1 order to support the monitoring of program
execution.

In one embodiment, programs are implemented internally
using a control flow graph (CFG), where expressions are
represented as data flow graphs attached to nodes 1n a CFG.
These graphs are constructed incrementally as programmers
create and modily code to avoid having to build the graphs
before program execution. At runtime, every execution of a
CFG node 1s recorded as well as all assignments and uses of
variables’ values. These execution histories of actions are
used at run-time to navigate the execution history based on the
location of the time cursor.

FIG. 3 1s a flowchart illustrating one aspect of the present
invention. As shown in FIG. 3, when the Why button 1s
pressed, the system immediately generates the “Why did” and
“Why didn’t” menus 401. The “Why did” menu contains
questions for each runtime action that was executed and each
assignment ol a variable. The “Why didn’t” menu also con-
tains these questions (so that the system may reveal false
assumptions about runtime actions that actually did occur). In
addition to what did occur, the “Why didn’t” menu contains a
question for each method that could have executed at runtime.
This set of method calls 1s obtained by performing a static
analysis of the subject program’s code to determine all of the
method calls 1n the subject program’s source code. In addition
to method calls, the “Why didn’t” contains a question for each
potential assignment of a variable. These potential assign-
ments are obtained by performing a static analysis of all of the
variable assignment statements in the subject program’s
source code. For discrete variables (such as Booleans or enu-
merated types), a question 1s provided for each possible value
that the variable may be assigned. For continuous variables,
one question 1s provided for each constant-valued assign-
ment, along with one generic question in the form of “Why
didn’t X change?” where X 1s the continuous variable. Once
the “Why did” and “Why didn’t” submenus are constructed,
the top-level menu 1s displayed on-screen so that the user may
select the question they want to ask.

Once a question 1s selected, 1t 1s answered based on the
process depicted in FIG. 3. First the system determines
whether a “Why did” or “Why didn’t” question was asked
412. When users ask a “Why didn’t” question about some
object’s behavior, the question refers to a node in the pro-
gram’s CFG (some element of a program). To answer “Why
didn’t” questions, the system {first checks if the node 1n ques-
tion was 1n fact executed 402. I1 1t was, an answer may be
provided 1n the form of a prepared statement, such as “Actu-
ally, the statement did execute” and the system visualizes the
set of runtime actions responsible for the execution of the
node 1n question 403. If the node did not execute, the system
checks 1f 1t was possible for the node to execute 404. It does
this by checking if there are any incoming control flow edges
into the node. It there are not, the system may provide an
answer 1n the form of a different prepared statement, such as
“Nothing executes this statement™ 405. Finally, 1f the state-
ment did not execute, but 1t could have executed, the system
provides an answer consisting of all umique executions of the
predicate node that prevented the node in question from
executing, and the runtime actions causing each 406. Unique
executions ol a predicate are defined by the set of values used
to evaluate a predicate’s expression.

When users ask a “Why did” question about some object’s
behavior, the question refers to the most recent execution of a
node i the CFG (an execution of some element of a pro-
gram). To answer “Why did” questions, the system {irst

US 7,735,066 Bl

7

checks 11 the statement will execute unconditionally 408. It
does this by checking for incoming predicate nodes. If the
statement will execute unconditionally, the system may pro-
vide an answer 1n the form of a prepared statement, such as
“Nothing prevents this statement from executing” 410. If the
statement conditionally executes, the system provides an
answer 1n terms of the set of actions that caused the node 1n
question to be executed 409.

For “Why did” answers, up to two predicates are included
in the queried execution action’s chain of causality, and any
actions defining the properties used in the predicates’ expres-
sions. More or fewer execution actions may be included,
although 1including more execution actions will decrease vis-
ibility. Any actions that are not shown can always be retrieved
at the request of the user.

After viewing an answer that has an accompanying dia-
gram (steps 406 and 409), users may then ask additional
questions about the mformation in the diagram 411, which
invokes the same answering process as described above.

FI1G. 4 1s a flow chart 500 1llustrating another aspect of the
present invention showing how the question menus are con-
structed. The first step 502 is to instrument and analyze the
subject program so that information may be recorded as 1t 1s
executing. The subject program 1s mstrumented incremen-
tally as programmers create and modily code to allow the
system to execute the program on demand. In alternative
embodiments, this instrumentation could happen as a batch
process that modifies the subject program’s source code to
record information, by a compiler that generates an instru-
mented executable that collects the information, or the infor-
mation could be collected directly without instrumentation
during execution by an interpreter, emulator or simulator. In
step 504 the subject program 1s executed.

Step 506 shows that every time the value of a variable in the
subject program changes during execution that certain infor-
mation about that execution action 1s recorded. The precise
information recorded may vary. For example, the statement
responsible for the change may be recorded, but the previous
value of the variable may not be recorded. In another embodi-
ment, both the statement responsible for the change in the
value of the variable and the previous value of the vaniable are
recorded. Other information may also be recorded, such as
the thread 1n which the statement was executed. This 1nfor-
mation may be recorded in memory while the program 1s
executing, or 1t may be recorded to writable media as a log.
Other embodiments may have variations in how such infor-
mation 1s compressed to reduce the amount of information
that must be recorded.

In step 508 a statement 1n the subject program has been
executed and certain information about that action 1is
recorded. In one embodiment, the action that caused that
statement to execute 1s recorded, and the data used during the
execution of that statement i1s recorded. For example, the
statement might be part of a conditional, and the system
would record what values were used that caused this state-
ment to execute, and which statement was executed immedi-
ately prior to this statement.

Steps 506 and 508 may be repeated many times as the
subject program 1s executed and changes occur. An example
of steps 506 and 508 will now be provided 1n which variables
and statements will be given labels (1.e., “first”, “second”,
“thard”). The example of the operation of steps 506 and 508 1s
as follows: when a “first” statement 1s executed which 1s an
assignment statement, and changes the value of a “first” vari-
able, the “first” statement will be recorded 506 as being
responsible for that change; when a “second” statement
executes which uses the value of a “second” variable, the

10

15

20

25

30

35

40

45

50

55

60

65

8

“second” variable 1s recorded 508; and a “third” statement 1s
recorded 508 because that third statement caused the “sec-
ond” statement to execute. The labels used in the example are
for the purpose of distinguishing between different state-
ments, distinguishing between different variables, and 1den-
tifying corresponding variables and statements. This example
1s 1llustrative and not limiting, and many other examples are
possible with the present invention. For example, the labels
(1.e., “first”, “second”, “third”’) may indicate the relative order
in which actions occur, although the order may also be dii-
ferent than the labels. In addition, more or fewer statements
and data may be recorded than 1s illustrated 1n this example.
Furthermore, different labels may refer to different variables
and statements, although this 1s notrequired. For example, the
first variable and the second variable may be the same vari-
able used two different times, or the first variable and the
second variable may be two different variables. The same 1s
true with the statements. The current embodiment 1s
described with respect to imperative object-oriented pro-
gramming languages that execute statements and store data 1n
variables, but alternative embodiments could support other
types of programming languages. For example, 1n a graphical
program, the unit of code that 1s recorded might be a graphical
program step instead of a statement. In a database language,
the changes to data that are recorded might be changes to
database tables. The description of the present invention 1n
terms ol statements and data represented by variables 1s for
the purpose of 1illustrating particular embodiments of the
present invention. However, the present mvention applies
broadly to ““units of code™, not just statements, and the present
invention applies broadly to “data items™, not just the data
represented by variables.

In step 510 the execution of the subject program 1s paused.
This may be as a result of a user intentionally pausing the
execution of the subject program, for example, by hitting the
“Why” button, clicking on a code fragment 1n the program
editor, or by clicking on output from the program. The subject
program may also be paused as a result of an unintentional
interruption of the subject program, for example as a result of
the program crashing, the result of the program reaching a
breakpoint in the code, or result of some other occurrence or
runtime action.

Although it may be possible to practice the present mven-
tion while the subject program 1s executing, it 1s generally
preferred to stop the subject program, and the discussion of
the present invention will assume that the subject program 1s
stopped while performing the subsequent steps.

In step 512 the statements atlecting the output of the pro-
gram that have executed “recently” are 1dentified. These are
determined by analyzing the execution history collected 1n
steps 506 and 508. Determining which of these to display will
vary based on the number of statements that happened, the
particular application of present invention, and the user pret-
erences. For example, the user may be able to select which
actions are sulliciently “recent” to be displayed. Alterna-
tively, the user may 1dentity other criteria to be used 1n deter-
mining which information 1s displayed, or the program editor
may attempt to determine what statements might be relevant
to the user’s task.

In step 514, statements that the user might have expected to
execute but did not actually execute are 1dentified. These are
determined from the program code Ifrom the analyses
described 1n step 502. The tool identifies the branches of
conditionals that might not have executed, event handlers that
might not have executed, and any other statements affecting
the program’s output that might not have executed. All of
these statements are included, regardless of whether they

US 7,735,066 Bl

9

occurred during the execution of the program. As with step
512, determining what mformation 1s to be displayed will
vary by programming language and user preferences.

In step 516, the user 1s prompted to select desired informa-
tion. This prompt follows the user selecting the “why” button, 5
or makes other subsequent selections after selecting the
“why”” button. The manner 1n which the user 1s prompted may
take many forms. For example, the imformation may be
accessed through a series of one or more levels of menus. The
user 1s first presented with the options of asking “why did” 10
something happen, or “why not”. If the user selected to ask
“why did” something happen, then the user will next see a
menu listing objects that has recently changed and methods
on those objects which have recently been executed as deter-
mined 1n step 512. If the user selects one of these 1tems, the 15
user will be presented with more specific information about
the data or executed 1tems.

Similarly, if the user selected to determine why something
did not happen, the user will be presented with a menu listing
things that have not happened recently, such as data that has 20
not changed and units of code that have not been executed, as
determined 1n step 314. Again one or more menus may follow
as the user continues to make selections.

In other embodiments, the user may be presented with
multiple levels of menus providing, for example, information 25
with varying degrees of specificity. After the first menu, the
user may be presented with the option of selecting from
another menu. Alternatively, the user may be presented with
other options. The user may move up and down the menus,
viewing different information. The number of menus may 30
vary, as well as the manner 1n which information 1s presented.
For example, rather than initially choosing between “why”
and “why not”, the user may first select the unit of code, data,
objects, or other information of 1nterest. In addition, menus
may not be used at all, but rather the information may be 35
presented in a more graphical form or otherwise to allow the
user to seek the information with or without menus.

Steps 512, 514, and 516 may be repeated multiple times as
the user navigates different levels of menus or otherwise
reviews information and requests additional information. In 40
addition, although step 516 1s illustrated as happening after
steps 512 and 514, those steps may be performed 1n different
orders. For example, the user might first indicate an object of
interest, and then the system will identily things that did and
did not happen specifically on that object. Other variations 45
and changes are also possible.

In step 518, information selected by the user 1s displayed.
This step 518 1s 1llustrated as being performed after steps 512,
514, and 516 and it may be performed, for example, when the
user makes a final selection at the bottom-most menu. Alter- 50
natively, information may be displayed and updated in a
continuous manner as the user navigates through the menus,
such as by performing step 518 while performing steps 312,
514, and 516. One example of displaying information 1s 1llus-
trated i FIG. 2. Other variations are possible. 55

Other Embodiments

The present imnvention allows for many variations and
embodiments. For example, one embodiment would add 6o
object-relative questions (such as “why did Pac resize after
Ghost moved™), which were fairly common in early observa-
tions of some programmers.

In reported user studies, using the latest execution of the
queried statement was suificient. In more complicated pro- 65
grams, this may not hold true. Another embodiment would
allow programmers to further specily their questions with a

10

time or repeat count, which would allow them to find a par-
ticular execution in the recent history. Another possibility
would be to statistically categorize execution actions as either
common or anomalous. This would reduce the number of
choices presented to the programmer by only presenting the
anomalous values 1n the menu. Another possibility would be
to choose the most recent execution relative to the position of
a time cursor 1n a visualization.

For particularly large programs, one way to automatically
determine the granularity and nature of the program output
being debugged would be to search for previous executions of
code 1n recently modified source files. This analysis could be
used to guide the selection a set of output statements for “Why
did” and “Why didn’t” questions that are likely to be relevant
in a particular debugging context.

When a subject program displays output, either as graphi-
cal output 1n a Graphical User Interface program, or textual
output to a console or debugging window, programmers can
ask about particular program output by selecting the output
and using a special signal such as a context-menu or special
tool to ask “Why did this output get produced”. For example,
the user might click on a blue rectangle that 1s out of place to
be shown the specific code that caused 1t to display 1n its
current configuration. Another example would be when there
are print statements 1n some networking code that sends the
output to a text console, and the tool would allow the user to
ask questions about particular output by just clicking on 1t.

Another option 1s to ask the question directly about a
selected piece of source code. A special context-menu could
be displayed over the code, or a special tool could be used to
select the code 1n question, or else the code could be
“dragged-and-dropped™ onto the visualization window 301.
The resulting answer would show why that piece of code did
or did not recently get executed.

Another embodiment would include other questions, 1n
addition to “Why did” and “Why didn’t” 1n the question
menu. For example, questions about “What happens
when . . .” or “How does this work™ could support program-
mers’ understanding of unfamiliar code by allowing them to
ask the tool about the causes of particular program behaviors.
For example, 1if a programmer was trying to understand the
operation that gets performed after a button 1s pressed, the
tool could allow him to use a special signal such as a context-
menu to select the button and ask, “What happens when this
button 1s pressed?” The tool could then provide all of the code
that was executed as a result of the button being pressed.

In another embodiment, the questions could be asked
whenever the subject program was paused. For example, 1T
the program stops due to an error or because a breakpoint was
hit, all of the questions and visualizations would still be
available to help the user debug.

Although the description has been discussed 1n terms of
debugging, those skilled 1n the art will understand that the
ability to ask questions about the execution of a program will
also be usetul for other tasks, such as understanding how an
unfamiliar program works.

FIG. 5 1s a block diagram 1llustrating one embodiment of a
computer 600 that may be used with the present invention.
The computer 600 includes a processor 602 and memory 604,
as well as an input device 606, such as a keyboard or mouse,
and an output device 608, such as a monitor. The computer
may include other devices, such as video adapters, data inter-
face devices, device controllers, additional input and output
devices, additional memory devices, and additional proces-
sors. The computer may be, for example, a general purpose
computer, a special purpose computer, a computer system, or
other vaniations of computers.

US 7,735,066 Bl

11

The present mvention may be implemented on the com-
puter 600 1n various ways. For example, the present invention
may be 1n the form of software residing 1n the memory 604.
For example, the present mnvention may be in the form of
software which 1s loaded or installed on non-removable
memory 604 in the computer 600, or 1t may be in the form of
removable memory 604, such as on a removable magnetic
disk, a memory card, an optical disk, or other forms of remov-
able memory. The present invention may also be in the form
of software residing in memory 1n the processor 602, 1n
memory i another part of the computer 600, or as part of one
or more applications, tools, or programs stored or executed on
the computer 600. Alternatively, the software may reside in a
remote location, such as in one or more other computers 610
connected via one or more connections 612 such as the Inter-
net or other networks. For example, a subject program may
reside 1 one computer, while the debugger may reside 1n a
different computer. This practice 1s sometimes known as
“remote debugging”. In such an embodiment, the invention
may be used to practice remote debugging between two or
more networked computers.

In one embodiment, the present invention 1s in the form of
executable software on a removable memory which can be
installed 1n memory 604 and executed on the computer 600.
In another embodiment, the present invention 1s 1n the form of
several separate pieces of software which are integrated with
one or more applications on the computer 600, and that soit-
ware 1s executed from 1ts various locations as needed.

Regardless of how and where the software resides, when
executed the software causes the processor 602 or one or
more other devices to perform some or all of the processes
described herein. While the invention has been particularly
shown and described with reference to several embodiments
thereot, 1t will be understood that various changes 1n form and
detail may be made therein without departing from the spirit
and scope of the invention. For example, although the present
invention was generally described 1n terms of a “why” button,
it may be implemented with a button labeled with a term or
logo other than “why”, or it may utilize a form other than a
button, such as a desktop icon, an option in a larger menu
system, or an object on the screen representing the subject
program’s output. Similarly, references to *“clicking”,
“double clicking™, menus, etc. are illustrative of the invention
and are not limitations of the imnvention. In addition, although
the first level menu was described 1n terms of offering “why
did” and “why didn’t” option, the first level menu may con-
tain additional questions, such as “How”, or it may contain
other options 1n place of the questions. Similarly, the number
of menus and submenus, and the number and type of options
available at each menu and submenu may also vary. For
example, 1n some embodiments only one or two levels of
menus may be provided, and in other embodiments many
levels may be provided. Those and other variations and modi-
fications of the present invention are possible and contem-
plated, and 1t 1s intended that the foregoing specification and
the following claims cover such modifications and variations.

What 1s claimed 1s:
1. A computer software tool stored in memory which, when
executed, performs steps comprising:

executing a subject program;

recording a first statement responsible for a first variable
changing, wherein recording the first statement 1s per-
formed during execution of the subject program:;

recording a second variable used by a second statement that
executed, wherein recording the second variable 1s per-
formed during execution of the subject program:;

5

10

15

20

25

30

35

40

45

50

55

60

65

12

recording a third statement that caused the second state-
ment to execute, wherein recording the third statement 1s
performed during the execution of the subject program;

pausing the execution of the subject program after execut-
ing the subject program, after recording the first state-
ment, after recording the second variable, and after
recording the third statement, wherein pausing the
execution of the subject program 1s caused by a user
intentionally pausing the execution of the subject pro-
gram and wherein pausing 1s caused without break-
points;
prompting the user to select information related to the
subject program after executing the subject program,
after recording the first statement, after recording the
second variable, after recording the third statement, and
after pausing the execution of the subject program; and

providing an answer 1n response to the user selecting infor-
mation related to the subject program, wherein the
answer includes at least one of: statements, variables,
and prepared statements related to the information
selected by the user, and wherein providing an answer
includes:

determining whether a statement of a subject computer

program failed to execute because 1t 1s not possible for
the statement to execute;

providing an answer indicating why 1t 1s not possible for

the statement to execute when it 1s determined that the
statement failed because 1t 1s not possible for the state-
ment to execute,

determiming whether a statement did execute;

providing an answer indicating why the statement did

execute when 1t 1s determined that the statement did
execute;

determining whether a statement can execute but did not

execute;

providing an answer indicating why the statement can

execute but did not execute when 1t 1s determined that the
statement can execute but did not execute.

2. The tool of claim 1, wheremn providing an answer
includes providing an answer referring to at least one of:
statements that did not execute and variables that did not
change.

3. The tool of claim 1, wheremn providing an answer
includes providing an answer referring to at least one of:
statements that executed and variables that changed.

4. The tool of claim 1, wherein the first and second vari-
ables are the same.

5. The tool of claim 1, further comprising recording a value
of the first variable prior to the first variable changing.

6. The tool of claim 1, wherein prompting the user includes
prompting the user to select from a plurality of options includ-
ing determining why an action occurred and determining why
an action did not occur.

7. The tool of claim 1, further comprising:

prompting the user to select one of the statements and

variables 1n the answer; and

providing a subsequent answer relating to the statement or

variable selected by the user.

8. The tool of claim 1, further comprising recording a
thread 1n which a statement 1s executed.

9. The tool of claim 1, wherein the user intentionally paus-
ing the execution of the subject program results from the user
pressing a button labeled “Why™.

10. The tool of claim 1, wherein pausing the execution of
the subject program results from the user clicking on a code
fragment 1n the program editor.

US 7,735,066 Bl

13

11. The tool of claim 1, wherein at least one of the record-
ing steps includes recording at least one of changes to objects,
changes to variables, execution of assignment statements, and
execution of animation statements.
12. The tool of claim 1, wherein the at least one of the
recording steps 1s performed by interpreting statements.
13. The tool of claim 1, wherein the steps of recording
include:
instrumenting the subject program; and
compiling the mstrumented subject program.
14. The tool of claim 1, wherein providing an answer
includes providing the user with information selected from a
group comprising: determining why a statement executed,
and determined why a statement did not execute.
15. A computer soitware tool stored 1n memory which,
when executed, performs steps comprising;:
executing a subject program;
recording a first statement responsible for a first variable
changing, wherein recording the first statement 1s per-
formed during execution of the subject program:;

recording a second variable used by a second statement that
executed, wherein recording the second variable 1s per-
formed during execution of the subject program:;

recording a third statement that caused the second state-
ment to execute, wherein recording the third statement 1s
performed during the execution of the subject program;

pausing the execution of the subject program aifter record-
ing the first statement, after recording the second vari-
able, and after recording the third statement, and
wherein pausing the execution of the subject program 1s
caused by a user intentionally pausing the execution of
the subject program and wherein pausing 1s caused with-
out breakpoints;

prompting the user to select program output of the subject

program after executing the subject program, after
recording the first statement, after recording the second
variable, after recording the third statement, and after
pausing the execution of the subject program, wherein
program output 1s selected from a group comprising
textual output and graphical output from the subject
program; and

providing an answer in response to the user selecting infor-

mation related to the output of the subject program,

wherein the answer includes at least one of: statements,

variables, and prepared statements related to the infor-

mation selected by the user, and wherein providing an

answer includes:

determining whether a statement related to the output of
the subject program did execute;

providing an answer indicating why the statement did
execute when it 1s determined that the statement did
execute.

16. A computer-implemented method for interrogating a
subject program, comprising:

executing the subject program;

recording a first statement responsible for a first variable

changing, wherein recording the first statement 1s per-
formed during execution of the subject program;
recording a second variable used by a second statement that
executed, wherein recording the second variable 1s per-
formed during execution of the subject program;
recording a third statement that caused the second state-
ment to execute, wherein recording the third statement 1s
performed during the execution of the subject program;
pausing the execution of the subject program aiter execut-
ing the subject program, aiter recording the first state-
ment, after recording the second variable, and after

10

15

20

25

30

35

40

45

50

55

60

65

14

recording the third statement, wherein pausing the
execution of the subject program 1s caused by a user
intentionally pausing the execution of the subject pro-
gram and wherein pausing 1s caused without breakpoints

prompting the user to select information related to the
subject program aiter executing the subject program,
after recording the first statement, after recording the
second variable, after recording the third statement, and
after pausing the execution of the subject program; and

providing an answer 1n response to the user selecting infor-
mation related to the subject program, wherein the
answer includes at least one of: statements, variables,
and prepared statements related to the information
selected by the user, and wherein providing an answer
includes:

determining whether a statement of a subject computer
program failed to execute because 1t 1s not possible for
the statement to execute;

providing an answer indicating why 1t 1s not possible for
the statement to execute when 1t 1s determined that the
statement failed because it 1s not possible for the
statement to execute;

determining whether a statement did execute;

providing an answer indicating why the statement did
execute when 1t 1s determined that the statement did
execute;

determining whether a statement can execute but did not
execute;

providing an answer indicating why the statement can
execute but did not execute when 1t 1s determined that
the statement can execute but did not execute.

17. A computer-implemented method for iterrogating a
subject program, comprising:
executing the subject program;

recording a first statement responsible for a first variable
changing, wherein recording the first statement 1s per-
formed during execution of the subject program;

recording a second variable used by a second statement that
executed, wherein recording the second variable 1s per-
formed during execution of the subject program;

recording a third statement that caused the second state-
ment to execute, wherein recording the third statement 1s
performed during the execution of the subject program;

pausing the execution of the subject program after record-
ing the first statement, aiter recording the second vari-
able, and after recording the third statement, wherein
pausing the execution of the subject program 1s caused
by a user intentionally pausing the execution of the
subject program and wherein pausing 1s caused without
breakpoints;

prompting the user to select program output of the subject
program after executing the subject program, after
recording the first statement, after recording the second
variable, after recording the third statement, and after
pausing the execution of the subject program, wherein
program output 1s selected from a group comprising
textual output and graphical output; and

providing an answer 1in response to the user selecting infor-
mation related to the output of the subject program,
wherein the answer includes at least one of: statements,
variables, and prepared statements related to the infor-
mation selected by the user, and wherein providing an
answer includes:

determining whether a statement related to the output of
the subject program did execute;

US 7,735,066 Bl

15 16

providing an answer indicating why the statement did gram, after recording the first statement, after recording
execute when 1t 1s determined that the statement did the second vanable, after recording the third statement,
execute. and aiter pausing the execution of the subject program.
18. The computer software tool of claim 1, wherein 20. The computer-implemented method of claim 17,

prompting a user to select information related to the subject 5 Wwherein:
program includes prompting the user to select program output pausing the execution of the subject program 1s performed
of the subject program, wherein program output 1s selected atter executing the subject program, atter recording the
from a group Comprising textual Ou‘[pu‘[and graphica] Ou‘[pu‘[_ first S‘[c‘il)[ﬁ‘;lllﬁ‘fllj[,J after r BCOI'diIlg the second Variable, and

after recording the third statement; and

10 prompting the user to select program output of the subject
program 1s performed after executing the subject pro-
gram, after recording the first statement, after recording
the second variable, after recording the third statement,
and after pausing the execution of the subject program.

19. The computer soitware tool of claim 15, wherein:

pausing the execution of the subject program 1s performed
alter executing the subject program, after recording the
first statement, after recording the second variable, and
alter recording the third statement; and

prompting the user to select program output of the subject
program 1s performed after executing the subject pro- k% ¥k

	Front Page
	Drawings
	Specification
	Claims

