12 United States Patent

US007733854B2

(10) Patent No.: US 7.733.854 B2

Anand et al. 45) Date of Patent: Jun. 8, 2010
(54) FORCED BUBBLE INSERTION SCHEME (56) References Cited
U.S. PATENT DOCUMENTS
nventors: Anupam Anand, Newark, ;
(75) Inventors: Anupam Anand, Newark, CA (US)
Chien-Hsien Wu, Cupper‘[inoj CA (US),, 6,144,668 A * 11/2000 Bassetal. .................. 370/401
Samir K. Sallghalli:J San Josej CA (US) 6,425,063 B1* 7/2002 Mattson et al. ............. 711/167
7,352,748 B1* 4/2008 Rozarioetal. .............. 370/392
(73) Assignee: Broadcom Corporation, Irvine, CA 2002/0093973 Al* 7/2002 Tzeng ...oeevvvvnininnnannns 370/419
(US) 2002/0186705 Al* 12/2002 Kadambietal. ............ 370/452
2004/0037309 Al1* 2/2004 Haucketal. ................ 370/462
(*) Notice:  Subject to any disclaimer, the term of this 2006/0256756 Al* 11/2006 Wakabayashi .............. 370/335
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1209 days.
(21) Appl. No.: 11/090,110 OTHER PUBLICATIONS
_ David Robinson, Patrick Lysaght, Gordon McGregor and Hugh
(22) Filed: Mar. 28, 2005 Dick, Performance Evaluation of a Full Speed PCI Initiator and
Target Subsystem Using FPGAs, 1997, Springer Berlin/Heidelberg,
(65) Prior Publication Data Lecture Notes in Computer Science vol. 1304/1997, p. 42.*
US 2006/0114905 Al Jun. 1, 2006 * cited by examiner
Related U.S. Application Data Primary Examiner—Chirag (¢ Shah
Assistant Examiner—Ashley L Shivers
(60) Provisional application No. 60/631,582, filed on Nov.
30, 2004, (37) ABSTRACT
(51) Int.CL
HO04L 12/50 (2006.01) A network device for processing packets. The .network device
HO4L 1228 2006.01 includes a memory management unit for storing packets and
04T 12/43 52006 0”; performing resource checks on each packet and an egress
COGE 12/00 (200 6. O:h) module for performing packet modification and transmitting
T the packet to a destination port. The memory management
(52) US.CL ...l 370/376; 370/3 95.4; 370/458; unit includes a timer for iIldiCEltiIlg that a free space should be
71171235 711/125 created on a bus slot between the memory management unit
(58) Field of Classification Search ................. 3°70/326, and the egress module, wherein the free space 1s used for

3770/336, 376,392, 395.4, 423, 438, 459,
370/468, 395.31, 330, 345, 431, 442, 443;
711/123, 125

See application file for complete search history.

transmitting CPU 1nstructions from the memory management
unit to the egress module.

18 Claims, 4 Drawing Sheets

High Speed Port High Speed Port
108a J08x
| | 08 Tl
GPU
ingress Egress CPU
I—+ Module |—» MMU ~30z, Modula  le348- Processing ——  Port
104 Module
102 h[1]-] 111 110
Timer
204
Y Y . ¥
Port Sort Device 100 Port
109x 108x 109x




U.S. Patent Jun. 8, 2010 Sheet 1 of 4 US 7,733,854 B2

High Speed Port o High Speed Port |
108a 108x

CPU |

Ingress Egress : CPU
Module Milgf Module Prh?lr;edislleng Port
102 - 106 110

111

L ]
Device 100 Port
109x

Figure 1



U.S. Patent

Registerl
202

Main
Arbiter
207

| {Auxilary
Arbiter
209
Arbiter
206

Jun. 8, 2010 Sheet 2 of 4

Register
204

Configuration
Stage 208

—P

US 7,733,854 B2

First Switch Stage 214

Switch Stage
213

M

Second Switch Stage 216

Ingress Pipeline 200

Discard
Stage
212

Figure 2



U.S. Patent Jun. 8, 2010 Sheet 3 of 4 US 7,733,854 B2

High Speed Port High Speed Port
108a 108x
A
306
CPU

Ingress Egress : CPU
Module %’ L s02»{ Module 308 Pmﬁg‘g le—»! Port
102 106 111 110

Timer |

304

.

Port Sort Device 100 [ Port ‘
109x 109x | 109x

Figure 3




U.S. Patent Jun. 8, 2010 Sheet 4 of 4 US 7,733,854 B2

High Speed Port oo e High Speed Port
1083 108x%
Arbiter 402

Decision

Parser

408 Stage 412 Buffer 414

Stage 410

Initial Packet Buffer
404

|
|
|
|
|
|
|
|
|
|
|
|
|
I
Modification :
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I




US 7,733,854 B2

1
FORCED BUBBLE INSERTION SCHEME

This application claims priority of U.S. Provisional Patent
Application Ser. No. 60/631,582, filed on Nov. 30, 2004. The
subject matter of the earlier filed application 1s hereby ncor-
porated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a network device in a
packet switched network and more particularly to a method
tor scheduling CPU 1nstructions 1n the network device.

2. Description of the Related Art

A packet switched network may include one or more net-
work devices, such as a Fthernet switching chip, each of
which includes several modules that are used to process infor-
mation that is transmitted through the device. Specifically, the
device includes an ingress module, a Memory Management
Unit (MMU) and an egress module. The ingress module
includes switching functionality for determiming to which
destination port a packet should be directed. The MMU 1s
used for storing packet information and performing resource
checks. The egress module 1s used for performing packet
modification and for transmitting the packet to at least one
appropriate destination port. One of the ports on the device
may be a CPU port that enables the device to send and receive
information to and from external switching/routing control
entities or CPUs.

As packets enter the device from multiple ports, they are
torwarded to the ingress module where switching and other
processing are performed on the packets. Thereatfter, the
packets are transmitted to one or more destination ports
through the MMU and the egress module. According to a
current switching system architecture, the MMU 1nserts
request/instructions from a CPU to the egress module
between empty slot/bubble on a bus from the MMU to the
egress module. The bubbles on the bus are typically found
between packets. However, 11 all ports on the network are
transmitting packet, the MMU may not be able to obtain a
bubble on which to transmit a CPU instruction. Therefore a
scheme 1s needed wherein the MMU 1s ensured of empty slots
for transmitting CPU 1nstructions.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there 1s provided
a network device for processing packets. The network device
includes a memory management unit for storing packets and
performing resource checks on each packet and an egress
module for performing packet modification and transmitting,
the packet to a destination port. The memory management
unit includes a timer for indicating that a free space should be
created on a bus slot between the memory management unit
and the egress module, wherein the free space 1s used for
transmitting CPU 1nstructions from the memory management
unit to the egress module.

According to another aspect of the invention, there 1s pro-
vided a method for processing packets 1n a network device.
The method includes the step of mitializing a timer 1n a
memory management unit. The method also includes the
steps of creating a free space on a bus slot between the
memory management unit and an egress module when the
timer expires and using the free space to transmit CPU
instructions from the memory management unit to the egress
module.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to another aspect of the invention, there 1s pro-
vided an apparatus for processing packets 1n a network
device. The apparatus includes mitializing means for initial-
1zing a timer in a memory management unit. The apparatus
also includes creating means for creating a free space on a bus
slot between the memory management unit and an egress
module when the timer expires. The apparatus further
includes using means for using the free space to transmit CPU
instructions from the memory management unit to the egress
module.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the ivention and are incor-
porated 1n and constitute a part of this specification, illustrate
embodiments of the invention that together with the descrip-
tion serve to explain the principles of the invention, wherein:

FIG. 1 1illustrates a network device in which an embodi-
ment of the present invention may be implemented;

FIG. 2 illustrates a centralized ingress pipeline architec-
ture;

FIG. 3 1llustrates the connection between the MMU and the
egress module; and

FIG. 4 illustrates a centralized egress pipeline architecture
of an egress stage.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Retference will now be made to the preferred embodiments
of the present invention, examples of which are illustrated 1n
the accompanying drawings.

FIG. 1 1llustrates a network device, such as a switching
chip, 1n which an embodiment of the present invention may be
implemented. Device 100 includes an imngress module 102, a
MMU 104, and an egress module 106. Ingress module 102 1s
used for performing switching functionality on an incoming
packet. MMU 104 1s used for storing packets and performing
resource checks on each packet. Egress module 106 1s used
for performing packet modification and transmitting the
packet to an appropriate destination port. Each of ingress
module 102, MMU 104 and Egress module 106 includes
multiple cycles for processing instructions generated by that
module. Device 100 implements a pipelined approach to pro-
cess incoming packets. The key to the performance of device
100 1s the ability of the pipeline to process one packet every
clock. According to an embodiment of the mnvention, device
100 includes a 133.33 MHz core clock. This means that the
device 100 architecture 1s capable of processing 133.33M
packet/sec.

Device 100 may also include one or more internal fabric
high speed ports, for example a HiGig port 108a-108x, one or
more external Ethernet ports 109q-109x, and a CPU port 110.
High speed ports 108a-108x are used to interconnect various
network devices 1n a system and thus form an internal switch-
ing fabric for transporting packets between external source
ports and one or more external destination ports. As such,
high speed ports 108a-108x are not externally visible outside
of a system that includes multiple interconnected network
devices. CPU port 110 1s used to send and receive packets to
and from external switching/routing control entities or CPUs.
According to an embodiment of the imnvention, CPU port 110
may be considered as one of external Ethernet ports 109a-
109x. Device 100 interfaces with external/off-chip CPUs
through a CPU processing module 111, such as a CMIC,
which interfaces with a PCI bus that connects device 100 to an
external CPU.




US 7,733,854 B2

3

Network traffic enters and exits device 100 through exter-
nal Ethernet ports 109q-109x. Specifically, traific 1n device
100 1s routed from an external Ethernet source port to one or
more unique destination Ethernet ports 1097-109x. In one
embodiment of the invention, device 100 supports physical
Ethernet ports and logical (trunk) ports. A physical Ethernet
port 1s a physical port on device 100 that 1s globally 1dentified
by a global port identifier. In an embodiment, the global port
identifier includes a module identifier and a local port number
that uniquely i1dentifies device 100 and a specific physical
port. The trunk ports are a set of physical external Ethernet
ports that act as a single link layer port. Each trunk port 1s
assigned a global a trunk group identifier (TGID). According
to an embodiment, device 100 can support up to 128 trunk
ports, with up to 8 members per trunk port, and up to 29
external physical ports. Destination ports 109;-109x on
device 100 may be physical external Ethernet ports or trunk
ports. If a destination port 1s a trunk port, device 100 dynami-
cally selects a physical external Ethernet port in the trunk by

using a hash to select a member port. The dynamic selection
enables device 100 to allow for dynamic load sharing
between ports 1n a trunk.

FI1G. 2 illustrates an embodiment of the centralized 1ngress
pipeline 200 of ingress module 102. Ingress pipeline 200
processes mcoming packets, primarily determines an egress
bitmap and, in some cases, figures out which parts of the
packet may be modified. Ingress pipeline 200 includes a data
holding register 202, amodule header holding register 204, an
arbiter 206, a configuration stage 208, a parser stage 210, a
discard stage 212 and a switch stage 213. Ingress pipeline 200
receives data from port 109a-019; or CPU processing module
111 and stores cell data 1n data holding register 202. Arbiter
206 1s responsible for scheduling requests from ports 109a-
109; or CPU processing module 111. Arbiter 206 1ncludes a
main arbiter 207 for scheduling requests from ports 108 and
109 and an auxiliary arbiter 209 for scheduling requests from
port 111. Configuration stage 208 1s used for setting up a table
with all major port-specific fields that are required for switch-
ing. Parser stage 210 parses the incoming packet and a high
speed module header, 11 present. Discard stage 212 looks for
various early discard conditions and either drops the packet
and/or prevents 1t from being sent through pipeline 200.
Switching stage 213 performs all switch processing 1n ingress
pipeline 200, including address resolution.

Once a packet enters device 100 on a source port 109a-
109;, the packet 1s transmitted to mngress module 102 for
processing. Upon processing the packet, MMU 104 transmits
the packet to the egress module 106 for possible modification.
MMU 104 passes packets to egress module 106 for all ports,
including port 110, on a 1024 bit bus to a transmit pipeline.
Thereatter, packets from all of ports 109 and 108 are accom-
modated on a 72 cycle slot. Since the MACs associated with
ports 108 and 109 typically transmits packets at a lower rate
than the processing speed of MMU 104, there are typically
“natural” bubbles/Iree space between packets, wherein MMU
104 transmits CPU 1nstructions on the bubble on the bit bus
from MMU 104 to the transmit pipeline. Nevertheless, there
exi1st a situation i which all of port 108 and 109 may transmut
129 byte packets, such that MMU 104 may not be able to
obtain a bubble on which to insert CPU instructions. This will
in effect block all processing between the CPU and network
device 100.

According to one embodiment of the invention, MMU 104
includes a programmable timer, wherein when the timer
expires, MMU 104 forces a bubble in the 1024 bit bus and
iserts a pending nstruction from CPU processing module
111 on that bubble. MMU 104 then resets the timer. In one

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiment of the mnvention, MMU 104 may only create a
bubble between packets. For example, 1f MMU 104 1s trans-
mitting a large packet from port 1084, when the timer expires,
MMU 104 must wait from the End Cell of the Packet (EOP)
betfore inserting a bubble on a slot associated with port 108a.
Another embodiment of the invention requires a correlation
between cell requests pending from CPU processing module
111 in MMU 104 and bubbles created by MMU 104, wherein
if the timer expires and there 1s no pending data from CPU
processing module 111 in MMU 104, MMU 104 may not
create a bubble on the bit bus. Furthermore, another embodi-
ment of the mnvention provides that MMU 104 must reset the
timer every time MMU 104 obtains a “natural bubble”, 1.e., a
bubble that 1s not created by MMU 104.

FIG. 3 illustrates a connection between MMU 104 and
egress module 106. Upon receiving the packet from MMU
104, egress module 106 supports multiple egress functions
for a 72 gigabyte port bandwidth and a CPU processing
bandwidth. According to an embodiment, egress module 106
1s capable of handling more than 72 gigabytes of traific, 1.e.,
24 one GE port, 4 high speed ports (12G) and a CPU process-
ing port of 0.2GE. Egress module 106 recerves original pack-
ets, as input from Ethernet ports 1094-109:, from MMU 104,
and may either transmit modified or unmodified packets to
destination ports 109;7-109x. According to one embodiment of
the invention, all packet modifications within device 100 are
made 1n egress module 106 and the core processing of egress
module 106 1s capable of running faster than the processing of
destination ports 109/-109x. Therefore, egress module 106
provides a stall mechanism on a port basis to prevent ports
109;-109x from becoming overloaded and thus services each
port based on the speed of the port.

In an embodiment of the mvention, egress module 106 1s
connected to MMU 104 by a 1024 bits data interface 302 and
all packets transmitted from MMU 104 passes through egress
module 106. Specifically, MMU 104 passes unmodified
packet data and control information to egress module 106 on
data interface 302. The control information includes the
results of table lookups and switching decisions made in
ingress module 102. The data bus 302 from MMU 106 is
shared across all ports 108 and 109 and the CPU processing,
111. As such, bus 302 uses a “request based” TDM scheme,
wherein each Gig port has a turn on the bus every 72 cycles
and each high speed Port 108 has a turn every 6 cycles. CPU
processing packet data 1s transmitted over bubbles—iree
spaces occurring on bus 302. As noted above, MMU 104 also
includes a timer 304 for creating bubbles on bus 302 when
MMU 104 recerves an mstruction from CPU processing mod-
ule 111 on bus 306. Upon receiving the information from
MMU 104, egress module 106 parses the packet data, per-
forms table lookups, executes switch logic, modifies, aligns
and further butfers the packet before the data 1s transmuitted to
the appropriate destination port 109:-109;.

Egress module 106 1s connected to CPU processing mod-
ule 111 through a 32 bit S-bus ntertace 308 which the CPU
uses to send requests to egress module 106. The requests are
typically for reading the egress module’s resources, 1.€., reg-
1sters, memories and/or stat counters. Upon receiving a
request, egress module 106 converts the request 1nto a com-
mand and uses a mechanism, described in detail below, for
storing and inserting CPU 1nstructions into a pipeline wher-
ever there 1s an available slot on the pipeline.

FIG. 4 illustrates a centralized egress pipeline architecture
400 of egress stage 106. Egress pipeline 400 includes an
arbiter 402, parser 406, a table lookup stage 408, a decision
stage 410, a modification stage 412 and a data builer 414.
Arbiter 402 provides arbitration for accessing egress pipeline




US 7,733,854 B2

S

400 resources between packet data and control information
from MMU and information from the CPU. Parser 406 per-
forms packet parsing for table lookups and modifications.
Table lookup stage 408 performs table lookups for informa-
tion transmitted from parser 406. Decision stage 410 1s used
tor deciding whether to modity, drop or otherwise process the
packet.

All incoming packet data from MMU 104 is transmitted to
an 1mtial packet buffer 404. In an embodiment of the mven-
tion, the mitial packet butter 1s 1044 bits wide and 18 words
deep. Egress pipeline 400 receives two inputs, packet data
and control information from MMU 104 and CPU operations
from the s-bus. Initial packet butler 404 stores packet data and
keeps track of any empty cycles coming from MMU 104.
Initial packet butfer 404 outputs 1ts write address and parser
406 passes the latest write address with pipeline instructions
to modification stage 412.

Arbiter 402 collects packet data and control information
from MMU 104 and read/write requests to registers and
memories from the CPU and synchronizes the packet data and
control information from MMU 104 and writes the requests
from the CPU 1in a holding register. Based on the request type
from the CPU, arbiter 402 generates pipeline register and
memory access mstructions and hardware table 1nitialization
instructions. After arbiter 402 collects packet data, CPU
requests and hardware table 1nitialization messages, 1t gener-
ates an appropriate instruction.

After recerving an instruction from arbiter 402, parser 406
parses packet data associated with the Start Cell of Packet
instruction and the Start-End Cell of Packet instruction using
the control information and a configuration register transmit-
ted from arbiter 402. According to an embodiment, the packet
data1s parsed to obtained I.4 and L3 fields which appear 1n the
first 148 bytes of the packet.

Table lookup stage 408 then recerves all packet fields and
register values from parser 406. Information from table
lookup stage 408 i1s then transmitted to decision stage 410
where a decision 1s made as to whether to modify, drop or
otherwise process the packet. For example, decision stage
410 first looks for flush bits at the beginning of the packet
transmission and 1f the flush bits are set, the packets are
marked “dropped”. In an embodiment of the invention, 1f a
flush bit for a packet 1s set for a packet already 1n transmis-
s10m, the packet 1s completely transmitted and the next packet
1s flushed. In another example, MMU 104 may mark packets
as Purge, Aged or Cell Error and decision stage 410 may
either drop or transmit these packets but mark them as erro-
neous. In another example, if a VLAN translate feature 1s
enabled, but there was a miss in a CAM lookup, the decision
stage 410 may drop the packet if certain fields are set. Deci-
sion stage 410 also determines if the packet needs to be 1.4
switched or L3 routed and the type of mirroring functions that
need to be performed on the packet.

Modification stage 412 thereafter constructs a Tunnel IP
Header and a module header for the packet, makes replace-
ment changes 1n the packet and computes IP checksum for
outer and inner IP headers. Modification stage 412 receives a
packet data intertace from the nitial butier 404 which enables
modification stage 412 to provide a read address to initial
builer 404 and in response obtain the packet data and basic
control data. Modification stage 412 then generates Middle of
Packet and End of Packet instructions based on the data
received from initial butier 404 and makes changes based on
these commands. Modification stage 412 also receives all
packet decisions and pipeline commands from decision stage
410 and uses this information to make further changes to the
packet. Specifically, all fields of the tunnel IP header which

10

15

20

25

30

35

40

45

50

55

60

65

6

need to be filled by incoming packet fields are filled. Further-
more, IP checksum for tunnel IP header 1s computed 1n par-
allel with the header construction. Modification stage 412
turther reads back packets and control information from 1ni-
tial bulfer 404 and performs all packet modifications and
replacements of fields. It outputs CPU operations and hard-
ware commands and data and addresses associated with them
on one bus and outputs packet data and control information on
another bus. Additionally, modification stage 412 performs
physical encapsulation and de-capsulation of headers and tag
removal and insertions. IT a packet 1s going to a high speed
port, modification stage 412 converts the packet from Ether-
net format to high speed format. Modification stage 412 also
aligns the packet by padding packets smaller than 64 bytes
and removes holes by aligning data to 1314 bit boundary.
Thereatter, 1314 bits “complete” data word 1s output from
modification stage 412 to the data butfer 414.

Data buffer 414 stores completed data words from modi-
fication stage 412 in memory. Belore the egress pipeline
sends packets out to destination ports 109;7-109x, the packet
data are stored 1n the data buifer 414 for pipeline latency and
port speed matchuing. Data builer 414 1s capable of requesting
data from MMU 104 whenever 1t has a free space.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all of
their advantages. Therefore, it 1s the object of the appended
claims to cover all such variations and modifications as come
within the true spirit and scope of the invention.

What 1s claimed:

1. A network device for processing packets, the network
device comprising:

a memory management unit configured to store packets
and perform resource checks on each packet the memory
management unit including a timer; and

an egress module configured to perform packet modifica-
tions and transmit the packet to a destination port, and

wherein the memory management unit 1s configured to:

detect an expiration of the timer;

create a non-natural free space or empty slot on a bus
between the memory management unit and the egress
module when the timer expires and after an end of cell of
a packet; and

transmit a CPU instruction from the memory management
unit to the egress module on the created free space or
empty slot on the bus.

2. The network device according to claim 1, wherein the
memory management umt 1s configured to create the free
space between packets when the timer expires and the
memory management unit insert a pending CPU 1nstruction
in the created free space.

3. The network device according to claim 1, wherein the
memory management unit 1s configured to reset the timer
aifter the memory management unit inserts a pending CPU
instruction 1n the free space.

4. The network device according to claim 1, wherein the
memory management unit 1s configured to create a free space
only 1f there 1s a pending CPU 1nstruction in the memory
management unit.

5. The network device according to claim 1, wherein the
memory management unit 1s configured to reset the timer
when the memory management unit uses a non-natural free
space or a iree space that was not created by the memory
management unit.

6. The network device according to claim 1, wherein the
memory management unit 1s connected to a CPU processing




US 7,733,854 B2

7

module via a second bus, wherein the memory management
module 1s configured to accept CPU instructions from the
CPU processing module on the second bus.

7. The network device according to claim 1, wherein the
second bus comprises a 32-bit bus.

8. The network device according to claim 1, wherein the
bus from the memory management unit to the egress module
1s configured as a request based time division multiplexing
bus.

9. The network device according to claim 1, wherein the
bus from the memory management unit to the egress module
1s configured to transmit packets from a high speed port once
every six cycles and to transmit packets from a gigabyte port
once every 72 cycles.

10. A method for processing packets on a network device,
the method comprising the steps of:

initializing a timer 1n a memory management unit;

creating a non-natural iree space or empty slot on a bus
between the memory management unit and an egress
module when the timer expires and after an end of cell of
packet; and

transmitting one or more CPU instructions from the
memory management unit to the egress module using
the created free space.

11. The method according to claim 10, further comprising
creating the free space between packets on the bus when the
timer expires and 1nserting a pending CPU 1nstruction 1n the
created free space.

12. The method according to claim 10, further comprising
resetting the timer after the memory management unit inserts
a pending CPU instruction in the free space.

10

15

20

25

30

8

13. The method according to claim 10, further comprising
creating the free space 1 there 1s a pending CPU 1nstruction in
the memory management unit.

14. The method according to claim 10, further comprising
resetting the timer every time the memory management unit
uses a iree space that was not created by the memory man-
agement unit.

15. The method according to claim 10, further comprising
accepting CPU structions from the CPU processing module
on a second bus.

16. The method according to claim 10, further comprising
configuring the bus from the memory management unit to the
egress module as a request-based time division multiplexing
bus.

17. The method according to claim 10, further comprising
configuring the bus from the memory management unit to the
egress module to transmit packets from a high speed port once
every six cycles to transmit packets from a gigabyte port once
every 72 cycles.

18. An apparatus for processing packets i a network
device, the apparatus comprising a memory management
unit, the apparatus configured to:

initialize a timer 1n a memory management unit;

create a non-natural free space or empty slot on a bus

between the memory management unit and an egress
module when the timer expires and after an end of cell of
packet; and

transmit one or more CPU instructions from the memory

management unit to the egress module using the created
free space.



	Front Page
	Drawings
	Specification
	Claims

