US007730097B2
a2 United States Patent (10) Patent No.: US 7,730,097 B2
Oswalt 45) Date of Patent: Jun. 1, 2010
(54) SMART DATABASE 6,947,943 B2 9/2005 DeAnna et al.
75 7,200,720 Bl 4/2007 Yang et al.
(75) Inventor: %G)él)ny Lee Oswalt, Monte Sereno, CA 7266370 B2 92007 Paddon cf al.
7,464,067 B2* 12/2008 Chestnutetal. 707/1
(73) Assignee: MobileFrame, LLC, San Jose, CA (US) 7,565,381 B2 7/2009 Oswalt
) | | o | 7,577911 B2 82009 Oswalt
(*) Notice: Subject'to any dlsclalmer_,‘ the term of this 5002/0033843 Al 32007 T.oos ef al
patent 1s extended or adjusted under 35 | |
1 dllnigan <t 4dl.
U.S.C. 154(b) by 923 days. 2002/0040445 A 4/2002 Fl t al
2002/0066074 Al 5/2002 Jabri
(21) Appl. No.: 11/055,941 2002/0147850 Al 10/2002 Richards et al
7Y Filed: Feb. 10. 2005 2002/0194155 Al1* 12/2002 Aldndge et al. 707/1
(22) Filed: M 2003/0004955 Al 1/2003 Cedola et al.
US 2005/0182785 Al Aug. 18, 2005
Related U.S. Application Data (Continued)
(60) E’;ozlggznal application No. 60/544,736, filed on Feb. OTHER PURT ICATIONS
International Search Report, dated Nov. 1, 2005, PCT/US2005/
(51) Imt.Cl
- 04559.
GO6F 17/00 (2006.01)
(52) US.CL ., 707/793; 707/803 (Continued)
(58) Field of Classification Search 707/101,

(56)

707/100, 102, 103 R, 103 Z, 104.1, 793,
70°7/803
See application file for complete search history.

Primary Examiner—Hosain T Alam
Assistant Examiner—Amy Ng
(74) Attorney, Agent, or Firm—Beyer Law Group LLP

ABSTRACT

A solution 1s provided wherein only primary keys are used as
meta-data to construct many-to-many relationships between
table, resulting 1n amore robust, efficient database structure.
Once tables of user-specific data are bound to the database as
meta-data using their primary keys, the system may automati-
cally ensure the handling of the records as related umits. This
climinates the traditional heavy-weight dependence on for-

12 Claims, 7 Drawing Sheets

References Cited (57)
U.S. PATENT DOCUMENTS
5,701,453 A * 12/1997 Maloney etal. 707/2
5,704,029 A 12/1997 Wright, Jr.
5,706,509 A 1/1998 Man-Hak Tso
5,958,012 A 9/1999 Battat etal. 709/224
6,243,859 B1* 6/2001 Chen-Kuang 717/111
6,289,380 Bl 9/2001 Battatetal. 709/224
6,300,947 B1 10/2001 Kanevsky
6,301,581 B1* 10/2001 Smiley 707/103 R
6,347,316 Bl 2/2002 Redpath eign key relationships.
6,757,696 B2 6/2004 Multer et al.
6,820,088 Bl 11/2004 Hind et al.
6,925,477 Bl 8/2005 Champagne et al.
100 102 104
Meta Information /V ﬂ/ ﬂ’/
Attribute Definition List Definition
Object Definition (Meata data about {Meta data about a lis}
[M?E: data about ﬂhjﬂgﬂ attributd 124 . ;;2 1-:1-:11 «
122 ame
E;r:'na {Tabla Name) MI? Eﬂl}{ﬂﬁlumn Name) /V Efgif\'};ia ﬂ/
1{;1”55',’;?{,'[;:;'; Name Va B Descrption 126 —-
y1y loon he 118 | 128 g::: I:gﬁ“ e
114 Demipﬁonﬂ/ /Vlnput Mal:hanism/’z'/ 1,?5
S}rﬁtﬁm Type (private, /J/ 132 | System Typa{private, public, /7/
public, protected) 120 protected)
Security permissions 2 Various system options ™= 15,
List Name (oplional) \&.\

Cbject Tablgs)

A table that store’s the object’s
information Created for object
automatically when object is saved
Cne per object

D

Nama

Create Date

Created By

Last Update Date

Last Updated By

Celeted By

Any user aftributes

140

| Parent Object ID

V4

160

'/

154

Child Object 1D

Objact Relatlonships
A table that stores any relatlonships
between object instances(items)

Parent Object Instance ID“'E-&:

AN

Child Object Instance 1D

156

™

148

US 7,730,097 B2
Page 2

U.S. PATENT DOCUMENTS

2003/0018714 Al 1/2003 Mikhailov et al.
2003/0055668 Al 3/2003 Saran et al.
2003/0076349 Al 4/2003 Slaby
2003/0135492 Al* 7/2003 Kauffman et al.
2003/0149762 Al 8/2003 Knight et al.
2003/0179227 Al 9/2003 Ahmad et al.
2003/0217053 Al 11/2003 Bachman et al.
2003/0234808 Al 12/2003 Huang et al.
2004/0181502 Al* 9/2004 Yehetal.
2005/0091233 Al* 4/2005 Frniskeetal.
2006/0242685 Al 10/2006 Heard et al.
2007/0112574 Al 5/2007 Greene
2007/0177571 Al 8/2007 Caufield et al.
OTHER PUBLICATIONS

.............. 707/3

.............. 707/1
........... 707/100

MobileFrame, Inc., “Valley Crest Proposal by Assignee”, Feb. 20,

2003, 32 pages.
Office Action mailed Feb. 4, 2008, from U.S. Appl.
Oflice Action Dated May 11, 2007 from U.S. Appl.

No. 11/056,711.
No. 11/056,457.

Office Action Dated Oct. 18, 2007 from U.S. Appl. No. 11/056,585.
Office Action Dated Nov. 26, 2007 from U.S.Appl. No. 11/056,457.
Supplemental European Search Report dated Jun. 5, 2008 from EP
Patent Application No. EP 05 71 3470,

Office Action Mailed Apr. 10, 2008 from U.S. Appl. No. 11/056,585.
Office Action Mailed May 14, 2008 from U.S. Appl. No. 11/056,457.
Office Action Mailed Oct. 15, 2008 from U.S. Appl. No. 11/056,457.
Office Action Mailed Sep. 10, 2008 from U.S. Appl. No. 11/056,585.
Office Action Mailed Aug. 20, 2008 from U.S. Appl. No. 11/056,711.
Office Action Mailed Nov. 21, 2008 from U.S. Appl. No. 11/056,457.
Office Action Mailed Dec. 29, 2008 from U.S. Appl. No. 11/056,585.
Office Action Mailed Feb. 4, 2009 from U.S. Appl. No. 11/056,711.
Office Action Mailed May 11, 2009 from U.S. Appl. No. 11/055,941.
“Sams Teach Yourself JavaScnpt in 24 Hours”, Third Edition, Sams,
Jun. 2002, “Getting Data with Forms Section™.

Notice of Allowance Mailed Jun. 3, 2009 from U.S. Appl. No.
11/056,457.

Notice of Allowance Mailed Jun. 26, 2009 from U.S. Appl. No.
11/056,711.

Office Action Mailed May 27, 2009 from U.S. Appl. No. 11/056,585.

* cited by examiner

U.S. Patent Jun. 1, 2010 Sheet 1 of 7 US 7,730,097 B2

100 —102 — — 104
Meta Information /V /V /V
N Attribute Definition] : List Definition
Object Definition (Meta data about | (Meta data about a lis}
(Meta data about objec} attribute o 142 144
100 198 122 1 l List Name /V 146
DY ﬂ/ o N /V Display Name/yﬂ/
Name (Table Name) © 112 Name (Column Name) | Database Value
Display Name ﬂ/ | Display Name —=—> |
.10 | Plural Display Name A Description
icon 116 | 128 Data Type\STao 134
114 | Descriotion A 118 i, Data Length | 136
P _ I /f/ Input Mechamsmﬂ/
System Type (private, 132 | System Type(private, public,
public, protected) 120 protected)
Security permissions -2 Various system options S 13g
List Name (optional) \ |
N\ - -
_ _ 140 _ _
Object Tablds) - Object Relationships '
A table that store’s the object’s A table that stores any relationships
information Created for object between object instances{items) |
automatically when object is saved Parent Object |ID
One per object // Parent Object Instance IDRE;T52
1D 150 /Child Object ID
Name ﬂ Child Object Instance D
Create Date | 154 “
Created By 156
Last Update Date
Last Updated By \\
Deleted By

Any user attributes 148
T ,_'

U.S. Patent

204

4

i Undelete the

relationship in the <Y
relationship table

Jun. 1, 2010

>

Poes
the same
parent/child relationship

Sheet 2 of 7

206

4

P

already exist in the
relationship

table
?

202

Has
the
relationship in the ™
relationship table been
marked as

deleted
?

Recursively
determine if any
ancestors of the
proposed parent

match the
proposed child

Do
any ancestors
match

Establish the
relationship and
place it in the
relationship table

US 7,730,097 B2

208

A

Y ! (Generate an error

210

U.S. Patent Jun. 1, 2010 Sheet 3 of 7 US 7,730,097 B2

Insert a new record into the table,
automatically setting the create_date and 200
last_updated system fields to the current

time on the server, the created_by and
last_updated by system fields to the
identification of the user making the request,
the deleted_by system field to -1, and the
name field to whatever name the user has
provided

302

Automatically

generate and save a
unigue identification
for the record

FIG. 3

U.S. Patent Jun. 1, 2010 Sheet 4 of 7 US 7,730,097 B2

Begin

400

Has
a change
actually been made
to the
item
?
406
Y 404

Does Switch the
the item exist In

the database

operaticn to an
insert operation

Y

Update the last_update 408
field to the current time on
the server and tha
N last_updated_by system
field to the identification of
the user making the
request

410

Apply the updates //

to the record

Consider the
update successful

U.S. Patent Jun. 1, 2010 Sheet 5 of 7 US 7,730,097 B2

Update the last_update 500
system field to the current
time on the server and the
last _updated by and
deleted by fields to the
identification of the user
making the request

Mark any
relationships that
the item is involved
In as deleted in the
relationship table

U.S. Patent

Jun. 1, 2010 Sheet 6 of 7

Persist the meta data into 500
the database as two or
more object definitions,
each of the object
definitions linked to one
or more attribute
definitions

Save the ordinary data in
the database as two or
more instances of the two
or more object definitions,
each of the instances of
object definitions linked to
the one or more instances
of attribute definitions

602

Store a relationship _: 604
between the two or more |
object definitions and the
two or more instances of
object definitions in a
relationship table in the

database

US 7,730,097 B2

U.S. Patent Jun. 1, 2010 Sheet 7 of 7 US 7,730,097 B2

700 -~ - 702

Object definition Object deﬁnzt::n

' instance an
dzgﬂita;::t::za attribute definition
data persister instance ordinary

data saver

704
Object definition
and object

definition instance
relationship table
storer

FIG. 7

US 7,730,097 B2

1
SMART DATABASE

CROSS-REFERENCE TO RELAT
APPLICATION

T
»

This application claims priority based on Provisional
Application Ser. No. 60/544,736, entitled “CONFIG-

URABLE MOBILE APPLICATION TO DYNAMICALLY
CREATE ENFORCEABLE WORKFLOW” by Lonny Lee
Oswalt, filed on Feb. 12, 2004, herein incorporated by refer-
ence 1n 1ts entirety.

This application 1s related to co-pending application No.
11/056,711, entitled “INTEGRATED DEPLOYMENT OF

SOFTWARE PROJECTS” by Lonny Lee Oswalt, filed on
Feb. 10, 2005.

This application 1s related to co-pending application No.
11/056,585, entitled “INTELLIGENT RENDERING ON A

MOBILE COMPUTING DEVICE” by Lonny Lee Oswallt,
filed on Feb. 10, 2005.

This application 1s related to co-pending application No.

11/056,457, entitled “SMART SYNCHRONIZATION” by
Lonny Lee Oswalt, filed on Feb. 10, 2003.

FIELD OF THE INVENTION

The present invention relates to the field of computer soft-

ware. More specifically, the present immvention relates to a
smart database.

BACKGROUND OF THE INVENTION

A relational database stores data in a number of disparate
tables, each of which 1s linked or related to another table. A
table 1s organized by rows and columns, each row or record
containing the same columns or fields. A conventional tlat-file
database would store all the data 1n a single table, but the
relational model allows for maximum flexibility for querying,
the data. Data need only be brought together for a particular
query, so the structure of the database contains no assump-
tions about what sort of queries may be required 1n the future.
Another powertul feature of the relational model 1s that each
data item appears only 1n a single place 1n the tables and thus
only needs to be updated 1n one place when it changes.

In the relational model, each table has a primary key, which
1s a field or combination of fields that uniquely 1dentifies each
record in the table. The primary key provides a means to
distinguish one record from all others 1n the table.

When a field in one table matches the primary key (or a
candidate key) of another table, the field 1s referred to as a
toreign key. The foreign key 1s the anchor on the many side of
a one-to-many or many-to-many relationship, much as the
primary or candidate key 1s the anchor on the one side of this
relationship. A foreign key 1s a linchpin used to ensure that
invalid data 1s not entered into a table. It also prevents a user
from deleting or updating in a way that might leave orphan
rOwsSs.

There are several different classes of relationships possible
using arelational model. The first 1s a one-to-one relationship.
Twotables arerelated 1n a one-to-one relationship 1f, for every
row 1n the first table, there 1s at most one row 1n a second table.
True one-to-one relationships seldom occur 1n the real world.
This type of relationship 1s often created to get around some
limitation ofthe database management soitware rather than to
model a real-world situation. For example, one-to-one rela-
tionships may be necessary 1n a database when there 1s a need
to split a table 1nto two or more tables because of security or

10

15

20

25

30

35

40

45

50

55

60

65

2

performance concerns. Tables that are related 1n a one-to-one
relationship share the same primary key.

A second type of relationship 1s a one-to-many relation-
ship. Two tables are related 1n a one-to-many relationship 1f,
for every row 1n a {irst table, there can be zero, one, or many
rows 1n a second table, but for every row 1n the second table
there 1s exactly one row 1n the first table. The one-to-many
relationship 1s also referred to as a parent-child or master-
detail relationship.

A third type of relationship 1s a many-to-many relation-
ship. Two tables are related in a many-to-many relationship
when, for every row 1n a first table, there can be many rows in
the second table, and for every row 1n the second table, there
can be many rows 1n the first table. Many-to-many relation-
ships can’t be directly modeled in the typical relational data-
base, and therefore these types of relationships must be bro-
ken 1nto multiple one-to-many relationships. A third table,
known as a linking table, may then be utilized to model the
relationships between the two tables.

Regardless of the type of relationship used, past relational
models utilized foreign keys for the “many” side of the rela-
tionship (except for one-to-one of course). These foreign
keys, however, must be constantly managed to ensure that no
errors occur 1n the storage of the data. This wastes both
computing power and memory space. Additionally, the tradi-
tional heavy-weight dependence on foreign key relationships
causes tables to have database enforced key constraints,
which limits the ability of a user to easily add new tables or
permutations.

What 1s needed 1s a solution that eliminates the traditional
heavy-weight dependence on foreign key relationships in
order to allow users to add new tables or permutations without
restrictions.

BRIEF DESCRIPTION

A solution 1s provided wherein only primary keys are used
as meta-data to construct many-to-many relationships
between table, resulting in amore robust, efficient database
structure. Once tables of user-specific data are bound to the
database as meta-data using their primary keys, the system
may automatically ensure the handling of the records as
related units. This eliminates the traditional heavy-weight
dependence on foreign key relationships.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated nto
and constitute a part of this specification, illustrate one or
more embodiments of the present mvention and, together
with the detailed description, serve to explain the principles
and implementations of the invention.

In the drawings:

FIG. 1 1s a diagram 1illustrating meta data in accordance
with an embodiment of the present invention.

FIG. 2 1s a flow diagram 1llustrating a method for handling
a new relationship 1n accordance with an embodiment of the
present invention.

FIG. 3 1s a flow diagram 1llustrating a method for inserting,
a new 1tem of data into the database in accordance with an
embodiment of the present invention.

FIG. 4 1s a flow diagram 1llustrating a method for updating
an 1tem 1n a database 1n accordance with an embodiment of
the present invention.

FIG. 5 15 a flow diagram 1llustrating a method for deleting
an 1item from a server 1n accordance with an embodiment of
the present invention.

US 7,730,097 B2

3

FIG. 6 1s a flow diagram 1llustrating a method for storing
data in a database in accordance with an embodiment of the
present invention.

FIG. 7 1s a block diagram illustrating an apparatus for
storing data 1n a database 1n accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention are described herein
in the context of a system of computers, servers, and soltware.
Those of ordinary skill 1n the art will realize that the following
detailed description of the present ivention 1s illustrative
only and 1s not intended to be 1n any way limiting. Other
embodiments of the present mvention will readily suggest
themselves to such skilled persons having the benefit of this
disclosure. Reference will now be made in detail to imple-
mentations of the present invention as illustrated in the
accompanying drawings. The same reference indicators will
be used throughout the drawings and the following detailed
description to refer to the same or like parts.

In the interest of clarity, not all of the routine features of the
implementations described herein are shown and described. It
will, of course, be appreciated that in the development of any
such actual implementation, numerous implementation-spe-
cific decisions must be made 1n order to achieve the develop-
er’s specific goals, such as compliance with application- and
business-related constraints, and that these specific goals will
vary from one implementation to another and from one devel-
oper to another. Moreover, 1t will be appreciated that such a
development effort might be complex and time-consuming,
but would nevertheless be a routine undertaking of engineer-
ing for those of ordinary skill 1n the art having the benefit of
this disclosure.

In accordance with the present invention, the components,
process steps, and/or data structures may be implemented
using various types ol operating systems, computing plat-
forms, computer programs, and/or general purpose machines.
In addition, those of ordinary skill in the art will recognize
that devices of a less general purpose nature, such as hard-
wired devices, field programmable gate arrays (FPGAs),
application specific integrated circuits (ASICs), or the like,
may also be used without departing from the scope and spirit
ol the mventive concepts disclosed herein.

A solution 1s provided wherein only primary keys are used
as meta-data to construct many-to-many relationships
between table, resulting 1n amore robust, efficient database
structure. Once tables of user-specific data are bound to the
database as meta-data using their primary keys, the system
may automatically ensure the handling of the records as
related units. This eliminates the traditional heavy-weight
dependence on foreign key relationships.

In an embodiment of the present invention, an object ori-
ented design presents data in the database as objects and
attributes. Data may be stored in a relational database, but
may be accessed via a database access engine. All objects,
attributes, and object definitions may then be stored in the
database. This meta data may be read and used by the data-
base access engine to present the system to the user and
programmet.

In an embodiment of the present invention, the meta data
for an object may describe 1ts name, display names, 1con,
system type, and security attributes. The meta data for an
object attribute (field) may describe 1ts data type and length,
input mechanism, display name, list valid values, system
type, and other data. The database access engine may also
support a “system type” for the object and/or attribute which

10

15

20

25

30

35

40

45

50

55

60

65

4

allows the user to define a private, public, or protected object
or field. A private object attribute 1s never visible or editable.
A public object/attribute 1s visible and editable. A protected
object/attribute 1s visible but not editable.

All user defined objects 1n the system may contain preset
system fields that allow them to be recognized by the database
access engine as a proprietary object and allow 1t to be
involved 1n the various object support functions supported by
the database access engine (relationships for example). The
preset system fields may include an 1dentification (the pri-
mary key), creation date, last update, created by, last updated
by, name, and deleted by. The database access engine may
maintain these system fields automatically. A record in the
relational database management system may represent an
instance of an object—also called an item. Furthermore, 1n an
embodiment of the present invention, no record 1s ever physi-
cally deleted, but rather they are just marked as deleted.
Archive functions may be provided to physically remove the
item.

In an embodiment of the present invention, many-to-many
relationships allow for any type of relationship to be modeled
with no understanding of database concepts or redundancy of
data. This relationship 1s made possible by a central relation-
ship table. In an embodiment of the present invention, the
relationship table may contain the parent object, the parent
instance identification, the child object, and the child instance
identification. Additionally, there are no database enforced
key constraints on this table, allowing new tables or permu-
tations to be added without restriction. All operations to
make, remove, and search on the relationships in the relation-
ship table maybe performed using the database access engine,
which exposes this functionality as a set of objects with
properties and methods. The system then may automatically
prevent duplicate relationships or circular relationships from
being defined.

In an embodiment of the present mnvention, a point and
click interface may be utilized to design the objects. Addi-
tionally, the object definition may be serialized/deserialized
for distribution to other installations of the smart database or
for saving to disk for archiving purposes. The database model
may provide for multiple types of objects to be created. Since
all objects are exposed via the database access engine, the
underlying logic to an object does not have to be a one-to-one
correspondence to the relational table that a typical system
would use to contain the data. Because the database access
engine potentially exposes all functionality 1n object-oriented
terms, SQL 1s not necessary or expected. Furthermore, the
database access engine may handle all database management
system-specific syntax.

In an embodiment of the present invention, the database
access engine caches intelligently on an as-requested basis.
Meta data 1s cached, for example, to prevent undue stress on
the database platform. Caching of this type of information 1s
done to give automatic performance boosts without having to
understand indexes.

FIG. 1 1s a diagram 1illustrating meta data 1in accordance
with an embodiment of the present invention. As described
above, meta data may be stored using one or more object
definitions 100 along with linked attribute definitions 102,
and potentially list definitions 104 as well. An object defini-
tion may describe meta data about an object, and may contain
an 1dentification 106, a name (which 1s 1n actuality a table
name) 108, a display name 110, a plural display name 112, an
icon 114, a description 116, a system type 118, and security
permissions 120. The system type 118 may be private, public,
or protected. The distinctions between these terms 1s
described in more detail above.

US 7,730,097 B2

S

Each object defimition 100 has a link to one or more
attribute defimtions 102. Each attribute definition 102 may
describe meta data about an attribute (or column) of the data,
and may contain an identification 122, a name (which 1s 1n
actuality a column name) 124, a display name 126, a descrip-
tion 128, a data type 130, a data length 132, an input mecha-
nism 134, a system type 136, various system options 138, and
a list name 140. If the attribute definition 102 contains a list
name 140, then 1t 1s an indication that there 1s a list definition
104 linked to the attribute definition 102.

A list definition 104 may describe meta data about a list,
and may contain a list name 142, a display name 144, and a
database value 146.

When a relationship between two or more objects 1s cre-
ated, information regarding the relationship may be placed 1n
a relationship table. Relationships between objects are com-
monly referred to as parent-child relationships. The relation-
ship table 148 may store, for each relationship, the parent
object identification 150, the parent object instance 1dentifi-
cation 152, the child object identification 154, and the child
object instance 1dentification 156.

As discussed briefly above, duplicate relationships and
circular references may be avoided using an embodiment of
the present mvention. FIG. 2 1s a flow diagram illustrating a
method for handling a new relationship 1n accordance with an
embodiment of the present invention. Each act of this method
may be performed by software, hardware, or any combination
thereof. At 200, the system may examine the relationship
table to ensure that the same parent/child relationship doesn’t
exist. I the relationship does exist, the request has already
been fulfilled. In one embodiment of the present mvention,
relationships that are deleted aren’t actually removed from
the relationship table, but are merely marked as “deleted”. IT
it 1s the case that the relationship to be added matches one that
1s 1n the relationship table but marked as deleted, the system
may simply undelete the old relationship, thus reestablishing,
it. Thus, at 202, it may be determined 11 the relationship 1n the
relationship table has been marked as deleted. It so, then at
204, it may be undeleted.

If the relationship does not exist in the relationship table,
then at 206, the system may determine recursively if any
ancestors of the proposed parent match the proposed child.
Since this 1s a recursive function, the system may first check
parents of the proposed parent. Then 1t may check parents of
parents of the proposed parent, and so on. In an embodiment
ol the present invention, the function may have a built in limat
on the number of levels to recursively check (e.g., 10 levels),
which will function as an upper limit on the number of levels
to check, assuming the check hasn’t run out of ancestors or a
match has been found. If somewhere 1n this recursive check
the proposed child was found to match an ancestor, at 208 an
error may be generated. If the check passes, however, then at
210, the relationship may be established and placed in the
relationship table.

When a user request that a relationship be broken, the
system may simply label that relationship as deleted 1n the
relationship table. The objects themselves may not be
alfected.

FI1G. 3 1s a flow diagram 1illustrating a method for inserting
a new 1tem of data into the database 1n accordance with an
embodiment of the present invention. Each act of this method
may be performed by software, hardware, or any combination
thereol. At 300, the system may insert a new record into the
table, automatically setting the create_date and last_updated
system fields to the current time on the server, the created_by
and last_updated_by system fields to the identification of the
user making the request, the deleted_by system field to -1

10

15

20

25

30

35

40

45

50

55

60

65

6

(not deleted), and the name field to whatever name the user
has provided. At 302, a unique 1dentification may be auto-
matically generated for the record and saved 1n the record.

FIG. 4 1s a flow diagram 1llustrating a method for updating,
an item 1n a database 1n accordance with an embodiment of
the present invention. Each act of this method may be per-
formed by software, hardware, or any combination thereof.
At 400, the system may confirm that a change was actually
made to the item. It may accomplish this by keeping the
original values when the item 1s first loaded and comparing
them to the current values. If no change was actually made,
then at 402 the update may be considered successtul, even
though no database operation 1s performed.

If a change was made, then at 404 the system may confirm
that the 1tem exists 1n the database. This may be accomplished
by comparing the unique 1dentification of the item with the
identifications of the item 1n the database. If 1t does not exist,
then at 406, the operation may be switched to an 1insert opera-
tion. This insert operation may differ from the insert operation
described 1in FIG. 3 and the corresponding text by virtue of the
fact that 1t does not need to generate a unique identification, as
it already has one. The unique 1dentification need only be
saved. By switching to an insert operation, this ensures that
records from separate databases can be easily replicated with-
out having to worry about whether the item exists or not.

If a change has occurred and the i1tem does exist in the
database, then at 408, the system may update the last_update
field to the current time on the server and the last_updated_by
system field to the identification of the user making the
request. Then at410, the updates may be applied to the record.

FIG. 5 15 a flow diagram 1llustrating a method for deleting
an 1tem from a server 1n accordance with an embodiment of
the present invention. Each act of this method may be per-
formed by software, hardware, or any combination thereof.
At 500, the system may update the last_update system field to
the current time on the server, and the last_updated_by and
deleted_by fields to the identification of the user making the
request. Then, at 502, any relationships that the item 1s
involved 1n may also be marked as deleted 1n the relationship
table.

It should be noted that in an embodiment of the present
invention, “deletion” means that the system field of for delet-
ed_by 1s marked with a valid user identification. If the delet-
ed_by field 1s less than zero, the item may be considered not
deleted. Additionally, 1n an embodiment of the present inven-
tion, 1f the user requests that an item be deleted from a client
database, then the 1item may simply be physically deleted
trom the database. This 1s due to the fact that client databases
are typically transitory and are limited 1n available disk space.

FIG. 6 1s a tlow diagram illustrating a method for storing
data in a database in accordance with an embodiment of the
present invention. Each act of this method may be performed
by software, hardware, or any combination thereof. The data
may contain ordinary data and meta data. At 600, the meta
data may be persisted into the database as two or more object
definitions, each of the objected definitions linked to one or
more attribute definitions. The attribute definitions may
optionally be linked to list definitions. Each object definition
may include an 1dentification, a name (which 1s in actuality a
table name), a display name, a plural display name, an icon, a
description, a system type, and security permissions. The
system type may be private, public, or protected. Each
attribute defimtion may include an identification, a name
(which 1s 1n actuality a column name), a display name, a
description, a data type, a data length, an input mechanism, a
system type, various system options, and a list name. If the
attribute definition contains a list name, then 1t 1s an indication

US 7,730,097 B2

7

that there 1s a list definition linked to the attribute definition.
At 602, the ordinary data may be saved 1n the database as two
or more 1stances of the two or more object definitions, each
ol the instances of object definitions linked to the one or more
instances of attribute definitions. The instances of attribute
definitions may optionally be linked to istances of list defi-
nitions. At 604, a relationship between the two or more object
definitions and the two or more instances of object definitions
may be stored 1n a relationship table in the database. This may
be accomplished by storing an identification of a parent
object definition and an 1dentification of a parent instance of
the parent object definition 1n a relationship table along with
an 1dentification of a child object definition and an 1dentifi-
cation of a child instance of the child object definition.

FIG. 7 1s a block diagram 1illustrating an apparatus for
storing data 1n a database 1n accordance with an embodiment
of the present invention. Each element of this apparatus may
be embodied 1n software, hardware, or any combination
thereot. The data may contain ordinary data and meta data. An
object definition and attribute definition meta data persister
700 may persist the meta data into the database as two or more
object definitions, each of the objected definitions linked to
one or more attribute definitions. The attribute definitions
may optionally be linked to list definitions. Each object defi-
nition may include an identification, a name (which 1s in
actuality a table name), a display name, a plural display name,
an 1con, a description, a system type, and security permis-
sions. The system type may be private, public, or protected.
Each attribute definition may include an identification, a
name (which 1s 1n actuality a column name), a display name,
a description, a data type, a data length, an input mechanism,
a system type, various system options, and a list name. If the
attribute definition contains a list name, then 1t 1s an indication
that there 1s a list definition linked to the attribute definition.
An object definition mstance and attribute definition instance
ordinary data saver 702 may save the ordinary data in the
database as two or more instances of the two or more object
definitions, each of the instances of object definitions linked
to the one or more instances of attribute definitions. The
instances of attribute definitions may optionally be linked to
instances of list definitions. An object definition and object
definition instance relationship table storer 704 coupled to the
object definition and attribute definition meta data persister
700 and to the object definition 1instance and attribute defini-
tion instance ordinary data saver 702 may store a relationship
between the two or more object defimtions and the two or
more 1nstances ol object definitions 1n a relationship table in
the database. This may be accomplished by storing an 1den-
tification of a parent object definition and an identification of
a parent instance of the parent object definition in a relation-
ship table along with an 1dentification of a child object defi-
nition and an identification of a child nstance of the child
object definition.

While embodiments and applications of this invention
have been shown and described, 1t would be apparent to those
skilled 1n the art having the benefit of this disclosure that
many more modifications than mentioned above are possible
without departing from the inventive concepts herein. The
invention, therefore, 1s not to be restricted except 1n the spirit
of the appended claims.

What 1s claimed 1s:

1. A computer-implemented method for storing data 1n a
database, the data containing ordinary data and meta data, the
method comprising:

persisting the meta data 1n the database as at least a parent

and a child object definition, each of said object defini-
tions linked to one or more attribute definitions, each of

10

15

20

25

30

35

40

45

50

55

60

65

8

said object definitions describing a format in which to
store ordinary data, wherein each of said object defini-
tions 1ncludes an 1dentification and a table name;

saving the ordinary data in the database as at least a parent
instance storing ordinary data in the format described by
the parent object defimition and a child instance storing
ordinary data in the format described by the child object
definition, each of said instances of object definitions
linked to one or more 1nstances of attribute definitions,
wherein each of said attribute definitions includes an
identification and a column name; and

storing 1dentifiers of said parent and child object definition

and said parent and child instances of said parent and
child object in a relationship table in the database,
wherein said storing includes storing an identification of
a parent object definition and an 1dentification of a par-
ent 1nstance of said parent object definition 1n a relation-
ship table along with an i1dentification of a child object
definition and an identification of a child instance of said
child object definition.

2. The computer-implemented method of claim 1, wherein
at least one of said attribute definitions 1s linked to a list
definition.

3. The computer-implemented method of claim 2, wherein
at least one of said instances of attribute definitions 1s linked
to an mstance of a list definition.

4. The computer-implemented method of claim 1, wherein
cach of said object definitions further includes a system type
allowing the object definition to be defined as private, public,
or protected.

5. The computer-implemented method of claim 1, wherein
cach of said attribute defimitions further includes a system
type allowing the attribute definition to be defined as private,
public, or protected.

6. An apparatus for storing data in a database, the data
containing ordinary data and meta data, the apparatus com-
prising:

a memory;

an object definition and attribute definition meta data per-

sister configured to persist the meta data in the database
as at least a parent and a chuld object definition, each of
said object definitions linked to one or more attribute
definitions, each of said object definitions describing a
format 1n which to store ordinary data, wherein each of
said object definitions includes an i1dentification and a
table name:;

an object definition instance and attribute definition

instance ordinary data saver configured to save the ordi-
nary data in the database as at least a parent 1nstance
storing ordinary data in the format described by the
parent object definition and a child 1instance storing ordi-
nary data in the format described by the child object
definition, each of said instances of object definitions
linked to one or more 1nstances of attribute definitions,
wherein each of said attribute definitions includes an
identification and a column name;

an object definition and object definition instance relation-

ship table storer coupled to said object definition and
attribute definition meta data persister and to said object
definition instance and attribute definition instance ordi-
nary data saver, configured to store identifiers of said
parent and child object definition and said parent and
child istances of said parent and child object 1n a rela-
tionship table 1 the database, wherein said storing
includes storing an 1dentification of a parent object defi-
nition and an 1dentification of a parent instance of said
parent object definition 1n a relationship table along with

US 7,730,097 B2

9

an 1dentification of a child object definition and an 1den-
tification of a child instance of said child object defini-
tion; and

a processor configured to operate the object defimition and
attribute definition meta data persister, the definition
instance and attribute definition istance ordinary data

saver, and the object definition and object definition
instance relationship table storer.

7. An apparatus for storing data in a database, the data
containing ordinary data and meta data, wherein the meta data
describes a name for each item of ordinary data, the apparatus
comprising:

means for persisting the meta data in the database as at least

a parent and a child object definition, each of said object
definitions linked to one or more attribute definitions,
cach of said object definitions describing a format 1n
which to store ordinary data, wherein each of said object
definitions includes an identification and a table name;

means for saving the ordinary data in the database as at
least a parent instance storing ordinary data in the format
described by the parent object definition and a child
instance storing ordinary data in the format described by
the child object definition, each of said instances of
object definitions linked to one or more instances of
attribute definitions, wherein each of said attribute defi-
nitions 1ncludes an i1dentification and a column name;

means for storing 1dentifiers of said parent and child object
definition and said parent and child instances of said
parent and child object 1n a relationship table 1n the
database, wherein said storing includes storing an 1den-
tification of a parent object definition and an 1dentifica-
tion of a parent instance of said parent object definition
in a relationship table along with an 1dentification of a
child object definition and an 1dentification of a child
instance of said child object definition; and

a processor coupled to the means for persisting, the means
for saving, and the means for storing.

8. The apparatus of claim 7, wherein at least one of said
attribute definitions 1s linked to a list definition.

5

10

9. The apparatus of claim 8, wherein at least one of said
instances of attribute definitions 1s linked to an 1nstance of a
list definition.

10. The apparatus of claim 7, wherein each of said object
definitions further includes a system type allowing the object
definition to be defined as private, public, or protected.

11. The apparatus of claim 7, wherein each of said attribute
definitions further includes a system type allowing the
attribute definition to be defined as private, public, or pro-

0 tected.

15

20

25

30

35

12. A program storage device readable by a machine, tan-
gibly embodying a program of instructions executable by the
machine to perform a method for storing data 1n a database,
the data containing ordinary data and meta data, wherein the
meta data describes a name for each item of ordinary data, the
method comprising:
persisting the meta data 1n the database as at least a parent
and a child object definition, each of said object defini-
tions linked to one or more attribute definitions, each of
said object defimitions describing a format 1n which to
store ordinary data, wherein each of said object defini-
tions 1includes an identification and a table name:

saving the ordinary data in the database as at least a parent
instance storing ordinary data in the format described by
the parent object defimition and a child instance storing
ordinary data in the format described by the child object
definition, each of said instances of object definitions
linked to one or more 1nstances of attribute definitions,
wherein each of said attribute definitions includes an
identification and a column name; and

storing 1dentifiers of said parent and child object definition

and said parent and child instances of said parent and
child object 1n a relationship table in the database,
wherein said storing includes storing an identification of
a parent object definition and an 1dentification of a par-
ent instance of said parent object definition 1n a relation-
ship table along with an i1dentification of a child object
definition and an 1dentification of a child instance of said
child object definition.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

