United States Patent

US007725922B2

(12) (10) Patent No.: US 7,725,922 B2
Pouliot 45) Date of Patent: May 25, 2010
(54) SYSTEM AND METHOD FOR USING 2002/0198675 Al 12/2002 Underseth etal. 702/122
SANDBOXES IN A MANAGED SHELL 2003/0041267 Al* 2/2003 Feeetal. w.oovvveeeveennnn. 713/201
75) 1 Sebastion Pouliof. CA 2003/0065942 Al 4/2003 Lineman et al. w............ 713/201
nventor: Sebastien Pouliot, Beauport (CA) 2003/0110192 Al 6/2003 Valente et al. ovoen..... 707/513
(73) Assignee: Novell, Inc., Provo, UT (US) 2003/0115484 Al 6/2003 Moricont etal. 713/201
2003/0177355 Al 9/2003 Elgressy etal. 713/167
(*) Notice: Subject to any disclaimer, the term of this 2003/0196114 Al* 10/2003 Brew et al. wooeeeeeevvnn... 713/201
patent is extended or adjusted under 35 2003/0225822 Al* 12/2003 Olson et al. wooeeeeveeenn. 709/202
U.5.C. 154(b) by 873 days. 2004/0103323 Al 5/2004 DOMINIC weeeoesoeeeen.. 713/202
(21) Appl. No.: 11/384,264
(22) Filed: Mar. 21, 2006 _
(Continued)
(65) Prior Publication Data OTHER PURI ICATIONS

(1)
(52)

(58)

US 2007/0226773 Al Sep. 27, 2007

Int. Cl.

HO4L 29/00 (2006.01)

US.CL ..., 726/1; 713/201; 709/202;
709/208

Field of Classification Search 726/1;

713/201; 709/202, 208
See application file for complete search history.

Clark, Jason, “Return of the Rich Client—Code Access Security and
Distribution Features in .NET Enhance Client-Side Apps”, MSDN

Magazine, printed from http://msdn.microsoft.com/msdnmag/is-
sues/02/06/rich/default.aspx, Jun. 2002, 16 pages.

(Continued)

Primary Examiner—Nasser Moazzami
Assistant Examiner—Ghazal Shehni

(74) Attorney, Agent, or Firm—Pillsbury Winthrop Shaw

(56) References Cited Pittrnan T 1P
U.S. PATENT DOCUMENTS
(57) ABSTRACT
5,452,457 A 0/1995 Alpertetal. 395/700
6,071,316 A 6/2000 Goossenetal. 717/4
6,230,312 Bl 5/2001 Huntcoovvevvviiinvvinnnnnnnn. 717/4 , _
6,282,701 Bl 82001 Wygodnyetal. 717/4 The present invention allows shell program to be managed
6,308,275 B1* 10/2001 Vaswanietal.oooenn.... 796/2 with security policies and enforced using sandboxes enforced
6,560,774 Bl 5/2003 Gordon etal. 717/146 by the security manager of a managed environment. The
6,615,264 Bl 9/2003 Stoltzetal. 709/227 additional security policies may come from shell tool specific
6,802,054 B2 10/2004 Farajcocooevvvvnvvvnnnnn. 7__h7/128 security policies, application specific security policies,
0,871,284 B2 312005 Cooperetal. ...oovvvenes 7137200 resource based security policies, shell based policies, owner
6,971,091 B1 11/2005 Armoldetal. 717/145 e ty policies, P ,, ,
7,069,554 Bl 6/2006 Stammers etal. 717/17¢ ~ based policies, user based policies and/or other types of poli-
7487221 B2* 2/2009 ATaKi .ooooeeoeerereeeennnn, 709/208 cies. Security policies may be merged to provide a managed
7,512,965 Bl 3/2009 Amduretal. 726/1 shell more permission granularity in addition to existing
7,552,472 B2 6/2009 Baftesetal. 726/22 machine policies_
7,620,940 B2 11/2009 Goldsmith et al. 717/127
2002/0042897 Al 4/2002 Kleinetal. 714/718
2002/0069200 Al 6/2002 Cooperetal. 707/9 20 Claims, 3 Dl‘awing Sheets
| Computer 10
Shell script —14 managed |18 | resources —24
environment
. files 26
Shell script 16 Security 50
Manager - -
}dlrecturles —28
Operating 12 : B
Systems gzri‘:igg 22 ‘prncesses —30

=

third party

US 7,725,922 B2
Page 2

U.S. PATENT DOCUMENTS

2004/0250112 A1l 12/2004 Valente etal. 713/200
2005/0071668 Al 3/2005 Yoometal. 713/200
2005/0172126 Al 8/2005 Langeetal. 713/166
2005/0240999 Al* 10/2005 Rubmetal. 726/22
2005/0262517 Al 11/2005 Frenchcccceveenenenin. 719/316
2006/0064737 Al 3/2006 Wallacecccevenenennnnnn. 726/1
2006/0117299 Al 6/2006 Goldsmith etal. 717/124
2006/0143396 Al 6/2006 Cabotccovvvvenennnn.n. 711/134
2006/0150021 Al 7/2006 Traskov etal. 714/37
2006/0235655 Al 10/2006 Qingetal. 702/186
OTHER PUBLICATIONS

Mono, “Mono:Runtime—The Mono Runtime”, printed from http://
www.mono-project.com/Mono:Runtime, Jan. 24, 2006, 8 pages.
Mono, “Assemblies and the GAC—How Mono Finds Assemblies”,
printed from http://www.mono-project.com/
Assemblies__and_ the GAC, Jul. 20, 2005, 11 pages.

Meier, 1.D., et al., “How To: Perform a Security Code Review for

Managed Code (Baseline Activity)”, printed from http://msdn.
microsofit.com/library/en-us/dnpag?2/html/paght000027.

asp/frame=true, VICroso orporation, Oct. : ages.
p?t Mi ft Corporation, Oct. 2005, 13 pag

Alcazar, Mark, “Windows Presentation Foundation Security Sand-
box”, MSDN Library, Microsoit Corporation, printed from http://

msdn.microsoft.convlibrary/en-us/dnlong/html/
wplisecuritysandbox.asp?frame=true, Sep. 2005, 9 pages.

Novell AppArmor Powered by Immunix 1.2 Installation and
QuickStart Guide, Sep. 29, 2005, 18 pages.

Zone Labs “Technical Support Tech Notes: Protection Against
Advanced Firewall Bypass Techniques™”, printed from http://www.
zonelabs.com/store/content/support/technote, Aug. 23, 2006, 3
pages.

Zone Labs “Zone Labs PASS Program” printed from http://www.
zonelabs.com/store/company/partners/passFAZ .jsp, Aug. 23, 2006,
1 page.

Damianou, Nicodemos C., “A Policy Framework for Management of
Distributed Systems™, Thesis, Imperial College of Science, Technol-
ogy and Medicine, University of London, Department of Computing,
Feb. 2002, 233 pages.

Oaks, Scott, “Java Security, 2 Edition”, Publisher O’Reilly Media,
Inc., May 17, 2001, 22 pages.

Sundmark et al., “Monitored Software Components — A Novel
Software Engineering Approach”, Proceedings of the 11" Asia-Pa-
cific Software Engineering Conference (APSEC’04), Nov. 30-Dec. 3,
2004, pp. 624-631.

Sokolsky et al., “Steering of Real-Time Systems Based on Monitor-
ing and Checking”, Proceedings of the Fifth International Workshop,
Nov. 18-20, 1999, pp. 11-18.

* cited by examiner

U.S. Patent

Computer 10

May 25, 2010

I Shell script }—14

@ell script_F‘IG

Sheet 1 of 3

US 7,725,922 B2

managed
environment

—18

resources —24

files |26

directories FZB

Processes i—SO

Security T
Manager
gpetrating — 12 Security 55
| SYSTETS Policies
network —12
third party —34

FIG. 1

U.S. Patent May 25, 2010 Sheet 2 of 3 US 7,725,922 B2

50 managed shell environment
59 identify managed tools, unmanaged toois anad

custom permissions of a shell

identify security policy for identified managed
tools, unmanaged tools and custom
ermissions of a shell

o4

dynamically creafe a sanabox

apply security policies/permissions related to
identified managed tools, unmanaged tools
and custom permissions

so——

execute shell in sandbox

58

60

FIG. 2

U.S. Patent May 25, 2010 Sheet 3 of 3 US 7,725,922 B2

20 . Shell tools 74

| 5 managed tools 76

Managed Shell:
run: Shell script

| unmanaged tools 78

—————————————————————————————

'Shell Sandbox 72 custom permissions | o
— resources g8
security policies — 84

FIG. 3

US 7,725,922 B2

1

SYSTEM AND METHOD FOR USING
SANDBOXES IN A MANAGED SHELL

FIELD OF INVENTION

The mvention 1s a system and method for executing a
managed shell program and more particularly dynamically
creating a sandbox environment for implementing security
policies for the secure execution of shell tools and resources.

BACKGROUND

Shell programs are commonly known 1n the art as a way of
commanding a computer to execute certain actions. Shell
programs may be graphical or text based. Shell tools may
include the actual shell commands like list (Is), move (mv),
and remove (rm), among others. A shell script may be a series
ol shell commands stored 1n a file and executed until the end
of the file 1s reached. Shell commands can access critical
resources within a computer. Current shell security uses the
security offered by the operating system of the computer,
which 1s mostly useridentity-based (e.g. user A can access the
file B, while user C cannot).

With the proliferation of downloading programs, scripts,
and other data from the Internet or third party sources, there 1s
a need for limiting access to internal computer resources from
potentially malicious downloads. An operating system secu-
rity based on user 1dentity 1s not enough because a user may
unknowingly execute malicious codes and/or scripts. This 1s
a drawback because a program 1s executed in the security
context of its user, therefore, the program has all the permais-
sions associated with the user 1dentity (e.g. user A execute
program X which maliciously access file B).

SUMMARY

Various aspects of the invention overcome at least some of
these and other drawbacks of known systems. According to
one object of the invention, an operating system may execute
a shell scriptin a managed environment (e.g., a Javaor ECMA
virtual machine) and then by recognizing one or more shell
tools; identifying one or more security policies related to the
one or more shell tools; and dynamically creating a sandbox
for enforcing the i1dentified security policies to the managed
shell during execution. Security policies may come from tool
specific security policies, application specific security poli-
cies, resource based security policies, shell based policies,
owner based policies, user based policies and/or other types
of policies. The one or more security policies adds permis-
sions granularity to a managed shell.

The invention provides security by creating a sandbox for
a command or script to be executed using a managed shell.
The security manager of the managed environment will
enforce the security policy established, from different
sources, by the managed shell. A sandbox 1s an 1solated
execution environment and safe place for running semi-
trusted programs or scripts, often originating from a third
party. It 1s a restricted environment 1n which certain functions
are prohibited. Security policies can additionally limit the
kind of actions performed during execution within a sandbox.
For example, deleting files and moditying system informa-
tion such as registry settings and other control panel functions
may be prohibited within a sandbox. This allows security
policies to be enforced for application and application
resources that are not being executed.

According to another object of the mvention, a managed
shell execution may include 1dentifying the managed shell

10

15

20

25

30

35

40

45

50

55

60

65

2

security policy; recognizing one or more of the shell tools
during runtime; recognizing one or more custom permissions
of the managed shell; identifying a shell tool security policy
for each of the one or more recognized shell tools; and merg-
ing the one or more 1dentified shell tool security policies and
the 1dentified managed shell security policy and the one or
more 1dentified custom permissions; and enforcing the
merged policies 1n a dynamically created sandbox execution.
Two or more different security policies may be merged with
one or more permissions and enforced during execution in the
sandbox.

These objects increase the security on the actions that may
be performed by a shell scripts or programs originating from
various unknown sources. These and other objects, features
and advantages of the invention will be apparent through the
detailed description of the embodiments and the drawings
attached hereto. It 1s also to be understood that both the
foregoing general description and the following detailed
description are exemplary and not restrictive of the scope of
the invention.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a high-level block diagram of a system, according,
to one embodiment of the invention.

FIG. 2 1s a flow chart for a method for creating a sandbox,
according to one embodiment of the mvention.

FIG. 3 1s a block diagram for a managed shell, according to
one embodiment of the invention.

DETAILED DESCRIPTION

One aspect of the mvention 1s based on a shell executed
under a managed environment 18. This managed shell can
dynamically create sandboxed environments before the
execution of shell commands or scripts. The sandboxes are
coniigured to support one or more security policies that may
be enforced by a security manager 20.

FIG. 1 1llustrates a system, according to one embodiment
of invention. A computer 10 may include an operating system
12, conventionally known in the art. One or more shell scripts
(or programs) may be present on a computer 10. Shell scripts
(14, 16) may be downloaded to a computer directory from a
third party source 34 through a network connection 32. Other
sources may be included (e.g., hard disk, CD, drive storage).
The origin of the scripts and program 1s part of a code identity
and may atfect how the security manager resolves the security
policy. Thus, shell scripts on a computer may originate from
various sources that may be secure, un-secure, or semi-se-
cure. Additionally, shell scripts may be programmed 1n lim-
itless ways to add features to existing application (e.g., auto-
mate repetitive tasks) and to create new functions. Many shell
scripts may be executed simultaneously. Shell scripts may run
as a background process while other applications are running
on a computer. For example, a shell script may be pro-
grammed to indicate when a hard drive memory falls below a
user indicated threshold.

A managed environment 18 may be used for executing
shell scripts as a managed shell. A security manager 20 may
identily and enforce various security parameters within a
dynamically created sandboxed environment. Security
parameters may be stored as one or more security policies 22
maintained locally at computer 10 (or remotely at another
location). In addition to existing operating system security
policies (e.g., user-based identity), additional permissions
and policies may be enforced within a managed shell sand-
box. Security policy may include one or more permissions for

US 7,725,922 B2

3

enforcing security parameters. Security permissions may
determine what actions can and cannot be performed. A secu-
rity policy may be created for various objects including, but
not limited to, shell tool specific security policies, application
specific security policies, resource based security policies,
shell based policies, owner based policies, user based policies
and/or other types of policies. During execution within a
managed shell, a shell script may request access to a resource
in order to perform the commands within the script.
Resources 24 may include files 26, directories 28, processes
30, and/or other resources. A security manager 20 can enforce
the security policy related to a requested resource.

In one aspect, the system can apply more kinds of permis-
s10ms (e.g., code 1dentity, resources based security) and more
permission granularity in addition to the existing, user 1den-
tity based, security found in current shells. A managed shell
may 1include recognizing the shell commands (e.g., shell
tools) as separate entities that have their own security poli-
cies. Tool policies are merged with the shells own policies
betfore executing the tools. This way the managed tools them-
selves can limit the kind of actions they can perform (e.g., a
‘rm” command that never deletes backup files). Ever further,
a managed shell may recognize the resources (e.g., files,
directories, process) and the owners (e.g., applications, users)
as separate enfities that can also have their own security
policies (e.g. only an administrator can delete the backup
file).

A managed shell may dynamically create sandboxes based
on the tools and resources being requested before launching
the execution. This 1s unlike normal application, even man-
aged application. The shell sandboxes may be supplied with
information, for example, the requested tools and resources,
and the granted/refused permission sets.

FIG. 2 discloses a method for executing a managed shell
according to one aspect of the invention. A shell script may be
launched automatically without user’s knowledge or manu-
ally with user mitiation. A managed shell may be created at
runtime (operation 50) for securely running a shell script (or
program). The managed shell may execute managed tools,
unmanaged tools, and custom permissions. Managed tools
can 1nclude general shell tools (e.g. Is, rm, cp, mv), specific
application tools (e.g., configuration tools restricted to super
users, backup and restore tools), code assemblies and/or other
resources. This may allow security policies that are not overly
complex or descriptive. For example, a shell could deny
access to write to a file if the owning application 1s currently
running.

Unmanaged tools may not have security policies, rather
they may be executed 11 the security policy explicitly allows
for 1t, but once executed a managed shell may not guarantee
how the unmanaged code will act.

Custom permissions are managed code libraries that are
invoked by the security manager 20 before granting access to
aresource. This type of permission may execute specific code
to check for more advanced and/or specialized permissions
(e.g., application or resource specific permission). For
example, custom permissions could do time-based checks to
allow or deny certain operations.

Managed tools, unmanaged tools, and/or custom permis-
sions may be identified at runtime (operation 52). Security
policies for managed tools may be 1dentified along with secu-
rity decisions to be made with regard to unmanaged tools
(operation 34). Based on the evidences of the tools (e.g., code
identity, source, requested permission) and the specified
resources, one or more sandboxes may be dynamically cre-
ated for one or more managed tools and unmanaged tools 1n
order to apply the 1dentified security policies, decisions and

10

15

20

25

30

35

40

45

50

55

60

65

4

permissions as a merged set of rules to be enforced within the
one or more sandboxes (operation 56 and 58). The managed
shell may be executed according to the merged set of security
policies within the one or more sandboxes (operation 60). The
creation of sandboxes allows shells to be executed without
security risks to other processes and resources of the system.
It 1s possible to create a sandbox 1nside another sandbox to
turther restrict the permissions granted on a sub-script (e.g. a
trusted script calling another less-trusted script).

One aspect of the invention umquely addresses the use of
multiple sandboxes 1n a managed shell where commands and
resources may be subject to a security manager. This allows
application specific security policies to apply for shell com-
mands and also to have shell commands specific security
policies while still allowing the “normal” (e.g., user, machine
and enterprise security policies) security policies to be
applied.

Advanced shell security may be implemented based on the
knowledge the shell has of the resources it accesses. This
allows security policies to be applied to the resources the shell
accesses as well as to managed code. This extends the usage
of the security manager 20 by giving 1t greater awareness
during execution. This may also allow managed shell to pro-
vide remote and controlled access to a shell (e.g., a script may
be sent to another computer to be executed).

FIG. 3 1s a block diagram that further i1llustrates a managed
shell and shell sandbox according to one aspect of the inven-
tion. At runtime a shell script (or program) may be executed
by a managed shell 70. Various objects are used for the execu-
tion of the shell including, but not limited to, shell tools 74,
custom permissions 80, application resources 82, and secu-
rity policies 84. Managed shell may include the use of shell
tools 74 including managed tools 76 and unmanaged tools 78,
during shell execution. One or more shell sandboxes 72 may
be created (e.g., a shell script calling another script) for the
one or more managed and unmanaged tools. Instances of
security policies 84 may be used 1n the shell sandbox. The
security policy instances may relate to managed tools and
requested resources 82 of the managed shell. Custom permis-
s1ons for a managed shell may be specified for use within the
shell sandbox. The combination of security policies from the
various aspects of shell execution provides a secure execution
that goes beyond the conventional operation system security
by dynamically creating a secure execution environment in
the form or a sandbox having security policies.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof.
Various modifications and changes may be made thereto
without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to
be regarded 1n an 1llustrative rather than a restrictive sense.

The invention claimed 1s:

1. A method for using sandboxes 1n a managed shell, com-
prising;:

creating a managed environment for executing a shell
script on a computer;

executing the shell script 1n the managed environment on
one or more processors associated with the computer,
wherein the managed environment includes a first sand-
box configured to enforce one or more security policies
for the shell script during runtime execution of the shell
script 1n the managed environment;

recognizing at least one shell tool that the shell script
requests during the runtime execution in the managed
environment, wherein a security manager recognizes the
shell tool as an entity separate from the shell script that

US 7,725,922 B2

S

has one or more additional security policies separate
from the one or more security policies for the shell
script;
identifying the additional security policies for the recog-
nized shell tool requested by the shell script during the
runtime execution in the managed environment;

dynamically creating a second sandbox inside the first
sandbox 1n response to recognizing the at least one shell
tool requested by the shell script during the run time
execution 1n the managed environment, wherein the sec-
ond sandbox 1s configured to enforce the additional
security policies 1dentified for the requested shell tool;

merging the one or more security policies for the shell
script with the additional security policies identified for
the requested shell tool; and

executing the requested shell tool in the managed environ-

ment, wherein the managed environment 1s configured
to use the first sandbox and the second sandbox to
enforce the merged security policies for the shell script
and the requested shell tool.

2. The method of claim 1, wherein the requested shell tool
includes a managed shell tool having the additional security
policies.

3. The method of claim 2, wherein the managed environ-
ment 1s further configured to enforce the security policies for
the shell script and the additional security policies for the
managed shell tool 1in response to the shell script requesting,
the managed shell tool during the runtime execution in the
managed environment.

4. The method of claim 1, further comprising dynamically
creating a third sandbox 1nside the first sandbox in response to
recognizing at least one unmanaged shell tool requested by
the shell script during the runtime execution 1n the managed
environment, wherein the managed environment 1s further
configured to enforce the security policies for the shell script
for the unmanaged shell tool in response to the shell script
requesting the unmanaged shell tool during the runtime
execution 1n the managed environment.

5. The method of claim 1, wherein the requested shell tool
includes a sub-script that the shell script requests to execute
during the runtime execution in the managed environment.

6. The method of claim 1, wherein the requested shell tool
includes a resource that the shell script requests access to
during the runtime execution in the managed environment.

7. The method of claim 1, wherein the managed environ-
ment 1s further configured to enforce the merged security
policies for the shell script and the requested shell tool based
on whether the shell script and the requested shell tool origi-
nate from a secure source, an un-secure source, or a semi-
secure source.

8. The method of claim 1, wherein the merged security
policies each include one or more security permissions or
security parameters that restrict one or more actions that one
or more of the shell script or the shell tool request during the
runtime execution 1n the managed environment.

9. The method of claim 1, wherein the security manager
dynamically creates the second sandbox 1nside the first sand-
box prior to executing the requested shell tool in the managed
environment.

10. The method of claim 1, further comprising supplying
the first sandbox and the second sandbox with one or more
granted permission sets and one or more refused permission
sets, wherein the first sandbox and the second sandbox use the
granted permission sets and the refused permission sets to
enforce the merged security policies for the shell script and
the requested shell tool.

10

15

20

25

30

35

40

45

50

55

60

65

6

11. A system for using sandboxes in a managed shell,
comprising:
a computer configured to download a shell script through a
network connection;

a managed environment configured to execute the down-
loaded shell script on the computer, wherein the man-
aged environment includes a first sandbox configured to
enforce one or more security policies for the shell script
during runtime execution of the shell script 1n the man-
aged environment; and

a security manager configured to:

recognize at least one shell tool that the shell script
requests during the runtime execution 1n the managed
environment, wherein the security manager recog-
nizes the shell tool as an entity separate from the shell
script that has one or more additional security policies
separate from the one or more security policies for the
shell script;

identily the additional security policies for the recog-
nized shell tool requested by the shell script during the
runtime execution in the managed environment;

dynamically create a second sandbox inside the first
sandbox 1n response to recognizing the at least one
shell tool requested by the shell script during the
runtime execution in the managed environment,
wherein the second sandbox 1s configured to enforce
the additional security policies identified for the
requested shell tool;

merge the one or more security policies for the shell
script with the additional security policies 1dentified
for the requested shell tool; and

execute the requested shell tool 1n the managed environ-
ment, wherein the managed environment 1s further
configured to use the first sandbox and the second
sandbox to enforce the merged security policies for
the shell script and the requested shell tool.

12. The system of claim 11, wherein the requested shell
tool includes a managed shell tool having the additional secu-
rity policies.

13. The system of claim 12, wherein the managed environ-
ment 1s Turther configured to enforce the security policies for
the shell script and the additional security policies for the
managed shell tool 1 response to the shell script requesting,

the managed shell tool during the runtime execution 1n the
managed environment.

14. The system of claim 11, wherein the security manager
1s Turther configured to dynamically create a third sandbox
inside the first sandbox 1n response to recognizing at least one
unmanaged shell tool requested by the shell script during the
runtime execution in the managed environment, wherein the
managed environment 1s further configured to enforce the
security policies for the shell script for the unmanaged shell
tool 1n response to the shell script requesting the unmanaged
shell tool during the runtime execution 1n the managed envi-
ronment.

15. The system of claim 11, wherein the requested shell
tool includes a sub-script that the shell script requests to
execute during the runtime execution in the managed envi-
ronment.

16. The system of claim 11, wherein the requested shell
tool includes a resource that the shell script requests access to
during the runtime execution in the managed environment.

17. The system of claim 11, wherein the managed environ-
ment 1s further configured to enforce the merged security
policies for the shell script and the requested shell tool based

US 7,725,922 B2

7

on whether the shell script and the requested shell tool origi-
nate from a secure source, an un-secure source, or a semi-

SCCUIC SOUrce.

18. The system of claim 11, wherein the merged security
policies each include one or more security permissions or
security parameters that restrict one or more actions that one

or more of the shell script or the shell tool request during the
runtime execution in the managed environment.

19. The system of claim 11, wherein the security manager
1s further configured to dynamaically create the second sand-

8

box 1nside the first sandbox prior to executing the requested
shell tool 1n the managed environment.

20. The system of claim 11, wherein the security manager
1s Turther configured to supply the first sandbox and the sec-
ond sandbox with one or more granted permission sets and
one or more refused permission sets, wherein the first sand-
box and the second sandbox use the granted permission sets
and the refused permission sets to enforce the merged security
policies for the shell script and the requested shell tool.

% o e = x

	Front Page
	Drawings
	Specification
	Claims

