US007725736B2
a2 United States Patent (10) Patent No.: US 7.725,736 B2
Lundvall et al. 45) Date of Patent: *“May 25, 2010
(54) MESSAGE DIGEST INSTRUCTION 5,765,030 A 6/1998 Nachenberg et al. 714/33
5,790,825 A 8/1998 Traut
(75) Inventors: Shawn D. Lundvall, Poughkeepsie, NY 6,009,261 A 12/1999 Scalzi et al.
(US); Ronald M. Smith, Sr., 6,134,592 A 10/2000 Montulliccccoevnveeee. 709/229
Wappingers Falls, NY (US); Phil 6,308,255 Bl 10/2001 Gorishek, IV et al.
Chi-Chung Yeh, Poughkeepsie, NY 6,463,582 Bl 10/2002 Lethin et al.
(US) 6,496,932 Bl 12/2002 THESET «ooovvoveeeeeeevee 713/168
(73) Assignee: International Business Machines 2;32 22; E 2 32882 ﬁldltetlal‘ """"""""""" 7;;)_/22/5
COrpOrationj ArmOIlkj N—Y (US) AdCladl., ..coiiiiiiiiiiiiiinns,
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (Continued)

U.S.C. 134(b) by 637 days.

FOREIGN PATENT DOCUMENTS

This patent 1s subject to a terminal dis-
claimer. EP 0354774 A2 8/1989

(21) Appl. No.: 11/551,292

(22) Filed: Oct. 20, 2006 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS

IS 2007/0055886 A 1 Mar. & 2007 One Way Hash Functions, Brucc Schneier, Dr. Dobb’s Journal vol.

" 16, No. 9, 1991, pp. 148-151.
Related U.S. Application Data (Continued)

(62) Davision of application No. 10/436,230, filed on May _ _ _

12, 2003, now Pat. No. 7,159,122, Primary Lxaminer—Jung Kim

’ j S Assistant Examiner—Izunna Okeke

(51) Int.CL (74) Attorney, Agent, or Firm—IJohn E. Campbell

HO4L 9/00 (2006.01)
(52) US.CL .., 713/189; 380/28 (57) ABSTRACT
(58) Field of Classification Search 713/189;

380/28

See application file for complete search history. A method, system and computer program product for digest-

ing data in storage of a computing environment. The digesting

(56) References Cited computes a condensed representation of a message or data
stored 1n the computer storage. A COMPUTE INTERMEDI-
U.S. PATENT DOCUMENTS ATE MESSAGE DIGEST (KIMD) and a COMPUTE LAST
4,578,530 A 3/1986 Zeidleroovovvn...... 178/22.00 ~ MESSAGE DIGEST (KLMD) instruction are disclosed
5200999 A 4/1993 Matyas et al.o........ 38025 Wwhich specily a unit of storage to be digested by a secure
5,551,013 A 8/1996 Beausoleil et al. hashing algorithm.
5574873 A 11/1996 Davidian
5,666,411 A 9/1997 MCCAtY weveveeeeeeeeeeeeennns 380/4 20 Claims, 9 Drawing Sheets

mr}mmmm@

FX L#HHFTIGI'%E:
- NOT APPLICABLE

hh

US 7,725,736 B2
Page 2

U.S. PATENT DOCUMENTS

2002/0184046 Al 12/2002 Kamadaetal. 705/1
2002/0191790 Al 12/2002 Anandccoeenenen. 380/255
2002/0191792 A1 12/2002 Anandc.ccoeevenenen.n. 380/42
2003/0002666 Al 1/2003 Takahashi 380/42
2003/0028765 Al 2/2003 Cromeretal. 713/164

FOREIGN PATENT DOCUMENTS

EP 0725511 A2 1/1996
GB 1494750 12/1977
JP PUPA 5095054 7/1975
JP PUPA 56-121138 9/1981
JP PUPA 11-249873 9/1999
JP PUPA 2001-142694 5/2001
WO WO 01/11818 A2 8/1999
OTHER PUBLICATTIONS

IBM PCI Cryptographic Coprocessor CCA Basic Services Reference
and Guide for IBM 4758 Models 002 and 023 with Release 2.40, Sep.

2001, http://www.zone-h.org/Files/33/CCA__Basic_ Services_ 240.
pdf; pp. 1-1 through 2-18; 6-1 through 6-16; 7-1 through 7-24; B-1
gthrough B42; F-1 through F-4.

“CryptoManiac A Fast Flexible Architecture for Secure Communi-
cation”, L. Wu et al., 28th Annual International Symposium on Com-
puter Architecture, Jun. 2001, pp. 1-10.

The Microacrchitecture of the IBM eServer z900 Processor, E. M.
Schwarz et al., IBM Journal of Research and Development, vol. 46,
No. 4/5, Jul./Sep. 2002, pp. 381-395.

Unpublished IBM document describing prior art, pp. 1-15.

European Patent Office PCT, Applicant’s file reference POU030108,
date of mailing Nov. 24, 2005, International Application No. PCT/
GB2004/0019135, International Filing Date Apr. 5, 2004, 14 pages.

The Patent Office, Patents Directorate, Reference
POU920030108GB1, Application No. GB0518811.5, Examination

Report, Date 14 Dec. 2005, 3 pages.

z/ Architecture Principles of Operation, SA22-7832-00, First Edition,
Dec. 2000, 1026 pages.

U.S. Patent May 25, 2010 Sheet 1 of 9 US 7,725,736 B2

KIMD Ry,Re [RRE]

g 168 24 98 31
FIG. T

KIWD Ry,R» [RRE]

%

{6 24 28 3

CODEIFUNCTION
0 KIMD—QUERY

_-

EXPLANATION:
-~ NOT APPLICABLE

EXPLANATION:
. NOT APPLICABLE

U.S. Patent May 25, 2010 Sheet 2 of 9 US 7,725,736 B2

TSECOND-OPERAHE] [[SECOND-OPERAND
ADRESS | %71 T ADDRESS

U.S. Patent May 25, 2010 Sheet 3 of 9 US 7,725,736 B2

OV 20> M <B4

O0W <20

ATMEBOL EXFLANATION)
e LEMGTH OF [TEM Y BYEES
{ MW IMITIAL CHAMNING VALUT, _
| A MESSAGE BLOCK
{ QLY CUTHUT GHAINIRG VALLE

U.S. Patent May 25, 2010 Sheet 4 of 9 US 7,725,736 B2

QEY 200

| PARAMETER —
' BLOCK N | HO
| STORAGE

U
|
STORAGE ;

SIATLL WORD

U.S. Patent May 25, 2010 Sheet 5 of 9 US 7,725,736 B2

00V <20>

' BLOCK N[O H HE H3 H.eL
ET{:I E: iﬂrﬁE A AR AR I

OV <90

II}P E Ii"vE Sﬂ}ﬁ.ﬁeGE

...... —f
M <has
— .!.a‘

OV <205

FIG.12

111

QCV 20

lllllllllllllllllll

lll

U.S. Patent May 25, 2010 Sheet 6 of 9 US 7,725,736 B2

QGF“{E&}

PARAMETER -
CBLOCK N EH@ HE HZ m Ha| L |
STORAGE —

LV <A
OF 2 M ETDHJ'!&GE

j

llllll

— ﬁza}m

PARAMETER, —
BLOCK N |HO H1 H2 43 Ha| NBL
STORAGE e o :

CY <205
£ <56>

| P cBdml> |

US 7,725,736 B2

Sheet 7 0of 9

May 25, 2010

U.S. Patent

(OMIZHON THES HLONT

ONYE3d0=ONOD3ES) NOHITIN0D TWILEYd 0L 300 £ 3000 NOILGNGD

._ L__“EWM Eﬁﬂmﬂmmgm“Emwﬁ%aﬁg_m_%E%ﬁ
ANYHIA0—ONODES) NOILTTEWOD WMdoN 0L 3nd 0 3005 NOILCKGS

TRYH30 OROCI3S

gl ASU RS HAldNTHYD Ml Ul ShA0Y NY a4 Shlildadid 554009

OM3Z ATIVNISIE0 HISNTT ONVMId0-ONOOIS 0L 303 © 3000 NOILENGD
HIONTT ONYHIH0 QIWANT 0L 300 NOILDIZXI NOIYDI03HS
o yIEEN EILSIOTY O

4O 3000 NOWINAS OrvANl Gf 3nG NOULE30X3 NOILYDII034S
MlLEA AT NUHLFEAg4)

BT NOULDNMISKH] ON0DE5 W04 SHOILSIOXT S500%
IS¢ TWHINIO JHL HO4 SNOLIONOD HOMLdnMNILN:

kY
!

Ry
R

»
o L
WL

—ARHOUEA AU ALMOIHd 4L BV ALEDIEE ANYS 4kl Hit SNUiiddarsd Y- |

US 7,725,736 B2

Sheet 8 0f 9

May 25, 2010

U.S. Patent

- Tl [- 3] T TN ECEETECE 'HMI

T END]
HidSad e
LA

c

YA

SIH RN UGS IR N

llllllllllllllllllllllllllll

U.S. Patent May 25, 2010 Sheet 9 of 9 US 7,725,736 B2

lll
111111111111111111111

INSTRUCTION
FETCH
502 COMPUTER MEMORY
e A

| INSTRUCTIONS AND DATA |
INSTRUCTION -

DECODE
503

N TR HHLIN
ERECUTICH

lll

US 7,725,736 B2

1
MESSAGE DIGEST INSTRUCTION

CROSS-REFERENCE TO RELATED
APPLICATION

This 1s a divisional application of Ser. No. 10/436,230
“MESSAGE DIGEST INSTRUCTIONS” filed on May 12,
2003 now U.S. Pat. No. 7,159,122 and assigned to IBM. The
disclosure of the forgoing application 1s incorporated herein
by reference.

BACKGROUND OF THE INVENTION

This invention relates to computer system architecture and
particularly to new 1nstructions which augment the IBM z/Ar-
chitecture and can be emulated by other architectures.

Before our invention IBM has created through the work of
many highly talented engineers beginning with machines
known as the IBM System 360 in the 1960s to the present, a
special architecture which, because of its essential nature to a
computing system, became known as “the mainirame™ whose
principles of operation state the architecture of the machine
by describing the machine instructions which may be
executed upon the “mainframe” implementation of the
machine instructions which had been invented by IBM 1nven-
tors and adopted, because of their significant contribution to
improving the state of the computing machine represented by
“the mainframe™, as significant contributions by inclusion 1n
IBM’s Principles of Operation as stated over the years. The
First Edition of the z/Architecture Principles of Operation

which was published December, 2000 has become the stan-
dard published reference as SA22-7832-00. We determined
that further new 1nstructions would assist the art and could be

included 1n a z/Architecture machine and also emulated by
others 1n stmpler machines, as described herein.

We determined that further new instructions would assist
the art and could be included 1n a z/ Architecture machine and
also emulated by others 1n simpler machines, as described
herein.

BRIEF SUMMARY OF THE INVENTION

It 1s a primary object of the present invention to disclose
CPU-synchronous, problem-state, and sectioning instruc-
tions which digest data 1n computer storage wherein the
instructions compute a condensed representation of messages
or data.

It 1s another object of the invention to disclose instructions
which specily a unit of storage to be digested, and wherein a
secure hashing algorithm digests the data 1n the specified unit
of storage.

It 1s another object of the invention to disclose a COM-
PUTE INTERMEDIATE MESSAGE DIGEST instruction
and a COMPUTE LAST MESSAGE DIGEST instruction.

It 1s a further object of the mvention to disclose a digest
instruction wherein complete blocks of data are processed,
and after processing all complete blocks, a padding operation
1s performed to include the remaining portion of the specified
storage.

10

15

20

25

30

35

40

45

50

55

60

65

2

It 1s another object of the invention to emulate the digest
instruction 1n a computer architecture which 1s different than
the computer architecture of the 1nstruction.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

These and other objects will be apparent to one skilled 1n
the art from the following detailed description of the mnven-
tion taken 1n conjunction with the accompanying drawings in
which:

FIG. 1 1s representation of the Compute Intermediate Mes-
sage Digest (KIMD) instruction 1n the RRE 1nstruction for-
mat;

FIG. 2 1s a representation of the Compute Last Message
Digest (KLMD) 1nstruction 1n the RRE instruction format;

FIG. 3 1s a table showing the function codes of the KIMD
instruction of FI1G. 1;

FIG. 4 1s a table showing the function codes of the KLMD
Instruction of FIG. 2;

FIG. S representation of the general register assignment for
the KIMD and KLMD instructions of FIGS. 1 and 2;

FIG. 6 illustrates the symbol for SHA-1 Block Digest,
Algorithm;

FIG. 7 illustrates the format of the parameter block for
KIMD-Query;

FIG. 8 illustrates the format of the parameter block for
KIMD-SHA-1;

FIG. 9 illustrates the KIMD-SHA-1 operation;

FIG. 10 illustrates the format for the parameter block for
KLMD-Query;

FIG. 11 illustrates the format for the parameter block for
KLMD-SHA-1;

FIG. 12 illustrates KLMD-SHA-1 Full Block operation;

FIG. 13 illustrates the KLMD-SHA-1 Empty Block opera-
tion;

FIG. 14 illustrates the KLMD-SHA-1 Partial-Block Case 1
operation;

FIG. 15 illustrates the KLMD-SHA-1 Partial-Block Case 2
operation;

FIG. 16 1s a table showing the priority of execution of the
KIMD and KLLMD 1nstructions;

FIG. 17 illustrates our cryptographic coprocessor; and

FIG. 18 shows the generalized referred embodiment of a
computer memory storage containing instructions 1n accor-
dance with the preferred embodiment and data, as well as the
mechanism for fetching, decoding and executing these
instructions, either on a computer system employing these
architected instructions or as used 1n emulation of our archi-
tected instructions.

DETAILED DESCRIPTION OF THE INVENTION

The message digest instructions discussed herein are for
computing a condensed representation of a message or data
file. The compute imntermediate message digest and the com-
pute last message digest instructions will first be discussed,
tollowed by a discussion of the preferred computer system for
executing these mnstructions. In the alternative, a second pre-
ferred computer system which emulates another computer
system for executing these instructions will be discussed.

Compute Intermediate Message Digest (KIMD)

FIG. 1 1s representation of the Compute Intermediate Mes-
sage Digest (KIMD) mnstruction 1n the RRE 1nstruction for-
mat.

US 7,725,736 B2

3

Compute Last Message Digest (KLMD)

FIG. 2 1s a representation of the Compute Last Message
Digest (KLMD) instruction 1n the RRE instruction format;

A Tunction specified by the function code 1n general regis-
ter 0 1s performed.

Bits 16-23 of the instruction and the R1 field are 1gnored.

Bit positions 57-63 of general register 0 contain the func-
tion code. FIGS. 3 and 4 show the assigned function codes for
COMPUTE INTERMEDIATE MESSAGE DIGEST AND
COMPUTE LAST MESSAGE DIGEST, respectively. All
other function codes are unassigned. Bit 56 of general register
0 must be zero; otherwise, a specification exception 1S recog-
nized. All other bits of general register 0 are 1ignored. General
register 1 contains the logical address of the leftmost byte of
the parameter block in storage. In the 24-bit addressing mode,
the contents of bit positions 40-63 of general register 1 con-
stitute the address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents of bit
positions 33-63 of general register 1 constitute the address,
and the contents of bit positions 0-32 are ignored. In the 64-bit
addressing mode, the contents of bit positions 0-63 of general

register 1 constitute the address.
The function codes for COMPUTE INTERMEDIAT

MESSAGE DIGEST are shown in FIG. 3.

The function codes for COMPUTE LAST MESSAG.
DIGEST ARE shown 1n FIG. 4.

All other function codes are unassigned.

The query function provides the means of indicating the
availability of the other functions. The contents of general
registers R2 and R2+1 are 1gnored for the query function.

For all other functions, the second operand 1s processed as
specified by the function code using an initial chaining value
in the parameter block, and the result replaces the chaining
value. For COMPUTE LAST MESSAGE DIGEST, the
operation also uses a message bit length in the parameter
block. The operation proceeds until the end of the second-
operand location 1s reached or a CPU-determined number of
bytes have been processed, whichever occurs first. The result
1s 1indicated 1n the condition code.

The R2 field designates an even-odd pair of general regis-
ters and must designate an even numbered register; otherwise,
a specification exception 1s recognized.

The location of the leftmost byte of the second operand 1s
specified in the contents of the R2 general register. The num-
ber of bytes 1n the second-operand location 1s specified in
general register R2+1.

As part of the operation, the address 1n general register R2
1s incremented by the number of bytes processed from the
second operand, and the length in general register R2+1 1s
decremented by the same number. The formation and updat-
ing of the address and length 1s dependent on the addressing
mode.

In the 24-bit addressing mode, the contents of bit positions
40-63 of general register R2 constitute the address of second
operand, and the contents of bit positions 0-39 are 1gnored;
bits 40-63 of the updates address replace the corresponding
bits 1n general register R2, carries out of bit position 40 of the
updated address are 1gnored, and the contents of bit positions
32-39 of general register R2 are set to zeros. In the 31-bat
addressing mode, the contents of bit positions 33-63 of gen-
eral register R2 constitute the address of second operand, and
the contents of bit positions 0-32 are 1gnored; bits 33-63 of the
updated address replace the corresponding bits 1n general
register R2, carries out of bit position 33 of the updated
address are 1gnored, and the content of bit position 32 of
general register R2 1s set to zero. In the 64-bit addressing
mode, the contents of bit positions 0-63 of general register R2

(Ll

(Ll

10

15

20

25

30

35

40

45

50

55

60

65

4

constitute the address of second operand; bits 0-63 of the
updated address replace the contents of general register R2
and carries out of bit position 0 are 1ignored.

In both the 24-bit and the 31-bit addressing modes, the
contents of bit positions 32-63 of general register R2+1 form
a 32-bit unsigned binary mteger which specifies the number
ol bytes inthe second operand; and the updated value replaces
the contents of bit positions 32-63 of general register R2+1. In
the 64-bit addressing mode, the contents of bit positions 0-63
of general register R2+1 form a 64-bit unsigned binary inte-
ger which specifies the number of bytes 1n the second oper-
and; and the updated value replaces the contents of general
register R2+1.

In the 24-bit or 31-bit addressing mode, the contents of bit
positions 0-31 of general registers R2 and R2+1, always
remain unchanged.

FIG. 5 shows the contents of the general registers just
described.

In the access-register mode, access registers 1 and R2
specily the address spaces containing the parameter block
and second operand, respectively.

The result 1s obtained as 11 processing starts at the leit end
of the second operand and proceeds to the right, block by
block. The operation 1s ended when all source bytes 1n the
second operand have been processed (called normal comple-
tion), or when a CPU-determined number of blocks that 1s
less than the length of the second operand have been pro-
cessed (called partial completion). The CPU-determined
number of blocks depends on the model, and may be a dii-
ferent number each time the instruction 1s executed. The
CPU-determined number of blocks i1s usually nonzero. In
certain unusual situations, this number may be zero, and
condition code 3 may be set with no progress. However, the
CPU protects against endless reoccurrence of this
no-progress case.

When the chaining-value field overlaps any portion of the
second operand, the result in the chaining value field 1s unpre-

dictable.

For COMPUTE INTERMEDIATE MESSAGE DIGEST,
normal completion occurs when the number of bytes 1n the
second operand as specified in general register R2+1 have
been processed. For COMPUTE LAST MESSAGE DIGEST,
after all bytes in the second operand as specified in general
register R2+1 have been processed, the padding operation 1s
performed, and then normal completion occurs.

When the operation ends due to normal completion, con-
dition code 0 1s set and the resulting value in R2+1 1s zero.
When the operation ends due to partial completion, condition
code 3 1s set and the resulting value 1n R2+1 1s nonzero.

When the second-operand length 1s 1imitially zero, the sec-
ond operand 1s not accessed, general registers R2 and R2+1
are not changed, and condition code O 1s set. For COMPUTE
INTERMEDIATE MESSAGE DIGEST, the parameter block
1s not accessed. However, for COMPUTE LAST MESSAGE
DIGEST, the empty block (IL=0) case padding operation 1s
performed and the result 1s stored 1nto the parameter block.

As observed by other CPUs and channel programs, refer-
ences to the parameter block and storage operands may be
multiple-access references, accesses to these storage loca-
tions are not necessarily block-concurrent, and the sequence
ol these accesses or references 1s undefined.

Access exceptions may be reported for a larger portion of
the second operand than 1s processed 1n a single execution of
the instruction; however, access exceptions are not recog-
nized for locations beyond the length of the second operand
nor for locations more than 4K bytes beyond the current
location being processed.

US 7,725,736 B2

S

Symbols Used 1n Function Descriptions

The symbols of FIG. 6 are used in the subsequent descrip-
tion of the COMPUTE INTERMEDIATE MESSAGE

DIGEST and COMPUTE LAST MESSAGE DIGEST func-
tions. Further description of the secure hash algorithm may be
tound in Secure Hash Standard, Federal Information Process-
ing Standards publication 180-1, National Institute of Stan-

dards and Technology, Washington D.C., Apr. 17, 1995.

KIMD-Query (KIMD Function Code 0)

The locations of the operands and addresses used by the
instruction are as shown 1n FIG. 5.

The KIMD-Query parameter block has the format shown
in FIG. 7.

A 128-bit status word 1s stored 1n the parameter block. Bits
0-127 of this field correspond to tunction codes 0-127,
respectively, of the COMPUTE INTERMEDIATE MES-
SAGE DIGEST instruction. When a bit 1s one, the corre-
sponding function 1s 1nstalled; otherwise, the function 1s not
installed.

Condition code 0O 1s set when execution of the KIMD-
Query function completes; condition code 3 1s not applicable
to this function.

KIMD-SHA-1 (KIMD Function Code 1)

The locations of the operands and addresses used by the
instruction are as shown 1n FIG. 5.

The parameter block used for the KIMD-SHA-1 function
has the format shown 1n FIG. 8.

A 20-byte intermediate message digest 1s generated for the
64-byte message blocks in operand 2 using the SHA-1 block
digest algorithm with the 20-byte chaining value in the
parameter block. The generated intermediate message digest,
also called the output chaining value (OCV), 1s stored 1n the
chaining-value field of the parameter block. The KIMD-
SHA-1 operation 1s shown 1 FIG. 9.

KLMD-Query (KLMD Function Code 0)

The locations of the operands and addresses used by the
instruction are as shown 1n FIG. 5.

The parameter block used for the KLMD-Query function
has the format shown 1n FIG. 10.

A 128-bit status word 1s stored 1n the parameter block. Bits
0-127 of this field correspond to tunction codes 0-127,
respectively, of the COMPUTE LAST MESSAGE DIGEST
instruction. When a bit 1s one, the corresponding function 1s
installed; otherwise, the function 1s not installed.

Condition code 0 1s set when execution of the KLMD-
Query Tunction completes; condition code 3 1s not applicable
to this function.

KLMD-SHA-1 (KLMD Function Code 1)

The locations of the operands and addresses used by the
instruction are as shown in FIG. 5.

The parameter block used for the KLMD-SHA-1 function

has the format shown 1in FIG. 11.

The message digest for the message (M) 1n operand 2 1s
generated using the SHA-1 algorithm with the chaining value
and message-bit-length information in the parameter block.

If the length of the message in operand 2 1s equal to or
greater than 64 bytes, an intermediate message digest 15 gen-
erated for each 64-byte message block using the SHA-1 block
digest algorithm with the 20-byte chaining value in the
parameter block, and the generated intermediate message
digest, also called the output chaining value (OCV), 1s stored
into the chaiming-value field of the parameter block. This
operation 1s shown 1n FIG. 12 and repeats until the remaining

10

15

20

25

30

35

40

45

50

55

60

65

6

message 1s less than 64 bytes. If the length of the message or
the remaining message 1s zero bytes, then the operation in
FIG. 13 1s performed.

If the length of the message or the remaining message 1s
between one byte and 335 bytes inclusive, then the operation in
FIG. 14 1s performed; 11 the length 1s between 56 bytes and 63
bytes inclusive, then the operation in FIG. 15 1s performed;
The message digest, also called the output chaining value
(OCV), 15 stored 1n to the chaining-value field of the param-
eter block.

Additional Symbols Used in KLMD Functions
The following additional symbols are used 1n the descrip-

tion of the COMPUTE LAST MESSAGE DIGEST func-
tions.
Symbol Explanation for KLMD Function Figures

L Byte length of operand 2 in storage.
p <n> n padding bytes; leftmost byte 1s 80 hex; all other bytes are

00 hex.
Z <56> 56 padding bytes of zero.
Mbl an 8-byte value specifying the bit length of the total message.
q <64> a padding block, consisting of 536 bytes of zero followed by an

8-byte mbl.

Special Conditions for KIMD and KLMD

A specification exception 1s recognized and no other action

1s taken 11 any of the following occurs:

1. Bit 56 of general register 0 1s not zero.

2. Bits 57-63 of general register 0 specily an unassigned or
uninstalled function code.

3. The R2 field designates an odd-numbered register or
general register 0.

4. For COMPUTE INTERMEDIATE MESSAGE
DIGEST, the second-operand length 1s not a multiple of
the data block size of the designated function (see FIG.
3 to determine the data block sizes for COMPUTE
INTERMEDIATE MESSAGE DIGEST {functions).
This specification-exception condition does not apply to
the query function, nor does 1t apply to COMPUTE
LAST MESSAGE DIGEST.

Resulting Condition Code:

0 Normal completion

1 _

9 _

3 Partial completion
Program Exceptions:

Access (fetch, operand 2 and message bit length; fetch and
store, chaining value)

Operation (1f the message-security assist 1s not mnstalled)

Specification

Programming Notes:

1. Bit 56 of general register 0 1s reserved for future exten-
s1on and should be set to zero.

2. When condition code 3 i1s set, the second operand
address and length in general registers R2 and R2+1, respec-
tively, and the chaining-value 1in the parameter block are
usually updated such that the program can simply branch
back to the instruction to continue the operation.

For unusual situations, the CPU protects against endless
reoccurrence for the no-progress case. Thus, the program can

US 7,725,736 B2

7

sately branch back to the instruction whenever condition code
3 1s set with no exposure to an endless loop.

3. If the length of the second operand 1s nonzero initially
and condition code 0 1s set, the registers are updated 1n the
same manner as for condition code 3; the chaining value 1n
this case 1s such that additional operands can be processed as
if they were part of the same chain.

4. The nstructions COMPUTE INTERMEDIATE MES-
SAGE DIGEST and COMPUTE LAST MESSAGE DIGEST
are designed to be used by a security service application
programming interface (API). These APIs provide the pro-
gram with means to compute the digest of messages of almost
unlimited size, including those too large to fit in storage all at
once. This 1s accomplished by permitting the program to pass
the message to the API in parts. The following programming
notes are described in terms of these APIs.

5. Belore processing the first part of a message, the pro-
gram must set the 1nitial values for the chaining-value field.
For SHA-1, the mitial chaining values are listed as follows:

HO=x*6745 2301
H1=x"EFCD AB8Y’
H2=x"98BA DCFE’
H3=x"1032 5476°
H4=x"C3D2 E1F0’

6. When processing message parts other than the last, the
program must process message parts 1n multiples of 512 bits

(64 bytes) and use the COMPUTE INTERMEDIATE MES-
SAGE DIGEST instruction.

7. When processing the last message part, the program
must compute the length of the original message 1n bits and
place this 64-bit value 1n the message-bit-length field of the
parameter block, and use the COMPUTE LAST MESSAGE
DIGEST 1nstruction.

8. The COMPUTE LAST MESSAGE DIGEST instruction
does not require the second operand to be a multiple of the
block size. It first processes complete blocks, and may set
condition code 3 before processing all blocks. After process-
ing all complete blocks, 1t then performs the padding opera-
tion including the remaining portion of the second operand.
This may require one or two iterations of the SHA-1 block
digest algorithm.

9. The COMPUTE LAST MESSAGE DIGEST instruction
provides the SHA-1 padding for messages that are a multiple
of eight bits 1n length. If SHA-1 1s to be applied to a bit string
which 1s not a multiple of eight bits, the program must per-
form the padding and use the COMPUTE INTERMEDIATE
MESSAGE DIGEST instruction.

Crypto Coprocessor:

The preferred embodiment provides a crypto coprocessor
which can be used with the instructions described herein and
to execute cipher messages and assist 1n a variety of chainming,
message tasks which can be employed for chained and cryp-
tographic use with the appropnate instructions.

FI1G. 17 1llustrates our cryptographic coprocessor which 1s
directly attached to a data path common to all internal execu-
tion units on the general purpose microprocessor, which has
multiple execution pipelines. The microprocessor internal
bus (1) 1s common to all other execution units 1s attached to
the cryptographic control unit (2), and the control umit
watches the bus for processor instructions that 1t should
execute.

The cryptographic control unit provides a cryptographic
coprocessor directly attached to a data path common to all
internal execution units of the central processing unit on a
general purpose microprocessor providing the available hard-
ware (E, ... E_,, or from a combination thereof 1n the pre-

71l?

10

15

20

25

30

35

40

45

50

55

60

65

8

ferred embodiment having multiple execution pipelines) for
the central processing unit. When a cryptographic instruction
1s encountered in the command register (3), the control unit
(2) 1nvokes the appropriate algorithm from the available hard-
ware. Operand data 1s delivered over the same internal micro-
processor bus via an input FIFO register (4). When an opera-
tion 1s completed the a tlag 1s set1n a status register (6) and the
results are available to be read out from the output FIFO
register (5).

The 1llustrated preferred embodiment of our mvention 1s
designed to be extensible to include as many hardware
engines as required by a particular implementation depending
on the performance goals of the system. The data paths to the
input and output registers (7) are common among all engines.

The preferred embodiment of the invention cryptographic
functions are implemented 1n execution umt hardware on the
CPU and this implementation enables a lower latency for
calling and executing encryption operations and increases the
elficiency.

This decreased latency greatly enhances the capability of
general purpose processors 1n systems that frequently do
many encryption operations, particularly when only small
amounts of data are involved. This allows implementation
that can significantly accelerate the processes involved in
doing secure online transactions. The most common methods
ol securing online transactions mvolve a set of three algo-
rithms. The first algorithm 1s only used one time 1n a session,
and may be implemented 1n hardware or software, while the
other operations are mvoked with every transaction of the
session, and the cost 1n latency of calling external hardware as
well as the cost 1n time to execute the algorithm 1n software
are both eliminated with this invention.

In FIG. 18 we have shown conceptually how to implement
what we have 1n a preferred embodiment implemented 1n a
mainiframe computer having the microprocessor described
above which can effectively be used, as we have experimen-
tally proven within IBM, 1in a commercial implementation of
the long displacement facility computer architected nstruc-
tion format the instructions are used by programmers, usually
today “C” programmers. These instruction formats stored in
the storage medium may be executed natively 1n a z/Archi-
tecture IBM Server, or alternatively 1n machines executing
other architecture. They can be emulated 1n the existing and 1n
future IBM mainirame servers and on other machines of IBM
(e.g. pSeries Servers and xSeries Servers). They can be
executed 1 machines running Linux on a wide variety of
machines using hardware manufactured by IBM, Intel, AMD,
Sun Microsystems and others. Besides execution on that
hardware under a z/ Architecture, Linux can be used as well as
machines which use emulation by Hercules, UMX, FXI or
Platform Solutions, where generally execution 1s in an emu-
lation mode. In emulation mode the specific instruction being
emulated 1s decoded, and a subroutine built to implement the
individual 1nstruction, as in a “C” subroutine or driver, or
some other method of providing a driver for the specific
hardware as 1s within the skill of those 1n the art after under-
standing the description of the preferred embodiment. Vari-
ous soitware and hardware emulation patents including, but
not limited to U.S. Pat. No. 5,551,013 for a “Multiprocessor
for hardware emulation” of Beausoleil et al., and U.S. Pat.
No. 6,009,261: Preprocessing of stored target routines for
emulating incompatible instructions on a target processor’” of
Scalz1 et al; and U.S. Pat. No. 35,574,873: Decoding guest
instruction to directly access emulation routines that emulate
the guest instructions, of Davidian et al; U.S. Pat. No. 6,308,
255: Symmetrical multiprocessing bus and chipset used for
coprocessor support allowing non-native code to run in a

US 7,725,736 B2

9

system, of Gorishek et al; and U.S. Pat. No. 6,463,582:
Dynamic optimizing object code translator for architecture
emulation and dynamic optimizing object code translation
method of Lethin et al; and U.S. Pat. No. 5,790,825: Method
for emulating guest 1nstructions on a host computer through
dynamic recompilation of host instructions of Eric Traut; and
many others, illustrate the a variety of known ways to achieve
emulation of an instruction format architected for a different
machine for a target machine available to those skilled in the
art, as well as those commercial software techniques used by
those referenced above.

Asillustrated by FI1G. 18, these instructions are executed 1n
hardware by a processor or by emulation of said instruction
set by software executing on a computer having a different
native instruction set.

In FIG. 18, #501 shows a computer memory storage con-
taining instructions and data. The mnstructions described in
this 1invention would initially stored in this computer. #502
shows a mechamism for fetching instructions from a computer
memory and may also contain local bullering of these instruc-
tions 1t has fetched. Then the raw 1nstructions are transierred
to an instruction decoder, #503, where 1t determines what
type of instruction has been fetched. #504, shows a mecha-
nism for executing instructions. This may include loading
data mto a register from memory, #3501, storing data back to
memory from a register, or performing some type of arith-
metic or logical operation. This exact type of operation to be
performed has been previously determined by the machine
instruction decoder. The instructions described 1n this inven-
tion would be executed here. If the instructions are being
executed natively on a computer system, then this diagram 1s
complete as described above. However, if an instruction set
architecture 1s being emulated on another computer, the
above process would be implemented 1n software on a host
computer, #505. In this case, the above stated mechanisms
would typically be implemented as one or more software
subroutines within the emulator software. In both cases an
istruction 1s fetched, decoded and executed.

More particularly, these architected instructions can be
used with a computer architecture with existing instruction
formats with a 12 bit unsigned displacement used to form the
operand storage address and also one having additional
instruction formats that provide a additional displacement
bits, preferably 20 bits, which comprise an extended signed
displacement used to form the operand storage address. These
computer architected instructions comprise computer soit-
ware, stored 1n a computer storage medium, for producing the
code running of the processor utilizing the computer sofit-
ware, and comprising the instruction code for use by a com-
piler or emulator/interpreter which 1s stored 1 a computer
storage medium 501, and wherein the first part of the instruc-
tion code comprises an operation code which specified the
operation to be performed and a second part which designates
the operands for that participate. The long displacement
istructions permit additional addresses to be directly
addressed with the use of the long displacement facility
istruction.

Furthermore, the preferred computer architecture has an
instruction format such that the opcode 1s 1n bit positions 0

through 15.

While the preferred embodiment of the invention has been
illustrated and described herein, 1t 1s to be understood that the
invention 1s not limited to the precise construction herein
disclosed, and the rnight 1s reserved to all changes and modi-
fications coming within the scope of the mnvention as defined
in the appended claims.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

What 1s claimed 1s:
1. A computer implemented method for executing a mes-
sage digest instruction 1n a processor, the message digest
instruction comprising a query function, the method compris-
ng:
determining from a previously defined function code a
message digest operation to be executed, the previously
defined function code defining any one of a compute
message digest operation or a function query operation;

responsive to the determined message digest operation to
be executed being a compute message digest operation,
performing the compute message digest operation on an
operand, the compute message digest operation com-
prising performing a SHA-1 (Secure Hash Algorithm)
hashing algorithm; and

responsive to the determined message digest operation to

be executed being a function query operation, saving
status word bits 1n a parameter block, the status word bits
corresponding to one or more function codes installed
on the processor.

2. The method according to claim 1, wherein the perform-
ing the compute message digest operation further comprises:

obtaining a 20 byte chaining value;

x1 obtaimning a 64 byte block of the operand;

x2 using the 20 byte chaining value, directly hashing the 64
byte block of the operand to produce a new 20 byte
chaining value; and

repeating x1-x2 for successive blocks of the operand; and

storing the new 20 byte chaining value produced for a last
block of the operand.

3. The method according to claim 1, wherein responsive to
the message digest imstruction being a compute last message
digest instruction, the method further comprises:

responsive to there being less than 64 bytes to be obtained
in the operand, obtaining the less than 64 bytes and
padding ‘00’ value bytes to the less than 64 bytes
obtained to create a 64 byte operand.

4. The method according to claim 2, wherein the message

digest istruction comprises:

an opcode field,

an R2 field, the R2 field specifying a pair of general regis-
ters of a plurality of general registers, the pair of general
registers comprising a first general register and a second
general register, the first general register containing an
address of the operand, the second general register
speciiying a length of the operand, wherein further the
previously defined function code 1s obtained from a first
predetermined general register of the plurality of general
registers, and

wherein a second predetermined general register of the
plurality of general registers contains a storage address
ol a parameter block, the parameter block comprising,
the chaining value, the method further comprising:

obtaining the storage address of the parameter block;

imitially obtaining a 20 byte chaining value from the param-
cter block at a location specified by the storage address
obtained:

imitially obtaining the previously defined function code
from the first predetermined general register;

imitially obtaining the address of the operand from the first
general register:;

imitially obtaming the length of the operand from the sec-
ond general register; and

imitially obtaining a 64 byte block of the operand at the
location specified by the address of the operand
obtained.

US 7,725,736 B2

11

5. The method according to claim 4, further comprising:

incrementing contents of the first general register accord-
ing to a number of bytes of the operand processed 1n the
steps performed; and

decrementing contents of the second general register
according to the number of bytes of the operand pro-
cessed 1n the steps performed.

6. The method according to claim 1, further comprising:

responsive to the compute message digest operation being
performed on only a portion of the operand, setting a
partial completion condition code value as a condition
code, the partial completion condition code value indi-
cating that the compute message digest operation 1s
incomplete; and responsive to the compute message
digest operation being performed on all of the operand,
setting a normal completion condition code value as a
condition code, the normal completion condition code
value indicating that the compute message digest opera-
tion 1s complete.

7. A computer program product for executing a message
digest instruction 1n a processor, the message digest mstruc-
tion comprising a query function, the computer program
product comprising:

a storage medium readable by a processing circuit and
storing instructions for execution by the processing cir-
cuit for performing a method comprising;:

determining from a previously defined function code a
message digest operation to be executed, the previously
defined function code defining any one of a compute
message digest operation or a function query operation;

responsive to the determined message digest operation to
be executed being a compute message digest operation,
performing the compute message digest operation on an
operand, the compute message digest operation com-
prising performing a SHA-1 (Secure Hash Algorithm)
hashing algorithm; and

responsive to the determined message digest operation to
be executed being a function query operation, saving,
status word bits 1n a parameter block, the status word bits
corresponding to one or more function codes installed
on the processor.

8. The computer program product according to claim 7,
wherein the performing the compute message digest opera-
tion further comprises:

obtaining a 20 byte chaining value;

obtaining a 20 byte chaining value;

x1 obtaining a 64 byte block of the operand;

x2 using the 20 byte chaining value, directly hashing the 64
byte block of the operand to produce a new 20 byte
chaining value; and

repeating x1-x2 for successive blocks of the operand; and

storing the new 20 byte chaining value produced for a last
block of the operand.

9. The computer program product according to claim 7,
wherein responsive to the message digest instruction being a
compute last message digest instruction, the method further
COmMprises:

responsive to there being less than 64 bytes to be obtained
in the operand, obtaining the less than 64 bytes and
padding ‘00’ value bytes to the less than 64 bytes
obtained to create a 64 byte operand.

10. The computer program product according to claim 8,

wherein the message digest mstruction comprises:

an opcode field,

an R2 field, the R2 field specitying a pair of general regis-
ters of a plurality of general registers, the pair of general
registers comprising a first general register and a second

10

15

20

25

30

35

40

45

50

55

60

65

12

general register, the first general register containing an
address of the operand, the second general register
speciiying a length of the operand, wherein further the
previously defined function code 1s obtained from a first
predetermined general register of the plurality of general
registers, and

wherein a second predetermined general register of the

plurality of general registers contains a storage address
of a parameter block, the parameter block comprising
the chaining value, the method further comprising:
obtaining the storage address of the parameter block;
initially obtaining a 20 byte chaining value from the param-
eter block at a location specified by the storage address
obtained:

imtially obtamning the previously defined function code

from the first predetermined general register;

imitially obtaiming the address of the operand from the first

general register;

imitially obtaining the length of the operand from the sec-

ond general register; and

imitially obtaining a 64 byte block of the operand at the

location specified by the address of the operand
obtained.

11. The computer program product according to claim 8,
wherein the method further comprises:

incrementing contents of the first general register accord-

ing to a number of bytes of the operand processed 1in the
steps performed; and

decrementing contents of the second general register

according to the number of bytes of the operand pro-
cessed 1n the steps performed.

12. The computer program product according to claim 7,
wherein the method further comprises:

responsive to the compute message digest operation being

performed on only a portion of the operand, setting a
partial completion condition code value as a condition
code, the partial completion condition code value 1ndi-
cating that the compute message digest operation 1s
incomplete; and

responsive to the compute message digest operation being

performed on all of the operand, setting a normal
completion condition code value as a condition code, the
normal completion condition code value indicating that
the compute message digest operation 1s complete.

13. The computer program product according to claim 7,
wherein responsive to the message digest instruction not
being native to the machine instruction architecture of a pro-
cessor, wherein the method further comprises:

interpreting the message digest instruction to identify a

predetermined soitware routine for emulating the opera-
tion of the message digest instruction, the predetermined
soltware routine comprising a plurality of instructions;
and

executing the predetermined software routine.

14. A system for executing a message digest instruction in
a processor, the message digest instruction comprising a
query function, the system comprising:

a memory;

a computer system 1n communication with the memory,

wherein the computer system 1s capable of executing a

method comprising:

determining from a previously defined function code a

message digest operation to be executed, the previously
defined function code defining any one of a compute
message digest operation or a function query operation;
responsive to the determined message digest operation to
be executed being a compute message digest operation,

US 7,725,736 B2

13

performing the compute message digest operation on an
operand, the compute message digest operation com-
prising performing a SHA-1 (Secure Hash Algorithm)
hashing algorithm; and

responsive to the determined message digest operation to

be executed being a function query operation, saving
status word bits 1n a parameter block, the status word bits
corresponding to one or more function codes installed
on the processor.

15. The system according to claim 14, wherein the per-
forming the compute message digest operation further com-
Prises:

obtaining a 20 byte chaining value;

obtaining a 20 byte chaining value;

x1 obtaining a 64 byte block of the operand;

x2 using the 20 byte chaining value, directly hashing the 64

byte block of the operand to produce a new 20 byte
chaining value; and

repeating x1-x2 for successive blocks of the operand; and

storing the new 20 byte chaining value produced for a last

block of the operand.

16. The system according to claim 14, wherein responsive
to the message digest mstruction being a compute last mes-
sage digest mstruction, the method further comprises:

responsive to there being less than 64 bytes to be obtained

in the operand, obtaining the less than 64 bytes and
padding ‘00’ value bytes to the less than 64 bytes obtained
to create a 64 byte operand.

17. The system according to claim 15, wherein the message
digest instruction comprises:

an opcode field,

an R2 field, the R2 field specitying a pair of general regis-

ters of a plurality of general registers, the pair of general
registers comprising a first general register and a second
general register, the first general register containing an
address of the operand, the second general register
specilying a length of the operand, wherein further the
previously defined function code 1s obtained from a first
predetermined general register of the plurality of general
registers, and

wherein a second predetermined general register of the

plurality of general registers contains a storage address

ol a parameter block, the parameter block comprising

the chaining value, the method further comprising;:
obtaining the storage address of the parameter block;

10

15

20

25

30

35

40

14

imitially obtaining a 20 byte chaining value from the param-
eter block at a location specified by the storage address
obtained:

imtially obtaming the previously defined function code

from the first predetermined general register;

imitially obtaiming the address of the operand from the first

general register;

imitially obtaining the length of the operand from the sec-

ond general register; and

imitially obtaining a 64 byte block of the operand at the

location specified by the address of the operand
obtained.

18. The system according to claim 17, wherein the method
further comprises:

incrementing contents of the first general register accord-

ing to a number of bytes of the operand processed in the
steps performed; and

decrementing contents of the second general register

according to the number of bytes of the operand pro-
cessed 1n the steps performed.

19. The system according to claim 14, wherein the method
turther comprises:

responsive to the compute message digest operation being

performed on only a portion of the operand, setting a
partial completion condition code value as a condition
code, the partial completion condition code value 1ndi-
cating that the compute message digest operation 1s
incomplete; and

responsive to the compute message digest operation being

performed on all of the operand, setting a normal
completion condition code value as a condition code, the
normal completion condition code value indicating that
the compute message digest operation 1s complete.

20. The system according to claim 14, wherein responsive
to the message digest instruction not being native to the
machine instruction architecture of the processor, wherein the
method further comprises:

interpreting the message digest instruction to identify a

predetermined soitware routine for emulating the opera-
tion of the message digest instruction, the predetermined
software routine comprising a plurality of instructions;
and

executing the predetermined software routine.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

