United States Patent

US007725496B2

(12) (10) Patent No.: US 7,725,496 B2
Paval 45) Date of Patent: May 25, 2010
(54) SYSTEM AND METHOD FOR IDENTIFYING 7,181,438 B1* 2/2007 Szaboccovveeeiiiinnnnnnn, 707/2
APPLICATION RESOURCES 7,246,351 B2* 7/2007 Blochetal. 717/175
7,281,002 B2* 10/2007 Farrellcooiiiiniil. 707/3
(75) Inventor: Eugen Paval, Ronkonkoma, NY (US) o o
7,343,597 B1* 3/2008 Smithooonll. 717/151
(73) Assignee: Computer Associates Think, Inc., 7,530,020 B2* 5/2009 Szabo ...coceiiviiinniinnnnnn. 715/738
Islandia, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 289 days.
OTHER PUBLICATIONS
(21) Appl. No.: 11/454,858
Ensel, C. and Keller, A. 2002. An Approach for Managing Service
(22) Filed: Jun. 19, 2006 Dependencies with XMI. and the Resource Description Framework.
J. Netw. Syst. Manage. 10, 2 (Jun. 2002), 147-170. Plenum Press,
(65) Prior Publication Data New York, NY, USA.*
US 2007/0011179 Al Jan. 11, 2007 (Continued)
Related U.S. App]ication Data P rimary Examiner—Robert Stevens
(60) Provisional application No. 60/691,602, filed on Jun. (74) Attorney, Agent, or Firm—Pillsbury Winthrop Shaw
17. 2005. Pittman LLP
(51) Int.Cl. (37) ABSTRACT
Go6rl’ 7/00 (2006.01)
GO6F 17/30 (2006.01) S
(52) U.S.Cl 707/802: 707/791 A system and method for simplifying resource management
(58) Field of C13551ﬁcatmn Search """ j707 10D 1s provided. Resources are represented by resource objects 1n
""""""""" 707/103 Ri a resource object model. Each resource object represents a
See application file for complete search history. single resource and contains one or more resource attributes
to describe the resource. At least one of the resource attributes
(56) References Cited for each resource object 1s a string 1dentifier formed within the

U.S. PATENT DOCUMENTS

constramnts of a query grammar. The string i1dentifier 1s a

text-based 1dentifier that 1s based upon a unique property of
the represented resource. A characteristic of the resources 1s
selected as the basis for the relationship between resource
objects 1n the resource object model. In one embodiment, an
application 1dentifies resources by generating a search query
using the same query grammar used to create the string 1den-
tifier. In another embodiment, a user manually enters the
search query into a command line interpreter.

30 Claims, 2 Drawing Sheets

/'2[}1

5717925 A * 2/1998 Harperetal. 707/102
5,765,154 A * 6/1998 Hormkin etal. 707/10
5,878,219 A * 3/1999 Vanceetal. 709/217
6,028,602 A * 2/2000 Weidenfeller et al. 715/781
6,173,279 B1* 1/2001 Levinetal. 707/5
6,256,678 B1* 7/2001 Traughberetal. 719/310
6,567,818 B1* 5/2003 Freyetal. 707/103 R
6,868,525 B1* 3/2005 Szaboccccceevvennnenen. 715/738
6,895,430 B1* 5/2005 Schneider 709/217
6,941,292 B2* 9/2005 Gauretal. 707/2
7,032,186 B1* 4/2006 Gasseretal. 715/853
=00

DOMAIN

Name = "Tast Domain"
1D ="0000111122223333"

EDE'\\ / \ //- 203

HOST

Name = "AServerMaching”
IP Address = "121.202.133.7"
D ="ABTZ2801425BCEBS51"

EIM—\

FILE SYSTEM

ID ="75235001ABCDEBES"

HOST

Name = "AnctherServerMaching"
IF Address ="121.202.135.7"
ID ="E372901125BCEBQGT"

/r—EDE

FILE SYSTEM

ID ="AB23%221ABCLEBE2"

/—- 208

YOLUME

Mama =)"
Typa ="EF5"
Serial Mo, = "4400-A5AF
10 = "S0B4A0SDCA00 1AAEICADS"

208 207
I -

VOLUME VOLUME

NEIF‘I'IE = ||':1| HBME = |rD|l
Typs = *NTFS" Type = "NTFS"
Serial No. = "A4PE-L00G" Serial No, = "FEEE-S528"
ID = "34B4050C000 1 AABICADT” 1D = "4ABE02E6BEAADI0BC"

US 7,725,496 B2
Page 2

U.S. PATENT DOCUMENTS

2002/0129129 Al* 9/2002 Blochetal. 709/220
2003/0214525 Al* 11/2003 Esfahany 345/700
2003/0229623 Al* 12/2003 Changetal. 707/3
2004/0117386 Al* 6/2004 Lavenderetal. 707/100
2004/0267749 Al 12/2004 Bhatetal. 707/9
2005/0086343 Al 4/2005 Chellisetal. 709/226
2005/0108001 Al* 5/2005 Aarskogcccoeevenenenen. 704/10
2005/0165766 Al* 7/2005 Szaboccoeeviiiiiininnnn, 707/3
2005/0273475 Al1* 12/2005 Herzenbergetal. 707/200
2006/0036579 Al* 2/2006 Byrdetal. 707/3
2006/0041661 Al* 2/2006 Eriksonetal. 709/225
2006/0059118 Al* 3/2006 Byrdetal. 707/3
2006/0195420 Al* 8/2006 KiUroycccovevviviveninannns 707/3
2006/0288023 Al* 12/2006 Szabocccoevvvnennen. 707/100
2007/0005636 Al* 1/2007 Rowleyccovevinnnnnin, 707/102
2007/0156677 Al* 7/2007 Szabocccoviviiiiiinininin, 707/5
2007/0294289 Al* 12/2007 Farrell 707/103 R
OTHER PUBLICATIONS

Sudarsan, Rajesh, et al., “Meta-Model Search: Using XPATH to

Search Domain-Specific Models”, Master of Science Thesis, Univ. of
Alabama, Birmingham, © 2004, pp. 1-58.*

(Gabillon, Alban, et al., “An Access Control Model for Tree Data
Structures”, ISC 2002, LNCS 2433, Springer-Verlag, Berlin, Ger-
many, © 2002, pp. 117-135.*

Klie, Torsten, et al., “Integrating SNMP Agents with XML -Based
Management Systems”, IEEE Communications Magazine, vol. 42,
Issue 7, Jul. 2004, pp. 76-83.*

Gavalas, Damianos, et al., “A Hybrid Centralised—Distributed Net-
work Management Architecture”, Proc. of the IEEE International
Symposium on Computers and Communications, Jul. 6-8, 1999, pp.
434-441 .*

Microsoft Computer Dictionary, 5th Edition, Microsoft Press,
Redmond, Wa, © 2002, pp. 215, 246 and 489.*

Menten, Lawrence E., “Experiences in the Application of XML for
Device Management”, IEEE Communications Magazine, vol. 42,
Issue 7, Jul. 2004, pp. 92-100.*

Ju, Hong-taek, et al., “An Embedded Web Server Architecture for
XML-Based Network Management”, NOMS 2002, © 2002, pp.
1-14.*

Edwards, W. Keith, “Policies and Roles in Collaborative Applica-
tions”, CSCW ’96, Cambridge, MA, © 1996, pp. 11-20.%*

Jlang, Changhao, et al., “A Hybrid Location Model with a Comput-
able Location Identifier for Ubiquitous Computing”, Ub1iComp 2002,
LNCS 2498, Springer-Verlag, Berlin, Germany, © 2002, pp. 246-
263 .*

* cited by examiner

U.S. Patent May 25, 2010 Sheet 1 of 2 US 7,725,496 B2

100
sever 110
Memory cPU |
v e Data
Management
Subsystem
Backup Engine 120
122
GU|
130
Network 150
' 1618 - |
161A Client Client Client 161N
\ GUI _' GUI I _____ GUI J
_______________ 162N
Agent ._//
160A 160B 160N

FIG. 1

U.S. Patent May 25, 2010 Sheet 2 of 2 US 7,725,496 B2

/-201

00 DOMAIN

Name = "Test Domain”
ID ="0000111122223333"

202-_-... /_’ 2 __C 203 .

HOST HOST
Name = "AServerMachine” | Name = "AnotherServerMachine”
IP Address ="121.202.133.7" IP Address ="121.202.135.7"
ID ="A672901125BCE8951" ID ="E372901125BCE8067"
2043 /- 205
FILE SYSTEM FILE SYSTEM
ID ="78239001ABCDS8BE3" ID ="AB239221ABCD8BE3"

208
/.

VOLUME

Name = "Q"
Type = "EFS"
Serial No. = "4409-A5AF"
ID = "50B405DC9001AAE3CADS"

206 207
N -

VOLUME VOLUME
Name ="C" ' Name = "D"
Type = "NTFS"” Type = “NTFS"
Serial No. = "A4PE-6056" Serial No. = "FEEE-569B"
ID = "34B405DC9001AAB3CADS" 1D ="4A6602B588AA900BC"

FIG. 2

US 7,725,496 B2

1

SYSTEM AND METHOD FOR IDENTIFYING
APPLICATION RESOURCES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of provisional U.S.
Patent Application Ser. No. 60/691,602, entitled “System and
Method for Identitying Application Resources,” filed Jun. 17,
20035, and which 1s hereby incorporated by reference 1n 1ts
entirety.

FIELD OF THE INVENTION

The invention relates generally to resource management,
and 1n particular, to providing a uniform method of naming
resources. The invention 1s particularly well-suited for soft-
ware management applications, enterprises where applica-
tions mteract with a large number of resources, or where third
parties or human operators must specifically 1dentily
resources.

BACKGROUND OF THE INVENTION

Currently, there 1s no well defined, formalized and stan-
dardized process for naming the resources with which a sys-
tem or application interacts. Instead, each application usually
chooses 1ts own method of naming resources. Moreover,
naming resources and finding resources are considered still
two different processes. Sometimes an application will use
the name of a resource as a key to search for the resource
against a pre-built resource index. This method works for that
application only because other applications may not be aware
of naming techniques used by other applications and there 1s
no formal relationship between the key and the resource in
question.

Another problem with resource naming 1s the difficulty for
human operators to 1dentity and locate resources. Some envi-
ronments may assist an operator through a graphical user
interface (GUI), which may hide the complexity of unique
identification. However, this 1s not possible in environments
that implement a command line mterface (CLI), in which a
user has to key 1n a resource name manually. Since applica-
tions often ensure uniqueness in resource naming by follow-
ing algorithms based on statistics and random number gen-
erators, a resource key 1s often completely unrelated to the
characteristics of the resource and impossible for a human
operator to memorize or reconstruct based on resource char-
acteristics.

Therefore, there 1s a need for a method of naming resources
that makes resources easily identifiable across applications at
runtime. In addition, there 1s a need for a method of naming,
resources which allows a human user and/or operator to 1den-
t1fy and locate resources based on predictable characteristics.

SUMMARY OF THE INVENTION

The invention solves the atorementioned problems by pro-
viding a system and method that simplifies resource manage-
ment. According to the mvention, this system and method
provides a uniform naming mechanism. In some embodi-
ments, a method for managing resources includes building a
resource object model, wherein the resource object model
includes one or more resource objects. Each resource object
represents a single resource, wherein the resource object may
be characterized by one or more resource attributes. The
particular attributes may depend on the type and/or charac-

10

15

20

25

30

35

40

45

50

55

60

65

2

teristics of the particular resource. In some embodiments, the
set of attributes may 1nclude at least a string identifier formed
within the constraints of a query grammar. A naming module
creates the string 1dentifier based on a unique property of the
represented resource. A characteristic of the resources may be
selected as the basis for the relationship between resource
objects. For example, the chosen characteristic may be a
containment relationship.

In some embodiments, the resource object model may take
the form of a hierarchical search tree, 1n which the resource
objects are nodes 1n the search tree, and where the resource
characteristic forming the basis for the relationship between
research objects guides the placement of nodes 1n the search
tree. Each system or application resource may be i1dentified
and represented by at least one resource object in the search
tree, with the string 1dentifiers being formed within the con-
straints of the XPath query grammar. In some embodiments,
alter the search tree 1s built, 1t may be assimilated nto an
XML document. Resource formats other than XML and
query grammars other than XPath may be used without
departing from the scope and spirit of the invention. Those
skilled 1n the art will recognize that resources may be 1denti-
fied and represented using different techniques without
departing from the scope and spirit of the invention. Whatever
format and/or query grammar 1s chosen, criteria may be
expressed 1n a well defined and formalized query language
with a known grammar which enables both the programmatic
creation of the name as well as the parsing of the name.

In some embodiments, resources may be located or 1den-
tified within the search tree by resolving one or more search
queries against the search tree. In one embodiment, the search
query may be generated at run-time by an application that
requires a resource. In other embodiments, the search query
may be an mput to a user interface, such as a command line
interpreter. The search query may take the form of a string
formed within the constraints of the same query grammar
used to form string identifiers of resource objects in the
resource object model. Executing the query includes parsing
the resource object model and 1dentiiying resources that sat-
1s1y the search query. For example, the query string may be
compared to the string 1dentifiers used to describe resource
objects. Those skilled 1n the art will recognize that other
techniques for solving search queries may be used without
departing from the scope and spirit of the invention.

In other embodiments, a system including one or more
processing devices may be collectively configured to practice
the aforementioned method. In other embodiments, a com-
puter-readable medium 1ncludes computer-executable
instructions for practicing the atlorementioned method. Other
objects and advantages of the invention will be apparent to
those skilled 1in the art based on the following detailed
description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an exemplary architecture for
practicing the invention.

FIG. 2 1s a logical diagram of an exemplary object model
for organmizing resources according to the mvention.

DETAILED DESCRIPTION

The mvention provides a system and method of naming
resources that 1s both predictable and memorable, thereby
allowing applications to easily locate required resources at
run-time, while also enabling a user to locate and identify
resources by keying a resource name into a user interface.

US 7,725,496 B2

3

The invention may be practiced 1n any number of computer
systems and/or architectures, and simplifies resource man-
agement even for enterprises that may interact with vast num-
bers of files and/or application 1nstances. Referring to FIG. 1,
an exemplary system for practicing the invention 1s described.
According to some embodiments, system 100 may include a
server 110 and one or more clients 160a-# that are intercon-
nected by one or more networks 150. Server 110 includes
memory 111, at least one processor 112, and a data manage-
ment subsystem 120 operable to recerve, transmit, process,
store, or otherwise manage data associated with system 100.
While FIG. 1 describes a particular architecture in which the
invention may be practiced, those skilled 1n the art will appre-
ciate that other suitable computing architectures may be used.
For example, server 110 may be implemented as a blade
server, general-purpose personal computer (PC), Macintosh,
workstation, Unix-based computer, server pool, or any other
suitable device. In other words, the invention contemplates
networked environments, general purpose computers, as well
as computers without conventional operating systems. Server
110 may be adapted to execute any operating system 1nclud-
ing Linux, UNIX, Windows Server, or others. According to
various embodiments, server 110 may also include or be
communicatively coupled with a web server and/or a mail
Server.

Memory 111 may include any memory or database module
and may take the form of volatile or non-volatile computer-
readable media including, without limitation, magnetic
media, optical media, random access memory (RAM), read-
only memory (ROM), removable media, or any other suitable
local or remote memory component. For example, memory
111 may store backup data, jobs, or disk recovery information
that may 1include any parameters, variables, algorithms,
instructions, rules or other data from clients 160a-7. Memory
111 may also include any other appropriate data such as
virtual private network (VPN) applications, firmware logs
and policies, firewall policies, a security or access log, print or
other reporting files, HTML files or templates, and others.

Processor 112 executes mnstructions and manipulates data
to perform the operations of server 110, and may take the
form of a central processing unit (CPU)) a blade, an applica-
tion specific itegrated circuit (ASIC), field-programmable
gate arrays (FPGA), or other processing architectures that are
known to those skilled in the art. Although described as a
single processor 1n server 110, multiple processors may be
used according to the particular needs where applicable. In
various embodiments, processor 112 may execute a backup
engine 122, which may be software operable to perform
backup, storage, or other operations to manage data as
needed. In some embodiments, backup engine 122 interacts
with data management subsystem 120 to perform various data
management services. As used herein, “software” includes
any suitable combination of software, logic, or other com-
puter-executable mstructions that can be executed over hard-
ware, as appropriate. For example, backup engine 122 may be
written or described 1n any appropriate computer language,
and the backup engine may be a single multi-tasked module
or the features may be performed by multiple modules. Fur-
ther, while described as internal to the server, one or more
processes associated with backup engine 122 may be stored,
referenced, or executed remotely. Similarly, one or more
devices associated with data management subsystem 120
may be alternatively be located within server 110 or remotely,
as appropriate. Additionally, backup engine 122 may be a
chuld or sub-module of another software module without
departing from the scope of the mvention. In some embodi-
ments, backup engine 122 may be communicatively coupled

10

15

20

25

30

35

40

45

50

55

60

65

4

with a graphical user intertace (GUI) 130. In other embodi-
ments, GUI 130 may be included, within backup engine 122
or an administrative workstation coupled to server 110.

Server 110 may also include a network interface 140 for
communicating with other computer systems, such as clients
160a-n, over network 150 1n a client-server or distributed
environment. Generally, network interface 140 includes logic
encoded 1n software and/or hardware in a suitable combina-
tion and may be operable to communicate with network 150.
More specifically, network interface 140 may include soft-
ware supporting one or more communication protocols asso-
ciated with communications network 150 and/or hardware
operable to communicate electrical signals.

Network 150 facilitates wireless or wired communication
between server 110 and any other local or remote computers,
such as clients 160a-». Network 150 may be all or part of an
enterprise or secured network. In another embodiment, net-
work 150 be a VPN between server 110 and clients 160a-7
across a wireless or wired link. While described as a single
network, network 150 may be logically divided into sub-nets
or virtual networks without departing from the scope of the
invention. Network 150 may communicate using any known
network protocol, including Internet Protocol (IP), Frame
Relay, Asynchronous Transter Mode (ATM), as well as many
others. Network 150 may include one or more local area
networks (LANSs), radio access networks (RANs), metropoli-
tan area networks (M ANs), wide area networks (WANSs), or
all or a portion of the Internet. In certain embodiments, net-
work 150 may be a secure network associated with an enter-
prise and certain local or remote clients. In other embodi-
ments, server 110 may be communicatively coupled with one
or more remote resources over network 150 (in addition to
local resources). These resources may be intra-enterprise,
inter-enterprise, regional, or national applications, data
sources, or repositories associated with the enterprise.
Resources may be physically or logically located at any
appropriate location.

Clients 160a-» may be any computing device operable to
connect or communicate with server 110 or network 150
using a wireless or wired connection. Fach client 160a-#
includes at least a GUI 161. In other embodiments, clients
160a-» may include an agent 162, and includes an electronic
computing device operable to recetve, transmit, process, and
store any appropriate data associated with the system 100. It
will be understood that there may be any number of clients
160a-» communicatively coupled to server 110 via network
150. For example, clients 160a-b may be local clients within
the enterprise, or alternatively may be external to the enter-
prise. Clients 160aq-» may include any permutation of per-
sonal computers, touch screen terminals, workstations, net-
work computers, kiosks, wireless data ports, smart phones,
personal data assistants (PDAs), or any other suitable pro-
cessing device. For example, client 160a may be a laptop or
personal computer that includes an mput device, such as a
keypad, touch screen, mouse, or other input device, and an
output device that conveys information associated with the
operation of server 110 or client 1604, including digital data,
analog data, or visual information. Both the input device and
output device may include fixed or removable storage media
such as magnetic computer disks, CD-ROMSs, or other suit-
able media to both recerve mput from and provide output to
users of clients 160a-» through the display, 1.e., GUI 161a-n.

GUI 161a-» may include a graphical user interface oper-
able to allow a user, administrator, or other authorized user to
interface with at least a portion of system 100 for any suitable
purpose. Generally, GUI 161a-» provide the particular user
with an eflicient and user-friendly presentation of data pro-

US 7,725,496 B2

S

vided by or communicated within system 100. GUI 161a-#
may include a plurality of customizable frames or views
having interactive fields, pull-down lists, and buttons oper-
ated by the user. GUI 161a-» may be configured to support a
combination of tables and graphs (bar, line, pie, status dials,
etc.), and may build real-time dashboards, where tabs are
delineated by key characteristics (e.g., site). GUI 161a-» may
also generate or request historical reports. Generally, histori-
cal reports provide critical information on what has happened
including static or canned reports that require no mput from
the user and dynamic reports that quickly gather run-time
information to generate the report. Theretore, GUI 161a-
contemplates any graphical user interface, such as a generic
web browser, touch screen, or CLI that processes information
in system 100 and efficiently presents the results to the user.
Server 110 can accept data from clients 160a-2 via the web
browser (e.g., Microsoit Internet Explorer, Netscape Naviga-
tor, or Mozilla Firefox) and return the appropriate HITML or
XML responses using network 150. Clients 160a-7 also occa-
sionally include, reference, or execute agents, which may be
any script, library, object, executable, service, daemon, or
other process. Those skilled 1n the art will appreciate that the
system described in FIG. 1 1s exemplary only, and that many
other architectures are supported and can make use of the
ivention.

The mvention contemplates that the resources in the sys-
tem of FIG. 1 may be represented by a hierarchical object
model in which resources are nodes 1n a search tree. The term
“resource” includes both physical and virtual resources.
Physical resources may be the devices and other physical
structures connected to a computer system, including but not
limited to disks, processors, memories, servers, etc. Virtual
resources may include logical resources, including but not
limited to files, network connections, memory areas,
domains, etc. For example, the system of FIG. 1 1s generally
described as a client-server network architecture. In an
embodiment where system 100 1s configured to provide
backup services, routing and organizing data would require
identification of the logical domains making up the network,
as well as the physical host devices where data 1s persistently
stored. Additionally, the backup services may interact with a
large number of files and/or applications to produce numer-
ous archives. A backup task may thus need to uniquely 1den-
tily servers, folders, files, storage groups, and user mailboxes.
Those skilled 1n the art will recognize that providing backup
services 1s just one ol many tasks that system 100 may per-
form and that the specific resources may vary depending on
the particular application. Moreover, other tasks or applica-
tions may interact with the same resources required by
another application, such that the resources required for any
one task may be named in a umiform way so as to make the
resource easily identifiable to other applications as well as
human operators.

Referring to FIG. 2, a logical diagram of an exemplary
hierarchical object model 200 for describing resources 1s
provided. When a resource 1s registered with a conventional
system, a typical approach 1s for the resource to be assigned a
unique 1dentifier based on a statistical model or a random
number generator. Thus, domain resource object 201 may be
assigned a unique hexadecimal ID “0000111122223333,”
host resource object 202 may be assigned a unique ID
“A672901125BCES951,” host resource object 203 may be
assigned a unique ID “E372901125BCE8967,” and so on for
every resource 1n the system. However, this unique ID would
only be known to the application that registers the resource,
such that other applications requiring the resource are unable
to locate the resource based on the unique key and would

10

15

20

25

30

35

40

45

50

55

60

65

6

therefore be obligated to redundantly register the resource. In
addition, the key bears no relation to the resource 1n question
and therefore would be very difficult or impossible for a
human operator to recreate easily, especially 1n a CLI envi-
ronment.

The mvention solves the atorementioned problem by pro-
viding each resource with a memorable set of attributes, such
that each resource object includes enough information to
uniquely and unequivocally distinguish aresource. In order to
provide each resource object with a memorable identifier, a
text-based set of properties and/or attributes are created to
identily the resource on the system, where the particular
attributes may be dictated by the nature of the resource. For
example, a domain may be best defined by 1ts name, such that
a domain object 201 includes a name attribute identifying 1ts
name as “TestDomain.” Stmilarly, a server or host typically 1s
assigned a unique name and IP address 1dentifying its loca-
tion on the network. Thus, host objects 202 and 203 may have
name attributes “AServerMachine” and “AnotherServerMa-
chine,” respectively, 1n addition to IP address attributes
“121.202.133.7” and *“121.202.135.17.” respectively.

A host may provide a number of services, such as a data
management service that uses a file system. File systems are
well known to those skilled in the art and are most often
characterized by the manner 1n which data 1s organized on a
storage device. Thus, FileSystem resource objects 204 and
205 do not require any additional identifying attributes, since
they simply point to the storage volumes where data 1s stored.
Nonetheless, FileSystem resource objects 204 and 205 may
still be provided with a unique random-number ID. To
unmiquely 1dentily a storage volume, the relevant properties
may include a name of the volume, a data format used for
organizing data, as well as a serial number of the device. Thus,
in FIG. 2, volume object 206 may be described by a name
attribute “c,” a file system type “NTFS,” and a serial number
“A4FE-0056.” Volume objects 207 and 208 are similarly
described by attributes that denote the characteristics of the
particular volume.

In addition to providing memorable text-based attributes,
the mnvention may organize resource objects 201-208 accord-
ing to a structure that may be easy to follow and memorize. A
relationship between resources 201-208 may be chosen to
define the basis for organizing resource objects 201-208 in the
resource object model 200. While the invention 1s not limited
to any particular relationship, object model 200 may be
implemented using a containment relationship since 1t 1s
generic enough to accommeodate other relationships as well as
modeling the layout of most real-world systems. For
example, still referring to FIG. 2, a domain 201 contains one
or more hosts 202-203, each of which contain one or more
services, such as a file system 204-205, each of which contain
one or more storage volumes 206-208. The concept of con-
tainers and containment 1s known to those skilled 1n the art.

Those skilled 1n the art will recognize that there are many
possible variants of resource objects 201-208 and object
model 200 described above. For example, a storage volume
206-208 may be formatted to store data using other file sys-
tem types, including but not limited to FAT, EFS, HFS, NFS,
and UDF, among others. Another possible variant 1s a logical
partition on a storage volume 206-208, such that multiple
volume objects may share a common serial number attribute
and {file format attribute, while having distinct name
attributes. Moreover, hosts may provide additional services,
such as an e-mail service that goes through an exchange.
E-mail services are well known to those skilled in the art, and
may include storage group objects, database objects, and user
mailbox objects. There may be multiple domains, hosts, or

US 7,725,496 B2

7

other objects as needed to describe the resources 1n a system.
The previous description of FIG. 1 indicates in greater detail
the potential variance 1n system and application resources.
Thus, those skilled 1n the art will appreciate that when design-
ing a resource object model analogous to that described 1n
FIG. 2, which attributes are included to describe a resource
may consider the nature of the system and resources being,
represented.

A resource format may be chosen which allows represent-
ing the attributes and relationship between resource objects.
The resource format may express criteria using a well
defined, formalized query language. In addition, the query
language may be compatible with a known query grammar 1n
order allow the programmatic creation and parsing of the
resource object model. Referring to Table 1, exemplary

source code 1s provided for implementing the object model of
FIG. 2 using eXtensible Markup Language (XML).

TABLE 1

encoding="utf{-8” 7>
version="1.0"

<Mxml wversion="1.0"
<as:ResourceSchema

10

15

8

TABLE 2-continued

ResourceSchema”™
xmlns="http://www.example.com/ResourceSchema”

xmlns:xs="http://www.w3.0rg/2001/XMLSchema’>
<xs:element name="“resource” type="Resourcelype”/>
<xs:complexType name="Resourcelype’>
<Xs:afttribute name="urm”
type="xs:string”
use=""optional”/>
<xs:sequence maxOccurs="1">
<xs:element type="“ResourceType”
minOccurs="“1"
maxOccurs="“unbounded”/>
</Xs:sequence>
</xs:complexType>
</xs:schema>

xmlns:as=""http://www.example.com/ResourceSchema’>

<as:Domain stronglD="0000111122223333”
name=""TestDomain’>

<as:Host strongID="A6772901125BCE&951”
name=="AServerMachine”

ipAddress="121.202.133.7">
<as:FileSystem stronglD="78239001 ABCD8BE3">
<as:Volume strongID="34B405DC9001 AAE3CAB>5”
type="“"NTEFS”
name=""¢”
serialNo="A4FE-0056/>
<as:Volume strongID="4A6602B588AA%00BC”
type="NTEFS”
name=d”
serialNo="FEEE-569B”/>
</as:FileSystem>
</as:Host>
<as:Host stronglD="E372901125BCER967”
name="AnotherServerMachine”
ipAddress=:121.202.135.17">
<as:FileSystem stronglD=AB239221ABCDSBE3"">
<as:Volume strongID="50B405DC9001 AAE3CAB5”
type="EFS”
name="0"
serial No="4409-A5AF"/>
</as:FileSystem>
</as:Host>
</as:Domain>

</as:ResourceSchema=

The resource object model may be represented by XML in
the embodiment of Table 1 because it 1s inherently organized
in a tree structure and XML provides the capability of creat-
ing special-purpose markup descriptions for describing data.
XML also enables similar functionality to that of a relational
database, 1n addition to being easily parsed and searched
using well known query grammars, such as XPath. Those
skilled 1n the art will recognize that although the resource tree
1s shown as being implemented using XML and queried using
XPath, other formats, languages, or query grammars may be
used to create or search the resource object model without
departing from the inventive concepts described herein.

Referring to Table 2, exemplary source code 1s provided for
defining a schema for unique resource naming.

TABLE 2

<7xml version="1.0" encoding “utf{-8” 7>
<xs:schema targetNamespace=""http:// www.example.com/

50

55

60

65

The source code of Table 2 1s provided 1n XML 1n order to
demonstrate how the resource search tree of Table 1 may

incorporate a string 1dentifier resource attribute. To assimilate
the string 1dentifier resource attribute into the resource object

model 1n a way that allows querying the object model using
known query grammars, the string 1dentifier may be formed
within the constraints of a query grammar. Thus, using the
resource schema of Table 2, a resource name would be
expected to take the following form:

<resource URN="STRING FORMED WITHIN CON-
STRAINTS OF A QUERY GRAMMAR”/>

In the embodiment described, XPath may be chosen as the
query grammar based on its compatibility with XML. How-
ever, those skilled 1n the art will recognize that other query
grammars may be used. The resource string identifier may be
unique to a single resource, and a single resource may be
described by multiple string identifiers. For example, refer-
ring to FIG. 2 and Table 1, consider the volume object 206 in
FIG. 2, which possesses name attribute “c,” serial number

US 7,725,496 B2

9

attribute “A4FE-0056” located on the host machine with
name attribute “AServerMachine” with an IP address
attribute of “121.202.133.7.” Creating the string identifier
attribute may consider the characteristics of the resource and
guarantee uniqueness by accounting for the set of most sig-
nificant resource attributes. For example, using the resource
schema of Table 2 and using XPath as the query grammar, a
valid resource name for volume object 206 may be:
<resource URN="//Volume|{@name="c’|"/>
However, this resource name may be unlikely to guarantee
uniqueness since a volume object on another host may share
the same volume name. Instead, including additional charac-
teristics, such as the name or IP address of the host on which
the volume resides, may be more likely to produce a resource
name that unequivocally 1dentifies the volume. For example,
the following resource names formed according to the
resource schema of Table 2 would uniquely 1dentity volume
object 206 of FIG. 2:
<resource URN="//Domain|[(@name="*"TestDomain’]/
Host|@name="AServerMachine’ |/FileSystem/ Volume
[(@Wname=°Cc’|"/>
<resource URN="//Host[(@ipAddress=121.202.133.7’]/
FileSystem/ Volume[(@serialNo="A4FE-0056"]"/>
<resource URN="//Host[@ipAddress=121.202.133.7°]/
FileSystem/ Volume[|(@name="c’|"/>
Referring to Table 3, exemplary source code 1s provided for
incorporating a resource name into a hierarchical resource
object model.

TABLE 3

<Mxml version="1.0"
<as:ResourceSchema

encoding="“utf{-8” 7>
version="1.0’

10

15

20

25

10

avoiding the pitfalls existing in resource naming. For
example, a valid resource name may be:

<resource URN="//Server
[(@name="MyExchangeServer’|/Exchange/Storage-

Group[@name="First Storage Group’]/Database

[(@name="Mail’|/Mailbox|@user="John = Anderson’]
3‘3‘/:}_

This resource name indicates that John Anderson’s mail-
box 1s located 1n the Mail database 1n the First Storage Group
on the MyExchangeServer server. By 1dentifying resources
based on their identifiable characteristics, an application or
user may generate a search query based on those character-
1stics. Thus, there 1s no need to memorize serial numbers,
random number strings, or other arcane conventional 1denti-
fiers. Rather, an application may identify a resource at run-
time or a user may identily a resource through a command
line interpreter since the resources are organized and named
intuitively, while being compatible with a query grammar.
For example, consider volume object 206 in FIG. 2 with the
following resource name:

<resource URN="//Host[@ipAddress=121.202.133.77]/
FileSystem/ Volume[(@sernalNo="A4FE-0056"]"/>

When an application requires access to volume object 206
at run-time, such as to store data, or where a user must interact

with volume object 206 through a command line 1nterpreter,
such as to reconfigure the device, a search query formed

xmlns:as=""http://www.example.com/ResourceSchema’>

<as:Domain stronglD="0000111122223333”
name="TestDomain’>
stronglD="A6772901125BCERS51”
name="AServerMachine”
ipAddress="121.202.133.77>
<as:FileSystem stronglD="78239001 ABCD8BE3"">
<as:Volume strongID="34B405DC9001 AAE3CABS5”
type="NTLES”
name=""c”
serialNo="A4FE-0056">

<as:Host

<resource

URN="//Domain[{@name="TestDomain’]/Host[(@name=

’AServerMachine’]/FileSystem/Volume[@name="c’]”/>

<resource
Volume[(@serialNo | A4FE-0056"]7/>

<resource
Volume[(@name="¢c’|*“/>
</as:Volume>
<as:Volume strongID="4A6602B538 AA900BC”
type="NTLES”
name=d”
sertalNo="FEEE-569B”/>

</as:FileSystem>
</as:Host>
<as:Host stronglD="E372901125BCER&967”
name="AnotherServerMachine”
ipAddress=:121.202.135.17">
<as:FileSystem stronglD=AB239221ABCDSBE3">
<as:Volume strongID="50B405DC9001 AAE3CAB5”
type=“ELFS”
name="0"
serialNo="4409-A5AF"/>

</as:FileSystem>
</as:Host>
</as:Domain>
</as:ResourceSchema>

The techniques described above may similarly be used to
provide a text-based string identifier for any resource, while

URN="//Host[@ipAddress=121.202.133.7’]/FileSystem/

URN="//Host[@ipAddress=121.202.133.7’]/FileSystem/

65 within the constraints of the XPath query grammar will locate

the resource. Such a search query may take the following
form:

US 7,725,496 B2

11

/{Host[@ipAddress=121.202.133.7’]/FileSystem/ Volume
(@serialNo="A4FE-0056"]

The search query may be resolved against the hierarchical
search tree by parsing the search tree using techniques known
to those skilled in the art. The search tree may be traversed and
resource objects that have string identifiers corresponding to
the search query are identified. The results of this comparison
are then returned to the originator of the search query.

Those skilled 1 the art will appreciate that the specific
query languages and/or grammars chosen are secondary to
the mventive concept of choosing an intuitive resource data
structure and naming method that allows searching a tree
using a query grammar. Those skilled 1n the art will be aware
of many techniques for implementing and generating the
search tree and string 1dentifier(s). Moreover, those skilled 1n
the art will be aware of the techmiques required to implement
the necessary application programming interfaces (APIs) to
enable an application to generate a search query at run-time.
Similarly, system admimstrators and other users of ordinary
skill who require i1dentifying resources through command
line interpreters will possess the necessary technical knowl-
edge for forming an resolving search queries based on the
above disclosure.

Although this disclosure has been described 1n terms of
certain embodiments and associated methods, modifications
and permutations of these embodiments and methods will be
apparent to those skilled in the art. Accordingly, the above
description 1s meant to be exemplary only, and other changes,
substitutions, and alterations may be implemented without
departing from the scope and spirit of the invention.

What 1s claimed 1s:

1. A method for identifying application resources, coms-
prising:

generating a resource object model that includes a plurality

of resource objects organized within a hierarchical
search tree according to one or more containment rela-
tionships among the plurality of resource objects,
wherein each of the plurality of resource objects repre-
sents a respective resource having a umque set of
attributes, and wherein the hierarchical search tree can
be parsed and searched using a predetermined query
grammar;

creating a plurality of unique resource identifiers that pro-

vide respective names for each of the plurality of
resource objects 1n the resource object model, wherein
the respective names that the plurality of unique
resource 1dentifiers provide for the plurality of resource
objects each include a text-based string that expresses
the unique set of attributes for the respectively repre-
sented resource within constraints of the predetermined
query grammar;

searching the hierarchical search tree 1n response to a

request for at least one of the resources represented in the
resource object model, wherein the request includes a
search query having a text-based string that expresses
the unique set of attributes for the requested resource
within the constraints of the predetermined query gram-
mar; and

returning, to an application that requested the resource, the

unmique resource 1dentifier that provides the name for one
of the plurality of resource objects that represents the
requested resource, wherein the umique resource 1denti-
fier includes the text-based string that expresses the
umque set of attributes for the requested resource, and
wherein the application uses the unique resource 1den-
tifier returned to the application to interact with the
requested resource.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The method of claim 1, wherein one or more of the
plurality of resource objects 1n the resource object model
represent application resources associated with the applica-
tion.

3. The method of claim 1, wherein one or more of the
plurality of resource objects 1n the resource object model
represent system resources associated with the application.

4. The method of claim 1, wherein each of the plurality of
unique resource 1dentifiers are created according to a schema
for uniquely naming the resources represented in the resource
object model within the constraints of the predetermined
query grammatr.

5. The method of claim 1, wherein searching the hierarchi-
cal search tree 1n response to the request includes:

parsing the resource object model according to the one or

more containment relationships among the plurality of
resource objects in the search tree;

comparing the plurality of umique resource 1dentifiers that

provide the respective names for each of the plurality of
resource objects 1n the parsed resource object model to
the text-based string 1n the search query that expresses
the unique set of attributes for the requested resource;
and

locating the resource object that represents the requested

resource 1n response to determining that the unique
resource 1dentifier that provides the name for the
resource object that represents the requested resource
expresses the unique set of attributes that the text-based
string 1n the search query expresses.

6. The method of claim 1, wherein the application that
requested the resource comprises a command line interpreter.

7. The method of claim 1, wherein the application requests
the resource through an application program interface, and
wherein the unique resource 1dentifier that provides the name
for the resource object that represents the requested resource
1s returned to the application through the application program
interface.

8. The method of claim 1, wherein the resource object
model includes an XML document that assimilates the plu-
rality of resource objects and the plurality of unique resource
identifiers that provide the respective names for each of the
plurality of resource objects within the hierarchical search
tree according to the one or more containment relationships
among the plurality of resource objects.

9. The method of claim 1, wherein the predetermined query
grammar 1s XPath.

10. The method of claim 1, wheremn the plurality of
resource objects comprise text-based nodes 1n the hierarchi-
cal search tree.

11. A system for i1dentifying application resources, the
system comprising one or more processing devices collec-
tively configured to:

generate a resource object model that includes a plurality

of resource objects organized within a hierarchical
search tree according to one or more containment rela-
tionships among the plurality of resource objects,
wherein each of the plurality of resource objects repre-
sents a respective resource having a unique set of
attributes, and wherein the hierarchical search tree can
be parsed and searched using a predetermined query
grammar;

create a plurality of unique resource identifiers that provide

respective names for each of the plurality of resource
objects 1n the resource object model, wherein the respec-
tive names that the plurality of unique resource 1dentifi-
ers provide for the plurality of resource objects each
include a text-based string that expresses the unique set

US 7,725,496 B2

13

ol attributes for the respectively represented resource
within constraints of the predetermined query grammar;

search the hierarchical search tree 1n response to a request
for at least one of the resources represented in the
resource object model, wherein the request includes a
search query having a text-based string that expresses
the unique set of attributes for the requested resource

within the constraints of the predetermined query gram-
mar; and

return, to an application that requested the resource, the
unmique resource 1dentifier that provides the name for one
of the plurality of resource objects that represents the
requested resource, wherein the unique resource 1denti-
fier includes the text-based string that expresses the
umque set of attributes for the requested resource, and
wherein the application uses the unique resource 1den-
tifier returned to the application to interact with the
requested resource.

12. The system of claim 11, wherein one or more of the
plurality of resource objects 1 the resource object model
represent application resources associated with the applica-
tion.

13. The system of claim 11, wherein one or more of the
plurality of resource objects 1n the resource object model
represent system resources associated with the application.

14. The system of claim 11, wherein each of the plurality of
unique resource 1dentifiers are created according to a schema
for uniquely naming the resources represented in the resource
object model within the constraints of the predetermined
query grammar.

15. The system of claim 11, wherein to search the hierar-
chical search tree, the one or more processing devices are
turther collectively configured to:

parse the resource object model according to the one or
more containment relationships among the plurality of
resource objects in the search tree;

compare the plurality of unique resource 1dentifiers that
provide the respective names for each of the plurality of
resource objects 1n the parsed resource object model to
the text-based string 1n the search query that expresses
the unique set of attributes for the requested resource;
and

locate the resource object that represents the requested
resource 1n response to determining that the unique
resource 1dentifier that provides the name for the
resource object that represents the requested resource
expresses the unique set of attributes that the text-based
string 1n the search query expresses.

16. The system of claim 11, wherein the application that
requested the resource comprises a command line interpreter.

17. The system of claim 11, wherein the application
requests the resource through an application program inter-
face, and wherein the unique resource identifier that provides
the name for the resource object that represents the requested
resource 1s returned to the application through the application

program 1nteriace.

18. The system of claim 11, wherein the resource object
model includes an XML document that assimilates the plu-
rality of resource objects and the plurality of unique resource
identifiers that provide the respective names for each of the
plurality of resource objects within the hierarchical search
tree according to the one or more containment relationships
among the plurality of resource objects.

19. The system of claim 11, wherein the predetermined
query, grammar 1s XPath.

10

15

20

25

30

35

40

45

50

55

60

65

14

20. The system of claim 11, wherein the plurality of
resource objects comprise text-based nodes 1in the hierarchi-
cal search tree.
21. A computer-readable storage medium containing com-
puter-executable 1nstructions for identifying application
resources, the computer-executable mstructions collectively
configured when executed on a processor to:
generate a resource object model that includes a plurality
of resource objects organized within a hierarchical
search tree according to one or more containment rela-
tionships among the plurality of resource objects,
wherein each of the plurality of resource objects repre-
sents a respective resource having a unique set of
attributes, and wherein the hierarchical search tree can
be parsed and searched using a predetermined query
grammar;
create a plurality of unique resource 1dentifiers that provide
respective names for each of the plurality of resource
objects 1n the resource object model, wherein the respec-
tive names that the plurality of unique resource 1dentifi-
ers provide for the plurality of resource objects each
include a text-based string that expresses the unique set
of attributes for the respectively represented resource
within constraints of the predetermined query grammar;

search the hierarchical search tree 1n response to a request
for at least one of the resources represented in the
resource object model, wherein the request includes a
search query having a text-based string that expresses
the unique set of attributes for the requested resource
within the constraints of the predetermined query gram-
mar; and

return, to an application that requested the resource, the

unique resource identifier that provides the name for one
of the plurality of resource objects that represents the
requested resource, wherein the unique resource 1denti-
fier includes the text-based string that expresses the
unique set of attributes for the requested resource, and
wherein the application uses the unique resource 1den-
tifier returned to the application to interact with the
requested resource.

22. The computer-readable storage medium of claim 21,
wherein one or more of the plurality of resource objects 1n the
resource object model represent application resources asso-
ciated with the application.

23. The computer-readable storage medium of claim 21,
wherein one or more of the plurality of resource objects 1n the
resource object model represent system resources associated
with the application.

24. The computer-readable storage medium of claim 21,
wherein each of the plurality of unique resource identifiers
are created according to a schema for uniquely naming the
resources represented 1n the resource object model within the
constraints of the predetermined query grammar.

25. The computer-readable storage medium of claim 21,
wherein to search the hierarchical search tree, the computer-
executable mstructions, are further collectively configured to:

parse the resource object model according to the one or

more containment relationships among the plurality of
resource objects in the search tree;

compare the plurality of unique resource identifiers that

provide the respective names for each of the plurality of
resource objects 1n the parsed resource object model to
the text-based string 1n the search query that expresses
the unique set of attributes for the requested resource;
and

locate the resource object that represents the requested

resource 1n response to determining that the unique

US 7,725,496 B2

15

resource 1dentifier that provides the name for the
resource object that represents the requested resource
expresses the unique set of attributes that the text-based
string 1n the search query expresses.

26. The computer-readable storage medium of claim 21,
wherein the application that requested the resource comprises
a command line 1nterpreter.

27. The computer-readable storage medium of claim 21,
wherein the application requests the resource through an
application program interface; and wherein the unique

resource 1dentifier that provides the name for the resource
object that represents the requested resource 1s returned to the
application through the application program interface.

10

16

28. The computer-readable storage medium of claim 21,
wherein the resource object model includes an XML docu-
ment that assimilates the plurality of resource objects and the
plurality of unique resource identifiers that provide the
respective names for each of the plurality of resource objects
within the hierarchical search tree according to the one or
more containment relationships among the plurality of
resource objects.

29. The computer-readable storage medium of claim 21,
wherein the predetermined query grammar 1s XPath.

30. The computer-readable storage medium of claim 21,
wherein the plurality of resource objects comprise text-based
nodes 1n the hierarchical search tree.

G ex e = x

	Front Page
	Drawings
	Specification
	Claims

