

#### US007723520B2

### (12) United States Patent

#### Kim et al.

## (10) Patent No.: US 7,723,520 B2 (45) Date of Patent: May 25, 2010

| (54) | RED ELECTROLUMINESCENT          |
|------|---------------------------------|
|      | COMPOUNDS AND ORGANIC           |
|      | ELECTROLUMINESCENT DEVICE USING |
|      | THE SAME                        |

| (75) | Inventors: | Hyun Kim, Seoul (KR); Young Jun |
|------|------------|---------------------------------|
|      |            |                                 |

Cho, Seoul (KR); Hyuck Joo Kwon, Seoul (KR); Bong Ok Kim, Seoul (KR); Sung Min Kim, Seoul (KR); Seung Soo

Yoon, Seoul (KR)

(73) Assignee: SKC Haas Display Films Co., Ltd.,

Choongchungnamdo (KR)

(\*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 12/220,367

(22) Filed: Jul. 24, 2008

#### (65) Prior Publication Data

US 2009/0062542 A1 Mar. 5, 2009

#### (30) Foreign Application Priority Data

Jul. 24, 2007 (KR) ...... 10-2007-0073804

(51) Int. Cl.

C07F 15/00 (2006.01)

B32B 15/00 (2006.01)

(52) **U.S. Cl.** ...... **546/2**; 428/690; 428/917;

546/4; 546/10

See application file for complete search history.

#### (56) References Cited

#### U.S. PATENT DOCUMENTS

5,779,937 A 7/1998 Sano et al. 5,858,560 A 1/1999 Nakamura et al.

| 5,922,480 | A  | 7/1999  | Nakamura et al. |
|-----------|----|---------|-----------------|
| 6,083,634 | A  | 7/2000  | Shi             |
| 6,645,645 | B1 | 11/2003 | Adachi et al.   |
| 6,936,716 | B1 | 8/2005  | Lin             |
| 6,998,492 | B2 | 2/2006  | Seo et al.      |
| 7,193,088 | B2 | 3/2007  | Cheng et al.    |

#### FOREIGN PATENT DOCUMENTS

| EP | 0 579 151 B1   | 10/1996 |
|----|----------------|---------|
| EP | 0 652 273 B1   | 2/1998  |
| EP | 1 640 365      | 3/2006  |
| EP | 1 323 808 B1   | 10/2006 |
| JP | 2003-192691    | 7/2003  |
| JP | 2003-252888    | 9/2003  |
| JP | 2005 350415    | 12/2005 |
| WO | WO 98/37736    | 8/1998  |
| WO | WO 2006/059758 | 6/2006  |
| WO | WO 2006/098460 | 9/2006  |

#### OTHER PUBLICATIONS

European Search Report of corresponding European Application No. EP 08 16 1026, Mar. 13, 2009.

Seo et al.; "Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors (red, green, and blue)"; Applied Physics Letters, AIP, American Institute of Physics; vol. 90, No. 20; May 16, 2007; pp. 203507-1,-2 and -3.

Seo et al.; "P-164: Highly Efficient White Organic Light-Emitting Diodes Using Two Emitting Materials for Three Primary Colors (Red, Green and Blue)" SID 2007, 2007 SID International Symposium, Society for Information Display; vol. XXXVIII; May 20, 2007; pp. 813-817.

Agarwal et al.: "Synthesis, characterization, photophysical and electrochemical properties of new phosphorescent dopants for OLEDs"; Tetrahedron Letters, Elsevier, Amsterdam, vol. 49, No. 17; Mar. 4, 2008; pp. 2710-2713.

Primary Examiner—Charanjit S Aulakh (74) Attorney, Agent, or Firm—Edwin Oh

#### (57) ABSTRACT

The present invention relates to novel red phosphorescent compounds exhibiting high luminous efficiency, and organic electroluminescent devices comprising the same.

#### 8 Claims, 3 Drawing Sheets

Fig. 1



Fig. 2



Fig. 3



Fig. 4



Fig. 5

12
11
10
9
8
7
6
12
11
10
9
8
5
4
3
2
1
0
0
2000 4000 6000 8000 10000

Luminance [cd/m²]

50

55

# RED ELECTROLUMINESCENT COMPOUNDS AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME

The present invention relates to novel red electroluminescent compounds exhibiting high luminous efficiency and organic electroluminescent devices using the same.

The most important factor to determine luminous efficiency in an OLED is the type of electroluminescent material. Though fluorescent materials have been widely used as an electroluminescent material up to the present, development of phosphorescent materials is one of the best methods to improve the luminous efficiency theoretically up to four (4) times, in view of electroluminescent mechanism.

Up to now, iridium (III) complexes are widely known as phosphorescent material, including (acac)Ir(btp)<sub>2</sub>, Ir(ppy)<sub>3</sub> and Firpic, as the red, green and blue one, respectively. In <sup>20</sup> particular, a lot of phosphorescent materials have been recently investigated in Japan, Europe and America.

Me O 
$$Ir$$
  $Ir$   $Ir$   $Ir(ppy)_3$ 

Among conventional red phosphorescent materials, several materials are reported to have good EL properties. However, very rare materials among them have reached the level of commercialization. As the best material, an iridium complex of 1-phenyl isoquinoline may be mentioned, which is known to have excellent EL property and to exhibit color purity of dark red with high luminous efficiency. See A. Tsuboyama et al., *J. Am. Chem. Soc.* 2003, 125(42), 12971-12979.

Ir N

1-phenyl isoquinoline

Moreover, the red materials, having no significant problem of life time, have tendency of easy commercialization if they have good color purity or luminous efficiency. Thus, the above-mentioned iridium complex is a material having very high possibility of commercialization due to its excellent color purity and luminous efficiency.

However, the iridium complex is still construed only as a material which is applicable to small displays, while higher levels of EL properties than those of known materials are practically required for an OLED panel of medium to large size.

As a result of intensive efforts of the present inventors to overcome the problems of conventional techniques as described above, they have developed novel red phosphorescent compounds to realize an organic EL device having excellent luminous efficiency and surprisingly improved lifetime.

The object of the invention is to provide compounds having the skeleton to give more excellent electroluminescent properties as compared to those of conventional red phosphorescent materials. Another object of the invention is to provide novel phosphorescent compounds which are applicable to OLED panels of medium to large size.

Thus, the present invention relates novel red phosphorescent compounds and organic electroluminescent devices employing the same in an electroluminescent layer. Specifically, the red phosphorescent compounds according to the invention are represented by Chemical Formula 1:

$$R_{3}$$
 $R_{4}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{2}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 

Chemical Formula 1

wherein, L is an organic ligand;

B is C (carbon) if A is N (nitrogen), and B is N if A is C;  $R_1$  represents a linear or branched ( $C_1$ - $C_{20}$ )alkyl or ( $C_6$ - $C_{20}$ )aryl;

 $R_2$  through  $R_4$  independently represent hydrogen, linear or branched ( $C_1$ - $C_{20}$ )alkyl, linear or branched ( $C_1$ - $C_{20}$ )alkoxy, ( $C_3$ - $C_{12}$ )cycloalkyl, ( $C_6$ - $C_{20}$ )aryl, halogen, tri( $C_1$ - $C_{20}$ )alkylsilyl or tri( $C_6$ - $C_{20}$ )arylsilyl;

 $R_5$  and  $R_6$  independently represent hydrogen, linear or branched ( $C_1$ - $C_{20}$ )alkyl, ( $C_6$ - $C_{20}$ )aryl or halogen;  $R_5$  and  $R_6$  may be linked via ( $C_3$ - $C_{12}$ )alkylene or ( $C_3$ - $C_{12}$ )alkenylene

optionally with a fused ring to form an alicyclic ring, or a monocyclic or polycyclic aromatic ring; the alkyl or aryl of  $R_5$  and  $R_6$ , or the alicyclic ring, or the monocyclic or polycyclic aromatic ring formed therefrom by linkage via  $(C_3-C_{12})$ alkylene or  $(C_3-C_{12})$ alkenylene optionally containing a fused ring may be further substituted by one or more substituent(s) selected from linear or branched  $(C_1-C_{20})$ alkyl optionally substituted with halogen,  $(C_1-C_{20})$ alkoxy, halogen,  $(C_1-C_{20})$ alkylsilyl,  $(C_6-C_{20})$ arylsilyl and  $(C_6-C_{20})$ aryl;

the alkyl, alkoxy, cycloalkyl and aryl of  $R_1$  through  $R_4$  may be further substituted by one or more substituent(s) selected from linear or branched ( $C_1$ - $C_{20}$ )alkyl optionally substituted with halogen, ( $C_1$ - $C_{20}$ )alkoxy, halogen, tri( $C_1$ - $C_{20}$ )alkylsilyl, tri( $C_6$ - $C_{20}$ )arylsilyl and ( $C_6$ - $C_{20}$ )aryl; and

n is an integer from 1 to 3.

The alicyclic ring, or the monocyclic or polycyclic aromatic ring formed from R<sub>5</sub> and R<sub>6</sub> of the compound of Chemical Formula 1 according to the present invention by linkage via (C<sub>3</sub>-C<sub>12</sub>)alkylene or (C<sub>3</sub>-C<sub>12</sub>)alkenylene optionally containing a fused ring may be benzene, naphthalene, anthracene, fluorene, indene, phenanthrene or pyridine. In Chemical Formula 1, the species enclosed by square brackets ([]) act as primary ligands of iridium, and L as subsidiary ligands. The phosphorescent compounds according to the present invention include the complexes with a ratio of primary ligand:subsidiary ligand=2:1 (n=2), in addition to the tris-chelated complexes without subsidiary ligand (L) (n=3).

The organic phosphorescent compounds represented by <sup>30</sup> Chemical Formula 1 according to the present invention may be exemplified by the compounds represented by Chemical Formulas 2 to 7:

Chemical Formula 2

$$R_3$$
 $R_2$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 
 $R_2$ 
 $R_5$ 
 $R_7$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

Chemical Formula 3

$$R_1$$
 $O$ 
 $R_2$ 
 $R_4$ 
 $R_7$ 
 $R_{10}$ 
 $R_{10}$ 

4

-continued

Chemical Formula 4

$$R_1$$
 $R_2$ 
 $R_1$ 
 $R_1$ 
 $R_{10}$ 
 $R_{12}$ 
 $R_{13}$ 
 $R_{14}$ 

Chemical Formula 5

$$R_{15}$$
 $R_{16}$ 
 $R_{17}$ 
 $R_{18}$ 
 $R_{19}$ 
 $R_{19}$ 

Chemical Formula 6

$$R_1$$
  $C$   $R_2$   $R_2$   $R_2$   $R_3$   $R_{10}$   $R_{23}$   $R_{24}$   $R_9$   $R_{10}$ 

55

-continued

Chemical Formula 7

$$\begin{bmatrix} R_1 & O & \\ R_3 & R_2 & \\ R_4 & \\ R_7 & \\ R_8 & \\ R_{10} & \\ R_9 & \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & O & \\ R_2 & \\ \\ R_7 & \\ \\ R_{10} & \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & O & \\ \\ R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & O & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & O & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & O & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_3 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_3 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_1 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_2 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_3 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_3 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} R_4 & \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix}$$

-continued

wherein, L, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub>, R<sub>5</sub> and n are defined as in Chemical Formula 1;

 $R_7$  through  $R_{14}$  and  $R_{17}$  through  $R_{24}$  independently represent hydrogen, linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl optionally substituted with halogen,  $(C_1-C_{20})$  alkoxy, halogen,  $tri(C_1-C_{20})$  $C_{20}$ )alkylsilyl, tri $(C_6-C_{20})$ arylsilyl or  $(C_6-C_{20})$ aryl; and

R<sub>15</sub> and R<sub>16</sub> independently represent hydrogen or linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl.

An embodiment of the present invention is characterized in

that R<sub>1</sub> of Chemical Formulas 2 to 7 represents methyl, ethyl, 35 n-propyl, i-propyl, n-butyl, t-butyl, phenyl, biphenyl, naphthyl, t-butylphenyl or fluorophenyl; R<sub>2</sub> through R<sub>5</sub> independently represent hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl;  $R_7$  through  $R_{14}$  and  $R_{17}$  through  $R_{24}$  independently represent hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, fluoro, methoxy, ethoxy, butoxy, phenyl, biphenyl, trimethylsilyl, triphenylsilyl or trifluoromethyl;  $R_{15}$  and  $R_{16}$  independently represent hydrogen or methyl.

The organic phosphorescent compounds of Chemical For- 45 mula 1 according to the present invention may be specifically exemplified by, but are not limited to, the following compounds:

$$Ir$$
 $L_{3-n}$ 

$$\operatorname{Ir}$$
  $\operatorname{L}_{3-n}$ 

$$Ir$$
  $L_{3-n}$ 

-continued

Ir 
$$L_{3m}$$
 10

20

21

25

36

37

40

40

41

45

60

-continued

$$I_{r}$$
 $I_{r}$ 
 $I_{r}$ 
 $I_{r}$ 
 $I_{r}$ 
 $I_{r}$ 
 $I_{r}$ 
 $I_{r}$ 

-continued

-continued

10

$$I_{r}$$
 $I_{r}$ 

15

wherein, L is an organic ligand, and n is an integer from 1 to 3.

The subsidiary ligand L of Chemical Formula 1 according

The subsidiary ligand L of Chemical Formula 1 according to the invention comprises one of the following structures:

25

$$R_{32}$$
 $R_{33}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{35}$ 
 $R_{35}$ 
 $R_{35}$ 
 $R_{35}$ 
 $R_{35}$ 
 $R_{35}$ 

$$R_{35}$$

$$R_{40}$$

$$R_{41}$$

$$R_{34}$$

$$R_{34}$$

$$\begin{array}{c} R_{40} \\ R_{41} \\ R_{36} \end{array}$$

wherein,  $R_{31}$  and  $R_{32}$  independently represent hydrogen, 50 linear or branched ( $C_1$ - $C_{20}$ )alkyl optionally substituted with halogen, phenyl optionally substituted with linear or branched ( $C_1$ - $C_{20}$ )alkyl, or halogen;

 $R_{33}$  through  $R_{37}$  independently represent hydrogen, linear or branched ( $C_1$ - $C_{20}$ )alkyl, phenyl optionally substituted with linear or branched ( $C_1$ - $C_{20}$ )alkyl, tri( $C_1$ - $C_{20}$ )alkylsilyl or halogen;

 $R_{38}$  through  $R_{41}$  independently represent hydrogen, linear or branched ( $C_1$ - $C_{20}$ )alkyl, phenyl optionally substituted with linear or branched ( $C_1$ - $C_{20}$ )alkyl; and

 $R_{42}$  represents linear or branched ( $C_1$ - $C_{20}$ )alkyl, phenyl optionally substituted with linear or branched ( $C_1$ - $C_{20}$ )alkyl, or halogen.

The subsidiary ligands (L) of Chemical Formula 1 accord- 65 ing to the present invention may be exemplified by, but are not limited to, the following structures.

15

-continued

The process for preparing the organic phosphorescent compounds according to the present invention is described by referring to Reaction Schemes 1 to 3 shown below:

Reaction Scheme 3

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_2$ 
 $R_5$ 
 $R_6$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 

$$R_3$$
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 

Reaction Scheme 2

$$R_1$$
 $R_2$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 

wherein, A, B, R<sub>1</sub> through R<sub>6</sub> and L are defined as in 55 Chemical Formula 1.

Reaction Scheme 1 provides a compound of Chemical Formula 1 with n=1, in which iridium trichloride (IrCl<sub>3</sub>) and a subsidiary ligand (L) compound are mixed in a solvent at a molar ratio of 1:2~3, and the mixture is heated under reflux to obtain isolated diiridium dimer. In the reaction stage, the preferable solvent is alcohol or a mixed solvent of alcohol/ water, such as 2-ethoxyethanol, and 2-ethoxyethanol/water mixtures. The isolated diiridium dimer is then heated with a <sub>65</sub> primary ligand compound in organic solvent to provide an organic phosphorescent iridium compound having the ratio of primary ligand:subsidiary ligand of 1:2 as the final product.

The reaction is carried out with AgCF<sub>3</sub>SO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> or NaOH being admixed with organic solvent such as 2-ethoxyethanol and 2-methoxyethylether.

Reaction Scheme 2 provides a compound of Chemical Formula 1 with n=2, in which iridium trichloride (IrCl<sub>3</sub>) and a primary ligand compound are mixed in a solvent at a molar ratio of 1:2~3, and the mixture is heated under reflux to obtain isolated diiridium dimer. In the reaction stage, the preferable

Reaction Scheme 3 provides a compound of Chemical Formula 1 with n=3, in which iridium complex prepared according to Reaction Scheme 2 and a primary ligand compound are mixed in glycerol at a molar ratio of 1:2~3, and the mixture is heated under reflux to obtain organic phosphorescent iridium complex coordinated with three primary ligands.

The compounds employed as a primary ligand in the present invention can be prepared according to Reaction Scheme 4 or 5, on the basis of conventional processes.

#### Reaction Scheme 4

solvent is alcohol or a mixed solvent of alcohol/water, such as 2-ethoxyethanol, and 2-ethoxyethanol/water mixture. The isolated diiridium dimer is then heated with a subsidiary ligand (L) compound in organic solvent to provide an organic phosphorescent iridium compound having the ratio of primary ligand:subsidiary ligand of 2:1 as the final product.

The molar ratio of the primary ligand and the subsidiary ligand in the final product is determined by appropriate molar ratio of the reactant depending on the composition. The reaction may be carried out with AgCF<sub>3</sub>SO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> or NaOH <sub>65</sub> being admixed with organic solvent such as 2-ethoxyethanol, 2-methoxyethylether and 1,2-dichloromethane.

wherein, R<sub>1</sub> through R<sub>6</sub> are defined as in Chemical Formula

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of an OLED;

FIG. 2 is an EL spectrum of an OLED employing the red phosphorescent compound (102) according to the present invention as a dopant;

FIG. 3 shows current density-voltage property of an OLED employing the red phosphorescent compound (102) according to the present invention as a dopant;

21

FIG. 4 shows luminance-voltage property of an OLED employing the red phosphorescent compound (102) according to the present invention as a dopant; and

FIG. **5** shows luminous efficiency-luminance property of an OLED employing the red phosphorescent compound 5 (102) according to the present invention as a dopant.

Description of symbols of significant parts of the drawings:

1: Glass

2: Transparent electrode

3: Hole injection layer

4: Hole transportation layer

5: Electroluminescent layer

.

6: Electron transportation layer

7: Electron injection layer

8: Al cathode

The present invention is further described with respect to the processes for preparing novel organic phosphorescent compounds according to the invention by referring to the Examples, which are provided for illustration only but are not intended to limit the scope of the invention by any means.

#### PREPARATION EXAMPLE 1

Preparation of Compound (101)

#### Preparation of Compound (201)

A 2000 mL round-bottomed flask was charged with 2,5dibromopyridine (25.0 g, 105 mmol), which was then dissolved with diethyl ether (1240 mL) under argon atmosphere. 5 Under the temperature condition of -75° C., n-BuLi (80 mL) (1.6 M in hexane, 127 mmol) was slowly added dropwise thereto. After stirring for 30 minutes, a solution of N,Ndimethylbenzamide (23.6 g, 158 mmol) dissolved in diethyl ether (200 mL) was slowly added, and the resultant mixture 10 was stirred for 35 minutes. When the reaction was completed, aqueous NH<sub>4</sub>Cl solution was added to the reaction mixture. Extraction with diethyl ether and purification via silica gel column chromatography gave Compound (201) (18.0 g, 68.9 mmol, yield: 65.6%).

#### Preparation of Compound (202)

A 500 mL round-bottomed flask was charged with Compound (201) (18.0 g, 68.9 mmol), phenylboronic acid (9.24 g, 20 75.8 mmol), toluene (160 mL), ethanol (80 mL) and Pd(PPh<sub>3</sub>)<sub>4</sub> (3.18 g, 2.76 mmol), and the mixture was stirred under argon atmosphere. After adding aqueous 2 M Na<sub>2</sub>CO<sub>3</sub> solution (80 mL), the resultant mixture was heated under pleted, distilled water was added. Extraction with ethyl acetate and purification via silica gel column chromatography gave Compound (202) (15.5 g, 59.6 mmol, yield 86.5%).

#### Preparation of Compound (203)

A 500 mL round-bottomed flask was charged with Compound (202) (15.5 g, 59.6 mmol), iridium chloride (IrCl<sub>3</sub>) 24

(8.09 g, 27.1 mmol), 2-ethoxyethanol (210 mL) and distilled water (70 mL), and the mixture was heated under reflux and argon atmosphere for 24 hours. When the reaction was completed, the reaction mixture was cooled to ambient temperature. The precipitate was filtered and completely dried to obtain Compound (203) (18.2 g, 24.4 mmol).

#### Preparation of Compound (101)

A 500 mL round-bottomed flask was charged with Compound (203) (18.2 g, 24.4 mmol), 2,4-pentanedione (3.67 g, 36.6 mmol), Na<sub>2</sub>CO<sub>3</sub> (7.76 g, 73.2 mmol) and 2-ethoxyethanol (300 mL), and the mixture was heated for 4 hours. When the reaction was completed, the reaction mixture was cooled to room temperature. The solid precipitate was filtered and purified via silica gel column chromatography and recrystallization to obtain the title compound, iridium complex (101) (8.47 g, 10.5 mmol, yield: 38.6%) as red crystals.

mp.  $>350^{\circ}$  C.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =8.89 (d, J=1.2 Hz, 2H), 8.30 (dd, J=1.8 Hz, 8.4 Hz, 2H), 7.98 (d, J=8.7 Hz, 2H),  $7.83-7.80 \, (m, 4H), 7.65-7.58 \, (m, 4H) \, 7.53-7.48 \, (m, 4H), 6.86$ reflux with stirring for 4 hours. When the reaction was com- 25 (td, J=1.2 Hz, 7.5 Hz, 2H), 6.74 (td, J=1.5 Hz, 7.5 Hz, 2H), 6.30 (dd, J=1.2 Hz, 7.8 Hz, 2H), 5.29 (s, 1H), 1.55 (s, 6H).

HRMS (FAB) calcd for C<sub>41</sub>H<sub>31</sub>IrN<sub>2</sub>O<sub>4</sub> 808.1913: found, 808.1910

#### PREPARATION EXAMPLE 2

#### Preparation of Compound (131)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

205

30

-continued

#### Preparation of Compound (204)

A 500 mL round-bottomed flask was charged with 4-bro-mobenzophenone (17.0 g, 65.2 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (3.14 g, 2.72 mmol) and LiCl (69.0 g, 163 mmol), and the mixture was stirred with toluene (250 mL) under argon atmosphere. After 5 minutes, a solution of tributyl(2-pyridyl)tin (20.0 g, 54.3 mmol) dissolved in toluene (20 mL) was added dropwise thereto. The mixture was stirred under reflux for 18 hours, and then cooled to room temperature. When the reaction was completed, aqueous KF solution was added to the reaction mixture. Extraction with ethyl acetate and purification via silica gel column chromatography gave Compound (204) (11.9 g, 45.9 mmol, yield: 84.5%).

#### Preparation of Compound (205)

A 500 mL round-bottomed flask was charged with Compound (204) (11.9 g, 45.9 mmol), iridium chloride (IrCl<sub>3</sub>) (6.24 g, 20.9 mmol), 2-ethoxyethanol (210 mL) and distilled water (70 mL), and the mixture was heated under reflux and argon atmosphere for 24 hours. When the reaction was completed, the reaction mixture was cooled to ambient temperature. The precipitate was filtered and completely dried to obtain Compound (205) (10.6 g, 14.2 mmol).

#### Preparation of Compound (131)

A 500 mL round-bottomed flask was charged with Compound (205) (10.6 g, 14.2 mmol), 2,4-pentanedione (2.13 g, 21.3 mmol), Na<sub>2</sub>CO<sub>3</sub> (4.52 g, 42.6 mmol) and 2-ethoxyethanol (300 mL), and the mixture was heated for 6 hours. When 55 the reaction was completed, the reaction mixture was cooled to room temperature. The solid precipitate was filtered and purified via silica gel column chromatography. Recrystallization gave the title compound, iridium complex (131) (9.19 g, 11.4 mmol, yield: 54.4%) as red crystals.

mp. >350° C.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ=8.51-8.49 (m, 2H), 7.86 (d, J=8.1 Hz, 2H), 7.68 (dd, J=1.5 Hz, 7.5 Hz, 2H), 7.63 (d, J=8.4 Hz, 2H), 7.57-7.54 (m, 4H), 7.49-7.44 (m, 2H), 7.34-65 (m, 6H), 7.16-7.11 (m, 2H), 6.59 (d, J=1.5 Hz, 2H), 5.25 (s, 1H), 1.80 (s, 6H)

HRMS (FAB) calcd for  $C_{41}H_{31}IrN_2O_4$  808.1913: found, 808.1918.

#### PREPARATION EXAMPLE 3

#### Preparation of Compound (149)

$$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

20

207

#### Preparation of Compound (206)

A 500 mL round-bottomed flask was charged with Compound (201) (18.0 g, 68.9 mmol), 4-t-butylphenylboronic acid (13.5 g, 75.8 mmol), toluene (160 mL), ethanol (80 mL) and Pd(PPh<sub>3</sub>)<sub>4</sub> (3.18 g, 2.76 mmol) and aqueous 2 M Na<sub>2</sub>CO<sub>3</sub> solution (80 mL). According to the same procedure as described in Preparation 1, obtained was Compound (206) (17.8 g, 56.5 mmol, yield: 82.0%).

#### Preparation of Compound (207)

Acetophenone (50 g, 416 mmol) and o-aminobenzophenone (82 g, 416 mmol) were stirred under reflux with concentrated sulfuric acid (4 mL) and glacial acetic acid (600 mL) for 24 hours. After cooling to room temperature, the reaction mixture was washed with cold concentrated ammonium hydroxide (450 mL) and distilled water (1.6 L). The precipitate was collected, and recrystallized from ethanol and water to obtain Compound (207) (81.9 g, 291 mmol).

#### Preparation of Compound (208)

Compound (207) (81.9 g, 291 mmol), iridium chloride (IrCl<sub>3</sub>) (39.1 g, 131 mmol), 2-ethoxyethanol (600 mL) and distilled water (200 mL) were stirred under reflux for 24 hours, and the reaction mixture was cooled to room temperature. The precipitate was washed with water and methanol, and filtered, and recrystallized from hexane to obtain Compound (208) (67.8 g, 43 mmol).

#### Preparation of Compound (149)

Compound (208) (67.8 g, 43 mmol) and Compound (206) (40.7 g, 129 mmol), AgCF<sub>3</sub>SO<sub>3</sub> (27.6 g, 107.5 mmol) and 2-methoxy ethylether (500 mL) were stirred under reflux for 12 hours. After cooling to room temperature, the reaction mixture was washed with water and methanol. The solid obtained was dissolved in methylene chloride, and purified via silica gel column chromatography to obtain the title com-

pound, iridium complex (149) (32 g, 30 mmol, 35%) as red crystals.

mp.  $>350^{\circ}$  C.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ=9.03 (s, 1H), 8.1 (d, J=8.1 Hz, 2H), 8.01 (d, J=7.6 Hz, 1H), 8 (d, J=7.5 Hz, 2H), 7.91- 5 7.81 (m, 6H), 7.7 (d, J=8.1 Hz, 2H), 7.6-7.4 (m, 13H), 7.3-7.2 (m, 12H), 1.34 (s, 9H)

HRMS (FAB) calcd for  $C_{64}H_{48}IrN_3O$  1067.00: found, 1067.34

PREPARATION EXAMPLE 4-70

The organic electroluminescent compounds listed in Table 1 were prepared according to the procedures described in Preparation Example 1-3, and the <sup>1</sup>H NMR, melting point (mp.) and MS/FAB data of the compounds are shown in Table 2.

#### TABLE 1

TABLE 1-continued

|                 |       |              | R <sub>3</sub> | A.,                  | $R_2$ $Ir - L_{3-n}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|-----------------|-------|--------------|----------------|----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| compound<br>No. | $R_1$ | $R_2$        | $R_3$          | A-<br>R <sub>4</sub> | $R_5$ $R_6$ $R_6$                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n |
| 105             |       | H            | H              | н м-                 | H <sub>3</sub> C                  | В СН <sub>3</sub> В СН <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |
| 106             |       | $\mathbf{H}$ | H              | н м-                 | F                                 | В СН <sub>3</sub> В СН <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |
| 107             |       | $\mathbf{H}$ | H              | Н N-                 |                                   | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{$ | 2 |
| 108             |       | $\mathbf{H}$ | H              | Н N-                 | Si(CH <sub>3</sub> ) <sub>3</sub> | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |
| 109             |       | H            | H              | H N-                 | F F                               | В СН <sub>3</sub> В СН <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |

TABLE 1-continued

|                 |                  |       | $R_{3}$      |       | $R_2$ $R_3$ $R_4$ $R_6$ | $Ir-L_{3-n}$                     |                                   |   |
|-----------------|------------------|-------|--------------|-------|-------------------------|----------------------------------|-----------------------------------|---|
| compound<br>No. | $R_1$            | $R_2$ | $R_3$        | $R_4$ | A                       | R <sub>5</sub> B  R <sub>6</sub> | L                                 | n |
| 110             |                  | H     | $\mathbf{H}$ | H     | N                       | OCH <sub>3</sub>                 | CH <sub>3</sub>                   | 2 |
| 111             |                  | H     | H            | H     | N                       |                                  | CH <sub>3</sub>                   | 2 |
| 112             | H <sub>3</sub> C | H     | H            | H     | N                       |                                  | В О СН3  CH3  CH3                 | 2 |
| 113             |                  | H     | H            | H     | N                       |                                  | В СН <sub>3</sub> СН <sub>3</sub> | 2 |
| 114             |                  | H     | H            | H     | N                       |                                  | CH <sub>3</sub>                   | 2 |

TABLE 1-continued

|                 |                  |       | $R_4$        | 1            | $R_2$ $R_2$ $R_6$ | Ir—L <sub>3-n</sub>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|-----------------|------------------|-------|--------------|--------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| compound<br>No. | $R_1$            | $R_2$ | $R_3$        | $R_4$        | A                 | $R_5$ $R_6$ $R_6$                    | ${ m L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n |
| 115             |                  | H     | H            | H            | N                 |                                      | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 2 |
| 116             | $(H_3C)_3C$      | H     | H            | H            | N                 |                                      | В СН <sub>3</sub> СН <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 |
| 117             | $H_3C$           | H     | H            | H            | N                 |                                      | В СН <sub>3</sub> В СН <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |
| 118             | H <sub>3</sub> C | H     | $\mathbf{H}$ | H            | N                 |                                      | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |
| 119             | H <sub>3</sub> C | H     | H            | $\mathbf{H}$ | N                 | H <sub>3</sub> C<br>H <sub>3</sub> C | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |

TABLE 1-continued

|                 |                  |              | 1.                      | ABLE  | 1-continu         | uea                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|-----------------|------------------|--------------|-------------------------|-------|-------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                 |                  |              | $R_{3}$ $R_{4}$ $R_{4}$ |       | $R_2$ $R_2$ $R_6$ | r Ir — L <sub>3-n</sub>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| compound<br>No. | $R_1$            | $R_2$        | $R_3$                   | $R_4$ | A                 | $R_{5}$ $R_{6}$ $R_{6}$                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n |
| 120             |                  | $\mathbf{H}$ | $\mathbf{H}$            | H     | F                 | H <sub>3</sub> C<br>H <sub>3</sub> C                  | Section CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |
| 121             | $H_3C$           | H            | H                       | H     | N                 | H                                                     | $\mathcal{E}$ | 2 |
| 122             | H <sub>3</sub> C | H            | H                       | H     | N                 | H <sub>3</sub> C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\mathcal{E}$ $O$ $CH_3$ $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
| 123             | H <sub>3</sub> C | H            | H                       | H     | N                 | C(CH <sub>3</sub> ) <sub>3</sub>                      | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
| 124             | H <sub>3</sub> C | $\mathbf{H}$ | $\mathbf{H}$            | H     | N                 |                                                       | Section CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |

TABLE 1-continued

|                 |        |       | $R_3$        |              | $R_2$ $R_6$ | $\Gamma$ Ir $\Gamma$ L <sub>3-n</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |   |  |
|-----------------|--------|-------|--------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---|--|
| compound<br>No. | $R_1$  | $R_2$ | $R_3$        | $R_4$        | A           | $R_{5}$ $R_{6}$ $R_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                                    | n |  |
| 125             | $H_3C$ | H     | H            | H            | N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В СН <sub>3</sub> СН <sub>3</sub>                    | 2 |  |
| 126             | $H_3C$ | H     | $\mathbf{H}$ | $\mathbf{H}$ |             | H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH <sub>3</sub>                                      | 2 |  |
| 127             | $H_3C$ | H     | H            | H            | N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В О СН3<br>В О СН3                                   | 2 |  |
| 128             | F      | H     | H            | H            | N           | SANGE TO SERVICE TO SE | SH O CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 2 |  |
| 129             |        | H     | H            | H            | N           | CF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Set of CH <sub>3</sub> CH <sub>3</sub>               | 2 |  |

TABLE 1-continued

| TABLE 1-Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |       |              |                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|--------------|---------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| $R_1$ $R_2$ $R_4$ $R_5$ $R_6$ $R_7$ $R_7$ $R_7$ $R_8$ $R_8$ $R_8$ $R_9$ |                  |       |              |                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |
| compound<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $R_1$            | $R_2$ | $R_3$        | A<br>R <sub>4</sub> | R <sub>5</sub> B R <sub>6</sub> | ${ m L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n |  |  |  |  |
| 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | H     | H            | Н N                 | F                               | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 |  |  |  |  |
| 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | H     | H            | H C—                | N ZZZZ                          | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 2 |  |  |  |  |
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sub>3</sub> C | H     | H            | H C—                | N ZZZZ                          | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 |  |  |  |  |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | H     | $\mathbf{H}$ | H N                 |                                 | And N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |  |  |  |  |
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | H     | $\mathbf{H}$ | Н N                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 |  |  |  |  |

TABLE 1-continued

|          |                |              | $R_3$          | $R_2$          | ∵Ir—L <sub>3-n</sub>                   |                                 |
|----------|----------------|--------------|----------------|----------------|----------------------------------------|---------------------------------|
| compound |                |              | R              | $R_6$ $R_6$    | $R_{5}$                                |                                 |
| No. 135  | R <sub>1</sub> | $ m R_2$     | R <sub>3</sub> | R <sub>4</sub> | R <sub>6</sub>                         | L n                             |
| 136      |                | H            | $\mathbf{H}$   | Н N            |                                        | CH <sub>3</sub> CH <sub>3</sub> |
| 137      |                | $\mathbf{H}$ | H              | H N            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                 |
| 138      |                | $\mathbf{H}$ | $\mathbf{H}$   | H N            |                                        |                                 |

TABLE 1-continued

|                 |       |              | R <sub>3</sub> | D C C C C C C C C C C C C C C C C C C C | R <sub>2</sub> | Ir—L <sub>3-n</sub> |                                 |
|-----------------|-------|--------------|----------------|-----------------------------------------|----------------|---------------------|---------------------------------|
| compound<br>No. | $R_1$ | $R_2$        | $R_3$          | $R_4$                                   | A              | $R_5$ $R_6$ $R_6$   | L n                             |
| 139             |       | $\mathbf{H}$ | H              | H                                       | N              |                     |                                 |
| 140             |       | H            | H              | H ]                                     | N              |                     |                                 |
| 141             |       | $\mathbf{H}$ | H              |                                         | N              |                     | CH <sub>3</sub> CH <sub>3</sub> |
| 142             |       | H            | H              | H ]                                     | N              |                     | A N                             |

TABLE 1-continued

|                 |                  |              | R <sub>3</sub> | $R_2$ $R_2$ $R_3$ $R_4$ $R_6$ | ∑Ir—L <sub>3-n</sub>                   |                 |   |
|-----------------|------------------|--------------|----------------|-------------------------------|----------------------------------------|-----------------|---|
| compound<br>No. | $R_1$            | $R_2$        | $R_3$          | A<br>R <sub>4</sub>           | $R_5$ $R_6$ $R_6$                      | L               | n |
| 143             |                  | $\mathbf{H}$ | $\mathbf{H}$   | Н N                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | CH <sub>3</sub> | 1 |
| 144             | H <sub>3</sub> C | H            | H              | Н N                           |                                        | CH <sub>3</sub> | 1 |
| 145             | $H_3C$           | $\mathbf{H}$ | $\mathbf{H}$   | H N                           |                                        | CH <sub>3</sub> | 1 |
| 146             |                  | H            | H              | H N                           | C(CH <sub>3</sub> ) <sub>3</sub>       | CH <sub>3</sub> | 1 |

TABLE 1-continued

|                 |       |              | T            | ABLE 1-continu      | ed                               |     |
|-----------------|-------|--------------|--------------|---------------------|----------------------------------|-----|
|                 |       |              | $R_3$        | $R_2$               | ∵Ir—L <sub>3-n</sub>             |     |
| compound<br>No. | $R_1$ | $R_2$        | $R_3$        | A<br>R <sub>4</sub> | $R_5$ $R_6$ $R_6$                | L n |
| 147             |       | H            | $\mathbf{H}$ | H N                 | C(CH <sub>3</sub> ) <sub>3</sub> |     |
| 148             |       | H            | H            | Н N                 | C(CH <sub>3</sub> ) <sub>3</sub> |     |
| 149             |       | $\mathbf{H}$ | $\mathbf{H}$ | Н N                 | C(CH <sub>3</sub> ) <sub>3</sub> |     |

TABLE 1-continued

|                 |       |              | 1            | ADLE 1-Collui       | nucu                             |                              |
|-----------------|-------|--------------|--------------|---------------------|----------------------------------|------------------------------|
|                 |       |              | $R_3$        | $R_2$ $R_2$ $R_6$   | Ir—L <sub>3-n</sub>              |                              |
| compound<br>No. | $R_1$ | $R_2$        | $R_3$        | A<br>R <sub>4</sub> | $R_5$ $R_6$ $R_6$                | L n                          |
| 150             |       | H            | H            | H N                 | C(CH <sub>3</sub> ) <sub>3</sub> | F 1                          |
| 151             |       | $\mathbf{H}$ | H            | H N                 | C(CH <sub>3</sub> ) <sub>3</sub> | F 1                          |
| 152             |       | H            | $\mathbf{H}$ | Н N                 | C(CH <sub>3</sub> ) <sub>3</sub> | $rac{1}{\sqrt{\frac{1}{N}}}$ |

TABLE 1-continued

|                 |       |              | 1            | ADLE 1-Conunu       | ieu                              |       |   |
|-----------------|-------|--------------|--------------|---------------------|----------------------------------|-------|---|
|                 |       |              | $R_{3}$      | $R_2$               | $\sum$ Ir-L <sub>3-n</sub>       |       |   |
| compound<br>No. | $R_1$ | $R_2$        | $R_3$        | A<br>R <sub>4</sub> | R <sub>5</sub> B  R <sub>6</sub> | L     | n |
| 153             |       | H            | $\mathbf{H}$ | Н N                 | C(CH <sub>3</sub> ) <sub>3</sub> | N N   | 1 |
| 154             |       | H            | $\mathbf{H}$ | Н N                 | C(CH <sub>3</sub> ) <sub>3</sub> |       | 1 |
| 155             |       | $\mathbf{H}$ | H            | H N                 | C(CH <sub>3</sub> ) <sub>3</sub> | and N | 1 |
| 156             |       | $\mathbf{H}$ | H            | H N                 | C(CH <sub>3</sub> ) <sub>3</sub> |       | 1 |

TABLE 1-continued

|                 |              |                  | 1.                | TOLL I COMMIN       | aca                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|-----------------|--------------|------------------|-------------------|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                 |              |                  | $R_3$ $R_4$ $R_4$ | R <sub>2</sub>      | $r$ Ir $L_{3-n}$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| compound<br>No. | $R_1$        | $R_2$            | $R_3$             | A<br>R <sub>4</sub> | $R_5$ $R_6$ $R_6$                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n |
| 157             |              | H                | $\mathbf{H}$      | Н N                 | C(CH <sub>3</sub> ) <sub>3</sub>       | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |
| 158             | $(H_3C)_3Si$ | H                | H                 | Н N                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 2 |
| 159             |              | —CH <sub>3</sub> | H                 | Н N                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | В СН <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
| 160             |              | H                | —CH <sub>3</sub>  | —СH <sub>3</sub> N  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | В СН <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
| 161             |              | H                | H                 | H N                 |                                        | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |

TABLE 1-continued

|                 |       |       | <b>.</b>       | ADLE 1-Conunc       | 1CG                                    |                                                                   |
|-----------------|-------|-------|----------------|---------------------|----------------------------------------|-------------------------------------------------------------------|
|                 |       |       | R <sub>3</sub> | $R_2$               | $\sum$ Ir-L <sub>3-n</sub>             |                                                                   |
| compound<br>No. | $R_1$ | $R_2$ | $R_3$          | A<br>R <sub>4</sub> | $R_5$ $R_6$ $R_6$                      | L n                                                               |
| 162             |       | H     | H              | Н N                 |                                        |                                                                   |
| 163             |       | H     | H              | Н N                 |                                        | F 2                                                               |
| 164             |       | H     | H              | H N                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                   |
| 165             |       | H     | H              | Н N                 |                                        | EH <sub>3</sub> CH <sub>3</sub> 2 EH <sub>3</sub> CH <sub>3</sub> |

TABLE 1-continued

|                 |                  |       |                |       | T Contin                |                                        |                                     |   |
|-----------------|------------------|-------|----------------|-------|-------------------------|----------------------------------------|-------------------------------------|---|
|                 |                  |       | R <sub>3</sub> |       | $R_2$ $R_3$ $R_4$ $R_6$ | $Ir - L_{3-n}$                         |                                     |   |
| compound<br>No. | $R_1$            | $R_2$ | $R_3$          | $R_4$ | A                       | R <sub>5</sub> R <sub>6</sub>          | L                                   | n |
| 166             | $(H_3C)_3C$      | H     | H              | H     | N                       |                                        | В СН <sub>3</sub> В СН <sub>3</sub> | 2 |
| 167             |                  | H     | H              | H     | N                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | В СН <sub>3</sub> СН <sub>3</sub>   | 2 |
| 168             |                  | H     | H              | H     | N                       |                                        | В СН <sub>3</sub> СН <sub>3</sub>   | 2 |
| 169             |                  | H     | H              | H     | N                       |                                        | В СН <sub>3</sub> В СН <sub>3</sub> | 2 |
| 170             | H <sub>3</sub> C | H     | H              | H     | N                       |                                        |                                     | 2 |

#### TABLE 1-continued

|                 |                  |              | <b>.</b>     |              | 1 Conti           | naca                                 |                                 |   |
|-----------------|------------------|--------------|--------------|--------------|-------------------|--------------------------------------|---------------------------------|---|
|                 |                  |              | $R_3$        |              | $R_2$ $R_2$ $R_6$ | Ir—L <sub>3-n</sub>                  |                                 |   |
| compound<br>No. | $R_1$            | $R_2$        | $R_3$        | $R_4$        | A                 | $R_5$ $R_6$ $R_6$                    | L                               | n |
| 171             | H <sub>3</sub> C | $\mathbf{H}$ | $\mathbf{H}$ | H            | N                 |                                      |                                 | 3 |
| 172             | H <sub>3</sub> C | $\mathbf{H}$ | $\mathbf{H}$ | $\mathbf{H}$ | N                 | H <sub>3</sub> C H <sub>3</sub> C    |                                 | 2 |
| 173             | F                | $\mathbf{H}$ | $\mathbf{H}$ | H            | N                 | H <sub>3</sub> C H <sub>3</sub> C    | EH <sub>3</sub> CH <sub>3</sub> | 2 |
| 174             | $(H_3C)_3C$      | $\mathbf{H}$ | $\mathbf{H}$ | $\mathbf{H}$ | N                 | H <sub>3</sub> C<br>H <sub>3</sub> C | CH <sub>3</sub>                 | 2 |

TABLE 1-continued

|                 |       |       | 1.           | ADLE  | , 1-conti         | nucu                                 |                                   |   |
|-----------------|-------|-------|--------------|-------|-------------------|--------------------------------------|-----------------------------------|---|
|                 |       |       | $R_{3}$      |       | $R_2$ $R_2$ $R_6$ | $Ir - L_{3-n}$                       |                                   |   |
| compound<br>No. | $R_1$ | $R_2$ | $R_3$        | $R_4$ | A                 | $R_5$ $R_6$ $R_6$                    | L                                 | n |
| 175             |       | H     | $\mathbf{H}$ | H     | N                 | H <sub>3</sub> C H <sub>3</sub> C    | CH <sub>3</sub>                   | 2 |
| 176             |       | H     | $\mathbf{H}$ | H     | N                 | H <sub>3</sub> C<br>H <sub>3</sub> C | E CH <sub>3</sub> CH <sub>3</sub> | 2 |
| 177             |       | H     | $\mathbf{H}$ | H     | N                 | H <sub>3</sub> C<br>H <sub>3</sub> C | and N                             | 2 |
| 178             |       | H     | ${ m H}$     | H     | N                 | H <sub>3</sub> C H <sub>3</sub> C    |                                   | 3 |

### TABLE 1-continued

|                 |        |                  | $R_1$ $R_3$ $R_5$ | $R_2$ $R_2$ $R_6$   | Ir—L <sub>3-n</sub> |                 |   |
|-----------------|--------|------------------|-------------------|---------------------|---------------------|-----------------|---|
| compound<br>No. | $R_1$  | $R_2$            | $R_3$             | A<br>R <sub>4</sub> | $R_5$ $R_6$ $R_6$   | L               | n |
| 179             |        | H                | H                 | Н N                 |                     | CH <sub>3</sub> | 2 |
| 180             | $H_3C$ | —CH <sub>3</sub> | —СН3              | —СН <sub>3</sub> N  |                     | CH <sub>3</sub> | 2 |
| 181             | $H_3C$ | H                |                   | Н N                 | CH <sub>3</sub>     | CH <sub>3</sub> | 2 |
| 182             | $H_3C$ | $\mathbf{H}$     | H                 | Н N                 |                     | And N           | 2 |
| 183             | $H_3C$ | H                | H                 | Н N                 |                     |                 | 2 |

TABLE 1-continued

|                 |              |              | 1            | ABLE  | 1-contii                | nuea                          |                 |   |
|-----------------|--------------|--------------|--------------|-------|-------------------------|-------------------------------|-----------------|---|
|                 |              |              | $R_{3}$      | 1     | $R_2$ $R_3$ $R_4$ $R_6$ | $r - L_{3-n}$                 |                 |   |
| compound<br>No. | $R_1$        | $R_2$        | $R_3$        | $R_4$ | A                       | R <sub>5</sub> R <sub>6</sub> | L               | n |
| 184             | $H_3C$       | $\mathbf{H}$ | $\mathbf{H}$ | H     | N                       |                               | CH <sub>3</sub> | 2 |
| 185             | $_{ m H_3C}$ | H            | H            | H     | N                       |                               |                 | 3 |
| 186             | F            | H            | H            | H     | C—                      | N You                         | CH <sub>3</sub> | 2 |
| 187             |              | H            | H            | H     | C—                      | N ZZZZZ                       | EH3             | 2 |
| 188             |              | $\mathbf{H}$ | $\mathbf{H}$ | H     | C—                      | N ZZZZZ                       |                 | 2 |

#### TABLE 1-continued

|                 |                  |              | $R_{3}$      |       | $R_2$ $R_3$ $R_6$ | r—L <sub>3-n</sub>                     |                                       |   |
|-----------------|------------------|--------------|--------------|-------|-------------------|----------------------------------------|---------------------------------------|---|
| compound<br>No. | $R_1$            | $R_2$        | $R_3$        | $R_4$ | A                 | $R_5$ $R_6$ $R_6$                      | L                                     | n |
| 189             |                  | $\mathbf{H}$ | H            | H     | C—                | N ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | CH <sub>3</sub>                       | 2 |
| 190             | $H_3C$           | H            | H            | H     | C—                | N ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | CH <sub>3</sub>                       | 2 |
| 191             | H <sub>3</sub> C | H            | $\mathbf{H}$ | H     | C—                | N ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | And N                                 | 2 |
| 192             |                  | H            | H            | H     | C—                | N ZZZ                                  |                                       | 3 |
| 193             |                  | H            | H            | H     | N                 | H <sub>3</sub> C                       | Set O CH <sub>3</sub> CH <sub>3</sub> | 2 |

### TABLE 1-continued

|                 |                  |       | 1.    |       | r-commu                 | icu                              |                 |   |
|-----------------|------------------|-------|-------|-------|-------------------------|----------------------------------|-----------------|---|
|                 |                  |       | $R_4$ |       | $R_2$ $R_3$ $R_4$ $R_6$ | ∵Ir—L <sub>3-n</sub>             |                 |   |
| compound<br>No. | $R_1$            | $R_2$ | $R_3$ | $R_4$ | A                       | R <sub>5</sub> B  R <sub>6</sub> | L               | n |
| 194             |                  | H     | H     | H     | N                       | H <sub>3</sub> C                 | CH <sub>3</sub> | 2 |
| 195             | H <sub>3</sub> C | H     | H     | H     | N                       | H <sub>3</sub> C                 |                 | 2 |
| 196             | $H_3C$           | H     | H     | H     | N                       | H <sub>3</sub> C                 |                 | 2 |
| 197             | F                | H     | H     | H     | N                       | H                                | CH <sub>3</sub> | 2 |
| 198             | $(H_3C)_3C$      | H     | H     | H     | N                       | H                                | EH3 CH3 CH3     | 2 |

TABLE 1-continued

TABLE 2

|              |                                                                                                                                                                                                                                                                                                                        | MS/      | FAB        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Compound No. | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 300 MHz)                                                                                                                                                                                                                                                                       | found    | calculated |
| 101          | δ = 8.89 (d, J = 1.2 Hz, 2H), 8.30 (dd, J = 1.8 Hz, 8.4 Hz, 2H), 7.98 (d, J = 8.7 Hz, 2H), 7.83-7.80 (m, 4H), 7.65-7.58 (m, 4H) 7.53-7.48 (m, 4H), 6.86 (td, J = 1.2 Hz, 7.5 Hz, 2H), 6.74 (td, J = 1.5 Hz, 7.5 Hz, 2H), 6.30 (dd, J = 1.2 Hz, 7.8 Hz, 2H), 5.29 (s, 1H), 1.55 (s, 6H).                                | 808.1910 | 808.1913   |
| 102          | δ = 8.83 (d, J = 2.0 Hz, 2H), 8.27 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>7.93 (d, J = 8.6 Hz, 2H), 7.82-7.79 (m, 4H), 7.63-7.57 (m, 2H),<br>7.55-7.47 (m, 6H), 6.68 (dd, J = 1.6 Hz, 7.9 Hz, 2H), 6.10 (s, 2H), 5.28 (s, 1H), 2.08 (s, 6H), 1.55 (s, 6H).                                                                   | 836.2228 | 836.2226   |
| 103          | δ = 8.92 (d, J = 1.3 Hz, 2H), 8.29 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>8.00 (d, J = 8.7 Hz, 2H), 7.81 (dd, J = 1.3 Hz, 8.3 Hz, 4H),<br>7.70 (d, J = 8.1 Hz, 2H), 7.63-7.58 (m, 2H), 7.51-7.46 (m, 4H),<br>7.35-7.19 (m, 10H), 7.11 (dd, J = 1.8 Hz, 8.1 Hz, 2H), 6.54 (d,<br>J = 1.6 Hz, 2H), 5.28 (s, 1H), 1.57 (s, 6H). | 960.2545 | 960.2539   |
| 104          | δ = 8.89 (dd, J = 0.6 Hz, 1.4 Hz, 2H), 8.26 (dd, J = 2.0 Hz, 8.5 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H), 7.83 (dd, J = 1.4 Hz, 8.3 Hz, 4H), 7.61-7.46 (m, 8H), 6.90 (dd, J = 1.9 Hz, 8.3 Hz, 2H), 6.30 (d, J = 1.8 Hz, 2H), 5.12 (s, 1H), 1.47 (s, 6H), 1.07 (s, 18H).                                                      | 920.3160 | 920.3165   |
| 105          | δ = 8.80 (d, J = 2.0 Hz, 2H), 8.27 (dd, J = 2.2 Hz, 8.5 Hz, 2H),<br>7.93 (d, J = 8.6 Hz, 2H), 7.82-7.79 (m, 4H), 7.63-7.58 (m, 2H),<br>7.55-7.47 (m, 6H), 6.68 (dd, J = 1.6 Hz, 7.9 Hz, 2H), 6.10 (s, 2H), 5.28 (s, 1H), 2.08 (s, 6H), 1.55 (s, 6H).                                                                   | 836.2228 | 836.2226   |
| 106          | δ = 8.81 (d, J = 2.0 Hz, 2H), 8.30 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>7.92 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 7.0 Hz, 4H), 7.67-7.60 (m, 4H), 7.54-7.49 (m, 4H), 6.61 (td, J = 2.5 Hz, 8.7 Hz, 2H),<br>5.91 (dd, J = 2.5 Hz, 9.5 Hz, 2H), 5.28 (s, 1H), 1.57 (s, 6H).                                                     | 844.1711 | 844.1725   |

### TABLE 2-continued

|              |                                                                                                                                                                                                                                                                                                                                                                               | MS/      | FAB        |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Compound No. | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 300 MHz)                                                                                                                                                                                                                                                                                                                              | found    | calculated |
| 107          | δ = 8.92 (d, J = 1.3 Hz, 2H), 8.29 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>8.00 (d, J = 8.2 Hz, 2H), 7.81 (dd, J = 1.3 Hz, 8.3 Hz, 4H),<br>7.70 (d, J = 8.1 Hz, 2H), 7.63-7.59 (m, 2H), 7.51-7.46 (m, 4H),<br>7.35-7.25 (m, 10H), 7.16 (dd, J = 1.8 Hz, 8.1 Hz, 2H), 6.54 (d,<br>J = 1.6 Hz, 2H), 5.28 (s, 1H), 1.55 (s, 6H).                                                        | 960.2545 | 960.2539   |
| 108          | δ = 8.89 (dd, J = 0.6 Hz, 1.4 Hz, 2H), 8.26 (dd, J = 2.0 Hz, 8.5 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H), 7.83 (dd, J = 1.4 Hz, 8.3 Hz, 4H), 7.61-7.46 (m, 8H), 6.90 (dd, J = 1.9 Hz, 8.3 Hz, 2H), 6.30 (d, J = 1.8 Hz, 2H), 5.12 (s, 1H), 1.47 (s, 6H), 1.07 (s, 9H), 0.66 (s, 9H).                                                                                                | 952.28   | 952.27     |
| 109          | δ = 8.81 (d, J = 1.9 Hz, 2H), 8.41-8.31 (m, 4H), 7.82-7.79 (m, 4H), 7.64 (t, J = 7.4 Hz, 2H), 7.53 (t, J = 7.6 Hz, 4H), 6.43-6.36 (m, 2H), 5.70 (dd, J = 2.3 Hz, 8.6 Hz, 2H), 5.31 (s, 1H), 1.59 (s, 6H).                                                                                                                                                                     | 880.1533 | 880.1536   |
| 110          | δ = 8.80 (d, J = 2.0 Hz, 2H), 8.25 (dd, J = 2.0 Hz, 8.6 Hz, 2H), 7.84 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 7.7 Hz, 4H), 7.61 (d, J = 8.7 Hz, 4H), 7.53-7.48 (m, 4H), 6.46 (dd, J = 2.5 Hz, 8.6 Hz, 2H), 5.79 (d, J = 2.5 Hz, 2H), 5.28 (s, 1H), 3.56 (s, 6H), 1.55 (s, 6H).                                                                                                      | 868.2139 | 868.2125   |
| 111          | δ = 8.92 (d, J = 1.3 Hz, 2H), 8.29 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>8.00 (d, J = 8.7 Hz, 2H), 7.81 (dd, J = 1.3 Hz, 8.3 Hz, 4H),<br>7.70 (d, J = 8.1 Hz, 2H), 7.63-7.58 (m, 2H), 7.51-7.46 (m, 6H),<br>7.35-7.19 (m, 13H), 7.11 (dd, J = 1.8 Hz, 8.1 Hz, 2H), 6.54 (d,<br>J = 1.6 Hz, 2H), 5.28 (s, 1H), 1.57 (s, 6H).                                                        | 1112.30  | 1112.32    |
| 112          | δ = 9.06 (d, J = 2.0 Hz, 2H), 8.26 (dd, J = 2.0 Hz, 8.6 Hz, 2H),<br>7.93 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 7.7 Hz, 2H), 6.88-6.83 (m, 2H), 6.76-6.70 (m, 2H), 6.28 (d, J = 7.7 Hz, 2H), 5.29 (s, 1H),<br>2.60 (s, 6H), 1.84 (s, 6H).                                                                                                                                          | 684.1585 | 684.1600   |
| 113          | δ = 8.61 (d, J = 2.0 Hz, 2H), 8.38 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>8.04 (d, J = 7.8 Hz, 2H), 8.00 (d, 8.2 Hz, 2H), 7.95 (d, J = 8.2 Hz,<br>2H), 7.90 (d, J = 7.8 Hz, 2H), 7.61-7.58 (m, 4H),<br>7.57-7.47 (m, 6H), 6.82 (td, J = 1.2 Hz, 7.5 Hz, 2H), 6.71 (td, J = 1.4 Hz,<br>7.4 Hz, 2H), 6.24 (dd, J = 0.8 Hz, 7.6 Hz, 2H), 4.65 (s, 1H),<br>1.19 (s, 6H).                | 908.2236 | 908.2226   |
| 114          | δ = 8.92 (d, J = 1.4 Hz, 2H), 8.32 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>8.23 (s, 2H), 8.00 (d, J = 8.2 Hz, 2H), 7.96-7.90 (m, 8H),<br>7.66-7.59 (m, 6H), 6.87 (td, J = 1.2 Hz, 7.5 Hz, 2H), 6.76 (td, J = 1.4 Hz,<br>7.4 Hz, 2H), 6.32 (dd, J = 1.0 Hz, 7.6 Hz, 2H),<br>5.18 (s, 1H), 1.22 (s, 6H).                                                                               | 908.2236 | 908.2226   |
| 115          | δ = 8.94 (d, J = 2.0 Hz, 2H), 8.31 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>8.00 (d, J = 8.3 Hz, 2H), 7.90 (d, J = 8.3 Hz, 4H), 7.72 (d, J = 8.3 Hz, 4H), 7.66-7.60 (m, 6H), 7.51-7.38 (m, 6H), 6.87 (td, J = 1.0 Hz, 7.5 Hz, 2H), 6.76 (td, J = 1.3 Hz, 7.5 Hz, 2H), 6.33 (d, J = 7.5 Hz, 2H), 5.31 (s, 1H), 1.57 (s, 6H).                                                           | 960.2555 | 960.2539   |
| 116          | δ = 8.91 (d, J = 2.0 Hz, 2H), 8.31 (dd, J = 2.0 Hz, 8.5 Hz, 2H), 7.98 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.4 Hz, 4H), 7.64 (dd, J = 1.2 Hz, 7.8 Hz, 2H), 7.51 (d, J = 8.4 Hz, 4H), 6.86 (td, J = 1.2 Hz, 7.5 Hz, 2H), 6.74 (td, J = 1.4 Hz, 7.4 Hz, 2H), 6.30 (dd, J = 0.8 Hz, 7.6 Hz, 2H), 5.28 (s, 1H), 1.56 (s, 6H), 1.35 (s, 18H).                                         | 920.3166 | 920.3165   |
| 117          | δ = 9.09 (d, J = 1.8 Hz, 2H), 8.28 (dd, J = 1.8 Hz, 8.4 Hz, 2H),<br>7.94 (d, = 8.4 Hz, 2H), 7.63 (dd, = 1.2 Hz, 8.4 Hz, 2H),<br>6.87-6.83 (m, 2H), 6.76-6.71 (m, 2H), 6.30 (d, = 0.9 Hz, 7.8 Hz,<br>2H), 5.29 (s, 1H), 3.42 (m, 2H), 1.83 (s, 6H), 1.27 (d, = 7.2 Hz,<br>12H).                                                                                                | 740.2222 | 740.2226   |
| 118          | δ = 9.22 (d, J = 1.5 Hz, 2H), 8.41 (dd, J = 2.0 Hz, 8.6 Hz, 2H),<br>8.24 (d, J = 8.4 Hz, 2H), 8.19 (s, 2H), 7.67 (d, J = 7.5 Hz, 2H),<br>7.26 (d, J = 9.4 Hz, 2H), 7.21-7.18 (m, 2H), 7.16-7.13 (m, 2H),                                                                                                                                                                      | 784.1920 | 784.1913   |
| 119          | 6.61 (s, 2H), 5.32 (s, 1H), 2.68 (s 6H), 1.88 (s, 6H).<br>δ = 9.14, (d, J = 2.0 Hz, 2H), 8.40 (dd, J = 2.0 Hz, 8.6 Hz, 2H),<br>8.14 (d, J = 8.8 Hz, 2H), 7.83 (s, 2H), 7.40 (d, J = 7.5 Hz, 2H),<br>7.36 (d, J = 7.5 Hz, 2H), 7.27 (dd, J = 1.2 Hz, 7.4 Hz, 2H),<br>7.22-7.19 (m, 2H), 6.72 (s, 2H), 5.43 (s, 1H), 2.66 (s, 6H),<br>1.91 (s, 6H), 1.52 (s, 6H), 1.46 (s, 6H). | 916.2869 | 916.2852   |
| 120          | δ = 9.14, (d, J = 2.0 Hz, 2H), 8.40 (dd, J = 2.0 Hz, 8.6 Hz, 2H),<br>8.14 (d, J = 8.8 Hz, 2H), 7.83 (s, 2H), 7.81-7.45 (m, 5H),<br>7.40 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 7.5 Hz, 2H), 7.27 (dd, J = 1.2 Hz,<br>7.4 Hz, 2H), 7.22-7.19 (m, 2H), 6.72 (s, 2H), 5.43 (s, 1H),<br>2.66 (s, 6H), 1.91 (s, 6H), 1.52 (s, 6H), 1.46 (s, 6H).                                        | 1040.32  | 1040.23    |
| 121          | δ = 8.28 (d, J = 2.1 Hz, 2H), 7.89 (dd, J = 2.1 Hz, 8.7 Hz, 2H),<br>7.22 (d, J = 8.1 Hz, 2H), 6.95-6.91 (m, 6H), 6.90-6.87 (m, 6H),<br>5.17 (s, 1H), 3.08 (m, 2H), 1.87 (s, 6H), 1.12 (d, J = 6.6 Hz,<br>6H), 1.03 (d, J = 6.6 Hz, 6H).                                                                                                                                       | 792.2558 | 792.2539   |
| 122          | $\delta$ = 9.06 (d, J = 2.0 Hz, 2H), 8.26 (dd, J = 2.0 Hz, 8.6 Hz, 2H), 7.93 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 7.7 Hz, 2H), 6.88-6.85 (m,                                                                                                                                                                                                                                     | 712.1913 | 711.8311   |

### TABLE 2-continued

|              |                                                                                                                                                                                                                                                                                                                                                | MS/      | FAB        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Compound No. | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 300 MHz)                                                                                                                                                                                                                                                                                               | found    | calculated |
|              | 1H), 6.76-6.70 (m, 2H), 6.28 (d, J = 7.7 Hz, 2H), 5.29 (s, 1H),                                                                                                                                                                                                                                                                                |          |            |
| 123          | 2.60 (s, 6H), 2.35 (s, 3H), 1.84 (s, 6H).<br>δ = 9.09 (d, J = 2.0 Hz, 2H), 8.24 (dd, J = 2.0 Hz, 8.6 Hz, 2H),<br>7.87 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 6.89 (dd, J = 1.9 Hz,<br>8.3 Hz, 2H), 6.23 (d, J = 1.9 Hz, 2H), 5.27 (s, 1H),                                                                                             | 796.2852 | 796.2855   |
| 124          | 2.60 (s, 6H), 1.85 (s, 6H), 1.03 (s, 18H).<br>δ = 9.10 (d, J = 2.0 Hz, 2H), 8.29 (dd, J = 2.0 Hz, 8.6 Hz, 2H),<br>7.97 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.30-7.27 (m,                                                                                                                                                            | 836.2196 | 838.2226   |
| 125          | 10H), 7.11 (dd, J = 1.8 Hz, 8.1 Hz, 2H), 6.50 (d, J = 1.7 Hz, 2H), 5.33 (s, 1H), 2.63 (s, 6H), 1.87 (s, 6H). δ = 9.22 (d, J = 1.8 Hz, 2H), 8.40 (dd, J = 1.8 Hz, 8.7 Hz, 2H), 8.22 (d, J = 8.7 Hz, 2H), 8.16 (s, 2H), 7.65 (d, J = 7.8 Hz, 2H),                                                                                                | 840.2556 | 840.2542   |
| 126          | 7.24-7.11 (m, 6H), 6.61 (s, 2H), 5.33 (s, 1H), 3.47 (m, 2H),<br>1.84 (s, 6H), 1.30 (d, J = 6.6 Hz, 12H).<br>$\delta$ = 9.15 (d, J = 2.1 Hz, 2H), 8.35 (dd, J = 2.1 Hz, 8.7 Hz, 2H),                                                                                                                                                            | 972.3484 | 972.3478   |
|              | 8.06 (d, J = 8.7 Hz, 2H), 7.70 (s, 2H), 7.32-7.28 (m, 4H),<br>7.22-7.15 (m, 4H), 6.64 (s, 2H), 5.33 (s, 1H), 3.48 (m, 2H),<br>1.86 (s, 6H), 1.43 (d, J = 10 Hz, 12H), 1.29 (d, J = 6.6 Hz,<br>12H).                                                                                                                                            |          |            |
| 127          | δ = 9.13 (d, J = 1.8 Hz, 2H), 8.62 (d, J = 8.7 Hz, 2H), 8.53 (d, J = 8.7 Hz, 2H), 8.36 (dd, J = 2.1 Hz, 8.7 Hz, 2H), 7.65-7.62 (m, 2H), 7.52-7.47 (m, 2H), 7.31-7.26 (m, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.35 (d, 8.4 Hz, 2H), 5.33 (s, 1H), 3.42 (m, 2H),                                                                                      | 840.2535 | 840.2542   |
| 128          | 1.84 (s, 6H), 1.27 (d, J = 6.6 Hz, 6H), 1.26 (d, J = 6.6 Hz, 6H).<br>δ = 8.86 (d, J = 2.0 Hz, 2H), 8.26 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>7.99 (d, J = 8.6 Hz, 2H), 7.86 (dd, J = 5.4 Hz, 8.7 Hz, 4H),<br>7.64 (dd, J = 1.1 Hz, 7.8 Hz, 2H), 7.19 (t, J = 8.5 Hz, 4H),<br>6.82 (td, J = 1.1 Hz, 7.5 Hz, 2H), 6.75 (td, J = 1.3 Hz, 7.4 Hz, 2H), | 844.1733 | 844.1725   |
| 129          | 6.29 (dd, J = 1.1 Hz, 7.5 Hz, 2H), 5.29 (s, 1H), 1.59 (s, 6H).<br>δ = 8.85 (d, J = 1.9 Hz, 2H), 8.36 (dd, J = 2.0 Hz, 8.4 Hz, 2H),<br>8.08 (d, J = 8.6 Hz, 2H), 7.82-7.79 (m, 4H), 7.74 (d, J = 8.1 Hz,<br>2H), 7.63-7.60 (m, 2H), 7.54-7.49 (m, 4H), 7.14 (d, J = 7.7 Hz,                                                                     | 944.1659 | 944.1661   |
| 130          | 2H), 6.50 (s, 2H), 5.23 (s, 1H), 1.53 (s, 6H).<br>δ = 8.79 (d, J = 2.0 Hz, 2H), 8.29 (dd, J = 2.0 Hz, 8.5 Hz, 2H),<br>7.89 (d, J = 8.6 Hz, 2H), 7.81-7.78 (m, 4H), 7.63-7.60 (m, 2H),<br>7.54-7.49 (m, 4H), 7.30 (dd, J = 2.3 Hz, 9.2 Hz, 2H), 6.29 (td,                                                                                       | 880.1533 | 880.1536   |
| 131          | J = 2.3 Hz, 9.2 Hz, 2H), 5.29 (s, 1H), 1.54 (s, 6H).<br>δ = 8.51-8.49 (m, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.68 (dd, J = 1.5 Hz, 7.5 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.57-7.54 (m, 4H), 7.49-7.44 (m, 2H), 7.34-7.28 (m, 6H), 7.16-7.11 (m, 2H),                                                                                              | 808.1918 | 808.1913   |
| 132          | 6.59 (d, J = 1.5 Hz, 2H), 5.25 (s, 1H), 1.80 (s, 6H).<br>δ = 8.58 (dd, J = 0.8 Hz, 5.7 Hz, 2H), 7.96 (d, J = 7.8 Hz, 2H),<br>7.87-7.81 (m, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.41 (dd, J = 1.8 Hz,<br>8.1 Hz, 2H), 7.31-7.28 (m, 2H), 7.65 (d, J = 1.8 Hz, 2H),                                                                                   | 684.1606 | 684.1600   |
| 133          | 5.25 (s, 1H), 2.27 (s, 6H), 1.80 (s, 6H). $\delta$ = 9.03 (s, 2H), 8.1-8.0 (m, 6H), 7.91 (d, J = 7.5 Hz, 2H), 7.81-7.79 (m, 5H), 7.7-7.6 (m, 3H), 7.54-7.4 (m, 7H), 7.38-7.32 (m, 9H)                                                                                                                                                          | 913.23   | 913.05     |
| 134          | $\delta$ = 9.05 (s, 2H), 8.56 (d, J = 2.8 Hz, 1H), 8.1-8.0 (m, 5H), 7.91 (d, J = 8.3 Hz, 2H), 7.81 (d, J = 7.6 Hz, 4H), 7.54-7.45 (m, 8H), 7.3-6.98 (m, 10H).                                                                                                                                                                                  | 863.21   | 862.99     |
| 135          | δ = 9.03 (s, 2H), 8.5 (d, J = 2.5 Hz, 2H), 8.1-8.0 (m, 5H), 7.95-7.9 (m, 3H), 7.81-7.7 (m, 5H), 7.6-7.48 (m, 8H), 7.3-7.1 (m, 10H).                                                                                                                                                                                                            | 913.23   | 913.05     |
| 136          | δ = 9.03 (s, 2H), 8.56 (d, J = 6.2 Hz, 1H), 8.3 (d, J = 7.2 Hz, 1H), 8.1-8.0 (m, 4H), 7.91-7.81 (m, 8H), 7.6-7.4 (m, 10H), 7.38-7.22 (m, 8H), 1.67 (s, 6H).                                                                                                                                                                                    | 979.27   | 979.15     |
| 137          | $\delta$ = 9.03 (s, 2H), 8.8 (d, J = 7.2 Hz, 1H), 8.1-8.0 (m, 5H), 7.91 (d, J = 7.5 Hz, 2H), 7.81-7.7 (m, 6H), 7.54-7.4 (m, 7H), 7.35-7.3 (m, 9H).                                                                                                                                                                                             | 887.21   | 887.01     |
| 138          | δ = 9.03 (s, 1H), 8.1-8.0 (m, 6H), 7.91 (d, J = 7.5 Hz, 1H), 7.81-7.79 (m, 4H), 7.7-7.6 (m, 6H), 7.54-7.4 (m, 5H), 7.38-7.32 (m, 9H).                                                                                                                                                                                                          | 859.22   | 859.00     |
| 139          | $\delta$ = 9.05 (s, 1H), 8.56 (d, J = 2.8 Hz, 2H), 8.1-8.0 (m, 4H), 7.91 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 7.6 Hz, 2H), 7.54-7.45 (m, 7H), 7.3-6.98 (m, 11H).                                                                                                                                                                                  | 759.89   | 759.19     |
| 140          | $\delta$ = 9.03 (s, 1H), 8.5 (d, J = 2.5 Hz, 2H), 8.1-8.0 (m, 4H), 7.95-7.9 (m, 3H), 7.81-7.7 (m, 4H), 7.6-7.48 (m, 7H), 7.3-7.1 (m, 11H).                                                                                                                                                                                                     | 859.22   | 859.00     |
| 141          | $\delta$ = 9.03 (s, 1H), 8.56 (d, J = 6.2 Hz, 2H), 8.3 (d, J = 7.2 Hz, 2H), 8.1-8.0 (m, 2H), 7.91-7.81 (m, 7H), 7.6-7.4 (m, 11H), 7.38-7.22 (m, 7H), 1.67 (s, 12H).                                                                                                                                                                            | 991.31   | 991.21     |
| 142          | $\delta$ = 9.03 (s, 1H), 8.8 (d, J = 7.2 Hz, 2H), 8.1-8.0 (m, 4H), 7.91 (d, J = 7.5 Hz, 1H), 7.81-7.7 (m, 6H), 7.54-7.4 (m, 5H), 7.35-7.3 (m, 9H).                                                                                                                                                                                             | 807.19   | 806.93     |

TABLE 2-continued

|          |                                                                                                                                                                                                          | MS      | /FAB       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| mpound N | No. <sup>1</sup> H NMR (CDCl <sub>3</sub> , 300 MHz)                                                                                                                                                     | found   | calculated |
| 143      | δ = 9.03 (s, 1H), 8.4 (d, J = 7.2 Hz, 2H), 8.1-8.0 (m, 2H), 7.91-7.81 (m, 5H), 7.7-7.5 (m, 7H), 7.45-7.32 (m, 7H), 6.6 (s, 2H), 1.71 (s, 6H).                                                            | 787.22  | 786.94     |
| 144      | $\delta$ = 9.28 (s, 1H), 8.4 (d, J = 7.2 Hz, 2H), 8.15-8.0 (m, 2H), 7.90-7.84 (m, 3H), 7.7-7.5 (m, 6H), 7.4-7.32 (m, 5H), 6.6 (s, 2H), 2.55 (s, 3H), 1.71 (s, 6H).                                       | 725.20  | 724.87     |
| 145      | $\delta$ = 9.28 (s, 1H), 8.4 (d, J = 7.2 Hz, 2H), 8.15-8.0 (m, 2H), 7.90-7.84 (m, 3H), 7.7-7.5 (m, 6H), 7.4-7.32 (m, 5H), 6.6 (s, 2H), 2.7 (m, 1H), 1.71 (s, 6H), 1.23 (d, J = 2.2 Hz, 6H).              | 753.23  | 752.92     |
| 146      | $\delta = 9.03 \text{ (s, 1H)}, 8.4 \text{ (d, J} = 7.2 \text{ Hz, 2H)}, 8.01-7.9 \text{ (m, 5H)},$<br>7.81-7.6 (m, 6H), 7.54-7.4 (m, 7H), 7.3-7.28 (m, 2H), 6.6 (s, 2H),<br>1.71 (s, 6H), 1.34 (s, 9H). | 843.28  | 843.05     |
| 147      | $\delta$ = 9.0 (s, 1H), 8.1 (d, J = 7.2 Hz, 2H), 8.01-7.9 (m, 5H), 7.84-7.8 (m, 4H), 7.7 (d, J = 7.2 Hz, 2H), 7.6-7.54 (m, 5H), 7.45-7.4 (m, 5H), 7.3-7.1 (m, 6H), 1.41 (s, 9H).                         | 915.28  | 915.00     |
| 148      | δ = 9.01 (s, 1H), 8.1 (d, J = 7.2 Hz, 2H), 8.01-7.9 (m, 7H)<br>7.8-7.75 (m, 6H), 7.6-7.4 (m, 11H), 7.3-7.2 (m, 12H), 1.35 (s, 9H)                                                                        | 1067.34 | 1067.00    |
| 149      | δ = 9.03 (s, 1H), 8.1 (d, J = 8.1 Hz, 2H), 8.01 (d, J = 7.6 Hz, 1H), 8 (d, J = 7.5 Hz, 2H), 7.91-7.81 (m, 6H), 7.7 (d, J = 8.1 Hz, 2H), 7.6-7.4 (m, 13H), 7.3-7.2 (m, 12H), 1.34 (s, 9H).                | 1067.34 | 1067.00    |
| 150      | δ = 9.02 (s, 1H), 8.1 (d, J = 7.2 Hz, 2H), 8.01 (d, J = 7.0 Hz, 1H), 7.91-7.8 (m, 6H), 7.7-7.65 (m, 4H), 7.6-7.4 (m, 11H), 7.3 (m, 2H), 7.0 (m, 2H), 1.38 (s, 9H).                                       | 951.26  | 951.09     |
| 151      | δ = 9.03 (s, 1H), 8.1 (d, J = 8.1 Hz, 2H), 8.01 (d, J = 7.6 Hz, 1H), 7.91-7.86 (m, 4H), 7.81-7.77 (m, 6H), 7.7 (s, 1H), 7.6-7.4 (m, 11H), 7.4-7.3 (m, 10H), 7.0 (d, J = 5.6 Hz, 2H), 1.34 (s, 9H).       | 1103.32 | 1103.28    |
| 152      | δ = 9.03 (s, 1H), 8.1-7.9 (m, 9H), 7.81 (d, J = 7.5 Hz, 2H), 7.7 (d, J = 7.1 Hz, 2H), 7.6-7.4 (m, 13H), 7.3-7.22 (m, 12H), 1.34 (s, 9H).                                                                 | 1103.32 | 1103.28    |
| 153      | δ = 9.03 (s, 1H), 8.5 (d, J = 7.7 Hz, 2H), 8.01-7.81 (m, 7H),<br>7.7 (d, J = 7.1 Hz, 2H), 7.6-7.4 (m, 9H), 7.3 (d, J = 8.0 Hz, 4H),<br>7.26-7.23 (m, 6H), 7.2 (s, 2H), 7.14 (m, 2H), 1.34 (s, 9H).       | 967.31  | 967.19     |
| 154      | $\delta$ = 9.03 (m, 1H), 8.1-7.81 (m, 9H), 7.7-7.6 (m, 4H), 7.54-7.4 (m, 9H), 7.3-7.14 (m, 12H), 1.34 (s, 9H)                                                                                            | 967.31  | 967.19     |
| 155      | δ = 9.03 (s, 1H), 8.56 (d, J = 2.8 Hz, 2H), 8.1-8.0 (m, 3H),<br>7.95-7.9 (m, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.54-7.45 (m, 9H),<br>7.3-6.98 (m, 8H), 1.34 (s, 9H).                                        | 815.25  | 814.99     |
| 156      | δ = 9.0 (s, 1H), 8.5 (d, J = 7.2 Hz, 2H), 8.01-7.9 (m, 7H), 7.81 (d, J = 7.5 Hz, 2H), 7.7 (d, J = 7.2 Hz, 2H), 7.6-7.5 (m, 5H), 7.45-7.4 (m, 4H), 7.3-7.1 (m, 8H), 1.34 (s, 9H).                         | 915.28  | 915.11     |
| 157      | $\delta$ = 9.03 (s, 1H), 8.56 (d, J = 6.2 Hz, 2H), 8.3 (s, 2H), 8.01 (d, J = 7.3 Hz, 1H), 7.9-7.81 (m, 8H), 7.6-7.46 (m, 9H). 7.4-7.3 (m, 6H), 6.9-6.7 (m, 2H), 1.67 (s, 12H), 1.34 (s, 9H).             | 1047.37 | 1047.31    |

50

#### EXAMPLE 1

#### Manufacture of an OLED

An OLED device was manufactured by using a red phosphorescent compound according to the invention.

First, a transparent electrode ITO thin film (15  $\Omega/\Box$ ) (2) obtained from a glass for OLED (produced by Samsung Corning) was subjected to ultrasonic washing with trichloroethylene, acetone, ethanol and distilled water, sequentially, 55 and stored in isopronanol before use.

Then, an ITO substrate was equipped in a substrate folder of a vacuum vapor-deposit device, and 4,4',4"-tris(N,N-(2-60 naphthyl)-phenylamino)triphenylamine (2-TNATA) was placed in a cell of the vacuum vapor-deposit device, which was then ventilated up to  $10^{-6}$  torr of vacuum in the chamber. Electric current was applied to the cell to evaporate 2-TNATA, thereby providing vapor-deposit of a hole injection layer (3) having 60 nm of thickness on the ITO substrate.

Then, to another cell of the vacuum vapor-deposit device, charged was N,N'-bis( $\alpha$ -naphthyl)-N,N'-diphenyl-4,4'-diamine (NPB), and electric current was applied to the cell to

evaporate NPB, thereby providing vapor-deposit of a hole transportation layer (4) of 20 nm of thickness on the hole injection layer.

In another cell of said vacuum vapor-deposit device, charged was 4,4'-N,N'-dicarbazole-biphenyl (CBP) as an electroluminescent host material, and a red phosphorescent compound according to the present invention was charged to still another cell. The two materials were evaporated at different rates to carry out doping to vapor-deposit an electroluminescent layer (5) having 30 nm of thickness on the hole transportation layer. The suitable doping concentration is 4 to 10 mol % on the basis of CBP.

Then, on the electroluminescent layer, bis(2-methyl-8-quinolinato)(p-phenylphenolato)aluminum (III) (BAlq) was vapor-deposited as a hole blocking layer in a thickness of 10 nm, tris(8-hydroxyquinoline)aluminum (III) (Alq) was vapor-deposited as an electron transportation layer (6) in a thickness of 20 nm, and then lithium quinolate (Liq) was vapor-deposited as an electron injection layer (7) in a thickness of 1 to 2 nm. Thereafter, an Al cathode (8) was vapor-deposited in a thickness of 150 nm by using another vacuum vapor-deposit device to manufacture an OLED.

## EXAMPLE 2

# Evaluation of Optical Properties of Electroluminescent Materials

The complexes having high synthetic yield were purified by vacuum sublimation at  $10^{-6}$  torr and used as a dopant for an electroluminescent layer of an OLED, but in case of the material having low synthetic yield, photoluminescence peaks were simply confirmed. The photoluminescence peaks were measured by preparing a solution in methylene chloride with a concentration or  $10^{-4}$  M or less. In every measurement of photoluminescence of each material, the wavelength of excitation was 250 nm.

In order to confirm the performance of the OLED's prepared according to Example 1, the luminous efficiency of the OLED's was measured at 10 mA/cm<sup>2</sup>. Various properties are shown in Tables 3 and 4.

TABLE 3

| 40      | Material | n | L' | Structure<br>of<br>L' | Color<br>coordinate<br>(x, y) | EL (nm)     | Max. luminous efficiency (cd/A) |
|---------|----------|---|----|-----------------------|-------------------------------|-------------|---------------------------------|
|         | 101      | 2 | 1  | Acac                  | (0.64, 0.36)                  | 616         | 8.78                            |
|         | 102      | 2 | 1  | Acac                  | (0.64, 0.36)                  | 612         | 10.3                            |
|         | 103      | 2 | 1  | Acac                  | (0.63, 0.36)                  | 614         | 8.95                            |
| 45      | 104      | 2 | 1  | Acac                  | (0.65, 0.35)                  | 618         | 8.80                            |
|         | 105      | 2 | 1  | Acac                  | (0.66, 0.33)                  | 630         | 4.92                            |
|         | 106      | 2 | 1  | Acac                  | (0.60, 0.40)                  | 598         | 15.5                            |
|         | 107      | 2 | 1  | Acac                  | (0.66, 0.34)                  | 626         | 4.98                            |
|         | 108      | 2 | 1  | Acac                  | (0.66, 0.34)                  | 620         | 8.54                            |
|         | 109      | 2 | 1  | Acac                  | (0.61, 0.39)                  | 604         | 13.3                            |
| 50      | 110      | 2 | 1  | Acac                  | (0.65, 0.35)                  | 618         | 8.59                            |
|         | 111      | 2 | 1  | Acac                  | (0.63, 0.36)                  | 612         | 6.87                            |
|         | 112      | 2 | 1  | Acac                  | (0.63, 0.36)                  | 614         | 4.56                            |
|         | 113      | 2 | 1  | Acac                  | (0.65, 0.34)                  | 622         | 5.92                            |
|         | 114      | 2 | 1  | Acac                  | (0.64, 0.36)                  | 616         | 7.72                            |
|         | 115      | 2 | 1  | Acac                  | (0.65, 0.35)                  | 620         | 7.23                            |
| 55      | 116      | 2 | 1  | Acac                  | (0.63, 0.37)                  | 610         | 12.2                            |
|         | 117      | 2 | 1  | Acac                  | (0.63, 0.36)                  | 614         | 7.58                            |
|         | 118      | 2 | 1  | Acac                  | (0.66, 0.34)                  | 626         | 3.3                             |
|         | 119      | 2 | 1  | Acac                  | (0.69, 0.31)                  | <b>64</b> 0 | 2.06                            |
|         | 120      | 2 | 1  | Acac                  | (0.70, 0.30)                  | 642         | 1.5                             |
|         | 121      | 2 | 1  | Acac                  | (0.64, 0.35)                  | 622         | 4.4                             |
| 60      | 122      | 2 | 1  | Acac                  | (0.67, 0.32)                  | 626         | 2.63                            |
| 00      | 123      | 2 | 1  | Acac                  | (0.68, 0.30)                  | 634         | 2.18                            |
|         | 124      | 2 | 1  | Acac                  | (0.66, 0.32)                  | 628         | 3.56                            |
|         | 125      | 2 | 1  | Acac                  | (0.63, 0.35)                  | 618         | 6.28                            |
|         | 126      | 2 | 1  | Acac                  | (0.64, 0.35)                  | 620         | 3.4                             |
|         | 127      | 2 | 1  | Acac                  | (0.61, 0.28)                  | 612         | 5.8                             |
| <i></i> | 128      | 2 | 1  | Acac                  | (0.67, 0.34)                  | 624         | 4.3                             |
| 65      | 129      | 2 | 1  | Acac                  | (0.63, 0.36)                  | 614         | 5.5                             |
|         | 130      | 2 | 1  | Acac                  | (0.68, 0.32)                  | 622         | 3.8                             |

| Material   | n   | L' | Structure<br>of<br>L' | Color<br>coordinate<br>(x, y) | EL (nm)    | Max. luminous efficiency (cd/A) |
|------------|-----|----|-----------------------|-------------------------------|------------|---------------------------------|
| 131<br>132 | 2 2 |    | Acac<br>Acac          | (0.66, 0.34)<br>(0.64, 0.36)  | 620<br>616 | 6.8<br>8.1                      |

Table 3 shows device properties of the electroluminescent materials developed according to the present invention, wherein n=2 and L'=1, and particularly the L' is comprised of only subsidiary ligands of acac type, in the general structure of the material developed by the present invention.

The synthesized material (101), having phenyl for R<sub>1</sub> and hydrogen for R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub>, R<sub>7</sub>, R<sub>8</sub>, R<sub>9</sub> and R<sub>10</sub> shows excellent properties: 616 nm of wavelength, color coordinate (0.64, 0.36), and 8.78 cd/A of luminous efficiency.

The electroluminescent materials (102, 104, 105, 107 and 20 108), having alkyl group or aromatic ring introduced at R<sub>7</sub>, R<sub>8</sub> or R<sub>o</sub>, showed wavelength change of 2~14 nm, as compared to material (101). The electroluminescent material (102), though having the shift toward shorter wavelength by about 4 nm, showed narrow width of the EL peak without change in 25 color coordinate, and increased luminous efficiency. The electroluminescent materials (113~116) wherein an aromatic ring has been introduced at R<sub>1</sub>, showed somewhat different shift of wavelength depending on the binding position. The electroluminescent material (116), with shift toward shorter <sup>30</sup> wavelength by 6 nm as compared to that of material (101), exhibited the color coordinate (0.63, 0.37).

TABLE 4

|             |   |    |                       | IADLE 4                       |         |                                 | 3 |
|-------------|---|----|-----------------------|-------------------------------|---------|---------------------------------|---|
| Material    | n | L' | Structure<br>of<br>L' | Color<br>coordinate<br>(x, y) | EL (nm) | Max. luminous efficiency (cd/A) | • |
| 133         | 2 | 1  | Pq                    | (0.65, 0.35)                  | 616     | 6.83                            |   |
| 134         | 2 | 1  | Ppy                   | (0.65, 0.35)                  | 620     | 5.83                            | 2 |
| 135         | 2 | 1  | Piq                   | (0.65, 0.34)                  | 620     | 5.36                            |   |
| 136         | 2 | 1  | Pyfl                  | (0.65, 0.35)                  | 620     | 5.52                            |   |
| 137         | 2 | 1  | Bq                    | (0.65, 0.34)                  | 618     | 6.10                            |   |
| 138         | 1 | 2  | Pq                    | (0.64, 0.36)                  | 612     | 9.7                             |   |
| 139         | 1 | 2  | Ppy                   | (0.66, 0.34)                  | 628     | 4.76                            |   |
| <b>14</b> 0 | 1 | 2  | Piq                   | (0.67, 0.33)                  | 624     | 8.50                            | 2 |
| 141         | 1 | 2  | Pyfl                  | (0.64, 0.36)                  | 616     | 7.01                            |   |
| 142         | 1 | 2  | -                     | (0.64, 0.36)                  | 614     | 7.75                            |   |
| 143         | 1 | 2  | Priq                  | (0.64, 0.36)                  | 608     | 6.7                             |   |
| 144         | 1 | 2  | Priq                  | (0.66, 0.34)                  | 610     | 6.24                            |   |
| 145         | 1 | 2  | Priq                  | (0.66, 0.34)                  | 610     | 6.57                            |   |
| 146         | 1 | 2  | Priq                  | (0.65, 0.35)                  | 608     | 6.66                            |   |
| 147         | 1 | 2  | Pq                    | (0.64, 0.36)                  | 616     | 7.93                            | - |
| 148         | 1 | 2  | 2,6-Dpq               | (0.62, 0.37)                  | 610     | 5.40                            |   |
| 149         | 1 | 2  | Dpq                   | (0.65, 0.35)                  | 622     | 12.5                            |   |
| 150         | 1 | 2  | PqF                   | (0.64, 0.36)                  | 608     | 15.6                            |   |
| 151         | 1 | 2  | 2,6-DpqF              | (0.64, 0.36)                  | 614     | 6.48                            |   |
| 152         | 1 | 2  | 2,4-DpqF              | (0.65, 0.35)                  | 618     |                                 |   |
| 153         | 1 | 2  | Peiq                  | (0.70, 0.30)                  | 648     | 2.51                            | - |
| 154         | 1 | 2  | Peq                   | (0.68, 0.31)                  | 626     | 3.46                            |   |
| 155         | 1 | 2  | Ppy                   | (0.65, 0.35)                  | 612     | 6.83                            |   |
| 156         | 1 |    | Piq                   | (0.68, 0.32)                  | 620     | 8.8                             |   |
| 157         | 1 | 2  | Pyfl                  | (0.66, 0.34)                  | 610     | 6.48                            |   |
|             |   |    |                       |                               |         |                                 |   |

Table 4 shows device properties of phosphorescent materials consisting of primary ligands and subsidiary ligands having alkyl or aromatic ring substituted at R<sub>1</sub> or R<sub>9</sub> of the material developed according to the present invention. It is recognized that the electroluminescent materials have various 65 range of EL wavelength depending upon the type of primary or subsidiary ligand(s).

84

When the materials developed according to the invention are used as a subsidiary ligand of various luminous body (n=1), color coordinate and efficiency, and in particular, chemical stability of the primary luminous body can be enhanced. Material (140) using piq luminous body, and the material developed according to the invention as a subsidiary ligand, provides the device with good properties: 624 nm of electroluminescent wavelength, color coordinate (0.67, 0.33), and 8.5 cd/A of luminous efficiency. Particularly, the color coordinate corresponds to deep red range satisfying that of NTSC. Ir(piq)<sub>3</sub> has more or less unstable bonding with slightly distorted binding of ligands to Ir core metal. Structural stability was enhanced by using the material developed according to the invention as a subsidiary ligand instead of 15 three Piq ligands.

FIG. 1 is a cross-sectional view of an OLED; and FIGS. 2 to 5 show EL spectrum, current density-voltage property, luminance-voltage property and luminous efficiency-luminance property of an OLED employing the red phosphorescent compound (102) according to the present invention as a dopant.

It is also found that current property is improved even in conventional CBP:dopant/HBL, when a red phosphorescent compound according to the invention is employed as a dopant.

The red electroluminescent compounds according to the present invention, being a compound of more beneficial skeletal in terms of better properties than conventional red phosphorescent materials, show more excellent EL properties. Thus, the results of advancement in developing OLED's of medium to large size are anticipated if the red electroluminescent compounds according to the present invention are applied to OLED panels.

What is claimed is:

1. An organic phosphorescent compound represented by Chemical Formula (1):

Chemical Formula 1

$$R_1$$
 $R_2$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 

wherein, L is an organic ligand;

A is N; B is C;

 $R_1$  represents  $(C_6-C_{20})$  aryl;

R<sub>2</sub> through R<sub>4</sub> independently represent hydrogen, linear or branched  $(C_1-C_{20})$ alkyl,  $(C_1-C_{20})$ alkoxy,  $(C_3-C_{12})$ cycloalkyl,  $(C_6-C_{20})$ aryl, halogen, tri $(C_1-C_{20})$ alkylsilyl or  $tri(C_6-C_{20})$ arylsilyl;

R<sub>5</sub> and R<sub>6</sub> independently represent hydrogen, a linear or branched  $(C_1-C_{20})$ alkyl,  $(C_6-C_{20})$ aryl or halogen;  $R_5$ and  $R_6$  may be linked via  $(C_3-C_{12})$  alkylene or  $(C_3-C_{12})$ alkenylene with or without a fused ring to form an alicyclic ring, or a monocyclic or polycyclic aromatic ring;

the alkyl or aryl of  $R_5$  and  $R_6$ , or the alicyclic ring, or the monocyclic or polycyclic aromatic ring formed therefrom by linkage via  $(C_3-C_{12})$ alkylene or  $(C_3-C_{12})$ alkenylene with or without a fused ring may be further substituted by one or more substituent(s) selected from 5 linear or branched  $(C_1-C_{20})$ alkyl optionally substituted with halogen,  $(C_1-C_{20})$ alkoxy, halogen,  $tri(C_1-C_{20})$  alkylsilyl,  $tri(C_6-C_{20})$ arylsilyl and  $(C_6-C_{20})$ aryl;

the aryl of  $R_1$  and the alkyl, alkoxy, cycloalkyl and aryl of  $R_2$  through  $R_4$  may be further substituted by one or more substituent(s) selected from linear or branched ( $C_1$ - $C_{20}$ ) alkyl optionally substituted with halogen, ( $C_1$ - $C_{20}$ ) alkoxy, halogen,  $tri(C_1$ - $C_{20}$ ) alkylsilyl,  $tri(C_6$ - $C_{20}$ ) arylsilyl and ( $C_6$ - $C_{20}$ ) aryl; and

n is an integer from 1 to 3.

2. An organic phosphorescent compound according to claim 1, wherein the alicyclic ring, or the monocyclic or polycyclic aromatic ring formed from  $R_5$  and  $R_6$  by linkage via  $(C_3-C_{12})$ alkylene or  $(C_3-C_{12})$ alkenylene with or without a fused ring is benzene, naphthalene, anthracene, fluorene,  $^{20}$  indene, phenanthrene or pyridine.

3. An organic phosphorescent compound according to claim 1, which is selected from the group consisting of the compounds represented by one of Chemical Formulas (2) to (6):

Chemical Formula 2

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_2$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 
 $R_7$ 
 $R_7$ 
 $R_7$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

Chemical Formula 3

45

50

$$R_1$$
 $C$ 
 $R_2$ 
 $R_4$ 
 $R_7$ 
 $R_7$ 
 $R_{10}$ 
 $R_{10}$ 

-continued

Chemical Formula 4

$$R_1$$
 $R_2$ 
 $R_4$ 
 $R_7$ 
 $R_{10}$ 
 $R_{12}$ 
 $R_{13}$ 
 $R_{14}$ 

Chemical Formula 5

$$R_{1}$$
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{10}$ 
 $R_{10}$ 

Chemical Formula 6

$$R_{1}$$
 $R_{2}$ 
 $R_{2}$ 
 $R_{24}$ 
 $R_{24}$ 
 $R_{24}$ 
 $R_{24}$ 
 $R_{25}$ 
 $R_{25}$ 

wherein, L,  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_5$  and n are defined as in claim 1;

 $R_7$  through  $R_{14}$  and  $R_{17}$  through  $R_{24}$  independently represent hydrogen, linear or branched ( $C_1$ - $C_{20}$ )alkyl optionally substituted with halogen, ( $C_1$ - $C_{20}$ )alkoxy, halogen, tri( $C_1$ - $C_{20}$ )alkylsilyl, tri( $C_6$ - $C_{20}$ )arylsilyl or ( $C_6$ - $C_{20}$ ) aryl; and

 $R_{15}$  and  $R_{16}$  independently represent hydrogen or linear or branched ( $C_1$ - $C_{20}$ )alkyl.

4. An organic phosphorescent compound according to claim 3, which is selected from the group consisting of compounds represented by one of the following chemical formulas:

$$Ir - L_{3-n}$$

$$Ir$$
— $L_{3-n}$ 

$$Ir$$
— $L_{3-n}$ 

-continued

Ir 
$$L_{3,n}$$

Ir  $L_{3,n}$ 

$$Ir$$
  $L_{3-n}$ 

$$Ir$$
— $L_{3-n}$ 

$$Ir$$
— $L_{3-n}$ 

40

wherein, L is an organic ligand, and n is an integer from 1 to 3.

5. An organic phosphorescent compound according to claim 4, wherein the ligand (L) has a structure represented by one of the following chemical formulas:

50 
$$R_{32}$$
  $R_{33}$   $R_{34}$   $R_{34}$ 

15

20

30

-continued

$$R_{35}$$
 $R_{35}$ 
 $R_{36}$ 

$$R_{37}$$
 $R_{38}$ 
 $R_{39}$ 
 $R_{34}$ 
 $R_{34}$ 
 $R_{40}$ 
 $R_{41}$ 
 $R_{41}$ 

wherein,  $R_{31}$  and  $R_{32}$  independently represent hydrogen, a linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl optionally substituted with halogen, phenyl optionally substituted with linear or branched ( $C_1$ - $C_{20}$ )alkyl, or halogen;

R<sub>33</sub> through R<sub>37</sub> independently represent hydrogen, linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl, phenyl optionally substituted with linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl, tri(C<sub>1</sub>-C<sub>20</sub>) alkylsilyl or halogen;

R<sub>38</sub> through R<sub>41</sub> independently represent hydrogen, linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl, phenyl optionally substituted with linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl; and

R<sub>42</sub> represents a linear or branched (C<sub>1</sub>-C<sub>20</sub>)alkyl, phenyl optionally substituted with linear or branched (C<sub>1</sub>-C<sub>20</sub>) alkyl, or halogen.

6. An organic phosphorescent compound according to claim 5, wherein the ligand (L) has a structure represented by one of the following chemical formulas:

-continued

5

10

N

15

- 7. An organic phosphorescent compound according to claim 3, wherein R<sub>1</sub> represents, phenyl, biphenyl, naphthyl, t-butylphenyl or fluorophenyl; R<sub>2</sub> through R<sub>5</sub> independently represent hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl; R<sub>7</sub> through R<sub>14</sub> and R<sub>17</sub> through R<sub>24</sub> independently represent hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, fluoro, methoxy, ethoxy, butoxy, phenyl, biphenyl, trimethylsilyl, triphenylsilyl or trifluoromethyl; and R<sub>15</sub> and R<sub>16</sub> independently represent hydrogen or methyl.
- 8. An organic electroluminescent device comprising an organic phosphorescent compound according to claim 1.

\* \* \* \*