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1
MODELING LOCATION HISTORIES

TECHNICAL FIELD

This disclosure relates 1 general to modeling location
histories and 1n particular, by way of example but not limaita-
tion, to creating and/or using a probabilistic location history
model derived from applying a recurring time period to an
actual location history.

BACKGROUND

Attaining positional information 1s becoming faster, easier,
and cheaper. Furthermore, positional mformation may be
repeatedly acquired and then collected and stored electroni-
cally. More specifically, geographic information systems
(GIS) can produce what1s called a location history. A location
history 1s a record of an entity’s location in geographical
space over some interval of time.

Historically, location histories have been reconstructed by
archaeologists and historians looking at migrating popula-
tions or census takers tracking demographics, at temporal
resolutions of decades or centuries and spatial resolutions of
tens or hundreds of kilometers. Recent advances 1n location-
aware technology, however, allow the recording of location
histories at a dramatically increased resolution. Examples of
such location-aware technologies include the global position-
ing system (GPS), radio triangulation, localization viamobile
phones and associated networks, interaction with IEEE
802.11 wireless systems, and monitoring of radio frequency
identification (RFID) tags. These technologies make 1t fea-
sible to track individual objects at resolutions of meters 1n
space and seconds 1n time—1n some cases, even greater reso-
lution 1s possible.

These location-aware technologies along with modern
computer storage capabilities enable a huge amount of posi-
tional data to be collected into a location history. The resulting,
location data points that are recorded for the location history
can number 1n the hundreds, the thousands, the hundreds of
thousands, or even higher. Unfortunately, although there are a
tew specific algorithms designed for certain particular appli-
cations of location histories, there are no general algorithms
or approaches for organizing or otherwise handling this great
wealth of location information.

Accordingly, there 1s a need for general schemes and/or
techniques that can manipulate location histories, such as
analyzing the location information thereof, modeling the
location information thereotf, and/or providing applications
for using the analyzed or modeled location information.

SUMMARY

A location history 1s a collection of locations over time for
an object. By applying a recurring time period to a location
history, it can be converted into a stochastic model of the
location history. For example, a location history can be reor-
ganized based on intervals that subdivide a recurring cycle. In
a described implementation, traiming a location history model
involves traversing each interval of multiple cycles of a target
location history. After each object location at each interval 1s
entered into a training matrix, the intervals can be normalized
to determine relative probabilities per location for each inter-
val of a designated cycle. The training and resulting location
history model can be Markovian or non-Markovian.

Evaluation of a subject location history with regard to a
location history model 1s described. Object location predic-
tion with a location history model 1s also described. Other
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2

applications include fusion of location estimates, location-
history simulation, optimal scheduling, transition analysis,
clique analysis and so forth.

Other method, system, approach, apparatus, device, media,
procedure, arrangement, etc. implementations are described
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the drawings to
reference like and/or corresponding aspects, features, and
components.

FIG. 1 1illustrates an example production of a stochastic
model of a location history from the location history data.

FIG. 2 illustrates example architecture for location history
modeling.

FIG. 3 1s a flow diagram that 1llustrates an example of a
method for training a location history model using data from
a location history of an object.

FIG. 4 illustrates an example evaluation of a subject loca-
tion history with regard to a location history model.

FIG. 5 illustrates an example predictive scheme for an
object using a location history model of the object.

FIG. 6 1s an example of a Markovian two-dimensional
transitional probability matrix.

FIG. 7 illustrates an example of a computing (or general
device) operating environment that 1s capable of (wholly or
partially) implementing at least one aspect of modeling loca-
tion histories as described herein.

DETAILED DESCRIPTION

Introduction

A location history 1s a collection of locations over time for
an object, including a person or group. Due to modern reso-
lution and storage capabilities, location histories can have
such a sheer volume and granularity of data that new possi-
bilities for intricate analysis and data mining of a qualitatively
different nature are now available. Generally, the following 1s
described herein: probabilistic models to model (e.g., high-
resolution) location histories and some present applications
of these analytical tools.

Each location of a location history 1s recorded as a geo-
graphic position and a corresponding time at which the geo-
graphic position 1s determined. The geographic position may
be determined 1n any manner and using any denotation, as 1s
described further herein below. Generally, a stay 1s a single
instance of an object spending some time in one place, and a
destination 1s any place where one or more objects have
experienced a stay.

These data and concepts are modeled, analyzed, etc. as
described herein. First, probabilistic modeling of location
histories 1s described qualitatively and then quantitatively in
sections entitled “Modeling Location Histories (Qualita-
tively” and “Modeling Location Histories Quantitatively™.
Second, applications of modeled location histories, location
history models, etc. are described 1n a section entitled “Appli-
cations with Location Histories™.

More specifically, a stay contains three pieces of informa-
tion: a start time, an end time, and a destination. The destina-
tions can be represented 1n any manner. In an implementation
for the section below directed to a qualitative description of
location history modeling, a destination 1s any specification
of place and/or location. In an implementation for the section
below directed to a quantitative description of location his-
tory modeling, 1t 1s considered that (1) destinations do not
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overlap (or, 11 they do, a protocol exists and can be invoked to
resolve possible conflicts when an object can be construed to
be 1n more than one destination) and (2) there are a finite
number of destinations being analyzed (otherwise a matrix
(e.g., the NxN matrix described below) involved 1n the loca-
tion history modeling becomes infinite).

Stays and destinations may be acquired from raw location
data in any manner. Examples of stay and destination acqui-
sitions are described in a related patent application entitled
“Parsing Location Histories™ and having at least one common
inventor as well as a common assignee. This related applica-
tion, which 1s hereby incorporated by reference in 1ts entirety
herein, was assigned application Ser. No. 10/968,861 and
filed on Oct. 19, 2004. After stays and destination have been
acquired through any given mechanism, probabilistic models
ol location histories can be constructed as described 1n the
following sections.

Modeling Location Histories Qualitatively

In certain described implementations, location history
models can be used to condense, understand, and/or predict
the movements of an object over a period of time. Location
history modeling can enable different tasks to be performed.
For example, an approximate or probabilistic estimate or
guess can be made as to an object’s location at a given time,
even1ino sensor-based location data 1s available for that time.
Or, an approximate or probabilistic determination can be
made as to whether a location history 1s from a given object
(e.g., whether a given object made a location history). Also, a
fake or fabricated location history can be generated for an
object based on a location history model therefor. Addition-
ally, future locations of an object can be predicted to some
degree of accuracy using an object’s location history. Loca-
tion history models can also enable other tasks.

Two probabilistic model types for location histories are
described herein: one type with first-order Markovian condi-
tioming of current location on subsequent location (or current
location on previous location) and one type without such
first-order Markovian conditioning. Both model types pro-
vide value depending on the kinds of questions that are asked
of the model.

Introduction to Location History Modeling and Production
of a Location History

FIG. 1 1llustrates an example production 100 of a stochastic
model of a location history 108 from location history data
102. In order to have suflicient input data to create a stochastic
model, time 1s divided 1nto recurring time periods 104.

As 1llustrated, location history 102 undergoes a reorgani-
zation or conversion 106 by applying at least one recurring
time period 104 thereto. By reorganizing or converting 106
location history 102 based on recurring time period 104,
stochastic model of a location history 108 1s produced. This
reorganization 106 1s described further herein below with
particular reference to FIGS. 2 and 3, which are directed to an
architecture model and model training, respectively.

In a described implementation, two recurring time periods
104 are utilized. These two recurring time periods 104 are an
interval and a cycle. A cycle 1s a time period that repeats
periodically. Each cycle 1s comprised of multiple intervals.
The intervals and cycles are applied to location history data
102 such that a respective interval 1n one cycle corresponds to
a respective interval 1n another cycle. For example, a third
interval of any given cycle 1s considered to correspond to the
third interval of each other cycle.

Location history data 102 may be comprised of raw loca-
tion history data. In such a case, each location may be a place
that 1s acquired (e.g., measured) at any given moment. Also,
location history data 102 may be comprised of destinations
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clustered from raw location data. Alternatively, location his-
tory data 102 may be comprised of stays or destinations
clustered from stays. For example, 1n the quantitative location
history modeling section below, stays are the location of
interest for location history data 102. Location history data

102 may also be comprised of historical location data 1n other
formats.

In this qualitative location history modeling section, six
subsections are presented below. These subsections are
entitled “Model Architecture”, “Model Training”, “Evalua-
tion of a Subject Location History with Model”, “Object
Location Prediction with Model”, “Markovian Modifica-
tions”, and “Fine Tunings and Elaborations™.

Model Architecture

FIG. 2 illustrates example architecture 200 for location
history modeling. In a described implementation and as indi-
cated by model architecture 200, time 1s divided 1nto cycles
206 and intervals 208. For example, for a yearly cycle with
daily intervals, there are 365 intervals per cycle that repeats
annually. For a monthly cycle with daily intervals, there are
approximately 30 intervals per cycle that repeats every
month. For a weekly cycle with hourly intervals, there are 168
intervals per cycle that repeats each week. Other cycle 206
and interval 208 permutations may alternatively be employed
depending on e.g. desired specificity.

As indicated by key 202, each vertical rectangle represents
a probability 204. As illustrated, a target location history 102
includes “N”’ locations: location A, location B, location C . ..
location N. Fach location has an associated probability 204
for each interval 208 of cycle 206. Architecture model 200
cifectively forms a matrix.

A given probability 204 represents the probability that the
object of the target location history 102 1s located at the
associated location (A, B, C . . . N) during the corresponding
interval 208. For example, probability 204* represents the
probability that the object 1s present at location C during the
third interval 208 of the designated cycle 206. An approach to
attaining these probabilities 204 1s described 1in the following
subsection that 1s directed to training a location history model
108 1n conjunction with application of a designated cycle 206
and 1nterval 208.

Model Training,

FIG. 3 1s a flow diagram 300 that illustrates an example of
amethod for training a location history model using data from
a location history of an object. Flow diagram 300 includes
nine (9) blocks 302-318. Although the actions of tlow dia-
gram 300 may be performed with different model architec-
tures, FIGS. 1-2 are used in particular to illustrate certain
aspects and examples of the method. The location history
model training method of flow diagram 300 effectively
applies two recurring time periods 104 to reorganize 106 a
location history 102 and thereby produce a stochastic model
of the location history 108.

At block 302, a cycle 1s 1dentified. For example, a first or
subsequent cycle 206 may be 1dentified. At block 304, an
interval 1s 1identified. For example, a first, middle, or final
interval 208 may be 1dentified. For any given current interval
208, the current 1interval has a previous 1nterval and a subse-
quent 1nterval that are adjacent thereto. Such distinctions are
relevant when utilizing Markovian conditioning.

At block 306, a location of the identified interval and cycle
are added to a training matrix. For example, if a 237 interval
1s being analyzed and this i1s the fourth cycle 1n which the
object has been present at location C during the 23" interval,
then an intermediate total of five 1s noted for location C 1n the
23" interval.
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Blocks 308-314 enable the method of flow diagram 300 to
iterate through each interval 208 of each cycle 206 of a target
location history 102. Specifically, at block 308 it 1s deter-
mined 1f there 1s another interval to be analyzed 1n the current
cycle. If yes, then the interval 1s incremented at block 310, and
the method continues at block 304. If, on the other hand, all
intervals of the current cycle have been analyzed (i.e., no,
there 1s not another interval 1n the cycle as determined at block
308), then at block 312 1t 1s determined 11 there 1s another
cycle to be analyzed 1n the location history data. If there 1s
another cycle, then the current cycle 1s incremented at block
314, and the method continues at block 302.

After each interval of each cycle has been analyzed for the
location at which the object was present, the method contin-
ues at block 316. At block 316, interval totals are normalized
with regard to the number of cycles in the location history data
to determine relative probabilities per location for each inter-
val. Continuing with the location C example used above for
the 237 interval, assume that the total number of cycles in
which the object was present at location C 1s eight and that 52
cycles of location history data 102 were analyzed. The nor-
malized value or probability for location C during the 237
interval 1s %52 or (approximately) 0.15.

Atblock 318, a stochastic location history model 1s built by
recording respective location probabilities of respective asso-
ciated locations for corresponding intervals into a matrix
model architecture. For example, the probability 0.15 1s
recorded 1n association with location C 1nto the correspond-
ing 23 interval of the cycle. The matrix that is built is a
two-dimensional matrix having a total number of entries
equal to the number of intervals per cycle times the total
number of locations at which the object has been present. In
one direction (e.g., hornizontally as depicted 1n FIG. 2), the
number of columns 1s equal to the number of intervals. In
another direction (e.g., vertically as depicted 1n FIG. 2), the
number of rows 1s equal to the number of locations. For
example, with 168 (hourly) intervals per (weekly) cycle, there
are 168 columns and “N” rows.

Evaluation of a Subject Location History with Model

FIG. 4 illustrates an example evaluation 400 of a subject
location history 408 with regard to a location history model
410. Location history model 410 includes probabilities 204
(as introduced above with reference to FIG. 2) associated
with locations A, B, C . . . N for multiple intervals 208(1 . . .
m) of cycle 206 for a given object. Subject location history
408 15 another location history that may or may not be for the
same object. An example location history evaluation with
model 400 facilitates a comparison between subject location
history 408 and location history model 410 and/or a determi-
nation as to the likelihood that the object of location history
model 410 also produced subject location history 408.

In a described implementation, subject location history
408 includes a location at which the relevant object was
present for each interval 208 of a single cycle 206. In alter-
native implementation, the noted location may be the location
having the highest probability for each interval 208 of mul-
tiple cycles 206. As illustrated, these locations are locations
B,K,C,N,J,A ... E,A, and A for the respective correspond-
ing intervals 208(1,2,3,4,5,6 ... m-2, m-1, m).

The probabilities of the subject location 402 are deter-
mined using location history model 410 and subject location
history 408. Specifically, for each interval 208, the location
from subject location history 408 1s extracted. This extracted
location 1s then used to ascertain a probability associated with
that extracted location for each interval 208 from location
history model 410. For example, 1n the first interval 208(1),
the tracked object was present at location B as indicated by
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subject location history 408. By accessing location history
model 410 at the intersection of the first interval 208(1) (col-
umn) and location B (row), a probability associated with
location B and corresponding to the first interval 208(1) may
be ascertained from location history model 410.

The probability ascertained from location history model
410 1s then inserted into the respective interval 208 in prob-
abilities of the subject location 402. Accordingly, probabili-
ties of the subject being in a given location are ascertained and
used to fill out probabilities of the subject location 402. As
illustrated from left to right in FI1G. 4, these probabilities are
associated with respective locations B, K, C, N, I, A .. . E, A,
and A for the corresponding intervals 208(1 . . . m).

For evaluation 400 purposes, a single subject score 406 1s
produced from subject location probabilities 402 using some
combination operation 404. Examples of possible combina-
tion operations 404 include a summing operation, a multiply-
ing (product) operation, and so forth. More complex combi-
nation operations 404 may also be employed.

In a described implementation, combination operation 404
comprises a product operation 1n which each probability of
subject location probabilities 402 1s multiplied together to
produce single subject score 406. Although multiplying prob-
abilities (e.g., 1T expressed as a fraction of one) together likely
produces a smallish number, it 1s the relative sizes of such
single subject score products 406 that enable the compari-
sons, etc. of location history model evaluations 400.

Object Location Prediction with Model

Location history models 410 also enable some predictions
within a determinable degree of accuracy. For example, from
a location history model 410, 1t may be ascertained what1s the
most likely (or the second most likely, etc.) location at which
an object 1s present for any given interval 208 of cycle 206.
For example, 11 someone wishes to find/contact an object
during the fourth interval 208(4) of the cycle 206, location
history model 410 indicates that location C should be
searched/investigated assuming that probability 204** 1s the
highest probability for the fourth interval 208(4).

FIG. 5 1llustrates an example predictive scheme 500 for an
object using a location history model of the object. In a
described implementation, a cumulative distributive function
(CDF) 1s created for a given interval 208 of location history
model 410 (of FIG. 4). A CDF 1s the result of accumulating

different probabilities for a set of possibilities and producing
a function that ranges from 0.00 to 1.00.

In this example for this given interval 208, location A 1s
associated with a 0.20 probability, location B 1s associated
with a 0.10 probability, location C 1s associated with a 0.15
probability . . . and location N 1s associated with a 0.05
probability. Accordingly, the illustrated CDF 1s associated
with location A from 0.00 to 0.20 (or immediately below
0.20), with location B from 0.20 to 0.30, with location C from
0.30 to 0.45 . .. and with location N from 0.95 to 1.00.

To select a location probabilistically, a Monte Carlo or
similar comn-toss-type simulation 1s performed using, e.g., a
random number generator set to return a number from 0.00 to
1.00. The returned random number dictates which location 1s
selected for each given interval 208. For example, if 0.10 1s
returned, then location A 1s selected for the given interval 208
as indicated at 502. And 11 0.35 1s returned, then location C 1s
selected for the given interval 208 as indicated at 504.

For each interval 208 of the cycle 206 of a location history
model 410, a CDF 1s created and a random simulation 1s
performed. The resulting selected location may be recorded
in a location history 102 format. When this prediction has
been accomplished and the result has been recorded for each
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interval 208 (possibly for multiple cycles 206), a fake or
constructed location history 1s begotten.

Markovian Modifications

In a Markovian implementation, transitional probabilities
are involved. In other words, a location 1n a previous interval
has a probabilistic effect on the location 1n a current interval.
Involving such Markovian transitional probabilities compli-
cates the location history model, but the underlying principles
remain. Moreover, a Markovian flavored model can be supe-
r1or 1n certain instances because an object’s previous location
tends to 1impact its (especially immediately) succeeding loca-
tion. For example, an object at location B during a previous
interval may be more likely to be at location B or another
spatially proximate location in a current interval than a ran-
dom other location. Or an object may tend to transition from
location H to location B (home to business) every morming.

FI1G. 6 1s an example of a Markovian two-dimensional (2D)
transitional probability matrix 600. Markovian training
matrices and resulting location history models are three-di-
mensional (3D). Each 2D transitional probability matrix 600
1s created for each interval 208 for a designated cycle 206.
There 1s therefore an entire 2D matrix for each interval entry
of a 1D interval-cycle matrix. With N locations and 168
intervals per cycle for example, there are NxNx168 total
probability entries.

As indicated by key 602, each large rectangle represents a
transitional probability 604. The 2D transitional probability
matrix 600 includes NxN entries for the N locations, with
cach entry including a transitional probability 604 for the
intersecting locations. For example, for transitional probabil-
ity 604(BC), it represents a probability that the object 1s at
location B at a particular (current) interval for which the 2-D
matrix 1s associated given that the object was at location C in
the previous interval. Alternatively, the horizontal row-verti-
cal column conditional probability dependency may be
switched.

The 2D transitional probability matrix 600 1illustrates a
model architecture for a Markovian implementation. Train-
ing a 2D transitional probability matrix 600 1s similar to the
description above. However, when adding a location (e.g.,
analogously to the action(s) for block 306) for a current
interval, the location of the object 1n a previous interval 1s
accounted. With reference to FIG. 6, the location of an object
in a previous interval determines the row in which the occur-
rence 1s added to the location for the current interval.

For location history modeling evaluation with a Markovian
implementation, the process 1s also analogous to the non-
Markovian approach. However, when preparing the prob-
abilities of the subject location 402 from a subject location
history 408 and a Markovian location history model 410, a
location of a previous interval 1s accounted for when ascer-
taining a transitional probability 604 by selecting a row of a
2D transitional probability matrix 600 of the location history
model 410 responsive to the location of the previous interval.
It requires an extra iput (the location of the previous interval )
and an additional lookup vector because of the additional 3
dimension with the Markovian matrices.

For location prediction with location history models 1n a
Markovian implementation, a CDF 1s created for each row of
the 2D transitional probability matrix 600 for each interval. In
other words, for each “current interval” a CDF 1s created for
cach location at which an object may have been present
during a “previous” interval. In the example described above,
this could result in Nx168 CDFs. Monte Carlo style simula-
tions may otherwise be performed as described above. For
these types of predictive tasks, experimentation indicates that
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Markovian stochastic location history models 108 usually
outperform their non-Markovian counterparts.

Fine Tunings and FElaborations

Entries 1n location history model matrices can have many
zero probabilities. For example, with 168 intervals and 20
locations, at least some of the 20 locations will likely not be
visited by an object in at least some of the 168 intervals. These
location-interval intersections are therefore assigned a zero
(0.00) probability. This can create problems during analysis
(e.g., when performing a product type combination operation
404). To ameliorate these situations, a relatively tiny but
non-zero probability can be assigned to those location-inter-
val intersections that would otherwise be zero. The remaining
probabilities are accordingly normalized so that the probabil-
ity for the total set of possibilities sums to one (1.00). For
instance, 1f one location of the twenty locations has a prob-
ability of 1.00 and the other 19 are zero, the adjusted prob-
abilities can be 0.9981 for the one location and 0.0001 for the
other 19 locations.

The discussions above have largely assumed that there 1s
one and only one location per interval and that the object 1s
clifectively at that location for the entire interval. Further-
more, transitions have also largely been ignored. However,
stays may last for only part of an interval 208, stays may
overlap an interval 208 change, there may be multiple transi-
tions and thus multiple stays 1n a single interval, and so forth.

Nevertheless, these occurrences can be handled, especially
if the original location history 102 1s suificiently rich and
detailed. For example, even 1f a duration of the interval 208
spans an hour, the data may be accurate to tenths of an hour,
minutes, and so forth. Hence, portions of an hour may be
accounted for by using split ratios for each hour during the
location history model matrix training prior to normalization
(e.g., starting with the action(s) of block 306 and impacting

the action(s) of block 316).

As a second alternative, a location at which an object 1s
present for the greatest percentage of time for a given interval
can be added to the matrix being trained (e.g., at block 306).
As a third alternative, a particular moment at each interval
208 may be the moment that dictates which location 1s added
to the matrix being trained. This moment may be, e.g., when
intervals change, at the midpoint of each interval, and so
forth. As a fourth alternative, separate probability sub-tables
may be maintained to indicate the probability of multiple
transitions within an mterval. Other alternatives for handling,
real-world location transitions and stay durations may alter-
natively be employed.

With respect to travel time between two locations, a desti-
nation may be selected for inclusion 1n the training matrix
based on a starting location, an ending location, the travel
time (e.g., multiple intervals or intra-interval portions) may
be split between the two locations, and so forth.

Modeling-Location Histories Quantitatively

This section describes implementations for the modeling
of location histories from a quantitative perspective. How-
ever, the modeling of location histories as described herein 1s
not limited to the specific quantitative implementations
described 1n this section. The next two subsections describe
some notation and establish assumptions for a described
model. The subsections that follow thereafter describe an
example model along with algorithms for training, estima-
tion, and prediction.

Notation

The destination set, D={d.}, is the set of destinations (e.g.,
optionally as determined as described above), where 1 =1=n
and n=|D| denotes the total number of destinations.
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Three different units of time are distinguished. A time
instant, t, represents an mstantaneous moment in time; 1f time
1s thought of as a real-valued entity of one dimension, a time
instant represents a single point on the real number line. Next,
for a given interval umt of time, ot, (e.g., an hour), a time
interval, t, represents a half-open unit interval on the real
number line, aligned to a standard calendar and clock. For
example, for ot equal to an hour, t might be a time 1nterval
starting at 18:00 UTC today and going up to, but not including,
19:00 UTC. Finally, a recurring time interval, T, 1s the set of
time 1ntervals that represents a regularly recurring interval of
time. Continuing the example, T might be the set of times
occurring between 18:00 and 19:00, regardless of date. A set
ol non-intersecting, recurring time intervals that covers all
relevant times is denoted, J={t,}, for 1=k=m, with m=|]
indicating the number of recurring time intervals required to
cover all relevant times.

The granularity, ot, of a recurring time interval and the
period with which 1t recurs (1.e., the cycle length) 1s some-
thing that 1s decided for a particular model a priori. Thus, it
might be selected for a particular model that ot represents an
hour and recurring time intervals cycle each day (in which
case, m=24) or that each hour of the week are different recur-
ring intervals (m=168). It so, then t, =7, 1t t, represents the
particular hour between 18:00 and 19:00 on e.g. Sep. 30,
2003, and T, represents the recurring time interval 18:00-19:
00.

Additionally, a function, t(t), 1s defined that extracts the
recurring time interval that contains a time instance: t(t,)=T,,
it and only if t et,. With a minor laxness of notation, the
tollowing 1s also utilized: ©(t,)=t,, it and only it t , =,.

Model Assumptions

Both of the location history models described herein, in
their strictest sense, adhere to the following two assumptions:
First, at the beginning of a given time 1nterval, an object 1s at
one destination. Second, during any given time interval, an
object makes one transition between destinations. However, a

transition may occur from a destination to itself (a so-called
“self-transition”).

These are arguably not 1deal assumptions. For example, the
possibility of multiple transitions occurring within a single
time 1nterval 1s not explicitly modeled by the strictest quan-
titative algorithms described herein. These assumptions are
utilized, however, to strike a compromise between allowing,
arbitrary transitions and the expressive power of the
model—a compromise that does not require unreasonable
amounts of data to train.

Based on the above assumptions, the following probability
tables are defined 1n a manner analogous to Hidden Markov
Models (HMM). A difference from the standard HMM {for-
mulation 1s that time-dependence i1s incorporated into the
model, where transition probabilities are conditioned on
recurring time intervals, rather than being fixed regardless of
the time. This 1s an intentional design decision that enables
the capturing of cyclical behavior that 1s, for example, depen-
dent on the time-oi-day. With this modification, the fact that 1t
1s far more likely that a person 1s traveling from home to office
at 8 am than at 4 am can be modeled.

The probability of the object starting time interval T, at

destination d. 1s represented by a matrix of probabilities,
[1={m(d,, t,)} where

n(d. v )=Pr(d=d. at the start of T;)

(1)
and

w(d; L, )=n(d;;Ty), Tor 1€,

(2)
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such that,

iﬂ(dj, 7, ) = 1.
i=1

Next, the probability that the object makes a transition
from destination d, to d, during interval T, 1s given by a table,

A:{a(dz‘: d;‘: Tk) } .

a(d; d; v, )=Pr(d=d;) where at the start of T, |[d=d; at
the start of T,

(3)

such that,

Tk) = 1.

iﬂ(dia d;,
i=1

Also, a(d;, d,, T )=a(d,, d , T;) where t eT,.

To complete the HMM analogy, an observation probability
is included. B={b(d,, d,)} represents the probability of
observing that the object 1s at destination d,, given that the
object 1s actually at destination d,, with

h (df, %):Pr(dabserved:% | dacruaf:dz_) (4)

Together as A=(11, A, B), these tables represent a probabi-
listic generative model of location for the object being mod-
cled. Once the parameters are learned, this model can be used
to solve problems such as finding the most likely destination
occupied at a particular time, determining the relative likeli-
hood of a location history sequence, or stochastically gener-
ating a location history sequence.

Training the Model

Algorithms for learning model parameters A from training
data are described 1n this section. The example training data
used includes a set of stays, S={s }, as extracted from raw data
in a manner as described above 1n the parsing location history
sections. Accordingly, each stay, s, 1s a 3-tuple containing a

start time, an end time, and a destination: s,=(d., t.*", t °"'%).

Computing I1

To compute 11, the number of occurrences in the training
data where the object starts a recurring time interval 1n a
particular destination i1s counted. The resulting total counts
are then normalized over the counted training data for that
recurring interval. Table 1 below shows pseudocode for an
example algorithm.

TABL.

L1

1

Algorithm for computing I1, the prior probabilities
of being at a destination at a given recurring time interval.

Input: set of stays, S = {s,}
Output: probability table, IT = {x(d, 7,)}
Initialize: count(d,, ;) €0, forl1 =i =nand1 =k =m
// count
foreachs, € S
if T(t57) = (t,*) and t,*¢ — t5" < Bt
continue
else
for t € Ceiling(t5): . : &t
count(d®, ©(t)) <count(d?, T(t)) + 1;
end
end
// normalize
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TABLE 1-continued

Algorithm for computing I1, the prior probabilities
of being at a destination at a given recurring time interval.

foreachi,kml =1=nandl1 =k =m

nm(d;, ) « count(d;, 7y) / Z count(d;, Ty );
]

end

Computing A

To compute A, the number of occurrences 1n the traiming,
data where the object makes a transition from a particular
destination to another destination (or i1tself) during a recurring
time 1nterval 1s counted. The resulting total count 1s normal-
1zed over the counted training data for that recurring interval.
An example of this algorithm 1s shown in Table 2 below.

TABLE 2

Algorithm for computing A, the probability table showing the likelihood
of transition between destinations at a given recurring time interval.

Input: S = {s,}
Output: probability table, A = {a(d;, d;, T;)}
Initialize: count(d;, d;,t;) <0, for1 =i,j =nand1 =k =m
foreachs, €S
// count self-transitions
if.lj(tz_smrrt) _ T(tz_end) and tfﬂd _ tz_smrr < 61:
continue
clse
fort € Ceiling(t ") t, 7 : &t
count(d®, d¥, ¢(t)) €count(d’, d?, 1(t)) + 1;
end
end
// count other transitions
if i = IS| and T(t) = 1(t,, )
t = ceiling(t,, %)
count(d®, d* 1 1(t)) “count(d”’, d¥D, (1)) + 1;
end
end

/f normalize
foreachi,j,kml =1, )=nandl1 =k=m

a(d;, dj, 7x) « count(d;, d;, Tk)/z count(d;, d;, T);
]
End

Location History Analysis
The location history model, A, can now be used to estimate

the relative likelihood of a new location history, H={d(t )},
defined over ue [start, finish]. Two different processes, a
Markovian and a non-Markovian one, for doing this are
described below.

Non-Markovian Solution

The probability of the location history 1s determined by
computing the joint probability m(d(t ), t ) and b(d(t ), d(t ))
trom time t,,,, to time tg,,,, and marginalizing (summing)
the joint probabilities over all possible location history
sequences. This can be represented by the following equa-
tion:

finish

| | =, robta@), du,)

} U=81a Kt

. ()
Pro(H|A) =

'}(E{dﬁl

st dﬁﬁm'sh
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If observations are accurate, this reduces to

(6)
Pro(HI) = | | #d@). 1)

Being non-Markovian, this approach assumes that there 1s no
conditional dependency of state between time intervals.

Markovian Solution

Another method of determining the probability of a loca-
tion history 1s by computing the joint probability of the obser-
vation sequence and the state sequence and marginalizing
over all possible location history sequences:

(7)

Pra(H|A) = w(dy, , 1) - b(d (L), dy.)

finish—1
| | atdn,.,.dn,. 1) b(dter), d,.)

H=51aFrf

This reduces to

finish—1

Pra(HIN =x(dic), 1) | | ald), dw), 1)

H=s1art

if observations are accurate. This approach does use the tran-
sition probabilities A. Being Markovian, 1t assumes that the
object’s destination at a (current) time 1nterval 1s condition-
ally dependent on 1ts destination at the (e.g., at least immedi-
ately) previous time interval. This 1s equivalent to the stan-
dard “forward algorithm” used to evaluate the probability of
a sequence of observations 1n an HMM, but with the above-
noted modification for time-dependent transition probabili-
ties.

Whichever method 1s used, the output 1s a true probability
in the strict sense, but only given the assumptions of the
respective estimates. In reality, probabilities of events over
time 1ntervals are 1ll-defined. For instance, the probability of
a particular event approaches zero as the event 1s sampled
over shorter and shorter sub-intervals. Thus, these values are
more meaningful when interpreted as relative likelihoods
between events observed using the same interval unit. For
example, the relative likelihoods ol two location histories of a
week’s length with 6t equal to one hour can be compared, and
their relative rarity can be judged. Furthermore, thresholds for
a history can also be set dependent on the length of the history
to determine whether an 1mput history appears normal or
abnormal. Finally, given multiple models, A, 1t can be deter-
mined which model better explains a given history by com-
puting

argmax Pr(ﬂ | /11').

Stochastic Generation

Using the model parameters, A, a location history H,,={d
(t,)} for ue [start, finish], where d(t,) is the destination occu-
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pied at time interval t , can be generated. Two methods for
generating location histories stochastically are described
below.

In the first method, the II parameters are used. Random
samples are attained from the set of destinations for each time
interval without conditional dependence between time 1nter-
vals. Destinations are chosen such that

Prid(t,) = d) « ) n(d;, 1,)b(d;, &) (9)
J

In practice, this can be accomplished with a basic Monte
Carlo “coin-tossing” process to generate an “actual” destina-
tion, d,, using 7, which 1s then tollowed by another coin toss
to determine the observed destination, d, using B. This
approach simplifies to a single coin toss (e.g., using a random
number generator) per time interval in the case where obser-
vations of destinations are noiseless.

In the second method, a full Markov model 1s utilized, and
a similar Monte Carlo sampling 1s performed using the tran-

sition probabilities, A, except for the first time interval. Thus,

PHA™™) = di) & ) a(d;, £ )b(d,, dy)
j

as before for t=t but

STt

PrA() = d; | i, 1) = d) o D" Aldy, dj, O (dj, dy LD
J

for the remaining time intervals. This can also be 1mple-
mented 1n practice as a relatively simple series of Monte
Carlo coin tosses.

Applications with Location Histories

Several examples of applications with location history
models are provided 1n this section. These applications may
be effectuated and/or implemented with raw location data,
processed location data, location history models, and so forth.

Probabilistic location estimation: The models allow guess-
ing or estimating of an object’s location for a particular time,
even when no current concrete data 1s available.

Fusion of location estimates: Using well-established tech-
niques for combining probabilistic information, estimates
made by these models can be fused with location estimates
from sensor data.

Location-history simulation: The models can generate
location histories that appear typical for the object in ques-
tion. In some scenarios, these simulated location histories can
be substituted for an object’s actual location history (e.g., to
protect privacy or to run additional simulations).

Optimal scheduling: The models can be used to generate
probabilistically optimal schedules for travel paths or
appointments. For example, given the location-history model
for a traveling salesperson and a number of new sites to visit,
the salesperson’s next round of site visits can be scheduled to
mimmize the likely distance traveled. Another example 1s
incorporating the location histories of more than one party to
schedule optimal times and locations for meetings.

Transition analysis: Entries from a set of Markovian mod-
els for different objects can be directly extracted or summed

10

15

20

25

30

35

40

45

50

55

60

65

14

and normalized to indicate transition probabilities from one
destination to another. This can help determine what routes
might require more maintenance, what sites are most fre-
quently visited, etc., as well as time-dependent versions of
these quantities (e.g., what 1s the most likely next destination
from destination A, at 3 pm on a Monday?).

Clique analysis: A set of destinations may form a “clique”
where objects that visit those destinations tend to stay within

the set. By analyzing a set of Markovian models and their
transition matrices, these destination cliques can be 1denti-

fied.

r

T'he devices, actions, aspects, features, algorithms, proce-
dures, modules, components, etc. of FIGS. 1-6 are 1llustrated
in diagrams that are divided into multiple blocks. However,
the order, interconnections, interrelationships, layout, etc. in
which FIGS. 1-6 are described and/or shown 1s not intended
to be construed as a limitation, and any number of the blocks
can be modified, combined, rearranged, augmented, omitted,
ctc. 1n any manner to implement one or more systems, meth-
ods, devices, procedures, media, apparatuses, arrangements,
etc. for modeling location histories. Furthermore, although
the description herein includes references to specific imple-
mentations (including a general device of FIG. 7), the illus-
trated and/or described implementations can be implemented
in any suitable hardware, software, firmware, or combination
thereol and using any suitable raw location data format(s),
stay and destination data structure(s), threshold value(s),
modeling equation(s), transitional probability order(s), archi-
tecture model(s), and so forth.

Example Operating Environment for Computer or
Other Device

FIG. 7 illustrates an example computing (or general
device) operating environment 700 that 1s capable of (Tully or
partially) implementing at least one system, device, appara-
tus, component, arrangement, protocol, approach, method,
procedure, media, API, some combination thereof, etc. for
modeling location histories as described herein. Operating
environment 700 may be utilized in the computer and net-
work architectures described below.

Example operating environment 700 1s only one example
of an environment and 1s not intended to suggest any limita-
tion as to the scope of use or functionality of the applicable
device (including computer, network node, entertainment
device, mobile appliance, general electronic device, etc.)
architectures. Neither should operating environment 700 (or
the devices thereol) be interpreted as having any dependency
or requirement relating to any one or to any combination of
components as illustrated 1in FIG. 7.

Additionally, location history modeling may be imple-
mented with numerous other general purpose or special pur-
pose device (including computing system) environments or
configurations. Examples of well known devices, systems,
environments, and/or configurations that may be suitable for
use include, but are not limited to, personal computers, server
computers, thin clients, thick clients, personal digital assis-
tants (PDAs) or mobile telephones, watches, handheld or
laptop devices, multiprocessor systems, miCroprocessor-
based systems, set-top boxes, programmable consumer elec-
tronics, video game machines, game consoles, portable or
handheld gaming units, network PCs, videoconferencing
equipment, minicomputers, mainirame computers, network
nodes, distributed or multi-processing computing environ-
ments that include any of the above systems or devices, some
combination thereot, and so forth.
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Implementations for modeling location histories may be
described 1n the general context of processor-executable
istructions. Generally, processor-executable instructions
include routines, programs, protocols, objects, interfaces,
components, data structures, etc. that perform and/or enable
particular tasks and/or implement particular abstract data
types. Modeling location histories, as described 1n certain
implementations herein, may also be practiced 1n distributed
processing environments where tasks are performed by
remotely-linked processing devices that are connected
through a communications link and/or network. Especially
but not exclusively 1n a distributed computing environment,
processor-executable 1nstructions may be located in separate
storage media, executed by different processors.

Example operating environment 700 includes a general-
purpose computing device 1n the form of a computer 702,
which may comprise any (e.g., electronic) device with com-
puting/processing capabilities. The components of computer
702 may include, but are not limited to, one or more proces-
sors or processing units 704, a system memory 706, and a
system bus 708 that couples various system components
including processor 704 to system memory 706.

Processors 704 are not limited by the materials from which
they are formed or the processing mechanisms employed
therein. For example, processors 704 may be comprised of
semiconductor(s) and/or transistors (e.g., electronic inte-
grated circuits (ICs)). In such a context, processor-executable
instructions may be electronically-executable instructions.
Alternatively, the mechanisms of or for processors 704, and
thus of or for computer 702, may include, but are not limited
to, quantum computing, optical computing, mechanical com-
puting (e.g., using nanotechnology), and so forth.

System bus 708 represents one or more of any of many
types of wired or wireless bus structures, including a memory
bus or memory controller, a point-to-point connection, a
switching fabric, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures may
include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA)
bus, a Video Electronics Standards Association (VESA) local
bus, a Peripheral Component Interconnects (PCI) bus also
known as a Mezzanine bus, some combination thereof, and so
forth.

Computer 702 typically includes a variety of processor-
accessible media. Such media may be any available media
that 1s accessible by computer 702 or another (e.g., electronic)
device, and 1t includes both volatile and non-volatile media,
removable and non-removable media, and storage and trans-
mission media.

System memory 706 includes processor-accessible storage
media 1n the form of volatile memory, such as random access
memory (RAM) 710, and/or non-volatile memory, such as
read only memory (ROM) 712. A basic input/output system
(BIOS) 714, containing the basic routines that help to transter
information between elements within computer 702, such as
during start-up, 1s typically stored in ROM 712. RAM 710
typically contains data and/or program modules/instructions
that are immediately accessible to and/or being presently
operated on by processing unit 704.

Computer 702 may also include other removable/non-re-
movable and/or volatile/non-volatile storage media. By way
of example, FIG. 7 illustrates a hard disk drive or disk drive
array 716 for reading from and writing to a (typically) non-
removable, non-volatile magnetic media (not separately
shown); a magnetic disk drive 718 for reading from and
writing to a (typically) removable, non-volatile magnetic disk
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720 (e.g., a “tloppy disk™); and an optical disk drive 722 for
reading from and/or writing to a (typically) removable, non-
volatile optical disk 724 such as a CD, DVD, or other optical
media. Hard disk drive 716, magnetic disk drive 718, and
optical disk drive 722 are each connected to system bus 708
by one or more storage media interfaces 726. Alternatively,
hard disk drive 716, magnetic disk drive 718, and optical disk
drive 722 may be connected to system bus 708 by one or more
other separate or combined interfaces (not shown).

The disk drives and their associated processor-accessible
media provide non-volatile storage of processor-executable
instructions, such as data structures, program modules, and
other data for computer 702. Although example computer 702
illustrates a hard disk 716, a removable magnetic disk 720,
and a removable optical disk 724, it 1s to be appreciated that
other types of processor-accessible media may store instruc-
tions that are accessible by a device, such as magnetic cas-
settes or other magnetic storage devices, flash memory, com-
pact disks (CDs), digital versatile disks (DVDs) or other
optical storage, RAM, ROM, electrically-erasable program-
mable read-only memories (EEPROM), and so forth. Such
media may also include so-called special purpose or hard-
wired IC chips. In other words, any processor-accessible
media may be utilized to realize the storage media of the
example operating environment 700.

Any number of program modules (or other units or sets of
processor-executable instructions) may be stored on hard disk
716, magnetic disk 720, optical disk 724, ROM 712, and/or
RAM 710, including by way of general example, an operating
system 728, one or more application programs 730, other
program modules 732, and program data 734. These proces-
sor-executable mnstructions may include, for example, one or
more ol a raw location history data structure, a stays and/or
destinations data structure(s), a program/module that pro-
duces or trains a location history model from a location his-
tory, a program/module that performs evaluations, predic-
tions, etc. using a location history model, and so forth.

A user may enter commands and/or information 1nto coms-
puter 702 via mput devices such as a keyboard 736 and a
pointing device 738 (e.g., a “mouse’). Other input devices
740 (not shown specifically) may include a microphone, joy-
stick, game pad, satellite dish, serial port, video camera, scan-
ner, and/or the like. These and other mput devices are con-
nected to processing unit 704 via input/output interfaces 742
that are coupled to system bus 708. However, input devices
and/or output devices may instead be connected by other
interface and bus structures, such as a parallel port, a game
port, a universal serial bus (USB) port, an infrared port, an
IEEE 1394 (*“Firewire”) mterface, an IEEE 802.11 wireless
interface, a Bluetooth® wireless interface, and so forth.

A monitor/view screen 744 or other type of display device
may also be connected to system bus 708 via an interface,
such as a video adapter 746. Video adapter 746 (or another
component) may be or may include a graphics card for pro-
cessing graphics-intensive calculations and for handling
demanding display requirements. Typically, a graphics card
includes a graphics processing unit (GPU), video RAM
(VRAM), etc. to facilitate the expeditious display of graphics
and performance of graphics operations. In addition to moni-
tor 744, other output peripheral devices may include compo-
nents such as speakers (not shown) and a printer 748, which
may be connected to computer 702 via input/output interfaces
742.

Computer 702 may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computing device 750. By way of example,
remote computing device 750 may be a peripheral device, a
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personal computer, a portable computer (e.g., laptop com-
puter, tablet computer, PDA, mobile station, etc.), a palm or
pocket-sized computer, a watch, a gaming device, a server, a
router, a network computer, a peer device, another network
node, or another device type as listed above, and so forth.
However, remote computing device 750 1s illustrated as a
portable computer that may include many or all of the ele-
ments and features described herein with respect to computer
702.

Logical connections between computer 702 and remote
computer 750 are depicted as a local area network (LAN) 752
and a general wide area network (WAN) 754. Such network-
ing environments are commonplace in offices, enterprise-
wide computer networks, intranets, the Internet, fixed and
mobile telephone networks, ad-hoc and infrastructure wire-
less networks, mesh networks, other wireless networks, gam-
ing networks, some combination thereot, and so forth. Such
networks and logical and physical communications connec-
tions are additional examples of transmission media.

When implemented 1n a LAN networking environment,
computer 702 1s usually connected to LAN 752 via a network
interface or adapter 756. When implemented in a WAN net-
working environment, computer 702 typically includes a
modem 758 or other component for establishing communi-
cations over WAN 7354. Modem 758, which may be internal or
external to computer 702, may be connected to system bus
708 via mput/output intertaces 742 or any other appropriate
mechanism(s). It 1s to be appreciated that the 1llustrated net-
work connections are examples and that other manners for
establishing commumnication link(s) between computers 702
and 750 may be employed.

In a networked environment, such as that illustrated with
operating environment 700, program modules or other
instructions that are depicted relative to computer 702, or
portions thereof, may be fully or partially stored 1n a remote
media storage device. By way of example, remote application
programs 760 reside on a memory component of remote
computer 750 but may be usable or otherwise accessible via
computer 702. Also, for purposes of illustration, application
programs 730 and other processor-executable instructions
such as operating system 728 are illustrated herein as discrete
blocks, but 1t 1s recognized that such programs, components,
and other instructions reside at various times 1n different
storage components of computing device 702 (and/or remote
computing device 750) and are executed by processor(s) 704
of computer 702 (and/or those of remote computing device
750).

Although systems, media, devices, methods, procedures,
apparatuses, techniques, schemes, approaches, procedures,
arrangements, and other implementations have been
described 1n language specific to structural, logical, algorith-
mic, and functional features and/or diagrams, 1t 1s to be under-
stood that the invention defined 1n the appended claims 1s not
necessarilly limited to the specific features or diagrams
described. Rather, the specific features and diagrams are dis-
closed as exemplary forms of implementing the claimed
invention.

What 1s claimed 1s:

1. An article of manufacture comprising:

a storage medium; and

a plurality of executable instructions stored on the storage

medium that, when executed, direct a device to convert a
location history to a stochastic model of the location
history by applying at least one recurring time period to
the location history, the recurring time period being
divided into a number of time intervals, the stochastic
model comprising a multi-dimensional matrix that
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includes multiple entries each corresponding to a com-
bination of one of the time intervals and one of multiple
locations, each entry including at least one probability
that an object 1s present at the corresponding one of the
locations during the one of the time intervals, the prob-
ability being calculated by dividing a total number of
times that the location history shows the object as being
at the corresponding one of the multiple locations during
the corresponding one of the time intervals by a total
number of recurrences of the time period.

2. The article of claim 1, wherein the at least one recurring
time period comprises a cycle, the cycle periodically repeat-
ng.

3. The article of claim 1, wherein the multi-dimensional
matrix 1s a two-dimensional matrix.

4. The article of claiam 1, wherein the instructions, when
executed, direct the device to perform the conversion by
training the stochastic model using data from the location
history.

5. The article of claim 4, wherein the data from the location
history comprises at least one of stays or destinations.

6. The article of claim 4, wherein the data from the location
history comprises destinations clustered from stays.

7. The article of claim 4, wherein the instructions, when
executed, direct the device to eflectuate the training by tra-
versing each respective time interval of multiple recurring
time periods of data from the location history and adding each
respective corresponding location to a training matrix.

8. The article of claiam 7, wherein the instructions, when
executed, direct the device to further effectuate the training by
normalizing each interval with regard to the total number of
recurring time periods of the multiple recurring time periods
to determine relative probabilities per corresponding location
for each interval.

9. The article of claim 4, wherein the instructions, when
executed, direct the device to effectuate the training without
using transitional probabilities.

10. The article of claim 4, wherein the 1nstructions, when
executed, direct the device to ellectuate the training by
accounting for a location of a previous interval when deter-
mining a probability of a location of a current interval.

11. The article of claim 1, wherein the stochastic model
comprises a three-dimensional matrix; the three dimensions
of the three-dimensional matrix comprising intervals, loca-
tions for a previous interval, and locations for a current inter-
val.

12. The article of claim 1, wherein the instructions, when
executed, direct the device to perform an evaluation of a
subject location history using the stochastic model.

13. The article of claim 12, wherein the instructions, when
executed, direct the device to effectuate the evaluation by
ascertaining a respective probability for each respective inter-
val of a cycle based on a corresponding location of an object
extracted from the subject location history.

14. The article of claim 13, wherein the instructions, when
executed, direct the device to further effectuate the evaluation
by performing a combination operation on the ascertained
respective probabilities for each respective interval of the
cycle from the subject location history.

15. The article of claim 1, wherein the instructions, when
executed, direct the device to perform an object location
prediction using the stochastic model.

16. The article of claim 1, wherein the 1nstructions, when
executed, direct the device to construct a fake location history
using the stochastic model.

17. The article of claim 16, wherein the instructions, when
executed, direct the device to effectuate the construction of
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the fake location history by creating cumulative distributive
tfunctions (CDFs) utilizing the stochastic model and by run-
ning Monte Carlo style simulations using the CDFs.
18. A system for modeling location histories, the system
comprising;
a Processor;
memory coupled to the processor;
architecture means for architecting a stochastic model of a
location history; and
training means for training the stochastic model from the
location history by applying at least one recurring time
period to the location history, the recurring time period
being divided into a number of time intervals, the sto-
chastic model comprising a multi-dimensional matrix
that includes multiple entries each corresponding to a
combination of one of the time intervals and one of
multiple locations, each entry including at least one
probability that an object 1s present at the corresponding
one of the location during the one of the time 1ntervals,
the probability being calculated by dividing a total num-
ber of times that the location history shows the object as
being at the corresponding one of the multiple locations
during the corresponding one of the time intervals by a
total number of recurrences of the time period.
19. The system as recited in claim 18, further comprising:
evaluation means for evaluating a subject location history
with regard to the stochastic model of the location his-
tory.
20. The system as recited 1n claim 18, further comprising;:
prediction means for predicting a location of an object
during at least one time interval of a time period utilizing
the stochastic model of the location history, the location
history being for the object.
21. The system as recited 1n claim 18, wherein the training
means Comprises:
addition means for adding a location of an object corre-
sponding to an time 1nterval of a designated time period
in a training matrix for multiple time ntervals of mul-
tiple time periods of the location history.
22. The system as recited 1in claim 21, wherein the addition
means Comprises:
transitional addition means for adding a current location of
the object corresponding to a current time interval 1n the
training matrix in dependence on a previous location of
the object corresponding to a previous time interval.
23. The system as recited 1n claim 18, wherein the training
means Comprises:
normalization means for normalizing multiple time 1nter-
vals of a matrix, with regard to a number of time periods
of the location history used by the training means, to
determine relative probabilities per location for each
time 1nterval of the multiple time 1ntervals.
24. The system as recited 1n claim 18, further comprising:
clfectuation means for implementing an application using,
the stochastic model of the location history, the applica-
tion selected from a group comprising: probabilistic
location estimation, fusion of location estimates, loca-
tion-history simulation, optimal scheduling, transition
analysis, and clique analysis.
25. A method comprising:
adding, by a computing device, object locations to a train-
ing matrix for time intervals of a designated cycle from
a location history;
normalizing, by the computing device, the time intervals
with regard to a number of the cycles addressed in the
adding to determine relative probabilities an object 1s
present per location for each interval, each probability
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being calculated by dividing a total number of times that
the location history shows the object as being at one of
the locations during one of the time intervals by a total
number of recurrences of the cycle;

building and storing, by the computing device, a stochastic
model by recording the respective location probabilities
determined 1n the normalizing for corresponding inter-
vals 1n a location history model matrix; and

implementing, by the computing device, an application
using a stored location history model matrix, the appli-
cation selected from a group comprising: a probabilistic
location estimation, a fusion of location estimates, a
location-history simulation, an optimal scheduling, a
transition analysis, and a clique analysis.

26. The method as recited 1n claim 25, wherein the adding,

COmMprises:

inspecting a particular time 1nterval of a particular cycle of
the location history;

determining a particular object location during the particu-
lar time 1nterval from the location history; and

incrementing in the traiming matrix a subtotal for a matrix
interval corresponding to the particular time interval at
an object location corresponding to the particular object
location.

277. The method as recited 1n claim 25, wherein the adding

COmMprises:

adding the object locations to the training matrix for time

intervals of the designated cycle from the location his-

tory while accounting for previous object locations in
previous time intervals.

28. The method as recited 1n claim 25, wherein the adding
COmMprises:

adding to the object locations using split ratios to account
for intra-interval location transitions.

29. A device comprising:
at least one processor; and

one or more computer program products embodied on
computer readable storage media including processor-
executable 1nstructions, the processor-executable
instructions mcluding:

a stochastic location history model comprising a three-
dimensional matrix having a plurality of probabilities; a
first dimension comprising multiple intervals of a cycle,
a second dimension comprising multiple previous object
locations, and a third dimension comprising multiple
current object locations; each probability of the plurality
of probabilities corresponding to an intersection of the
second and third dimensions, each particular probability
associated with a particular current object location given
an 1ntersecting previous object location, each probabil-
ity comprising a probability that an object 1s present at
the associated current object location during a corre-
sponding interval given the intersecting previous object
location, the probability being calculated by dividing a
total number of times that the location history shows the
object as being at the corresponding one of the multiple
locations during the corresponding one of the time inter-
vals by a total number of recurrences of the time period,
wherein the processor-executable instructions, when
executed, direct the device to predict an object’s location
during a particular interval using at least one cumulative
distributive Tunction (CDF) that 1s derived from the sto-
chastic location history model.

30. The device as recited 1in claim 29, wherein a two-

dimensional matrix, which 1s formed from the second and
third dimensions of the three-dimensional matrix, exists for
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cach interval of the multiple intervals of the cycle of the first
dimension of the three-dimensional matrx.

31. The device as recited 1n claim 29, wherein the proces-
sor-executable 1nstructions, when executed, direct the device
to effectuate and/or implement an application using the loca-
tion history model data structure, the application selected

22

from a group comprising: probabilistic location estimation,
fusion of location estimates, location-history simulation,
optimal scheduling, transition analysis, and clique analysis.
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