12 United States Patent

US007716339B2

(10) Patent No.: US 7,716,339 B2

Chitilian et al. 45) Date of Patent: May 11, 2010
(54) SYSTEM AND METHOD FOR 2005/0086360 Al1* 4/2005 Mamouetal. 709/232
DISCRETIZATION OF CLIENT-SERVER
INTERACTIONS OTHER PUBLICATIONS
Lynx text browser for the World Wide Web, available at http://www.
(75) TInventors: Var ouj Armen Chitilian, San Francisco, lynx.browser.org, 6 pages printed Feb. 17, 2005 from http://lynx.isc.
CA (US); Joseph Michael Rozier, San org/release/features.html
" P ’ Charva Abstract Windowing Toolkit (AWT), available at http://www.
Jose, CA (US) pitman.co.za/projects/charva, 5 pages printed Feb. 17, 2005.
_ _ _ Oracle 91 Application Server: Oracle Forms Services, A Technical
(73) Assignee: Oracle International Corporation, White Paper, Nov. 2000, 14 pages printed from http://www.oracle.
Redwood Shores, CA (US) com/technology/products/forms/pdf/forms__two.pdf.
Oracle 91 Application Server Release 1 Forms Services, feature over-
(*) Notice: Subject to any disclaimer, the term of this view, 5 pages printed from http://www.oracle.com/technology/prod-
patent 1s extended or adjusted under 35 ucts/forms/htdocs/forms fov.htm.
U.S.C. 1534(b) by 1061 days. * cited by examiner
(21) Appl. No.: 11/057,729 Primary Examiner—Tonia L Dollinger
| Assistant Examiner—Anish Sikri
(22) Filed: Feb. 14, 2005 (74) Attorney, Agent, or Firm—Park, Vaughn & Fleming LLP
(65) Prior Publication Data (57) ABSTRACT
US 2006/0075116 Al Apr. 6, 2006 A system and method for converting continuous data streams
o received over a persistent communication connection (e.g.,
Related U.5. Application Data for Telnet) into discrete requests that may be issued over
(60) Provisional application No. 60/609,052, filed on Sep. non-persistent connections (e.g., via HI'TP). An application
11, 2004. 1s served from a J2EE-compliant application server, to clients
operating a variety ol communication protocols (e.g., HI'TP,
51) Int.Cl. Telnet). The application 1s developed according to a single
51 pp p 2 2
GOGF 15/16 (2006.01) application model, but can be served to heterogeneous clients.
GOGEF 11/00 (2006.01) The application communicates via a request/response format
(52) US.CL ..ooovv. 709/227; 709/232; 370/230 (e.g., HT'TP), thereby requiring clients communicating via
(58) Field of Classification Search 709/238, ~ other formats or protocols (e.g., lelnet) to connect to the
700/227. 932+ 370 /236 application via one or more other components of the applica-
See application file for complete searcil his‘Eory. tion server. Illustratively, the application server includes a
Telnet resource adapter for maintaining persistent communi-
(56) References Cited cation connections with Telnet clients, and an EJB (Enter-
prise Java Bean) configured to discretize continuous Telnet
U.s. PALENTDOCUMENTS data streams 1nto discrete application requests.
6,397,253 B1* 5/2002 Quunlanetal. 709/227
2004/0257994 Al1* 12/2004 Paskettetal. 370/230 20 Claims, 2 Drawing Sheets

Application Server 110

Telnat Server 120

EJE Container 122

Telnet Message
Driven Bean
124

Telnet Resource Adaptar
126

Web Container 130

Web Application 132

i
!
!
]
)
I
|
I
|
|
|

Talnet Client

1 e r el r ol - el - - A A - A - A - - - A - S - A - A - W -

HTTP Listener
112

HTML cllent

U.S. Patent May 11, 2010 Sheet 1 of 2 US 7,716,339 B2

Application Server 110

Telnet Server 120 Web Container 130

EJB Container 122

Teln_et Message S R Web Application 132
Driven Bean

124

Telnet Resource Adapter
126

| o HTTP Listener
112

Telnet Client HTML client

FIG. 1

U.S. Patent

May 11, 2010 Sheet 2 of 2

Receive data from telnet client
202

Update client state information
204

Ready
{0 process data?
206

Yes

Application
event?
208

Yes

Format event into request/
response format, issue to
application
210

Receive response
212

Wirite response; update client
state if necessary
214

No

US 7,716,339 B2

US 7,716,339 B2

1

SYSTEM AND METHOD FOR
DISCRETIZATION OF CLIENT-SERVER
INTERACTIONS

RELATED APPLICATION

This application claims priority to U.S. Provisional Appli-

cation Ser. No. 60/609,052, which was filed Sep. 11, 2004 and
1s 1ncorporated herein by reference.

BACKGROUND

This mvention relates generally to the field of computer
systems. More particularly, a system and method are provided
for enabling an application server to serve an enterprise appli-
cation over multiple protocols, such as telnet and HTTP.

Enterprise Information Systems (EIS) provide information
infrastructures for an enterprise. Example EISs include an
Enterprise Resource Planning (ERP) system such as the
Oracle E-Business Suite, a mainframe transaction processing
system, a relational database system, and so on.

The J2EE Connector Architecture (JCA) facilitates inte-
gration ol application servers with heterogeneous Enterprise
Information Systems. JCA defines System-level Contracts
that encapsulate important requirements for etflective and
scalable integration with EISs, such as connection manage-
ment and pooling, transaction management to support trans-
actions iternal to an FIS and across multiple EISs, error
logging and tracing, and a security framework enabling both
container-managed and component-managed sign-on.

The EIS side of a System-level Contract 1s implemented in
a Resource Adapter, which 1s specific to an underlying EIS. A
Resource Adapter 1s a system-level software driver used by an
application server (e.g., a J2EE application server) or an
application client to communicate and operate with an FIS.
While a Resource Adapter 1s specific to the EIS it represents,
it 1s not specific to a particular application server and can
therefore be reused across J2EE application servers.

JCA offers System-level Contracts (e.g., Message Inflow,
Transaction Intlow) that specifically support asynchronous
message delivery between EISs and application servers, from
a wide range of message providers. Thus, JCA applications
can benefit from simplified bi-directional communications
with FISs.

Applications in the context of application servers are typi-
cally developed for a specific client communication protocol.
For example, a warchouse or retailer may employ an appli-
cation server to serve a legacy application, using the telnet
protocol, for mventory control, shipping and/or other pur-
poses. Employees may operate telnet-based client devices,
which are relatively cheap and easy to operate. The client
devices employ a terminal emulation program that provides a
simple character-based user interface to 1ts user and commu-
nicates with the application server using the telnet protocol.
The legacy application may have been in use for a long period
of time, and may work reliably with the relatively old devices.

However, newer, more poweriul devices offering richer
graphical user interfaces such as HIML (Hypertext Markup
Language) browsers are available, many of which are able to
support embedded peripherals (e.g., digital camera, printer,
RFID scanner) that older, telnet-based, devices cannot.

And, due to the availability of powertul HIML browsers
for desktop use, application servers have been enhanced to
serve HITML applications over HI'TP (HyperText Transport
Protocol)—such an application may be referred to as a web
application. At the same time, standards bodies such as the

W3C (World Wide Web Consortium) and JCP (Java Commu-

10

15

20

25

30

35

40

45

50

55

60

65

2

nity Process) have pushed many standards to promote the
adoption of new technologies to improve the quality of web
applications.

An application developed to be served to one type of client
device via one communication protocol generally cannot
simultaneously be served to devices employing other proto-
cols. Thus, the legacy warehouse or retailer application above
could not be served by the same application server to an
HTML client over HT'TP, just as a web application cannot be
served to a telnet client.

To operate multiple types of devices 1n one application
environment would require substantial redundancy—mul-
tiple application models, applications, server management
procedures, mstallation procedures, etc. Thus, one applica-
tion server would be deployed to serve the application to the
telnet devices, while a separate application server would
serve the application to HT'TP devices.

An organization may naturally desire to upgrade 1ts older
devices or evolve its legacy application to add capabilities,
but will want to avoid the metliciency inherent in such redun-
dancy. The organization may therefore wish to perform the
upgrade 1n a phased manner, so as to continue using older
client devices as long as possible and not lose 1ts investment
in the older technology. But, to facilitate this phased
approach, the application server must be able to serve an
application in multiple formats (e.g., telnet and HTTP).

Telnet-based clients use persistent connections, and can
send a continuous stream of data to the server. There 1s no
concept of a “complete request” from a device’s telnet emu-
lator. In contrast, HITP-based clients generally use non-
persistent connections, sending discrete requests via HT'TP
and receiving discrete responses. The request serves as a
complete collection of information that the application server
can process. Thus, an application server configured to serve
an application using a request/response-type format (e.g., via
HTTP) could not serve incompatible clients (e.g., telnet cli-
ents).

Currently, there 1s no easy way for a single application
server operating with an EIS to serve one application to
multiple devices configured for different types of service
(e.g., telnet, HI'TP). The current approach i1s to use different
application servers, which makes it difficult to have a single
application development model and to re-use a single appli-
cation on telnet-based and HT'TP-based devices.

SUMMARY

In one embodiment of the invention, a system and methods
are provided for converting continuous data streams recerved
over a persistent communication connection (€.g., for Telnet)
into discrete requests that may be 1ssued over non-persistent
connections (e.g., via HI'TP).

In this embodiment, the application 1s served from a J2EE-
compliant application server, to clients operating a variety of
communication protocols (e.g., HI'TP, Telnet). The applica-
tion 1s developed according to a single application model, but
can be served to heterogeneous clients. The application com-
municates via a request/response format such as HI1'TP, and
may therefore communicate with some (1.e., HI'TP) clients
via an HT'TP listener. Clients communicating via other for-
mats or protocols (e.g., Telnet) may access the application via
other components of the application server.

In one embodiment, the application server includes a Tel-
net server configured to interface between Telnet clients and
the application. The Telnet server may include a Telnet
resource adapter for receiving and maintaining persistent
communication connections with the clients, and an EJB

US 7,716,339 B2

3

(Enterprise Java Bean) (e.g., an MDB (Message Driven
Bean)) configured to discretize continuous Telnet data
streams 1nto discrete application requests. The MDB also
translates application responses and forwards them to clients.

The resource adapter or the MDB may maintain state infor-
mation for each Telnet client (e.g., to mirror the contents of
the client display or Telnet emulator).

DESCRIPTION OF THE FIGURES

FIG. 1 depicts a computing environment i which an
embodiment of the present invention may be implemented.

FI1G. 2 depicts a method of discretizing client-server inter-
actions received via persistent communication connections,
in accordance with an embodiment of the mnvention.

DETAILED DESCRIPTION

The following description 1s presented to enable any per-
son skilled in the art to make and use the invention, and 1s
provided in the context of particular applications of the inven-
tion and their requirements. Various modifications to the dis-
closed embodiments will be readily apparent to those skilled
in the art and the general principles defined herein may be
applied to other embodiments and applications without
departing from the scope of the present invention. Thus, the
present invention 1s not intended to be limited to the embodi-
ments shown, but 1s to be accorded the widest scope consis-
tent with the principles and features disclosed herein.

In one embodiment of the mnvention, a system and method
are provided for serving an application to a heterogeneous
collection of client devices from a single application server
process; in particular, the client devices are served 1n different
formats or via different communication protocols. In another
embodiment of the invention, a system and method are pro-
vided for discretizing client-server interactions recerved via
persistent communication connections for issuance to the
application via non-persistent communication connections.

Embodiments of the mvention described herein are suit-
able for implementation within a computing environment
such as that depicted in FIG. 1. In FIG. 1, application server
110 serves web application 132 to a variety of clients using
different communication protocols and/or formats.

For example, one subset of the clients may comprise telnet
terminals or other devices configured to communicate with a
server via the Telnet protocol. Another subset of the clients
may comprise devices that include HTML (or other) browsers
and that are configured to communicate via HI'TP. Thus, 1n
one embodiment of the invention, a single application (e.g.,
application 132) 1s served to a heterogeneous mix of client
devices.

One skilled 1n the art will appreciate that telnet connections
and HTTP connections are very different. In particular, a
telnet connection 1s persistent, meaning that a telnet client
device typically establishes a single connection with a server,
and that connection 1s maintained as long as the client device
operates with the server. In contrast, HI'TP connections are
generally non-persistent. An HI'TP client device may open a
separate HT'TP connection for each request/response interac-
tion with a server, with each connection only lasting until the
interaction 1s complete.

Thus, 1n one embodiment of the invention, a client that
normally communicates with a server using a persistent com-
munication connection cannot communicate directly with a
web application that expects to receive request/response-type
interactions. An application server that serves the web appli-
cation 1s therefore configured to translate between a continu-

10

15

20

25

30

35

40

45

50

55

60

65

4

ous stream of data, as may be recetved from a Telnet client,
and the application’s request/response format.

In FIG. 1, application server 110 includes Telnet server 120
and web container 130. Web application 132 i1s deployed
within the web container (e.g., as a .ear file); Telnet server 120
may also be deployed as a ear file. In one implementation,
application server 110 1s a J2EE (Java 2 Enterprise Edition)
server, such as Oracle Application Server by Oracle Corpo-
ration. Web application 132 comprises a single application
process that supports a heterogeneous mix of client devices
that employ different communication protocols.

The client devices may be coupled to application server
110 by wired and/or wireless communication links. The
devices operate a client version of application 132, and may
include portable and/or non-portable devices. Some clients
may communicate with the application server via discrete
requests and/or responses transmitted over non-persistent
communication connections (e.g., using HI'TP). Some may
communicate via (theoretically) continuous streams of data
transmitted over persistent connections (e.g., using Telnet).

HTTP listener 112, which may be deployed as part of
application 132 in another embodiment of the invention, com-
prises a listener for HI'TP connections, and may include a
web server (e.g., by Apache). The HT'TP listener 1s configured
to recerve connections from HTTP clients and relay client-
server interactions between the clients and the web container
within which web application 132 1s deployed.

Telnet server 120 conforms to the JCA standard and com-
prises EJB (Enterprise Java Bean) container 122 and Telnet
resource adapter 126. EJB container 122 includes an EJB
such as Telnet MDB (Message Driven Bean) 124.

Telnet resource adapter 126 provides low-level Telnet sup-
port to Telnet clients, and comprises a Telnet listener for
accepting and maintaining connections with those clients.
Thus, the Telnet resource adapter creates server sockets for
Telnet devices to connect to and performs Telnet option nego-
tiation. Telnet resource adapter 126 also includes a Work-
Manager module for recerving and scheduling Work from
clients and for creating and managing threads of execution.

As 1ndicated 1n FIG. 1, Telnet server 120 interacts with
clients (1.e., Telnet clients) and, via HT'TP listener 112, with
web application 132. Communication between the Telnet
server and the web application may be 1n-process or out-oi-
pProcess.

On the client side, 1n the illustrated embodiment of the
invention Telnet server 120 accepts mcoming connections
from Telnet clients, receives mput from the clients and
streams output to the clients so as to provide a data entry form
interface to the client user. The Telnet server handles the
drawing and behavior of primitive controls (e.g., text input,
select). Telnet server 120 also maintains the state of each
Telnet client’s screen or display device, including the current
cursor position, and provides error handling capability.

On the application side, 1n this embodiment Telnet server
120 forms HTTP requests (or other request forms expected by
web application 132) to provide field-level information (e.g.,
as opposed to page-level information provided by an HTML
browser) to the web application via HT'TP listener 112 and the
web container. The Telnet server recetves HT'TP responses (or
other types of responses) from the application, and uses the
content to update the state of the Telnet clients.

In one embodiment of the invention, payloads of applica-
tion responses (e.g., HI'TP responses) returned from web
application 132 to Telnet server 120 for Telnet clients com-
prise a lightweight markup language that accommodates the
user 1nterface restrictions of the Telnet clients. This markup
language may be called TML (Telnet Markup Language), and

US 7,716,339 B2

S

may comprise a subset of HIML. A TML payload may rep-
resent a full Telnet client screen or an update to a client screen.

Telnet MDB 124 operates between Telnet resource adapter
126 and web application 132, and may be considered a Telnet
management module. The Telnet MDB receives input from a
telnet connection established between Telnet resource
adapter 126 and a Telnet client, and determines whether the
input constitutes an event requiring some action. If so, the
Telnet MDB also determines whether the event should be
passed to application 132. If so, the Telnet MDB translates the
client message or input into a format (e.g., a request/response
format) understood by application 132 and converts
responses Irom the application into a format (e.g., byte
stream) that can be sent to the client. Because 1t generates
output for clients, the Telnet MDB 1s responsible for drawing
the clients” user interfaces.

In one embodiment of the invention, Telnet resource
adapter 126 receives client input in the form of byte streams,
packages the input into message objects and forwards them to
Telnet MDB 124 for processing. In another embodiment of
the mvention, the Telnet resource adapter passes raw 1mput to
the Telnet MDB.

Telnet MDB 124 or EJB container 122 may include a
Telnet requester (e.g., an HI'TP client) for sending requests
to, and receiving responses from, the web application.

Telnet resource adapter 126 1s started by the Telnet server,
and 1n turn starts a ServerSocket for accepting Telnet client
connections. For each client connection, the Telnet resource
adapter may create two JCA Work implementations—one to
handle client negotiation and another to process mput bytes
from the client. The resource adapter may employ the Java
NIO (New Input/Output) system.

A Telnet resource adapter Work unit tasked with handling
a client negotiation will obtain and register a client socket,
obtain a client device configuration (e.g., based on the client’s
IP address), perform options negotiation with the client, cre-
ate a unique session object for the connection, invoke a
method of the Telnet MDB to load a first page of the appli-
cation, forward output bytes to the client from the Telnet
MDB, and/or perform other tasks.

A Telnet resource adapter Work unit tasked with process-
ing client input will obtain the session object associated with
the client’s session, read the input bytes, invoke Telnet MDB
logic to process the input bytes, return any output bytes to the
client, and/or perform other tasks.

When the Telnet resource adapter invokes the Telnet MDB,
it calls the appropriate method (any number of methods may
be exposed by the MDB) with the corresponding session
object and a flag or identifier for identifying the type of
processing needed (e.g., client connection, client disconnec-
tion, client input). Because the Telnet resource adapter and
Telnet MDB may be operating in different processes (and
there may be multiple Telnet MDBs 1n operation), the session
object must be serializable and the MDB must return the
session object with 1ts response.

When invoked for a new client connection, the Telnet MDB
initializes any MDB-specific state 1in the client session object,
loads the first application page, draws the result to the client,
and returns the updated session object to the Telnet resource
adapter. When invoked for a client disconnection, the Telnet
MDB informs the application of the disconnection.

When 1nvoked to process client input, 1n one embodiment
the Telnet MDB decodes the input bytes into input characters
(e.g., text, control, special) and examines them. Depending on
the client’s current page state, the MDB determines how
many characters to process. For example, if the client cursor
1s on an 1input field and enters a sequence of five characters, all

10

15

20

25

30

35

40

45

50

55

60

65

6

five may be processed together. The MDB then determines
whether the input must be passed to the application server for
processing. The client state maintained by the Telnet server 1s
updated eirther way and any updated drawing of the client
screen 1s 1ssued. The Telnet MDB returns the session object to
the Telnet resource adapter when processing of the client
input 1s complete.

In one embodiment of the invention, the specific actions or
events that the Telnet MDB may report to the application,
based on a client’s input, include: Activate (a button was
pressed), Jump (move to a specific field), Next (move to next
field), Previous (move to previous field), Virtual_Key (a spe-
cial key combination was pressed), Barcode Scan (a barcode
was scanned), etc. For each action, an HT'TP request 1s con-
structed to 1dentify the action and client session object. The
MDB then creates a connection to the application, sends the
request and recerves a response.

In the embodiment of the invention illustrated in FIG. 1,
web application 132 communicates with HTTP listener 112
via HTTP or some other suitable request/response format.
HTTP listener 112 can relay these communications directly
to HTTP clients, while Telnet (and/or other) clients receive

the communications in their own formats, as translated by
Telnet MDB 124.

Thus, mstead of requiring multiple software infrastruc-
tures (e.g., different application models, different applica-
tions, different application server management procedures) to
support heterogeneous clients, web application 132 1s devel-
oped according to a single (e.g., J2EE) development model.

In one embodiment of the mnvention, application 132 may
generate responses differently, depending on the client that a
response 1s destined for. For example, a response foran HT'TP
client may be generated using HI'ML, while a response for a
Telnet client may be generated using TML (Telnet Markup
Language).

In one alternative embodiment of the invention, application
server 110 1s not a J2EE application server. In this embodi-
ment, web application 132 1s still served to HI'TP clients
through HTTP listener 112. Telnet server 120, however, may
be replaced by a Telnet listener and a presentation manager
configured to act as an 1nterface between the Telnet commu-
nication format and the format (e.g., HT'TP) expected by the
application.

In the embodiment of FIG. 1, Telnet MDB 124 bulters

incoming data (1.e., data from a Telnet client) until the buil-
ered data comprises an event, application request or other
discrete communication that must be acted upon. Depending
on the type of application and the current state of the appli-
cation, Telnet MDB 124 may discretize or separate incoming
data 1nto any request accepted by the application. For a ware-
house application operating with a mix of Telnet and HTTP
clients, such requests may relate to Navigation, Data Entry,
Barcode Scan, Special Key combinations, etc.

The resulting HT'TP request that the MDB 1ssues to the
application can be treated and responded to by the application

in the same way as a standard HTTP request (e.g., from an
HTTP client).

When a response or other communication 1s recerved from
application 132, Telnet MDB 124 segments or subdivides the
communication into a suitable format (e.g., a byte stream) for
transmission to the Telnet client by the Telnet resource
adapter.

In this embodiment of the invention, Telnet MDB 124 (or
Telnet resource adapter 126) maintains state information for
cach Telnet client accessing web application 132 via Telnet

server 120. This may facilitate the MDB’s function of deter-

US 7,716,339 B2

7

mimng when suilicient data has been recerved from a client to
constitute a discrete application request.

In one embodiment, a client’s state information 1s updated
to reflect data received from the client, as well as responses
received from the application. The state information main-
tained by the Telnet MDB for a Telnet client may include a
virtual copy of the client’s display, the location of a cursor on
the display, etc.

Application server 110 of FIG. 1 may employ JSF (Java
Server Faces) to facilitate the serving of application 132 to
different types of clients. However, Telnet server 120 1s still
required in order to translate communications between Telnet
and HTTP formats.

In the embodiment of the mvention depicted 1in FIG. 1,
Telnet clients display text in a small number of rows and
columns. A Telnet client’s display 1s drawn by Telnet server
120, which transmit texts and simple commands to the device.
For example, the Telnet server can instruct a client to move 1ts
cursor to column X and row Y, and then print the string S.

Telnet client input capabilities may be limited to character-
based input. In character mode, when a user enters a character
(typically via a keypad) the character 1s sent to the Telnet
server. The server then does some processing on the mput. In
some cases textual characters are simply echoed back to the
client screen. In other cases (e.g., when a selection 1s made),
the server uses the input for processing and may or may not
echo the response to the screen.

Depending on the capabilities and settings of a Telnet
client, characters may not be sent from the client to the server
individually. In line mode, for example, textual characters are
buffered on the client and echoed to the screen until the user
enters a non-textual character (e.g., ctrl-A) or a specified key
(e.g., Tab or Enter). Atthis point, all of the buiiered characters
are sent to the Telnet server as a group (including the mput
that caused the characters to be sent).

The size of a Telnet client’s display in terms of rows and
columns 1s important for determining the low-level display of
controls and other components of the application. This 1nfor-
mation 1s available to the Telnet server through a device
repository, which exposes all device capabilities associated
with the client device.

On Telnet clients that do not support color, 1t 1s possible to
draw characters in two modes—regular and highlighted. On a
typical display, the regular text may appear as white texton a
black background and highlighted text may appear as black
text on a white background. Embodiments of the invention
described herein may or may not support Telnet clients with
color displays.

The behavior of Telnet server 120 regarding a particular
Telnet client will depend on the client’s page context, which
may encompass the page state, field type (of the current field)
and any special key combinations. Depending on the appli-
cation, other information may be included 1n the page context.
For example, 1n a warechouse application, a page context may
include a barcode character scanned or input by the client.

Telnet server 120 (e.g., Telnet MDB 124) may enforce
application security on Telnet clients. For example, when a
Telnet client attempts to access a protected page of the web
application, the Telnet server may authenticate the user via a
login or other page displayed in response to an HTTP
response code from the application. The application 1s thus
able to apply security to all types of clients 1n the same way
(e.g., via HI'TP response codes).

Hlustratively, a client’s page state may be “normal,” “sys-
tem page,” “status message” or “pop-up message.” Normal
page state refers to a normal interactive state. System page 1s
a state 1 which the active page 1s fully controlled by the

10

15

20

25

30

35

40

45

50

55

60

65

8

Telnet server (e.g., an error detail page, a message detail page,
a help page). In a status message state, a message appears 1n
a status bar of the client page (e.g., to report an application
message or an error). In a pop-up message state, a message 1s
displayed 1n 1ts own window on the page; the message 1s
usually 1ssued by the application.

Fields of a page may be of types such as “form fields” and
“text fields.” Because most applications using Telnet clients
may be designed to collect data from users, most field types
may be “form” field types, which include input fields, output
fields, button fields (e.g., buttons for triggering some action),
select fields (e.g., for selecting one or more values), secret
fields (1.e., for entering input that 1s masked on the display
screen), etc. Data may be presented to a user using “text™ field
types.

Special keys are key combinations that produce special
characters or combinations of characters. In response to a
special key input, the Telnet server may imitiate a system
function (e.g., defined by a system administrator) or a user-
defined function (e.g., defined by the application).

A barcode character may help the Telnet server determine
the significance of input from a client. For example, depend-
ing on the nature of the current field of a page, a barcode may
have to be reported to the application for further processing.

Thus, not all interaction between a Telnet client and the
Telnet server requires the application (e.g., web application
132 of FIG. 1) to be invoked. Many client events may be
handled by the Telnet server with no application involvement.
For example, a client connection to the Telnet server and the
resulting options negotiation need not involve the application.

Client events that require communication with the appli-
cation may be considered “‘significant” or “application”
events, and include events such as a request for a first page,
disconnection of a client, and some types of client mnput.
Whether client mnput 1s “significant” depends on the context
of the application and the client page.

For example, input during a normal client page state may
not be significant enough to involve the application it the
input does not ivolve a special key or character. However, 1f
the mput comprises a move to a next field (e.g., using the
Enter key or an arrow key), the event may be reported to the
application.

When the Telnet server (e.g., Telnet MDB 124 of FIG. 1)
1ssues an H1TP request to the application, the request may be
a GET request with name value pairs corresponding to the
following information:

ActionType: Identifies a significant Telnet client event that
occurred. Action types and the characters that cause them
may be specific to mdividual field types. Example action
types include Next_Field, Activate, Special_Key, etc.

Action Value: Identifies a value associated with an action;
may only be used when the action type 1s “Special_Key.”

Current Field ID: Identifies the current field.

Current Field Value: Value of the field corresponding to the
current field ID.

Ilustratively, each HTTP request corresponds to a single
significant event, which corresponds to an event that occurred
on a single field. In one embodiment, each HTTP request
1ssued to the application for a Telnet client contains all salient
information from preceding events for that client, back to the
preceding significant event, in order (1.¢., from oldest to new-
est). This ensures that the application possesses all necessary
state information regarding the client.

An HTTP response from the application to the Telnet
server may comprise TML, as described above. The response
may include a full TML document containing information
about the different fields on a page, including their layout. Or,

US 7,716,339 B2

9

the response may include a TML document fragment con-
taining information on how to modity a portion of the client
user interface.

In alternative embodiments of the invention, a Telnet server
such as Telnet server 120 of FIG. 1 may offer other functions
not described above. For example, a Telnet server may pro-
vide session mirroring, to mirror a client session across mul-
tiple IP (Internet Protocol) or other network addresses, for
multiple Telnet clients. Illustratively, one of the multiple cli-
ents would be the “controlling” client; the others would be
“dumb.” An application server may be enhanced with addi-
tional logic allowing other clients” sessions (e.g., HI'TP cli-
ents’) to also be mirrored.

In another alternative embodiment, an application server or
Telnet server may allow a system administrator or other
operator to broadcast a message to some or all clients.

FI1G. 2 1s a flowchart demonstrating a method of discretiz-
ing client-server interactions, according to one embodiment
of the invention. In this embodiment, a J2EE-compliant appli-
cation server serves a web application to a heterogeneous mix
of client devices operating a client form of the application. In
this embodiment, the application 1s configured to communi-
cate 1n a request/response format.

Some of the clients are Telnet clients (1.e., clients that
communicate with the application server using Telnet) and
some of which are HT'TP clients. The web application was
developed according to a single application development
model, but can be served to heterogeneous devices.

Prior to operation 202, a Telnet client establishes a persis-
tent communication connection with the application server
(e.g., Telnet resource adapter 120 of FIG. 1). If only one
application 1s registered with the application server, a URL
(Unmiform Resource Locator) of the application may be auto-
matically invoked. If there are multiple applications avail-
able, a list of the applications may be presented to the client
for a user to choose from. In one embodiment, Telnet clients
must be authenticated before an application may be invoked
on 1ts behalf.

In operation 202, the application server recerves data from
a 'Telnet client over the previously established persistent com-
munication connection. This connection may persist for the
duration of the client’s use of the application (e.g., until the
device 1s turned oif or until the application client 1s termi-
nated). The data may be received as a stream of bytes as
specified by the Telnet protocol.

Hlustratively, the data may be received by a resource
adapter configured to accept Telnet connections and receive
data over those connections. Within the resource adapter, a
WorkManager module may be configured to receive the data
and forward 1t as needed.

In operation 204, the application server updates a stored
state of the client to retlect the incoming data. For example,
the data may identify a position of a cursor on a display
component of the client, and/or character data entered or
selected at that position. The stored state may mirror the state
of the client’s display and/or other data used 1n the execution
of the client form of the application, and may be maintained
by a resource adapter, an EJB or other component of the
application server.

In operation 206, the application server (e.g., a Telnet
server) determines whether 1t has accumulated suificient data
from the client to constitute an event requiring some action.
For example, if input for a particular field is being recerved,
the application server may determine whether the input 1s
complete. I sufficient data has been received, the method
advances to operation 208; otherwise, the method returns to
operation 202 to recerve additional data.

10

15

20

25

30

35

40

45

50

55

60

65

10

In operation 208, the application server determines
whether the event 1s an application event—an event that must
be passed to the web application. In particular, the application
server (e.g., a resource adapter, a specialized EJB such as a
Telnet MDB) analyzes the accumulated data and determines
whether that data defines or describes an event for which an
application request may or should be 1ssued. Because the
client’s communication connection 1s persistent, the applica-
tion server may have previously received any number (O or
more) ol events from the same client over the same connec-
tion.

I1 the event corresponds to an application event, the 1llus-
trated method continues with operation 210; otherwise, the
event can be handled without involving the application, and
so the method advances to operation 214.

In operation 210, the application server (e.g., a specialized
EJB such as a Telnet MDB) formats a request and 1ssues it to
the web application. If the application 1s configured for HT'TP
communications, the request may adhere to the HTTP
request/response format and may transit an HITTP listener
that accepts requests for the application. The application
server, or the component of the application server that per-
forms this operation, may include an HI'TP client (or other
protocol client) for communicating with the application on
behalf of the Telnet client.

In operation 212, the application returns a response to the
request, which may comprise HIML, TML or some other
markup language.

In operation 214, the application server places a response
to the event into a suitable format (e.g., byte stream) and
forwards it to the client. This may involve converting the
response from the web application’s format 11 the event was
an application event. Or, 1f the event was not an application
event and was therefore handled by a Telnet server or a spe-
cialized EJB, the response may be generated 1n the appropri-
ate format for the client. The application server also updates
its client state information as needed. After operation 214, the
illustrated method of the invention ends.

In one embodiment of the invention, TML (Telnet Markup

Language) provides a markup language representation of a
Telnet client screen. TML from the application may be trans-
formed 1nto field types described above. As described, an
application may 1ssue a full TML document, representing
what 1s to be displayed on a Telnet client screen, or may 1ssue
a change to be applied to a client screen.
The root element of a TML document 1s the tml tag. A full
TML document may have a head element and a body element
as children of the tml tag. The body element may have ele-
ments such as div (to contain other elements and/or text),
mput (for text iput), output (for text output), button (for
activating application logic), select (to allow selection from a
list), label (to contain a textual description of an element),
option (to contain an option for a select element), etc.

For a partial or fragment TML document, the tml tag may
have a head element and a trackedChanges element as chil-
dren. A trackedChanges element may have any number of
trackedChanges elements as children, with each child track-
ing a particular change 1n a page state. Each trackedChanges
clement has attributes identifying what is to change.

The program environment in which a present embodiment
of the invention 1s executed 1llustratively imncorporates a gen-
eral-purpose computer or a special purpose device such as a
hand-held computer. Details of such devices (e.g., processor,
memory, data storage, display) may be omitted for the sake of
clanty.

It should also be understood that the techniques of the
present invention may be implemented using a variety of

US 7,716,339 B2

11

technologies. For example, the methods described herein
may be implemented 1n software executing on a computer
system, or implemented 1n hardware utilizing either a com-
bination of microprocessors or other specially designed
application specific integrated circuits, programmable logic
devices, or various combinations thereof. In particular, the
methods described herein may be implemented by a series of
computer-executable instructions residing on a suitable non-
transitory computer-readable medium. Suitable computer-
readable media may include volatile (e.g., RAM) and/or non-
volatile (e.g., ROM, disk) memory. Suitable computer-
readable media may include volatile (e.g., RAM) and/or non-
volatile (e.g., ROM, disk) memory.

The foregoing descriptions of embodiments of the inven-
tion have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or to
limit the mvention to the forms disclosed. Accordingly, the
above disclosure 1s not intended to limit the invention; the
scope of the invention 1s defined by the appended claims.

What 1s claimed 1s:

1. A computer-implemented method of discretizing a data
stream recerved from a client via a persistent communication
connection into a web application at an application server, the
method comprising:

establishing a persistent communication connection using,

a persistent communication protocol between the appli-
cation server and the client, wherein the persistent com-
munication connection 1s configured to transmit a con-
tinuous data stream of bytes from the client, and wherein
the web application 1n the application server uses a non-
persistent communication protocol;

receiving the continuous data stream of bytes from the

client via the persistent communication connection at
the application server;

buffering a first set of bytes from the received continuous

data stream of bytes at the application server;
determining whether the first set of bytes comprises an
event at the application server;

if the first set of bytes comprises the event, determining,

whether the event must be processed by the web appli-
cation; and

if the event must be processed by the web application,

translating the continuous data stream of bytes at the

application server by:

separating or discretizing the continuous data stream of
bytes;

generating a first application request that complies with
the non-persistent communication protocol from the
continuous data stream of bytes; and

forwarding the first application request to the web appli-
cation 1n the application server.

2. The method of claim 1, further comprising;

if the first set of bytes does not comprise an event:

receiving additional bytes via the persistent communi-
cation connection; and

determining whether the first set of bytes and the additional

bytes together comprise an event.

3. The method of claim 1, wherein:

the persistent communication connection 1s a Telnet con-

nection; and

the first application request 1s an HT'TP (Hypertext Trans-

port Protocol) request.

4. The method of claim 1, wherein the method 1s performed
by an application server compliant with J2EE (Java 2 Enter-
prise Edition).

5. The method of claim 4, wherein said establishing com-
prises:

5

10

15

20

25

30

35

40

45

50

55

60

65

12

recerving the Telnet connection at a resource adapter
deployed within the application server.

6. The method of claim 4, wherein said generating and said
forwarding are performed by a Message Driven Bean imple-
mented within the application server.

7. The method of claim 4, further comprising:

recewving a first HI'TP response to the first application
request;

converting the first response 1nto a data stream; and

1ssuing the data stream to the client.
8. The method of claim 4, further comprising:
receving a non-persistent communication connection
from an HTTP client;
recerving a second application request from the HTTP
client; and
forwarding the second application request to the applica-
tion;
wherein the web application 1s configured to process both
the first application request and the second application
request from a single application process.
9. A non-transitory computer readable medium storing
instructions that, when executed by a computer, cause the
computer to perform a method of discretizing a data stream
received from a client via a persistent communication con-
nection into a web application at an application server, the
method comprising:
establishing a persistent communication connection using,
a persistent communication protocol between the appli-
cation server and the client, wherein the persistent com-
munication connection 1s configured to transmit a con-
tinuous data stream of bytes from the client, and wherein
the web application 1n the application server uses a non-
persistent communication protocol;
receving the continuous data stream of bytes from the
client via the persistent communication connection at
the application server;
accumulating a first set of bytes from the received continu-
ous data stream of bytes 1n the application server;
determining whether the first set of bytes comprises an
event at the application server;
11 the first set of bytes comprises the event, determining
whether the event must be processed by the web appli-
cation; and
11 the first stream of bytes comprises the event that must be
processed by the web application, translating the con-
tinuous data stream of bytes at the application server by:
separating or discretizing the continuous data stream of
bytes;

generating a first application request that complies with
the non-persistent communication protocol from the
continuous data stream of bytes; and

torwarding the first application request to the web applica-
tion 1n the application server.

10. A system embodied 1n a computer for discretizing a
data stream received from clients via a persistent communi-
cation connection into a web application at an application
server, the system comprising:

a Processor;

memory;

an application, implemented 1n hardware, which uses a
non-persistent communication protocol, configured to
be served to multiple sets of clients, wherein each set of
clients communicates with the system using a different
communication protocol; and

a communication server, comprising:

a first listener configured to establish persistent commu-
nication connections with a first set of clients; and

US 7,716,339 B2

13

a first recerver configured to recetve a continuous data
stream of bytes from the first set of clients via the

established persistent communication connections;
and
a management module configured to convert a first stream 5
of data recerved via a persistent communication connec-
tion from a client into a discrete request recognized by
the application, wherein the converting comprises trans-
lating the continuous data stream of bytes received from
the client by: 10
separating or discretizing the continuous data stream of
bytes;
generating a first application request that complies with
the non-persistent communication protocol from the
continuous data stream of bytes; and 15
torwarding the first application request to the web appli-
cation in the application server.

11. The system of claim 10, further comprising:
a second listener configured to establish non-persistent

communication connections with a second set of clients. 2"
12. The system of claim 11, wherein:
the second listener 1s an HT'TP (Hypertext Transport Pro-
tocol) listener and the non-persistent communication
connections are HI'TP connections. .

13. The system of claim 10, wherein:

the system 1s an application server compliant with J2E
(Java 2 Enterprise Edition);

the application 1s a web application;

(Ll

14

the first listener 1s a Telnet listener and the persistent com-

munication connections are Telnet connections.

14. The system of claim 13, wherein the management
module comprises a Message Driven Bean.

15. The system of claim 13, wherein:

the discrete request 1s an HI'TP request; and

the management module 1s further configured to convert an

HTTP response from the application into a second
stream of data to be transmitted via the persistent com-
munication connection.

16. The system of claim 13, wherein the first listener com-
prises a resource adapter compliant with JCA (Java Connec-
tor Architecture).

17. The system of claim 10, wherein the first stream of data
comprises the application event.

18. The system of claim 17, wherein the application event
comprises one of:

input; or

an application request.

19. The method of claim 1, wherein a discrete communi-
cation comprises one of:

an event,

a client application request; or

input.

20. The method of claim 1, wherein a discrete communi-
cation comprises an application event requiring action by the
web application.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,716,339 B2 Page 1 of 1
APPLICATION NO. . 117057729

DATED : May 11, 2010

INVENTOR(S) . Varouj Armen Chitilian et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 4, line 6, delete “ear” and insert -- .ear --, therefor.

Signed and Sealed this
ourteenth Day of June, 2011

. F - - . - -
-- .-.- -. b . -- ‘. .--
. " i . 1 - PR . . - - -
. - . : - - N, AT -
!, . . - - e . A n . . u-
.L; . . e e . L F

_ A
- ' - -
" . N T .
. " - . [g
- dh . . \
: .
. .- A . .

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

