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FIG. 3
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DATA TRANSFORMATION APPARATUS AND
METHOD

FIELD OF THE INVENTION

The present mvention relates to a lossless four-point
orthogonal transformation method and lossless four-point
orthogonal transformation apparatus which are capable of
reversible transform from integer data to integer data.

BACKGROUND OF THE INVENTION

In JPEG, which 1s an international standard coding system
for still 1mages, lossless encoding mode was standardized
such that images after compression or decompression would
be exactly identical to the original images. However, tech-
niques for lossless transformation had not been studied sui-
ficiently at the time, and it was not possible to implement
lossless transformation using DCT. Therefore, using a tech-
nique different from DCT-based block transform coding,
lossless encoding was implemented by a pixel-based method

known as predictive coding.
Later, JPEG-LS, a standard coding technique dedicated to

lossless encoding was standardized. The JPEG2000 stan-
dardized subsequently implemented both lossless transior-
mation and typical lossy transformation using a technique
called wavelet transform, enabling both lossless encoding
without degradation and lossy encoding with some degrada-
tion.

Compression and transformation processes ol 1mage data
are roughly divided into three types: spatial conversion pro-
cess (DCT, wavelet transform, etc.), quantizing process, and
entropy encoding process. Among them, the entropy encod-
Ing process consists i converting a collection of quantized
values (information) into other codes such as Huifman codes,
and thereby converting the bit count o the information to a bat
count close to that of entropy included in the information. Itis
a sort of lossless data transformation process.

On the other hand, a quantizing process, which 1s a process
of reducing the amount of information, allows a compression
ratio to be controlled. Basically, 1t 1s a lossy transformation.
Thus, to carry out a transform coding/compression process 1n
a lossless manner, the quantizing process must not be used.
However, any decimal part produced by a spatial conversion
process must be quantized. Otherwise, the amount of data
will increase after the compression.

Any decimal part produced by a spatial conversion process
will be converted into an integer using a quantizing step of
“1,” resulting 1n si1gnal degradation. Thus, there 1s no guaran-
tee that the data after the decompression will be 1dentical to
the original data.

After all, 1t can be seen that 1n order to implement lossless
encoding, 1t1s necessary to perform entropy encoding directly
instead of quantizing a value (lossless transform coellicient)
obtained by a spatial conversion process that outputs integer
values whose reversibility 1s guaranteed. However, it might
be said that a quantizing process 1s performed using a quan-
tizing step of “1” because the transform coeflicient 1s main-
tained as 1t 1s even 1in that case.

In this way, to implement lossless encoding, a spatial con-
version process that outputs integer values whose reversibil-
ity 1s guaranteed (hereinafter referred to as lossless transtor-
mation) 1s indispensable.

Conventionally, ladder networks are available as a tech-
nique for implementing lossless transformation (See, for
example, F. Bruekers and A. Enden “New Networks for Per-
fect Inversion and Perfect Reconstruction,” IEEE JSAC, vol.
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2

10, no. 1, pp. 130-137, January 1992). A ladder network 1s
obtained by decomposing a two-point rotational transforma-
tion matrix into three triangular matrices, replacing each tri-
angular matrix with a ladder operation, and then introducing
a rounding process into the ladder operations.

An expansion of the ladder network into a four-point
orthogonal transformation 1s described 1n an article by Kuni-
tosh1t KOMATSU and Kaoru SEZAKI, “Reversible DCT and
Its Application to Image Coding,” Shingaku-Giho, IE97-83,
pp. 1-6, November 1997.

Lossless two-point rotational transformation and lossless
four-point orthogonal transformation will be described 1n
more detail below.

A two-point rotational transformation matrix can be
decomposed 1into a product of three triangular matrices whose
diagonal elements are “1.”

sin &
] _ >

(msé‘ [ 1 G] 1 taﬂi
—sinf cos @

—sinf 1

If two 1tems of input data are considered to be two legs of
a ladder, operations on triangular matrices whose diagonal
clements are “1” structurally correspond to rungs of the lad-
der. That 1s, since operations on oil-diagonal elements
involve multiplying one of the inputs by the values of the
off-diagonal elements and adding the product to the other
input, they look like rungs of the ladder when represented by
a signal flow graph. Thus, two-point rotational transformation
can be represented by three-rung ladder operations as shown
in FIG. 1A.

As shown 1n FIG. 1B, by rounding the result of the multi-
plication process in each ladder operation to an integer, it 1s
possible to easily implement lossless transformation from
integer values to integer values. Thus, a lossless transforma-
tion by means of ladder operations can be provided by three
types of processor: multiplication processors, rounding pro-
cessors, and addition processors (or subtraction processors 1n
some cases). In FIG. 1B, reference numerals 111, 121, and
131 denote multiplication processors; 113, 123, and 133
denote rounding processors; and 115, 125, and 135 denote
addition processors. When a rotational angle 1s 0, multiplica-
tion factors for the multipliers 111, 121, and 131 are TAN(0O/
2), —SIN(0) and TAN(0/2), respectively.

When the result of multiplication 1n each step of ladder
operations 1s rounded to an 1nteger, a rounding error always
occurs unless the result of multiplication 1s an integer. The
errors which occur in ladder operations are superimposed
over output data.

Conventionally, a four-point orthogonal transformation
consisting of four two-point rotational transformations is
configured as shown 1n FIG. 2. Here, reference numerals 201
to 204 denote the two-point rotational transformations, each
of which consists of a three-rung ladder operation as shown 1n
FIG. 1B. Looking at the entire four-point orthogonal trans-
formation, there are 12 steps of ladder operations. Similarly,
rounding 1s repeated 12 times. Naturally, the rounding error
increases in proportion to the number of rounding operations.

On the other hand, the technique described 1n the article by
Kinutosh1 KOMATSU and Kaoru SEZAKI, “Reversible
DCT and Its Application to Image Coding,” Shingaku-Giho,
IE97-83, pp. 1-6, November 1997”7 implements lossless
transiformation by dividing a four-point orthogonal transior-
mation into five ladder operations expanded to accommodate
four-dimensional operations. Since an n-dimensional ladder
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operation mmvolves n-1 multiplication operations, a four-
point orthogonal transformation requires (4—1)x5=135 multi-
plication operations. However, thanks to the nature of the
ladder operation, the rounding can be reduced greatly. In the
case ol a multi-dimensional ladder operation, since outputs
(data to be added) of a ladder operation are collected together,
the rounding can be performed after adding up the data,
making 1t possible to get by with a single rounding operation
per ladder operation. Thus, the four-point orthogonal trans-
formation according to the above technique can get by with
five rounding operations.

As described above, since a lossless transformation
requires special operations called ladder operations 1n order
to guarantee 1ts reversibility, fast computational algorithms
on which many studies have been conducted cannot be
applied to 1t. This makes it difficult to reduce the amount of
computation. In other words, conventional lossless transior-
mations require special operations and are not suitable for fast
computation. Also, they involve a large number of rounding
operations, resulting 1n a large rounding error.

SUMMARY OF THE INVENTION

The present invention has been made 1n view of the above
problems and has an object to provide a technique which can
be implemented on an apparatus with a simple configuration
and which allows a lossless four-point orthogonal transior-
mation to be performed with a reduced rounding error 1n four
items of vector data.

To achieve the above object, the present invention provides
a data transformation apparatus which receives four items of
vector data X0, X1, X2, and X3 expressed in terms of integers
and obtains transformed data expressed 1n terms of integers
by application of a coelfficient “a” that 1s an odd number larger
than 1 using a matrix operation:

[ Xp

1 a -1 a* -a X
l+a*| g & -1 -a| X2
@ —a -a 1 )“X“

the data transformation apparatus comprising;:

holding means for recerving and holding the coellicient a
and the vector data X0, X1, X2, and X3;

first computational means for performing an operation
D0=X0+aX1+aX2+a"X3;

second computational means for performing an operation
D1=aX0-X1+a"X2-aX3;

third computational means for performing an operation
D2=aX0+a*X1-X2-aX3:

fourth computational means for performing an operation
D3=a"X0-aX1-aX2+X3:

allocation means for allocating the coelficient a and the
vector data X0, X1, X2, and X3 held by the holding means to

the first to fourth computational means;

corrective computational means for adding integer data
smaller than half a divisor {14+a®} to at least one item of the
data D0, D1, D2, and D3 obtained by the first to fourth
computational means and adding a value equal to half the

divisor {14a°} to the rest of the data, and thereby calculating
correction data D0', D1', D2', and D3' to be divided; and

output means for dividing the correction data D0', D1', D2',
and D3' obtained by the corrective computational means by

10

15

20

25

30

35

40

45

50

55

60

65

4

the divisor, rounding results of division in such a way that
resulting integers will be smaller than the results of division,
and outputting the resulting integers as transformed data.

Other features and advantages of the present invention will
be apparent from the following descriptions taken in conjunc-
tion with the accompanying drawings, 1n which like reference
characters designate the same or similar parts throughout the
figures thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are diagrams showing a configuration of
a conventional lossless two-point rotational transformation
Processor;

FIG. 2 1s a diagram showing a configuration of a lossless
four-point orthogonal transformation processor;

FIG. 3 15 a diagram showing a flow of a lossless transior-
mation process according to a first embodiment;

FIG. 4 1s a diagram showing a flow of an inverse transior-
mation process of the lossless transformation process accord-
ing to the first embodiment;

FIG. 5 15 a diagram showing a flow of a lossless transior-
mation process according to a second embodiment;

FIG. 6 1s a diagram showing a flow of an iverse transior-
mation process of the lossless transformation process accord-
ing to the second embodiment;

FIG. 7 1s a diagram showing a flow of a lossless transfor-
mation process according to a third embodiment;

FIG. 8 1s a diagram showing a flow of the lossless trans-
formation process according to the third embodiment;

FIG. 9 15 a diagram showing a flow of a lossless transior-
mation process according to a fourth embodiment;

FIG. 10 1s a diagram showing positions 1 7t/16 and 37/16
rotational processes 1n eight-point DCT;

FIGS. 11A and 11B are diagrams showing data which
undergo a /16 rotational process among 8-by-8 data;

FIG. 12 1s a diagram showing data which undergo a 37/16
rotational process among 8-by-8 data;

FIG. 13 1s a diagram showing a configuration for an encod-
INg Process;

FIG. 14 1s a diagram showing a circuit configuration for
lossless transformations according to the first embodiment.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PREFERRED

Preferred embodiments of the present invention will be
described below with reference to the drawings.

First Embodiment

Lossless four-point orthogonal transformation according
to the first embodiment does not use conventional ladder
operations. It multiplies four 1tems of integer data to be trans-
formed, by a 4-by-4 matrix consisting of integer elements,
adds a value equal to half a divisor for use in subsequent
division or a value smaller than half the divisor to the integer
data, divides the resulting data, and rounds the quotients 1n
such a way that resulting integers will be smaller than the
quotients.
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According to the first embodiment, a value smaller than
half the divisor 1s added to at least one 1tem of the data. The

transformation used by this embodiment 1s given by Equation
(1) below.

(1)

7% (1l a a a (X N
Y 1 a -1 o -a X
| 1+a?| ¢ &2 -1 —al X

13 ) 2 g o—g 1 WX

In the above equation, X0, X1, X2, and X3 are integer data
to be transformed and variable “a’ 1s a natural number. An
example of a transformation performed by a method consid-
ered to be normal by those skilled in the art will be shown
below. It 1s assumed here that a=3 and that the four 1tems of
data X0, X1, X2, and X3 have the following values, respec-
tively.

17,12, 9, 55

However, before dividing the data by (1+a*a)=10, (1+a*a)/
2=5 1s added to each item of the data being operated on so that
the transformation will produce integer values. The following,
values result.

38, -4, -1, 15

The above values are retranstformed by the same transior-
mation process mto the following values.

18, 12,9, 55

Equation (1) above 1s a mathematically reversible trans-
form and 1s 1n 1tself an inverse transformation. That 1s, 1f the
transformation 1 Equation (1) 1s repeated twice without
rounding the data to integers, the resulting data return to their
original forms, and thus the data after two transformations

coincide with the untranstformed data.

However, this does not apply to the above result. This 1s
because rounding errors occur when the results of the first
transiformation are rounded to integers, they are concentrated
on the first data X0 at the time of the inverse transformation,
and they cannot be cancelled off by rounding-oif at the time of
the inverse transformation.

Now let us look at rounding errors in more detail. A divi-
sion by 10 will produce a decimal part on the order o 0.1. It
a decimal part o1 0.1 to 0.4 1s truncated and a decimal part of
0.6 to 0.9 1s raised to a unity, a rounding error of up to £0.4
occurs. The error 1s symmetrical around zero.

On the other hand, 11 the decimal part 1s 0.5, raising 1t to a
unity produces a rounding error of +0.5 and truncating 1t
produces a rounding error of —-0.5. The error 1s asymmetrical
around zero. Since the process of rounding off raises the
decimal part of 0.5 to a unity, 1t produces asymmetrical errors

of +0.5.

Thus, the reason why the data do not return to their original
forms 1n the transformation and inverse transformation pro-
cesses described above lies 1n such asymmetrical errors.
Since the reason lines 1n asymmetrical errors, truncating the
decimal part of 0.5 produces an asymmetrical error of —0.5.
Again, the data going through a transformation and inverse
transformation do not return to their original forms.

This embodiment implements lossless transformation
from 1nteger values to integer values based on Equation (1).
For that, the applicant proposes a forward transformation
process shown i FIG. 3 and inverse transformation process
shown in FIG. 4. These are characteristic features of the
present invention.

In FIG. 3, Step S301 1s a sum-of-products computation
process, Step S303 1s an addition process, and Step S305 1s a
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6

division process. FIG. 4 1s about the same as FIG. 3, but
differs more or less in the addition process 1n Step S403.
Processing 1n this embodiment i1s characterized in that some
of the values added 1n Steps S303 and S403 are smaller than
half the divisor (=a*+1).

Specifically, a value “4” smaller than half (=3) the divisor
(=10) 1s added 1n the second addition operation 1n Step S303
and the addition operations 1 Step S403 except the third
addition operation. The forward transformation process and
iverse transiormation process by the use of this addition
process produce the following results.

After forward transformation process: 58, =5, -1, 15

After mverse transformation process: 17, 12, 9, 55

It can be seen that the data after the inverse transformation
process are 1dentical to the original data. This shows that the
method according to this embodiment can implement a loss-
less transformation as with conventional methods which
employ ladder operations.

Incidentally, the forward ftransformation process and
inverse transformation process are complementary to each
other. That 1s, 1T data undergo an inverse transformation pro-
cess and forward transformation process in this order, they
also return to their original forms. Thus, the process 1n FI1G. 4
1s a type of forward transformation process. In that case,
naturally the 1nverse transformation process corresponds to
the process shown 1n FIG. 3. When the process in FIG. 4 1s
used as a forward transformation process, a value smaller than
half the divisor 1s added to three items of data.

FIG. 14 1s a diagram showing a concrete circuit configu-
ration for use to carry out the processes shown 1in FIGS. 3 and
4. Note that all the components 1n FIG. 14 handle integer data.
That 1s, 1n the “division” described below, any remainder or
decimal part 1s discarded.

In FIG. 14, reference numerals 1 to 5 denote registers
which hold multiple bits of data, of which the registers 1 to 4
hold the source data X0 to X3 while the register 5 holds the
value a. Reference numeral 6 also denotes a register, which
holds one bit of data and switches between forward transior-
mation (FIG. 3) and mverse transformation (FIG. 4).

Retference numerals 7 to 10 denote integer computing units
which recerve data from the registers 1 to 5, respectively, and
perform the operations shown in the figures. The integer
computing units 7 to 10 perform operations which correspond
to Step S301 1n FIG. 3 and Step S401 1n FIG. 4. They consist
of adders and multipliers, and do not produce computational
CITOrS.

Reference numeral 11 also denotes a register, which raises
the value a stored 1n the register 5 to the second power, adds
“1” to the square, and outputs the resulting value “a*a+1.”
Retference numeral 12 denotes a divider which divides input
data by 2. Since division by 2 can be achieved by a 1-bit right
shift (to the higher-order bit), the divider 12 can be constituted
of a bit shifter. Reference numeral 13 denotes a subtracter
which subtracts “1” from the output data of the divider 12.

Reference numerals 15 to 18 denote adders each of which
adds two 1tems of input data and outputs the result. Reference
numerals 19 to 22 denote dividers each of which divides data
at an mput terminal P by data at an mput terminal Q).

Reference numeral 14 denotes a selector which selects data
inputted 1n mput terminals P and Q according to a value (O or
1) set on the register 6 and outputs the selected data to the
adders 15 to 18. Specifically, when a value “0” (forward
transiformation) 1s set on the register 6, the selector 14 outputs
the data inputted through the input terminal P to-the adder 16
and outputs the data mputted through the input terminal Q to
the adders 15, 17, and 18. On the other hand, when a value “1”

(1nverse transformation) 1s set on the register 6, the selector 14
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outputs the data mputted through the input terminal P to the

adders 15, 16, and 18 and the data inputted through the input
terminal Q to the adder 17.

More specifically, when “0” 1s set on the register 6, “(a*a+
1)/2-1" 1s supplied to the adder 16 and “(a*a+1)/2” 1s sup-
plied to the adders 15,17, and 18. On the other hand, when *“1”
1s set on the register 6, “(a*a+1)/2” 1s supplied to the adder 17
and “(a*a+1)/2-1"1s supplied to the adders 15,16, and 18. If
the transformation performed when “0” 1s set on the register
6 1s regarded to be a forward transformation, it follows that the
transiformation performed when “1” 1s set on the register 6 1s
ainverse transformation. However, forward and inverse trans-
formations are relative and 1t the transformation performed
when “1” 1s set on the register 6 1s regarded to be a forward
transformation, 1t follows that the transformation performed
when “0” 1s set on the register 6 1s an 1mverse transformation.

Still more specifically, when “3” 1s set as the value a on the
register 3, 11 the register 6 1s set to “0,” the adders 15 to 18
perform the process of Step S303 1n FIG. 3. On the other hand,
if the register 6 1s set to “1,” the adders 15 to 18 perform the
process of Step S403 in FIG. 4.

Consequently, the circuit configuration FIG. 14 makes 1t
possible to switch between forward transformation and
inverse transformation.

Note that there are addition methods other than those 1n
Steps S303 and S403. As an example, 1n Step S303, the order
in which the addition operation of “4” 1s performed may be
changed from the second to the third. In the corresponding
inverse transformation, “5” 1s added in the second addition
operation and “4” 1s added 1n an addition operation other than
the second.

According to this embodiment, the value of a 1s not limited
to “3”. The value of a may be the inverse (1/n) of an odd
number (n) equal to or larger than 3. This 1s because although
the signs of the coeflicient “1” and coefficient “a®” are
changed and the variable a is replaced by n 1f the entire
Equation (1) is multiplied by n”, the same transformation as
that of the original Equation (1) results 11 the data before and
alter the transformation are replaced.

Furthermore, although replacement of rows or reversal of
signs 11 the orthogonal transformation matrix in Equation (1)
can change correspondence between the forward transforma-
tion and inverse transformation, 1t goes without saying that
modifications of processes 1n this category are also included
in the scope of this embodiment.

Although this embodiment 1s described as a data transior-
mation method, a lossless data transformation apparatus can-
be implemented 1f computing units which perform arithmetic
operations are connected and made to process data according
to the flow 1n FIGS. 3 and 4. This 1s something those skilled
in the art can easily think of.

When the value of a 1s an even number, the divisor (1+a*a)
1s an odd number, and thus the value equal to half the divisor
1s an integer +0.5. In this case, 1f only the integer parts are
added 1n all the four addition operations, a lossless transior-
mation results. In this situation, the divisor can be added 1n
cach addition operation, after being right shifted one bat.

For that, the subtracter 13 1n FIG. 14 can discard the least
significant bit (LSB) of the value a. That 1s, when the value of
a 1s an even number, since the LLSB 1s “0,” the subtracter 13
outputs the iteger part without subtracting “1”. In this case,

10

15

20

25

30

35

40

45

50

55

60

65

8

the values at the 1input terminals P and Q are identical, and
thus the output 1s the same whichever input may be selected.

Second Embodiment

On hardware, processing can be facilitated 1t divisions are
replaced with multiplications. Such replacement of opera-
tions can speed up even a microcontroller which processes
divisions at a low speed. For that, 1n the second embodiment,
the division operations in the transformation based on Equa-
tion (1) are replaced by multiplication operations which use
the 1verse of the divisor and 1n which any decimal part 1s
truncated.

A whole number 1n decimal notation may have an infinite
decimal in the binary notation used internally by a processor.
Number 0.1 which 1s the inverse of 10 becomes 0.00011001,
(the underlined portion 1s a repeating decimal) when
expressed as a binary number.

Since infinite decimals cannot be handled 1n arithmetic
operations, the repeating decimal must be rounded to a finite
decimal. In so doing, normally the number 1s rounded up or
rounded down depending on the number of digits to be
obtained as a result of the rounding. For example, when
rounding the recurring decimal to nine decimal places (bits),
rounding 1t to 0.000110011, involves the smallest error.
When rounding the recurring decimal to eleven decimal
places (bits), rounding it to 0.00011001101, 1nvolves the
smallest error. In effect, the former process mvolves rounding,
down the number and the latter process mnvolves rounding up
the number.

According to this embodiment, two types of finite decimal
are prepared and used selectively: a finite-bit decimal
obtained by rounding ofif the original decimal and finite-bit
decimal obtained by rounding down the original decimal. It 1s
common practice to use fixed decimal mode to manage the
rounding-down and rounding-up of decimals with a large
number of significant bits.

For that, 1n Step S501 1n FIG. 5 which represents processes
of the second embodiment, fixed point numbers are calcu-
lated by rounding up or rounding down the inverse of a divisor
to predetermined bits. Let n denote a sigmificant bit count of
the fixed point numbers and let d denote the divisor (1+a*a).
When the remainder produced by dividing the n-th power of
2 (obtained by left-shifting 1 by n bits) by d 1s other than 0
(this condition 1s regarded to be normal according to this
embodiment), the quotient 1s the 1nverse r of the fixed point
number obtained by rounding-down. The weight of the least
significant bit of the nverse 1s 27"°. The mverse r0 plus 1
equals the inverse rl of the fixed point number obtained by
rounding-up. The method for determining the significant bit
count n will be described later.

The remainder equals O only when the divisor (1+a*a)1s a
power of 2. Except when a=1, there can be no such situation
at least as far as one can 1magine (such a situation 1s 1con-
ceivable even mathematically). In addition to the divisor d,
iverse r, and inverse rl, a value h equal to half the divisor d
as well as an offset 1 are determined.

The calculations 1n Step S501 described above have to be
performed only once before a large amount of data such as
image data go through an orthogonal transformation.

The lossless four-pont orthogonal transformation
described below 1s performed using the two types of inverse
calculated above.

First, a sum-of-products computation process 1s performed
in Step S502 using exactly the same process as 1 Step S301
in FIG. 3. Next, a value equal to half the divisor described
above 1s added 1n a first addition process 1n Step S503. Only
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one type of value i1s added here although two types of
value—a value equal to half the divisor and a value smaller
than half the divisor—are added according to the first
embodiment described above.

In a second addition process in Step S504, an offset 1s
added to computational results 1n the second to fourth rows of
the transformation matrix. The purpose of adding the offset 1s
to level-shiit the multiplicand to be multiplied by the inverse
to a value larger than O. Thus, the offset should be large
enough to level-shift the smallest possible value (negative
value) obtained 1 Step S503 to a value larger than 0. The
offset can be calculated by multiplying negative elements 1n
the transformation matrix of Equation (1) by the maximum
input values and summing up the products (assuming that the
data to be processed are equal to or larger than 0). The offset
1s not added to the computational result in the first row, which
cannot be negative because there 1s no subtraction.

Looking at the fourth row in the transformation matrix,
since there are two elements of —a, 1f 1t 1s assumed that a=3
and that the maximum input value 1s 255, the offset should be
3Ix255%x2=1530. Also, the offset must be an integral multiple
(p times) of the divisor (1+a*a) for the reason described later.
When a=3, the divisor 1s 10 and the calculation result “1530”
satisfies this condition and is used as the offset. In this case,
p=133.

In the transformation matrix of Equation (1), all the terms
of the second power of a are positive, but when using a
transformation matrix in which terms of the second power of
a are negative due to sign reversal or the like, the value of the
offset must be increased.

In a multiplication process of Step S505, the division pro-
cess of Step S305 1s replaced with multiplication by the
inverse r or rl of the fixed point number and a subsequent bit
shift.

Finally, 1n a subtraction process of Step S506, p (=133) 1s
subtracted. This process 1s used to remove the offset added 1n
Step S504. To remove the offset completely here, the offset
must be an integral multiple (p times) of the divisor as
described above.

Although the same offset 1s added in the second to fourth
rows of the transformation matrix, it can be seen that an oflset
smaller than “1530” may be added in the second and third
rows. Specifically, the offset may be (1+3)x255=1020.

If the minimum necessary offsets are added, the maximum
value of the computational result in each row after the addi-
tion of the offset 1s (1+3+3+49)x255+5=4085. I the common
olfset 1s used, the maximum value increases by “510,” which
1s the difference between 1530 and 1020. Thus, the maximum

value 1s “4595.”

On the other hand, regarding the inverse r0 of the rounded-
down number and inverse rl of the rounded-up number, their
accuracy should be maintained so that the error resulting from
multiplication by them will be less than 10 1n absolute value.
This 1s to allow computational results to be distinguished 1n
units of Yio. For this purpose, the range of the inverses 1s
specified between

1[1 1 ] | 1[1 1 ]
o0 " 3506) ¢ 10l T 3506 )

Thus, the error 1n the inverses must be less than Y4ses0 1n
absolute value. This error corresponds to computational accu-
racy of 15.5 bits, and thus the accuracy of the inverses should
be 16 bits which 1s higher than 15.5 bits. Here comes the value
n=16 at last.
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Now, actual computational results will be discussed using
the parameters described above.

The inverse r0 ol the approximate value obtained by round-
ing down Y10 to 16 bits is 2'°+10=6553 and the inverse r1 of
the approximate value obtained by rounding-up 1s 6534 (since
fixed-point representation 1s used, the actual weight of 1
1s Vess36). Based on these parameters, results of various pro-
cesses are shown below.

Original data: 247, 252, 9, 5

After computation of sum of products: 1075, 535, 2985,
1445

After first addition process: 1080, 560, 2990, 1450
After second addition process: 1080, 2090, 4520, 2980

After multiplication by inverse and subsequent shift: 108,
208, 452, 298

After subtraction of offset: 108, 55, 299, 145

The values after the subtraction of the offset are the results
obtained by the lossless transformation process according to
the second embodiment. The results of the transformation are
returned to the original data by the mverse transformation
process shown 1n FIG. 6. As in the case of the first embodi-
ment, the inverse transformation process i FI1G. 6 1s basically
the same as the forward transformation process, but difiers in
the following points.

As described above, the original data ranges from 0 to 255.
Thus, the values after the iverse transformation also range
from O to 255. Even 1f negative values are contained in inter-
mediate computational results, they become equal to or larger
than O 1n the end after the value h equal to halt the divisor 1s
added. Consequently, the inverse transtformation process does
not need the offset addition process (Step S504) and the
subtraction process (Step S506) used to cancel off the addi-
tion process. The order of multiplications by the 1inverses r0
and rl in the mverse transformation process 1s changed
according to the order of multiplications by the inverses r(
and rl in the forward transformation process. Step S605 1s the
process 1n which the order of multiplications by the mnverses
r0 and r1 1s changed (a symbol “>>""1n FIG. 6 indicates a bit
shift to a lower-order bit).

If the range of the original data 1s expanded to negative-
values, the inverse transformation process also needs the ofl-
set addition process (Step S504) and the subtraction process
(Step S506) used to cancel off the addition process. This
results 1n almost the same processes as 1 FIG. 3, the differ-

ence being only Step S605.

Results of individual steps in the inverse transformation
process performed after the lossless transformation process
are shown below.

Results of transformation: 108, 55, 299, 145
After computation of sum of products: 2475, 2525, 83, 55
After first addition process: 2480, 2530, 90, 60

After multiplication by 1nverse and subsequent shift: 247,
252, 9,5

It can be seen that the data after the inverse transformation
process are 1dentical to the original data. The inverses r0 and

rl can be handled 1n various ways 1 Step S605 as 1s the case
with the first embodiment.

It will be understood easily from the above description that
according to the second embodiment as in the case of the first
embodiment described with reference to FIG. 14, a lossless

data transformation apparatus can be implemented 11 comput-
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ing units which perform arithmetic operations are made to
process data according to the tlow 1n FIGS. 5 and 6.

Third Embodiment

In the third embodiment, description will be given of how
a lossless transformation 1s implemented when the value of a
1s an even number (2n). When a=2 (n=1), a lossless transior-
mation can be implemented by simply using a rounding-oif
process (or an equivalent process) without problems, and thus
description will be given of cases where the value of n1s 2 or
larger.

When a 1s an even number, since the divisor (1+a*a) 1s an
odd number, no division process produces a decimal part
which would be equal to 0.5. Thus, there are no problems such
as those encountered when a 1s an odd number. However,
other problems arise. Specifically, a lossless transformation
cannot be achieved with the rounding-oif or equivalent pro-
cess alone and the techniques available when a 1s an odd
number are not available.

When a=2n (n=2), if large rounding errors are produced by
rounding-oil processes during a forward transformation, they
cannot be cancelled off by rounding-oif processes during the
inverse transformation. Consequently, there 1s no lossless
transformation.

To solve this problem, such a large rounding error 1n a
forward transformation that cannot be cancelled off by a
rounding-oif process during the inverse transformation 1s
subjected to a rounding process opposite to rounding-oif.
Specifically, a decimal part truncated 1n the case of rounding-
olf 1s raised to a unity and a decimal part raised to a unity 1n
the case of rounding-oil1s truncated. Hereinatter, this process
will be referred to as a reverse rounding-oil process to distin-
guish from the normal rounding-oif process.

The range of the rounding error to be subjected to a reverse
rounding-off process 1s given by 2n*n-n+1=T=2n*n-1,
where T 1s the value obtained by multiplying the absolute
value of the rounding error by the divisor (1+a*a).

Conceptually, the process 1s as described above. However,
it 1s 1neificient to find a rounding error by performing a
rounding-oif process once, determine whether the rounding,
error 1s subject to the reverse rounding-oif process, and per-
form a rounding process again. Thus, as an equivalent pro-
cess, 1t 1s more realistic to add or subtract 1 to/from the result
of transformation in such a way as to reverse the sign of the
rounding error.

Specifically, a rounding error “-(2n*n-1),” for example, 1s
a result of a rounding-down process. Since the absolute value
of this rounding error 1s subject to a reverse rounding-oif
process, a rounding-up process rather than a rounding-down
process should be used.

If rounding-down 1s changed to rounding-up, the result of
transformation increases by 1. Therefore, when a rounding
error 1s negative and its absolute value 1s subject to a reverse
rounding-oil process, 1t 1s only necessary to increase the
result of transformation by 1. Similarly, when a rounding
error 1s positive and 1ts absolute value 1s subject to a reverse
rounding-oil process, 1t 1s only necessary to decrease the
result of transformation by 1.

Now, description will be given of the fact that results of
transformation subject to a reverse rounding-oll process
always come 1n patirs.

If a rounding-ofl process i1s applied to the transformation
process 1n Equation (1), the rounding errors produced by the
first and fourth results of the transformation are always oppo-
site 1n sign. This 1s apparent when the fourth transformation
formula 1s rewritten as follows.
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1
1 + a?

2 (2)
(" Xg —aXy —aXs + X3) =

Xo+ X3 + (—Xo —aX| —aX, —a*X3)

1 +a*

It can be seen that the last term which produces a decimal
part has a sign opposite to that of the first transformation.
Similarly, the rounding errors produced by the transformation
result of the second and third rows are always equal. This 1s
apparent when the third transformation formula 1s rewritten
as follows.

|
1 + a?

2 (3)
(aXg+a "Xy — Xr —aXsz) =

X — X, + (aXo— X +a*X> —aX3)

1 +a*

It can be seen that the last term which produces a decimal
part 1s the same as the second transformation.

In this way, there are always two transformation results
whose rounding errors are equal in absolute value. Thus,
results of transformation subject to the reverse rounding-oif
process always come 1n pairs, but to achieve a lossless trans-
formation, only one of the two needs to be subjected to the
reverse rounding-ofl process.

The processes described above are shown 1n FIGS. 7 and 8
in the form of a flowchart.

In the figures, Steps S701 to S717 correspond to the fol-
lowing processes.

S701 1s a parameter calculation process for reducing rep-
etition of the same calculations;

S703 1s a sum-of-products computation process for calcu-
lating products of four input vectors and an integer transior-
mation matrix;

S705 1s an addition process for adding YAthe divisor to
allow rounding-oil in the next subtraction process;

S707 1s a process for dividing data, rounding the quotients
in such a way that resulting integers will be smaller than the
quotients, and obtaining results of transformation;

S709 15 a process for multiplying rounding errors by the
divisor (1+a*a);

S711 1s aprocess for judging the magnitude of the rounding
error 1n the first transformation result 1n absolute value;

S713 1s a process for judging the sign of the rounding error
in the first transformation result;

S713S 1s a process for subtracting 1 from the first transior-
mation result;

S717 1s a process for adding 1 to the first transformation
result;

S721 15 aprocess for judging the magnitude of the rounding
error 1n the second transtformation result in absolute value;

S723 1s a process for judging the sign of the rounding error
in the second transformation result;

S7235 15 a process for subtracting 1 from the second trans-
formation result;

S727 1s a process for adding 1 to the second transformation
result;

Description will be given below of the processes 1n Step
S709 and subsequent steps, which are characteristic of this
embodiment.

The reason for multiplying the rounding errors by (1+a*a)
in Step S709 1s to convert them 1nto integer values and thereby
obtain accurate values of the rounding errors. To put it the
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other way around, it 1s not strictly necessary to multiply them
by (1+a*a) as long as their accurate values can be obtained.

In Steps S711 and 721, 1t 1s judged whether each of the two
rounding errors EQ and E1 multiplied by (1+a*a) falls within
a range subject to an mnverse transformation process.

If 1t 1s found that the rounding error EOQ 1s subject to an
inverse transformation process, 1t 1s judged in Step S713
whether the rounding error E0 has a positive or negative sign.
I1 the rounding error E0 1s positive, 1 1s subtracted from the
transformation result Y 0 obtained 1n Step S707 (Step S7135),
and 11 the rounding error E0 1s negative, 1 1s added to Y0 (Step
S717).

If 1t 1s found that the rounding error E1 1s subject to an
inverse transformation process while the rounding error E0 1s
not, 1t 1s judged 1n Step S723 similarly whether the rounding
error E1 has a positive or negative sign. If E1 1s positive, 1 1s
subtracted from the transformation result Y1 obtained in Step
ST07 (Step S725), and 1T E1 1s negative, 1 1s added toY1 (Step
S727).

The above processes results 1n a lossless transformation. A
concrete calculation example will be shown below assuming
that a=8 (n=4). When the four items of input data X0, X1, X2,
and X3 have the following values, the results of transforma-
tion after rounding-oif and the rounding errors multiplied by
(1+a*a) are as follows.

Values obtained by subjecting the results of transformation
to simple rounding-oil and subsequently to an 1inverse trans-
formation are also listed for the purpose of reference. It can be
seen that they differ slightly from the values of the input data.

Input data: 3, 33, 43, 0

Results of transformation: 9, 42, 32, -4

Rounding error: -28, -29, =29, 28

Results of mverse transformation: 3, 32, 42, 0 (reference)

It can be confirmed that the first and fourth rounding errors
are opposite 1 sign and that the second and third rounding
errors are equal, as described earlier. Since the second round-
ing error of —29 1s negative 1n sign and falls within arage o1 29
to 31 (*“2n*n-1"to “2n*n-n+1"") in absolute value, 1 1s added
to the second transformation result. This results 1 a lossless
transformation as follows.

Results of lossless transformation: 9, 43, 32, -4

The processes used to restore the original data by mverse-
transforming the results of lossless transformation are exactly
the same as those shown in FIGS. 8 and 7. The results of the
inverse transiormation 1 Step S707, rounding errors pro-
duced by the inverse transformation, and results ol the inverse
transformation obtained by adding 1 to the second transior-
mation result are as follows.

Results of mverse transformation (S707): 5, 32, 43, 0

Rounding error: -28, -29, =29, 28

Results of 1mnverse transformation (after addition/subtrac-
tion of 1): 5, 33, 43,0

In this embodiment, although the first or second transior-
mation result 1s subjected to a reverse rounding-oil process,
any combination of the first or fourth transformation result
and the second or third transformation result may be sub-
jected to the reverse rounding-off process as long as the
forward transformation process and inverse transformation
process are 1dentical.

The forward transformation process and mverse transior-
mation process are identical only when the transformation
tformula in Equation (1) 1s used. If rows in the transformation
matrix are replaced, the forward transformation process and
inverse transformation process are no longer identical. How-
ever, 11 the transformation matrix 1s defined properly and the
forward transformation process 1s established, the inverse
transformation process 1s determined uniquely. Modifica-
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tions of processes made through replacements in the trans-
formation matrix are also included 1n the scope of the present
invention.

There are many methods for judging the magnitudes of
rounding errors. According to this embodiment, rounding
errors are multiplied by the divisor to handle them by integer
arithmetic which allows accurate description. However, since
actual rounding errors can be smaller than 1 1n absolute value,
they may be handled as floating point data or fixed point data
in judging their magnitudes. Furthermore, mstead of judging
the magnitudes of rounding errors in absolute value and
applying different processes depending on whether the
rounding errors are positive or negative, it 1s also possible to
judge the magnitudes of negative rounding errors and positive
rounding errors by separate methods and use different pro-
cesses based on the results of the judgment.

Although this embodiment i1s described as a data transior-
mation method, a lossless data transformation apparatus can
be implemented 1f computing units which perform arithmetic
operations are connected and made to process data, a com-
parator 1s used to judge the magnitudes of rounding errors,
and computational results are switched with a selector based
on the results of judgment, all according to the tlow 1n FIGS.

7 and 8. This 1s something those skilled 1n the art can easily
think of.

Fourth Embodiment

Whereas according to the third embodiment, it 1s judged
whether the absolute values of rounding errors fall within a
range subject to an mverse transformation process, according
to the fourth embodiment, 1t 1s judged whether to apply an
inverse transformation process based on modulo d (where d 1s
a divisor), 1.e., the remainder when the result of the sum-oi-
products computation process 1s divided by the divisor.

The basic 1dea 1s the same as that of the third embodiment,
but the fourth embodiment provides a diflerent processing
method. A flowchart according to the fourth embodiment 1s
shown 1n FI1G. 9. Steps S701 to S707 of the third embodiment
in F1G. 7 are applied to the fourth embodiment exactly as they
are, and thus only those processes which replace the pro-
cesses 1n FIG. 8 are shown 1n FIG. 9. The steps 1n FIG. 9 are
as follows.

S801 1s a process for calculating remainders when the
sum-of-products 1s divided by the divisor (1+a*a);

S811 to S814 are a process for judging whether the remain-
ders are subject to a reverse rounding-oil process; and

S821 to S824 are a process for performing a reverse round-
ing-oif process based on the results of the judgment.

The term “rounding error” below means a rounding error
multiplied by the divisor (1+a*a).

After a rounding-down process, the remainder becomes a
negative rounding error. Thus, the negative rounding error 1s
the remainder with 1ts sign reversed. On the other hand, a
positive rounding error 1s the value obtained by subtracting
the remainder from the divisor.

Thus, the positive rounding error (“2n*n—1"" to “2n*n-n+
17), after being translated into a remainder, ranges from
“In*n+n” to “2n*n+2”. The resulting value 1s used 1n the
judgment process in Steps S812 and S814.

Individual processes in FIG. 9 will be described below. In
Step S801, results are received from the process in FI1G. 7, the
first and second results of the sum-of-products computation
are divided by the divisor (1+a*a) and the quotients are
rounded 1n such a way that the resulting integers C0 and C1
will be smaller than the quotients (to put it another way, tloor
functions are found by dividing the results of the sum-oi-




US 7,716,265 B2

15

products computation by the divisor), and then remainders R0
and R1 are found using CO0 and C1. According to these cal-
culation results, the remainders fall within a range o1 0 (1nclu-
stve) to the divisor even if the dividends are negative.

In Step S811, assuming that the rounding error 1s negative,
it 1s judged whether the remainder RO falls within a range
subject to an inverse transformation process. If 1t 1s found that
the remainder R0 falls within the range, the flow goes to Step
S821, where YO0 1s updated with the sum of C0 and 1 to obtain
a quotient which has been rounded up.

In Step S812, assuming that the rounding error 1s positive,
it 1s judged whether the remainder RO falls within a range
subject to an 1nverse transformation process. If 1t 1s found that
the remainder R0 falls within the range, the flow goes to Step
S822, where Y0 1s updated with C0 to obtain a quotient which
has been rounded down.

If the remainder RO does not fall within the range under
either condition, the calculation result in Step S707 becomes
the value of YO0 as it 1s. This value has been rounded off.

In Steps S813 and S814, judgments are made concerning
the remainder R1 in exactly the same manner as 1n Steps S811
and S812. In Steps S823 and S824, Y1 1s updated according to
the results of judgments.

These are details of the processes according to the fourth
embodiment. The results obtained are the same as the third
embodiment, and thus concrete numerical examples will be
omitted.

Fitth Embodiment

According to the fifth embodiment, the lossless four-point
transformation 1s applied to a two-dimensional 8-by-8 loss-
less DCT transformation and an example application of the
lossless four-point orthogonal transformation to an encoding
process will be described.

It 1s known that eight-point DCT 1s decomposed into a
Hadamard transformation and a few two-point rotational
transformations. The two-point rotational transformations
include /16 and 37/16 rotational transformations. These
rotational transformations are placed at the end of the DCT
process.

In the two-dimensional DCT, the Hadamard transforma-
tion and two-point rotational transformations must be per-
formed from two directions: horizontal directional transior-
mations and vertical directional transformations. When a
two-dimensional transformation 1s viewed in terms of a
matrix operation, the horizontal transformation of an 8-by-8
data matrix 1s implemented by a transformation matrix by
which the data matrix 1s multiplied on the right and the ver-
tical transformation 1s implemented by a transformation
matrix by which the data matrix 1s multiplied on the lett.

Since a DCT 1s decomposed 1into a Hadamard transforma-
tion and two-point rotational transformations as described
above, a two-dimensional DCT can be implemented by mul-
tiplying the data matrix on the left and right by a plurality of
transformation matrices corresponding to the transforma-
tions. It 1s 1n the basic nature of linear algebra that the left and
right transformation matrices may be operated on in any order
as long as they are operated on beginning with the innermost
one close to the central data matrix. Thus, it 1s possible to
perform /16 and 3m/16 rotational transformation processes
from two directions lastly after completing all the other pro-
CEeSSes.

FIG. 10 shows a signal flow graph of m/16 and 3m/16

rotational transformation processes from one direction. FIG.
11A 1s a diagram in which only data subjected to a /16
rotational transformation process are indicated i 8-by-8
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data. To apply a two-point rotational process performed on
two 1items of data per column to all the eight columns, the data
in the shaded areas 1n FIG. 11A are rotated. The data sub-
jected to a rotational transformation from two directions are
indicated by shaded areas in FIG. 11B.

Similarly, the data subjected to a 37t/16 rotational transior-

mation from two directions are indicated by shaded areas in
FIG. 12.

In FIG. 11B and FIG. 12, there are four 1items of data which
are subjected to a rotational transformation from two direc-
tions. I the four items of data are denoted by X00, X01, X10,
and X11, the rotational process performed on the data from
two directions are given by Equation (4).

(YDD Ym]_[ﬂf —;3][}(00 Xﬂl](ﬂf 13]_ (4)

Yio Yu B a ANXp XuA-p «a

[ﬂ’z}fﬂﬂ —afiXo, — afiXio + £ X1 afXo + o Xop — B X1 — afX)
afXo1 — 7 Xor + & X1 — aBX11 B Xoo + aBXor + aBfXio + @ Xy,

where o=cos(n/16) and pP=sin(n/16), or a=cos(3m/16) and
B=sin(3m/16).

The two-dimensional transformation in Equation (4) 1s
rewritten into a one-dimensional transformation as follows.

¢ Yoo ) (o’ —aff —ap 182 ¥ Xo0 ) )
Yoi aff & -f -aB| X
Yio | | e = o —aB | Xio
Y X

SRR, UGZ afi  af e )u 11 /

The transformation matrix 1s turned upside down as follows.

2 2
(Y1) (T aff aff o ), Xo0 (6)
Yl'[]' '1138 _182 ':}:2 _wﬁ Xﬂl
Yo aff of =B —af| Xwo
Y X
. 400 J awz —afi —af3 )32 ja 11 /

Now, substituting c=m/V (m°+n”) and f=n/v (m”+n°) into
Equation (6),

AR (m* mn m-n n W'KXDD\" (7)
}’10 1 Ht-Ft —m2 HZ — - f Xﬂl
Yo1 T mr e m-n R —m* —m-n || Xio
\ Y00 n? —men -men m? )lelj
Since Equation (7) can be obtained by substituting a=n/m
in Equation (1) and multiplying the denominator of the frac-

tion placed before the matrix and each element of the matrix
by the second power of m, 1t can be seen that Equation (7) 1s

equivalent to Equation (1).
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Lossless transformations, which require a rounding pro-
cess 1n order to convert data into integer data, involve trans-
formation errors unlike normal linear transformations. This
means that some approximate calculations during a lossless
transformation process are permitted if the error resulting

from the approximation 1s not larger than the error resulting
from the rounding process.

Thus, the m/16 rotation is approximated by tan”* *(¥5) and
the 3m/16 rotation is approximated by tan™'(24). Errors in
rotation angles caused by the approximations are 0.533% and
—-0.178%, respectively. The ratio of 0.5 rounding error to a
255-level value 1s 0.196%. When the level value 1s small, the
rat10 increases 1n inverse proportion to the level value. In view
of these circumstances, 1t can be said that there 1s no problem
at all in approximating 37/16 rotation by tan™'(24) and that
there 1s almost no problem 1n approximating /16 rotation by
tan™'(¥5) compared to repeated rounding operations in con-
ventional methods.

When the nt/16 rotation is approximated by tan~'(V5), the
four-point orthogonal transformation matrix 1s given by
Equation (8) which results when m=>5 and n=1 are substituted
into Equation (7). This 1s equivalent to a transformation
obtained by setting a=3 in the transformation according to the
first embodiment described earlier. Therefore, the processing

method according to the first embodiment can implement a
lossless transformation.

(52 5 5 1) (8)

BITHh  Xoo )
Y10 | 5 =5 1 =5 Xol
Yoo | 32+1%21 5 1 -52 _5| Xia
Y X

 £00 k\1 -5 -5 52Jk 11 )

On the other hand, when the 37/16 rotation 1s approxi-
mated by tan™'(24), the four-point orthogonal transformation
matrix 1s given by Equation (9) which results when m=3 and
n=2 are substituted into Equation (7).

20 (3% 6 6 2%Y, Xop (9)
Yio 1 6 =3° 22 6| x,
Yo | 32422 6 22 _32 _g | Xuwo

\ Y00 u 2 _g _g 132 A X1l

In this case, a lossless transformation can be implemented
using a regular rounding-oit process both during transforma-
tion and 1inverse transformation. Specifically, this can be done
by adding 6 to the dividends, dividing them by 13, and round-
ing quotients 1n such a way that the resulting values will be
smaller than the quotients. If m and n are integers and the
difference between them 1s 1 1n the transformation of Equa-
tion (7), a lossless transformation from integer vectors into

integer vectors can be implemented by rounding oif the quo-
tients 1n a regular manner.

From the above description, it can be understood that the
lossless four-point orthogonal transformation according to
the present invention 1s applicable to part of processing in a
two-dimensional 8-by-8 lossless DCT.

Incidentally, the inventor has already proposed a two-di-
mensional 4-by-4 lossless Hadamard transformation most

suitable for a two-dimensional 8-by-8 lossless DCT (Japa-
nese Patent Laid-Open No. 2004-038451). By using the Had-
amard transformation and the lossless four-point orthogonal
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transformation according to this embodiment and applying
conventional two-point rotational transformations to other
rotational transformations, 1t 1s possible to implement a two-
dimensional 8-by-8 lossless DCT which produces smaller
rounding errors than do conventional methods.

By subjecting image data to the two-dimensional 8-by-8
lossless DC'T and subjecting the resulting transform coetfi-
cients to a quantizing process and Hulfman coding process, 1t
1s possible to obtain JPEG-encoded data as shown in FIG. 13.

If all quantizing steps are set to “1,” the lossless DCT
coellicients are converted into entropy codes directly,
enabling lossless encoding. That 1s, 11 a lossless inverse DCT
(not shown) corresponding to the lossless DCT 1s performed
during a decoding process, the original data can be restored
completely.

On the other hand, 11 a decoding process 1s performed by a
typical JPEG decoder not equipped with a lossless inverse
DCT function, the oniginal data cannot be restored com-
pletely, resulting in data superimposed with rounding errors
produced during the lossless mnverse transformation process.
However, the difference cannot be recognized visually, and
there 1s no problem when only viewing encoded original
1mages.

Lossless encoding can be carried out 11 the quantizing steps
are set to “1,” and lossy encoding with some degradation can
be carried out if the quantizing steps are set to a value larger
than “1.” This makes 1t possible to control the quality of
compressed/decompressed 1images continuously from loss-
less to lossy.

As described above, the present mvention includes: multi-
plication means for multiplying four items of vector data by a
four-by-four matrix consisting of integer elements; means for
adding integer values to results of the multiplication; and
division means for rounding results of division 1n such a way
that resulting integers will be smaller than the results of
division, wherein the adding means adds integer data smaller
than half a divisor to at least one 1tem of data. Consequently,
the present mvention can mmplement a lossless four-point
orthogonal transformation with reduced rounding errors.

Also, the present mnvention includes: multiplication means
for multiplying four items of vector data by a four-by-four
integer matrix; means for adding integer values to results of
the multiplication; division means for rounding quotients in
such a way that resulting integers will be smaller than the
quotients; error calculation means for finding rounding errors
in the quotients; means for judging whether the rounding
errors fall within a predetermined range; means for judging
whether the rounding errors are positive or negative, wherein
1 1s added or subtracted to/from one of the four quotients
based on results of the judgment. Consequently, the present
invention can implement a lossless four-point orthogonal
transformation with reduced rounding errors. Various fast
computational algorithms are available for such integer

matrices and can be used to perform transformation processes
at high speed.

As many apparently widely different embodiments of the
present invention can be made without departing from the
spirit and scope thereol, 1t 1s to be understood that the inven-
tion 1s not limited to the specific embodiments thereof except
as defined 1n the claims.




19

CLAIM OF PRIORITY

US 7,716,265 B2

This application claims priority from Japanese Patent
Application No. 2004-242634 filed on Aug. 23, 2004, which

1s hereby incorporated by reference herein.

What 1s claimed 1s:
1. A data transformation apparatus that receives four 1tems
of vector data X0, X1, X2, and X3 expressed in terms of
integers and obtains transformed data expressed in terms of 10

integers,

5

the data transformation apparatus including a circuit compris-

20
a step ol providing the vector data X0, X1, X2, and X3 held

in the holding step for use 1n the first to fourth compu-
tational steps;

a corrective computational step of adding integer data
smaller than half a divisor {1+a”} to an odd number of
the data D0, D1, D2, and D3 obtained by the first to
fourth computational step and adding a value equal to
halfthe divisor { 1+a°} to the rest of the data D0, D1, D2,
and D3, and thereby calculating correction data D0, D1',
D2', and D3' to be divided; and

an output step of dividing the correction data D0', D1', D2',

ng:

aregister that recerves and holds the vector data X0, X1, X2,
and X3; 15

a first computing unit performing an operation D0=X0+
aX1+aX2+a*X3:

a second computing unit performing an operation
D1=aX0-X1+a°X2-aX3;

a third computing unit performing an operation D2=aX0+ 20
a*X1-X2-aX3;

a fourth computing unit performing an operation
D3=a"X0-aX1-aX2+X3

wherein the coetlicient “a” 1s an odd number larger than 1,

wherein the vector data X0, X1, X2, and X3 held by the 23

register are provided to the first to fourth computing
units;

a corrective computing unit adding integer data smaller
than half a divisor {1+a”} to an odd number of the data
DO, D1, D2, and D3 obtained by the first to fourth

computing units and adding a value equal to half the
divisor {1+a®} to the rest of the dataD0, D1, D2, and D3,

and thereby calculating correction data D0', D1', D2!,
and D3' to be divided; and

a divider dividing the correction data D0', D1', D2', and D3’
obtained by the corrective computing unit by the divisor
{1+a*}, rounding results of division in such a way that
resulting integers will be smaller than the results of
division, and outputting the resulting integers as
approximate transiformed data of a matrix operation:

X 0

1+ﬂ2 (1 HZ -1 = X2 .

X3

2. A data transformation method performed by a data trans-
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and D3' obtained by the corrective computational step by
the divisor, rounding results of division 1n such a way
that resulting integers will be smaller than the results of
division, and outputting the resulting integers as
approximate transformed data of a matrix operation:

(X0

1 a -1 a* -al x1
l+a?| 4 2 -1 —al x2]
ot —a —a 1 )“X?U

3. A data transformation apparatus that recerves four items
of vector data X0, X1, X2, and X3 expressed 1n terms of
integers with m significant bits and obtains transformed data

YO0, Y1, Y2, and Y3 expressed 1n terms of integers with m
significant bits,

the data transformation apparatus including a circuit compris-
ng:

a register that receives and holds the vector data X0, X1,
X2, and X3;

a first computing unit performing an operation D0=X0+
aX1+aX2+a*X3;

a second computing unit performing an operation
D1=aX0-X1+a"X2-aX3;

a third computing unit performing an operation D2=aX 0+
a*X1-X2-aX3;

a fourth computing unit performing an operation
D3=a"X0-aX1-aX2+X3:

wherein the coellicient “a’ 1s an odd number larger than 1;

wherein the vector data X0, X1, X2, and X3 held by the

register are provided to the first to fourth computing
units;

formation apparatus that includes a circuit that receives four
items of vector data X0, X1, X2, and X3 expressed 1n terms of
integers and obtains transformed data expressed 1n terms of

integers,

the data transformation method comprising:

a holding step of recerving and holding the vector data X0,
X1, X2, and X3;

a first computational step of performing an operation
D0=X0+aX1+aX2+a*X3:

a second computational step of performing an operation
D1=aX0-X1+a*X2-aX3;

a third computational step of performing an operation
D2=aX0+a"X1-X2-aX3;

a fourth computational step of performing an operation
D3=a"X0-aX1-aX2+X3;

wherein the coetlicient “a” 1s an odd number larger than 1;
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an adder adding half a divisor (1+a”) to the data D0, D1,
D2, and D3 obtained by the first to fourth computing
units;

a multiplier multiplying an odd number of the data output-
ted from the adder by a value R1 and multiplying the rest
of the data outputted by the adder by a value R0, where
R0 1s an mteger quotient obtained by dividing 2” by the
divisor (1+a”), where n is the number of significant bits

in the operation, and R1 1s an integer value obtained by
adding 1 to R0O; and

a shifter shifting multiplication results produced by the
multiplier n bits to the right 1n order to divide the mul-
tiplication results by 2°, and outputting the resulting
integers as approximate transformed data of a matrx
operation:
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(1 a a a Y %0

1 a -1 a* -al x1
l+a2| 4 2 -1 —agll x2|
a —-a —-a 1 )“X?’f‘

4. A data transformation method performed by a data trans-
formation apparatus that includes a circuit that recerves four
items of vector data X0, X1, X2, and X3 expressed in terms of
integers with m significant bits and obtains transformed data
YO0, Y1, Y2, and Y3 expressed 1n terms of integers with m
significant bits,

the data transformation method comprising:

a holding step of recerving and holding the vector data X0,
X1, X2, and X3 1n the circuit;

a first computational step of performing an operation
D0=X0+aX1+aX2+a*X3;

a second computational step of performing an operation
D1=aX0-X1+a"X2-aX3:;

a third computational step of performing an operation
D2=aX0+a°X1-X2-aX3:;

a fourth computational step of performing an operation
D3=a*X0-aX1-aX2+X3,

Y - -

wherein the coetlicient “a” 1s an odd number larger than 1;

an allocation step of allocating the vector data X0, X1, X2,
and X3 held by the holding step to the first to fourth
computational steps;

an adding step of adding half a divisor (1+a*) to the data
D0, D1, D2, and D3 obtained by the first to fourth
computational step;

a multiplication step of multiplying an odd number of the
data outputted from the adding step by a value R1 and
multiplying the rest of the data outputted from the add-
ing step by a value R0, where R0 1s an integer quotient
obtained by dividing 2” by the divisor (14+a*), where n is
the number of significant bits 1n the operation, and R1 1s
an integer value obtained by adding 1 to R0; and

a shifting step of shufting multiplication results produced
by the multiplication step n bits to the right in order to
divide the multiplication results by 2", and outputting
the resulting integers as approximate transiformed data
ol a matrix operation:

a a a ) ypy

1 a -1 a* -al x1
l+a2|l g &2 -1 —all x2|
a —-a —-a 1 )“X?’f’

5. A data transformation apparatus, the data transformation
apparatus including a circuit comprising:
a multiply and accumulation unit that multiplies vector

data consisting of four mtegers X0, X1, X2, and X3 to
obtain four data D0, D1, D2, and D3 by a matrix below:
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(1 a a a°)
a -1 o -a
a a* -1 -a
a* —-a —-a |1 )

- b

wherein “a” 1s an even number equal to or larger than 4,
an adder that adds an integer value a*/2 or an approximate

integer value of a*/2 to the computational results four
data D0, D1, D2, and D3 to obtain four data D0', D1",

D2', and D3";

a divider that finds four quotients of the data D0', D1', D2',

and D3' using a divisor 1+a”;

an error calculation unit that finds rounding errors in the

quotients; and

a judging unit that judges whether the rounding errors fall

within a predetermined range, wherein 1 1s added to or
subtracted from part of the four quotients based on
results of the judging.

6. A data transformation method performed by a data trans-
formation apparatus that includes a circuit that performs the
method comprising:

a multiply and accumulation step of multiplying vector

data including four mtegers X0, X1, X2, and X3 by a

matrix below;

to obtain four data D0, D1, D2, and D3,

e 2

wherein “a” 1s an even number equal to or larger than 4;

a step of adding an integer value a*/2 or an approximate
integer value of a*/2 to the results of performing the
multiply and accumulation step D0, D1, D2, and D3 to
obtain D0', D1', D2', and D3";

a division step of finding four quotients of the data D0, D1,
D2', and D3' using a divisor 1+a>;

an error calculation step of finding rounding errors 1n the
four quotients D0', D1', D2', and D3"; and

a step of judging, by the circuit, whether the rounding
errors fall within a predetermined range, wherein 1 1s
added to or subtracted from part of the four quotients
based on results of the judging.

7. A apparatus data transformation apparatus according to
claim 1, wherein the data transformation apparatus 1s 1cor-
porated into a two-dimensional DCT apparatus.

8. A data transiformation apparatus according to claim 1,
wherein the data transformation apparatus 1s mcorporated
into a lossless encoding apparatus.

9. A data transformation apparatus according to claim 3,
wherein the data transformation apparatus 1s mcorporated
into a two-dimensional DC'T apparatus.

10. A data transformation apparatus according to claim 3,
wherein the data transformation apparatus 1s incorporated
into a lossless encoding apparatus.
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