United States Patent

US007711533B2

(12) (10) Patent No.: US 7,711,533 B2
Wilensky et al. 45) Date of Patent: May 4, 2010
(54) DISTRIBUTED AGENT NETWORK USING 6,449,739 B1* 9/2002 Landan 714/47
OBJECT BASED PARALLEL MODELING 2002/0022952 Al* 2/2002 Zageretal. 703/22
LANGUAGE TO DYNAMICALLY MODEL
AGENT ACTIVITIES OTHER PUBLICATIONS
U. Wilensky, “Modeling Emergent Phenomena with Starl.ogoT,”
(76) Inventors: Uri Wilensky, 734 Arbor La., Glenview, http://www.ccl.sesp.northwestern.edw/'papers/modelemerg/
IL (US) 60025; Walter M. Stroup, 1383 ModelingEmergentData.html, @CONCORD.org, Winter 2000, 16
o * pages.
24} 320 Bast, Salt Lake City, UT (US) U. Wilensky et al., “GasLab—an Extensible Modeling Toolkit for
Exploring Statistical Mechanics,” http://www.ccl.sesp.northwestern.
. . : : . edu/papers/eurologo, Proceedings of the Seventh Annual European
(*) Notice: Subject‘ to any disclaimer) the term of this Logo Conference EUROLOGO 99, Sofia, Bulgaria, (1999) 10 pages.
patent 1s extended or adjusted under 35 U. Wilensky, “Networked Gridlock: Students Enacting Complex
U.S.C. 154(b) by 2577 days. Dynamic Phenomena with the HubNet Architecture,” Proceedings of
the Fourth Annual International Conference of the Learning Sci-
(21) Appl. No.: 10/016,192 ences, Ann Arbor, M1, Jun. 14-17, 2000, 9 pages.
(22) Filed: Dec. 12,2001 (Continued)
_ o Primary Examiner—Kamini1 S Shah
(65) Prior Publication Data Assistant Examiner—David Silver
US 2002/0138242 Al Sep. 26, 2002 (74) Attorney, Agent, or Firm—Hamilton & Ternle, LLP;
Michael Rocco Cannatti
Related U.S. Application Data
. L (57) ABSTRACT
(60) Provisional application No. 60/255,537, filed on Dec.
12, 2000. A distributed network of interactive agents 1s provided
wherein remote agents interact with a central computer and
(51) Imt. Cl. with one another through an object based parallel modeling
Goot 17/50 (2006.01) language and/or an aggregate modeling language using an
GoOot 9/45 (2006.01) open client-server architecture, which enables many users to
(52) UL S, Clh oo eeieee e 703/13; 703/22 control the behavior of individual objects or agents and to
(58) Field of Classification Search 703/13 view the aggregated results on a central computer. This net-
See application file for complete search history. work of agents 1s integrated with a powertul suite of model-
(56) References Cited ing, analysis and display tools that together give agents the

U.S. PATENT DOCUMENTS

capacity to “fly” the system 1n intuitive mode, to reflect on the
emergent result of their simulation and, also, to encode their
strategies as rules which the system can then run indepen-

13 Claims, 6 Drawing Sheets

5,333,280 A * 7/1994 Weinberger et al. 714/47 dentl
5,466,200 A * 11/1995 Ulrnchetal. 482/4 Y-
6,332,130 B1* 12/2001 Notanmi etal. 705/28
6,405,135 B1* 6/2002 Adnanyetal. 702/5

205

Connect to Network

Detect input

210 —_ and Transmit

Flags

"Kind” And "Content”

213 Server Inserts Flags Into Object String
And Processes Strings in Sequence
29 22
Is 5_\
Co—Positioning and P Effect to
Effect? All Devices
No
23 Continue
Processing

Ob ject Strings

US 7,711,533 B2
Page 2

OTHER PUBLICATIONS U. Wilensky et al., “Participatory Simulations Project,” http://www,

. .. . , _ ccl.tufts.edu/ps/, 22 pages.
U. Wilensky, et al., “Participatory Simulations Project: Networked-

based Design for Systems Learning—NSF: Title: Parallelism and
Emergent Activities in a Classroom Network—A Collaborative

Match,” 1999, 13 pages. * cited by examiner

U.S. Patent

90—\ 98

:

May 4, 2010

Sheet 1 of 6

117

Colculator
A

93
Client LAN Client
[lnpt;t/Dispi-:;y] Server
92 R9

wa L]
» . h-.“u

R e=RBTVE

: - H-.-
. '
L 4 . J

- ..“
I"H
- ¥
4 w
- . b 3 []
[
Xibed — . S .

]
o -
J-
L

NE TWORK

N—Logo Server

107

Memor
Ob ject
Based

Parallel
Modeling

Longuoge

US 7,711,533 B2

111

Calcutator
D

| /D

113 96
Colculator l

115*\

Calcuiutor
C

.

103

IProcessorI

Network
interface

Application

Aqgreqote
Modeling
Longuage

Interface

110
| /O Controlier

FIG.T

U.S. Patent May 4, 2010 Sheet 2 of 6 US 7,711,533 B2

205
Connect to Network

Detect Input
210 and Transmit

"Kind” And "Content”
Flags

213 Server Inserts Flags Into Object String
And Processes Strings in Sequence
22(22
Is
There Yes Broadcast
Co—Positioning and Effect to
Effect? All Devices
23(Continue

Processing
Object Strings

FIG. 2

U.S. Patent May 4, 2010 Sheet 3 of 6 US 7,711,533 B2

330\
N—Logo (Java) ClassLogo (Java)

N—Logo | Server
StarLogo T '

Superset Port

to Network — Calculators

320

FIG. S

S T Al — el
—

400 N—Logo Application 402 N-Logo SERVER 420
412

Hardware
Talks eerememeed IR S —

to Network Lalculator
.CBL/CBR

401 StarLlogo T Extended

Superset Port Capabilities

414 Talks to Other
T T e s S L L L T O e wwﬂmr!
405 | Java Aggregate Modeling . .EEEF:,;,
_ AppllCthDn (STELLA—-lee) ete.
HubNet
Clussr:%;mgused App;{liu):ﬂtmn?m T w% ?ﬂ(fm::-tﬂf—c{us;;um ﬁ;ﬁorks g 418
Jove Graphing App ‘ nterne i
410 » XML Document (2) if 3' - School District /State Networks ;/_
.Jam Athcutim {(3) i i - Administrotive Databases f
Escot) i T R ——
Dther Applications Layers of Networking

F1G. 4

"y ”
.

w ¥
|
]

. 1
m
i e
A
-
oo

| :

| T T '

s], om—
.

o
[]
‘o

o
I
- ¥
.

US 7,711,533 B2

.ﬂﬂﬁll.ll el
it el e v

12 Aot —
LI AR .._H.wh_#k.__....!ﬁﬂi.

F1G.ob

e i

.
i a2y = . [i o) M
TR 'm..miﬁ_..._mi RS s
« ! 1
N ,
T . r
. A |

Sheet 4 of 6

.
. B

. ,.“
- _ﬂ
-.-

May 4, 2010

1 - e g gt giintngal e Sty il P LT J gy (1T
g e mn.r.h.%_wﬂﬁlﬁr_ i .ﬂ,wm-.a

-I
. b

.
.
.
»
.
r."
-
S
~

F1G.Da

.'...'.—..'.i_‘.'r'! .'-'l-'i-'li.
B 4 m B] " B I a m i W
- Y o W

- u

ESLR . A R T N S e + o o,
CI . NG TR A = B
% . ' -] K
-y S—— k

- . 1
. - -
o | o |

U.S. Patent

FIG. 5d

F1G.5c

U.S. Patent May 4, 2010 Sheet 5 of 6 US 7,711,533 B2

200

501
202

903
204
908

912

TawTIevelT curve: r1""Ft *_:1__J?‘ -z, i'; L
s20—» (N[9B[TIV]

022" /524" /52¢ ;
221 523 525 52752
30—

CL-USER: Kiledregion | |

FIG.6

US 7,711,533 B2

Sheet 6 of 6

May 4, 2010

U.S. Patent

-
17
-

-

347.8491
turtle—sha...

QO A 1D
O Mo mUNo —r——000
N“_.M.mw o0) —_ | - O | | |
R B >
..W = "
L O
= o Z
4 =3
.m 43 OO
rnw, o O pw X0
Iooqqe LLCM H*.?.
OO0 O00L OO0OOwilo §m__ e
OX>ITum =X By R e
P———— m.__...,...h-.:

Eﬁw L

FI1G. 7

US 7,711,533 B2

1

DISTRIBUTED AGENT NETWORK USING

OBJECT BASED PARALLEL MODELING

LANGUAGE TO DYNAMICALLY MODEL
AGENT ACTIVITIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present case claims the benefit of U.S. Provisional
Application Ser. No. 60/255,537 entitled “Distributed Agent
Network Using Object Based Parallel Modeling Language To
Dynamically Model Agent Activities,” filed Dec. 12, 2000.

BACKGROUND

1. Technical Field

The present invention relates to the field of computer sys-
tems. In one aspect, the present invention relates to a network-
based architecture for enabling individual agents to 1nterac-
tively model and simulate complex dynamic systems. The
present invention can be beneficially applied 1n many appli-
cations, including enabling participatory simulations of com-
plex dynamic systems to model emergent activities of the
system.

2. Description of Related Art

Conventional participatory simulations are simulations
whereby 1ndividual agents act out the roles of individual
system elements and then see how the behavior of the system
as a whole emerges from these individual behaviors. The
emergent behavior of the system and 1ts relation to individual
participant actions and strategies can then become the object
ol collective discussion and analysis.

An early example of a participatory simulation that was
used 1in the context of systems dynamics and systems learning
was The Beer Game as developed by Jay Forrester and his
systems dynamics group at MIT in the early 1960’s. The
game does much to highlight the ways in which costly unin-
tended behaviors of a system (1n this case beer inventory 1n a
distribution system) can emerge from participants attempting
to act rationally 1n their localized role (e.g., as beer retailer,
wholesaler, distributor, or producer). A number of other par-
ticipatory simulation applications were developed at this
time, an example of which was FishBanks (Meadows, 1986),
that was developed as an “interactive, role-playing simulation
in which groups are asked to manage a fishing company.” In
FishBanks, students try to maximize their assets 1n a world
with renewable natural resources and economic competition.
These programs are examples of an aggregate modeling
approach to participatory simulation.

More recently, new classes of so-called “object-based”
simulation activities have been developed (Resnick & Wilen-
sky, 1993; 1998; Wilensky & Resnick, 1995). In these so-
called “StarPeople” activities, participants typically play the
role of “ants” in an anthill stmulation, moving around the
room and exchanging “messages.” After participating in these
StarPeople activities, students observe the emergence of glo-
bal patterns from their local interactions. These pattern
become the objects of retlection and discussion.

Throughout much of the history of participatory simula-
tions, computational technologies have played a central role.
For example, a class of computational “tlight simulators™
were developed at MIT to be used by individuals and groups
of managers to gain experience flying a complex dynamic
system like a modern business. More recently, multi-player
networked versions of the beer game have been implemented
(Coakley et al, 1995) and 1t 1s now even possible to immerse
onesell 1n a multi-player versions of the game on the Internet

10

15

20

25

30

35

40

45

50

55

60

65

2

(Powersim Corporation, 1998). A multi-player calculator-
based version of the beer game participatory simulation also
has been implemented and used with both school-aged and
adult learners (Wilensky & Stroup, 1998, 1999). Manage-
ment trainers have argued that there 1s a need for a tighter
coupling between computer simulations and user experience.
In possibly the first known use of the term participatory
simulations, Diehl (1990) constructed systems that gave users
more control over and participation within the stmulations by
allowing users to input more real word decisions and view
output of familiar reports. These simulations were modeled
using “aggregate” finite-difference tools like STELLA.

In contrast to the “aggregate” finite-difference computer
modeling tools used to analyze simulations like The Beer
Game, object-based parallel computer modeling languages
(OBPML), such as StarLL.ogo and StarLogoT (Resnick, 1994;
Wilensky, 1995; 1997b), have previously been developed.
For example, Borovoy, Colella and fellow researchers at MIT
(Colella et al, 1998; Borovoy et al, 1996; 1998) have devel-
oped wearable computational badges (or “thinking tags™) that
allow users to move freely while communicating information
between badges. Colella (1998) developed, implemented and
researched student learning with one of the first instances of
a participatory simulation supported by a thin layer of com-
puting technology. Disease propagation models have been
implemented by a number of researchers and curriculum
developers (Colella et al, 1998; Stor & Briggs, 1998).

Further limitations and disadvantages of conventional sys-
tems will become apparent to one of skill in the art after
reviewing the remainder of the present application with ref-
erence to the drawings and detailed description which follow.

SUMMARY OF THE INVENTION

A significant innovation in the present invention has been
the provision of complementary use of the two fundamental
kinds of dynamical systems modeling—aggregate and
object-based approaches. Provision of a modeling system
requires careful attention to the relationships between macro-
and micro-levels of understanding a system, to thinking in
levels, to systems thinking and to the analysis of systems like
gases. Through the use of participatory simulations and atten-
tion to the kinds of constructs learners articulate and extend in
relation to both the aggregate and object-based modeling
environment, the present mvention provides an improved
mechanism that allows these distinct but inter-related forms
ol analyses to interact and complete one another.

Complexity 1s the study of systems 1n which phenomena
exhibit complex behavior, the growth of a snowflake crystal,
the perimeter pattern of a maple leaf, the dynamics of the Dow
Jones or of a fourth grade classroom. These are all systems
which can be modeled as composed of many distributed but
interacting parts. They all exhibit nonlinear or emergent
qualities. Such complex systems can be modeled and ana-
lyzed using the object-based parallel modeling language
(OBPML) aspect of the present invention. OBPMLs afford a
probabilistic and statistical approach to modeling which, in a
distributed network embodiment of the present invention, can
provide an improved method and system for simulating com-
plex and dynamic systems

The present mvention provides the capability to author
networked activities, and 1n a selected embodiment, also pro-
vides an authoring capability for both modeling and simula-
tion through use of a higher level language, such as N-Logo.
For example, by providing a parallel modeling, interface and
scripting design language, both modeling and simulation
authoring are enabled.

US 7,711,533 B2

3
BRIEF DESCRIPTION OF DRAWINGS

FI1G. 1 1s an exemplary embodiment of a network of remote
devices and a central server system illustrating a distributed
simulation system according to the present mmvention that
coordinates remote mputs at the server to efficiently simulate
a complex system of remote and independent 1inputs.

FI1G. 2 1s an exemplary flow diagram of the operation of the
distributed network of devices that can be used to simulate a
complex dynamic system of remote nodes.

FI1G. 3 1llustrates an exemplary architecture for networking,
multiple calculator input devices through a server to emulate
a parallel computer network using an object-based modeling
functionality 1n accordance with the present invention.

FIG. 4 1llustrates an alternate exemplary architecture for
networking multiple client input devices through a server to
emulate a parallel computer network using an enhanced mod-
cling functionality in accordance with the present invention.

FIG. 5 illustrates a traific simulation application of the
present invention.

FIG. 6 illustrates an exemplary display device output
depicting the results of a participatory simulation embodi-
ment of the present invention.

FIG. 7 1llustrates an exemplary monitoring feature of the
modeling aspect of the present invention.

DETAILED DESCRIPTION OF DRAWINGS

FI1G. 1 1llustrates an exemplary embodiment of the present
invention 100 wherein multiple input devices (here shown as
calculatordevices 111,113, 115, 117 and client machines 91,
93, 98) are in communication with a centralized server 109
which processes inputs received from the devices 1n conjunc-
tion with an object-based parallel modeling language com-
ponent to enable the coordinated and interactive simulation of
a complex and dynamic system comprised of inputs from the
multiple remote devices. In the embodiment shown in FIG. 1,
cach remote device (for example, calculator B 113) repre-
sents and controls an individual object as a component 1n the
overall system being simulated. Information specific to the
particular object being controlled 1s stored at the remote
device 113 as object control node information 114. An
example of such object control node information includes
position related information for the object 1n a simulation of
the physical interaction between multiple objects 1 a given
space.

In accordance with a selected embodiment, the server 109
of the present invention may be implemented using a MacOS
computer with a PowerPC processor, an Apple Guide system
soltware extension and at least 14 megabytes of available
RAM.

As shown 1n FIG. 1, each of the remote devices 111, 113
can be connected together through a network 80 to the cen-
tralized server 109, where 1t will be understood that such
connections can include traditional computer hardwire con-
nections, connections through an intranet or internet network,
any of a variety of wireless networking technologies, and will
also include a direct connection with the server device. As
also 1llustrated in FIG. 1, the present invention can be used 1n
connection with remote client devices 91, 93, 98, which are
themselves connected through a local area network 90, server
89, which in turn 1s directly or indirectly in communication
with the server 109. While the remote object devices can be
connected 1n any of a variety of ways to a centralized server
device, 1n a selected embodiment of the present invention,
individual hardware client devices (such as calculators, CBL/
CBRs or other input devices) communicate with the central-

10

15

20

25

30

35

40

45

50

55

60

65

4

1zed server device using a standard network communication
protocol (such as the TCI/IP protocol).

At the central server 109, the mputs from the various
remote devices are collected and aggregated together using
modeling, analysis and display tools that together are used to
simulate 1n real time the complex interplay between the indi-
vidual nodes or objects controlled by the remote devices. By
providing an object-based parallel modeling language 108 at
the server 109, users at the remote “nodes” can readily encode
individualized strategies as rules which the system can then
run independently of the other nodes, while simultaneously
determining the resulting interplay between the various nodes
and broadcasting the result to all remote devices. In a selected
embodiment, the object-based parallel modeling language 1s
an enhanced port of the StarLL.ogoT modeling language that
enables users to build object-based models of systems con-
sisting of thousands of distributed elements.

By centrally locating the modeling, analysis and display
tools atthe server 109, the aggregated results of the individual
objects’ behavior (controlled by the remote device mnputs) can
be efficiently simulated, thereby avoiding the complexity and
time delays associated with distributing such functionality
amongst the remote devices. In a selected embodiment, the
remote devices are relatively “thin™ or “light” 1 terms of
soltware functionality, containing at least the capability to
detect and transmit mput mformation (which can include
input data and rules) at a high level, and also display or
otherwise communicate information relating to the perfor-
mance of the individual object and/or 1ts relationship in the
system as a whole. For example, the remote device can be a
graphing calculator wherein visual information 1s depicted on
the display 96. In the example of simulating multiple objects
within a given physical space, each remote device may
include a display of where the object associated with that
device 1s located within the physical space, and may also
include additional information indicating where all other
objects within the system are located. In addition, or 1n the
alternative, a centrally located display 101 shows position
information for all objects that are being simulated. Regard-
less of whether the aggregated object information 1s dis-
played (whether at a central display 101 or at the remote
display devices 92, 94, 96), the actual assimilation of object
data into a single display 1s accomplished at the central server
site 109, and then broadcast, iI necessary, to the remote
devices, thereby improving speed of the simulation and
reducing the computational complexity of having the assimi-
lation and display functionality distributed across plural
remote devices.

By providing an object based parallel modeling language
at the central server location, a selected embodiment of the
present invention enables the remote devices to efficiently
and readily implement individualized control input for each
object 1n the form of strategies or rules, and then to readily
simulate the combined effect of the various 1nputs, strategies
and rules from the distributed objects into a single simulation.

-

T'he computation needs required for providing a real time
simulation of interaction between multiple 1ndependent
objects would traditionally be implemented using parallel
computing techniques wherein a supercomputer assigns a
separate processor chip to each object, or alternatively, could
be emulated on a single computing machine 1n the form of a
program with specified inputs. The present invention presents
in one aspect an advance over such conventional approaches
by emulating the parallel computer approach with a single
central computer and plural distributed remote computing
devices, where the central computer assimilates input data,

US 7,711,533 B2

S

rules and strategy inputs from the remote computing devices,
cach of which represents a single independent object or
“node” 1n the system.

Thus, the distributed simulation network using the object
based parallel modeling language capability of the present
invention as depicted i FIG. 1 could be used in any of a
variety of settings where complex inputs are collected from
remote data entry stations for assimilation and display. One
example would be 1n a classroom environment where the
remote devices are calculators used by students to input
objection information for a classroom experiment. Another
use for the present invention would be 1n business environ-
ments where sales data 1s collected from remote locations.
The present invention can also be beneficially used in busi-
ness school environments wherein students interact in an
environment where marketing or sales related information
and rules are input from remote devices operated by students
and then assimilated for collective display. An exemplary
method 1n accordance with the present invention 1s shown in
FIG. 2 for a particular object or “node” that 1s controlled by a
particular remote computing device. As shown 1n FIG. 2, the
method of the present invention can be understood as begin-
ning when a remote device connects to the overall network at
step 205. When a remote computer device detects some form
of mnput at the device at step 210 (such as numeric keypad
entry or other sensory device imnputs), the remote device
detects the mput and then transmits to the network 80 or
centralized server 109 a flag indicating the “kind” and *“‘con-
tent” of the information that has been detected. It will be
appreciated that additional or alternative information can be
transmitted upon detection of input at a remote device, such as
a time stamp 1ndication or some other programming compo-
nent characterizing the detected input. In the example dis-
cussed herein of a simulation mvolving the positioning of
multiple objects within a given space, the detected input could
consist of a position movement indicator (such as an up,
down, left or right signal) and/or a rule for controlling the
motion of the object (such as an 1nstruction to always move
two spaces to the right whenever the object 1s co-positioned
with another object 1n the physical space). These simplified
examples will illustrate the functionality of the present inven-
tion to those skilled 1n the art concerning step 210.

Once the remote device detects and transmits information
at step 210 to the centralized network or server, the server will
be configured to recerve and identily the transmitted infor-
mation. In a preferred embodiment, the server 109 includes a
network mtertace 110 (FIG. 1), such as the TCP/IP commu-
nication protocol commonly used in internet communica-
tions. Upon detection of flag information from a remote com-
puting device, the server 109 locates 1n memory the program
string relating to the particular remote device and inserts the
transmitted information 1nto the object string for that device
at step 215. By maintaining a separate program string for each
objectthat1s being simulated 1in the system, the server 109 can
cifectively emulate the parallel processing capabilities previ-
ously implemented with supercomputer technology wherein
a separate processor would be dedicated to each object or
node. In contrast, the present invention maintains 1n memory
a string for each object in the system, and then addresses 1n
sequence the object strings to process the information or
instructions contained therein, as shown at step 215.

One aspect of processing an object string 1n accordance
with the present invention 1s to determine whether there 1s any
interplay between a given object or node and any of the other
objects or nodes being simulated within the system. In the
example discussed herein of a simulation of multiple objects
within a given space (for example, a population simulation

10

15

20

25

30

35

40

45

50

55

60

65

6

involving two types of objects where one object (a 1ox) oblit-
erates a second object (a rabbit) when the two objects are
co-positioned), the processing could include a determination
of whether there 1s co-positioning between objects and what
cifect would result, as shown 1n FIG. 2 at step 220. In this
example, the server would take a string for a particular object,
determine 1ts current position iformation and compare that
object’s position mformation with the position information
for other objects to determine whether any two objects are
co-positioned, and 11 so what effect, 1t any, should result. In
this example, 11 two rabbits were co-positioned, there would
be no effect, but 1f a fox and rabbit object were co-positioned,
the rabbit object would be obliterated so that only a fox object
remained.

Once the centralized simulation server determines for a
particular object string that there 1s an effect that results from
a co-positioning at step 220, that effect would be broadcast to
all of the remote devices at step 225 to convey information
about the result, and then the server would continue to process
in sequence the remaining object strings. I however there 1s
no co-positioning effect found at step 220, then the server
processor continues processing in sequence the remaining
object strings, as shown at step 230 in FIG. 2.

By processing individual object strings 1n sequence and
then broadcasting only the required information to the remote
devices, the heavy computational requirements of monitoring
the result of multiple, independent objects and their interplay
under a given set of rules and strategies are efficiently and
centrally implemented using a single server device. As a
result, the remote devices can be relatively “thin” and need
not mdividually calculate and correlate the possible effects
resulting from changes in object status imformation. This
aspect of the present mvention provides a benefit over any
system which would distribute the heavy computational
requirements to the remote devices, thereby duplicating such
soltware functionality and increasing the complexity of the
system simulation to allow for remote correlation of the inde-
pendent objects and any updates of the status information
therefor.

It will be appreciated that the processing aspect of the
present invention can encompass any of a variety of compu-
tational decisions. For example, each object could have a rule
associated with 1t that results 1n an effect even when there 1s
no co-positioning. For example, in the population model
described herein, 11 a “fox” object 1s not co-positioned over a
“rabbit” object within a predetermined amount of time, the
rule could require that the fox “object” expires. Likewise, if a
rabbit object 1s not co-positioned with a fox object for a
predetermined amount of time, or alternatively, 11 a rabbait 1s
co-positioned with another rabbit object, the rabbit object
could duplicate 1tself, thereby creating another object in the
system. With these additional rules, the growth and decline 1n
populations of the respective 1ox and rabbit objects will pro-
ceed and be simulated to demonstrate the interplay between
the two types of objects.

Shown 1n FIG. 3 1s an alternate embodiment of the present
invention wherein multiple calculators 350 are networked
together through an interface 340 to a centralized server 330
which allows the individual calculator devices to interact in a
centrally coordinated simulation. The server 330 includes an
interface 320 for communicating with a modeling language,
which 1n the example shown in FIG. 3 1s a java-based mod-
cling language that 1s implemented as an enhanced port of the
StarLogoT language 310, to provide an object-based model-
ing language. Such a high level modeling language can be
used by the individual calculators 350 to provide a real-time
dynamically interactive simulation of mputs at the central

US 7,711,533 B2

7

server 330, thereby allowing the individual calculators to
control objects within a complex dynamic system and further
allowing the resultant iterplay to be centrally coordinated
and displayed under control of the central server device. In the
embodiment shown 1n FIG. 3, the centralized server emulates
a parallel processing environment by distributing individual
object functionality at a high level to the calculator devices
350, but centrally coordinating the processing and interplay
between the distributed objects at the server 330.

An alternative embodiment of the present invention 1s 1llus-
trated in F1G. 4 as a centralized network 400 herein a plurality
ol hardware clients 420 are connected to a central server 410
which in turn communicate through an interface 412, 414 to
an object based parallel modeling language component 401
and an aggregate modeling language 403. In a selected
embodiment, the modeling language components of the
server device 410 use an enhanced port of the StarLogoT for
the parallel modeling language 401 and use a java-based
aggregate modeling language based on the STLLA program
for the aggregate model component 403. The parallel and
aggregate components 401, 403 provide a powerful modeling
language tunctionality for the server 410 to allow emulation
of true parallel computing performance for the distributed
hardware clients 420. In addition, the server 410 of the
present invention includes an mterface 414 for communicat-
ing with other applications and networks. For example, addi-
tional remote networks for a team, such as the internet, local
area networks and remote databases can be connected to the
parallel emulation server 410 of the present invention,
thereby enabling access to additional resources and/or addi-
tional remote devices for participation in the server simula-
tions. In addition, the interface 410 allows the server 410 to
access other applications relevant to the simulation of inter-
est, such as classroom-based applications 416. In a selected
embodiment, the classroom applications 416 comprise high
level programming language applications for eflicient inter-
face to the network of hardware clients 420, such as java
graphing applications, XML document applications, java
applications, and other higher level programming language
applications that interface with the world wide web.

In accordance with the embodiment of the present inven-
tion depicted 1n FIG. 4, the plurality of powerful computa-
tional tools, including an object based parallel modeling lan-
guage, an aggregate modeling language and other
applications (for example, Model-It, Agentsheets, Cocoa,
SWARM) are connected across a central server 410 using
server interface functionality which effectively emulates par-
allel computing approach for managing and networking a
plurality of remote hardware client devices 420.

In accordance with the distributed architecture of the
present invention, the network can be advantageously used in
classroom settings where students can participate as elements
in a simulation of a complex dynamic system. Using the open
client-server architecture embodiment of the present mven-
tion, multiple users at the “Nodes”™ can control the behavior of
individual objects or agents and view the aggregated results
on a central computer known as the “Hub.” This network of
nodes 1s integrated with a powertul suite of modeling, analy-
s1s and display tools that, together, give the capacity to “tly”
the system 1n 1intuitive mode, to reflect on the emergent result
of the simulation and to encode student strategies as rules
which the system can then run independently.

In accordance with a selected embodiment of the present
invention, a workable minimal subset of functionality 1is
implemented consisting of 1) a suite of networked graphing
calculators; 2) a server, which talks to the calculator network
and 3) an object-based parallel modeling language, N-Logo,

10

15

20

25

30

35

40

45

50

55

60

65

8

which 1s an enhanced port of the StarLogoT language that
enables users to build object-based models of systems con-
sisting of thousands of distributed elements. The system and
method may further integrate aggregate modeling languages,
such as STELLA, to thereby facilitate a dialogue between
object-based and aggregate approaches. Additional analysis
and display tools can be incorporated into the network to
allow a much wider array of node hardware including arbi-
trary Internet hosts.

A potential barrier to wide-spread adoption of networked
activities 1s the difficulties in authoring new PSA. Among
other disadvantages associated with conventional solutions,
the present ivention addresses this problem by use of a
Java-based development effort to apply the object-based
modeling capabilities to a distributed network of input
devices. In a selected embodiment, a Java-based development
of the N-Logo modeling language extends the object-based
modeling capabilities of StarLogoT by having the N-Logo
language also serve as a scripting language for the creation of
the networked participatory simulations of the present inven-
tion.

Just as object-based models are extensible, the network-
based emergent activities created in N-Logo will be exten-
sible. With the present invention, the parallelism of Starl-
ogoT and N-Logo as modeling environments 1s being
significantly extended to also serve as a way of coordinating,
and authoring activities for a space ol networked computing
devices (nodes).

In a selected embodiment, the network 1s designed with the
assumption that the nodes have significant resident function-
ality (at least that of a programmable graphing calculator).
The network layer implements flexible communication pro-
tocols that include the ability to upload and download data
sets, upload and download program (e.g., applets), monitor
key-presses at the hand-held level, support real-time 1nterac-
tion as 1n network computer games, and form collaborative
groups ol various sizes (€.g., peer to peer, small groups, and
whole class modes). In addition, a selected embodiment of
the network system of the present invention includes an up-
front computer (the “hub’) capable of addressing the network
of nodes and a display capability (e.g., a projection system)
that enables an entire class to view the simulation.

In one embodiment, the network of the present invention
includes a suite of networked graphing calculators. The resi-
dent functionality of the calculator, including capabilities of
interacting with real world devices such as sensors and
motors, CBLs and CBRs, allows for awiderange of PSA to be
implemented in the classroom. The system can support fully
networked modes of iteraction with and among learners.
While synchronization between the data on the hand-held
calculators and the Hub 1s supported in this model, the model
can also support on-going, real-time interactivity and
exchange. This fully-networked system 1s intended to support
a range of different topologies for collaboration among learmn-
ers including point-to-point, small group and whole class
interaction. This more inclusive range of interactivity and
richly textured forms of collaboration cannot be supported in
models based exclusively on the synchronization model of
uploading data from after a simulation has been run.

Participatory simulations enabled by the present invention
stand to 1ntroduce fundamentally new and significant forms
of reasoning and insight to school-based curricula. For
example, a participatory simulation that 1s meaningful and
where the class as whole has a goal they are aiming to accom-
plish can help students develop knowledge that 1s even more
situated and embodied than it would be from just being pre-
sented with the scenario alone. The students’ active engage-

US 7,711,533 B2

9

ment 1n a participatory simulation improves both student
motivation and understanding. The sense of ownership 1s
turther extended by the fact the students analyze the results
they helped to create. A network of handheld devices supports
real-time 1nteraction in this stmulation. Real-time 1nteraction
represents a significant improvement 1n efficiency and in the
range of participatory simulations that can be supported over
simply uploading data after a simulation has been completed.

As an example of a participatory scenario, the students are
instructed that the mayor of the City of Gridlock has commis-
sioned the class to improve the traffic situation 1n the city. The
traffic simulation 1s projected in front of the class on the
central display 101, and begins running with cars heading
through the city. The city starts off with no traffic lights, as
shown 1n FIG. 5a. Graphs depicting the average speed of the
cars passing through the city and the cars’ wait time can also
be depicted on the central display 101 (not shown 1n FIG. §).
On first 1impressions, it looks like everything 1s running
smoothly for this city. The average velocity 1s relatively high
and the average wait time 1s close to zero.

The problem 1s that the initial stmulation doesn’tkeep track
of when cars are occupying the same location on the grid. In
real life, two (or more) cars trying to occupy the same location
1s called a crash. If the simulation at the central display 101
now shows these crashes—denoted with shaded crosses at the
intersections—every intersection quickly has a red cross on
it, as depicted 1n FI1G. 5b. Trallic comes to a complete stand-
still. The 1n1tial introduction of the participatory simulation 1s
completed by adding a single traffic light at one of the inter-
sections. When the simulation 1s run again, the teacher can
turn the lights at the intersection green (g) and red (r) using a
switch on the modeling interface (green in one direction
means red 1n the other). In addition to illustrating the use of
the switch, 1t also soon become apparent that accidents re-
emerge at every mtersection except the one—the one with the
traffic light.

Now trailic lights are placed at every intersection and stu-
dents can control these lights using the up-arrow keys on their
calculators. After each student locates his/her intersection
and practices changing the lights, cars are mtroduced. The
good news 1s that there are no accidents 1n the City of Grid-
lock. The bad news 1s that tratfic 1s backing up all over the city
(FIG. 5c¢), the average speed through the city 1s low, the
average wait time 1s high, and the Mayor would not be
pleased. Students then explore various ways of coordinating
their lights. Very subtle questions about logic, timing, phase
and synchronization are engaged as students struggle both to
create ways of talking about the traffic that are meaningiul
and to implement strategies making use of this language.

One of the strategies 1s to synchronize the lights with a
phase shift. In FIG. 5d, the lights in the top row turned green
in the same direction together, then the lights 1n the second
row waited a few seconds (phase shift) and turned green. This
pattern cascades downward as traffic flow 1n that direction 1s
synchronized. Using the network, data from the various trials
can be handed back out to the students. This coordinated
approach does improve traific flow.

One of the benefits of the distributed network of the present
invention 1s that students will actually develop a range of
strategies 1n this participatory simulation. For example, stu-
dents often develop a “trailic cop” strategy. Each “light”
(traific cop) would look to see 1n which direction there were
more cars and let that direction go. This strategy has signifi-
cant counter-intuitive consequences. Other students have
begun to explore the 1dea of “smart cars” where accidents
might be avoided 11 the cars had enough built-in intelligence
to figure out 1f a car coming from the side was going to hit 1t.

10

15

20

25

30

35

40

45

50

55

60

65

10

The smart car would then take steps to avoid the accident and
might be able to do that without having to come to a complete
stop (as with a traflic light). As part of preparing a report of
recommendations to the mayor of Gridlock, the student strat-
egies need to be analyzed. Using the network, data can be
casily collected and exchanged. The present invention readily

supports the distributed analyses of these different student
strategies.

In a selected embodiment of the present invention, the

il

handheld devices (calculators) have significant resident func-
tionality which provides analytical and comparative func-
tionality. As a result, mathematically meaningful tools are
available to every student 1n the form of graphs, tables, his-
tograms, etc. The flow of information and the location of the
tools of analysis do not remain “centralized” 1n this model,
but 1s 1nstead a multi-directional (student to student, teacher
to student, student to teacher, etc.) flow and exchange of
analyses. In the traific example described with reference to
FIG. 5, various metrics for measuring the improvement 1n
traffic flow can be developed by students and a set of final
recommendations can be developed as a report (or collection
of reports) to the mayor. The reports will incorporate ele-
ments of both object-based and aggregate analyses. For stu-
dents, the question of “what 1s math for” would be answered
in a way that 1s interesting and engaging precisely because
participatory simulations are complex. In this way they are
more like the highly complex, dynamic world students expe-
rience outside of school and outside of traditional math and

science education.

In connection with the present invention, a programmable
modeling environment 1s provided for building and exploring
multi-level systems. In a selected embodiment, an extended
and enhanced port of an “object-based parallel modeling
language™” (OBPML), such as StarLogoT, 1s provided as a
programmable modeling environment for building and
exploring multi-level systems. StarLLogoT was developed at
the Tults University Center for Connected Learning and
Computer-Based Modeling. It 1s an extended version (a
superset) of StarLogo 2.0.4, which was developed by the
Epistemology and Learning Group at the MIT Media Labo-
ratory. With such a modeling component, the behavior of
thousands of objects can be controlled 1n parallel. Each object
has i1ts own variables and state. This allows one to model the
behavior of distributed and probabilistic systems, olten sys-
tems that exhibit complex dynamics. With the present inven-
tion, a Java implementation of a modeling language 1s used,
and can be run on PCs, Macs, Unix machines and other
computing devices.

In accordance with an selected embodiment of the present
invention, an extended Java port to StarLogoT 1s provided as
both a programming language for novice programmers and a
modeling language for building models of complex systems.
By constructing models of the local interactions of many
distributed agents, users can explore the global patterns that
arise out of these interactions—so-called “emergent phenom-

2

Clld.

In decentralized systems, orderly patterns can arise with-
out centralized control. Increasingly, researchers are choos-
ing decentralized models for the organizations and technolo-
gies that they construct in the world, and for the theories that
they construct about the world. But many people continue to
resist these 1deas, assuming centralized control where none
exists—Ior example, assuming (incorrectly) that bird flocks
have leaders. The present invention 1s designed to help stu-
dents (as well as researchers) develop new ways of thinking
about and understanding decentralized systems.

US 7,711,533 B2

11

When implemented as an extension of the Logo program-
ming language, the present invention builds upon the features
of creating drawings and graphics by giving commands to a
graphic “turtle” on the computer screen, and extends these
teatures to allow control of thousands of graphic turtles 1n
parallel. In addition, the turtles” world can be computation-
ally active, 1 that programs can be created for “patches” that

make up the turtles’ environment. Turtles and patches can
interact with one another—ifor example, the turtles can be
programmed to “sniff” around the world, and change their
behaviors based on what they sense 1n the patches below.

In a selected embodiment, the StarLogoT language 1s

advantageously used as the OBPML component 108 of the
present invention. StarLogoT includes three main types of
“characters”: turtles, patches and observers.

Them Turtles are graphic creatures that can represent
almost any type of object: an ant 1n a colony, a car 1n a traffic
jam, an antibody in an immune system, a molecule 1n a gas.
Each turtle has a position, a heading, a color, and a “pen” for
drawing. However, more specialized traits and properties can
be added. In accordance with the present invention, the
actions and interactions of thousands of turtles can be con-
trolled 1n parallel.

Patches are pieces of the world in which the turtles live. A
patch can be a passive objects upon which the turtles act, but
can also be executable commands that act on nearby turtles
and patches. In one embodiment, patches are arranged 1n a
orid, stmilar to cellular automata.

The observer “looks down™ on the turtles and patches from
a birds-eye perspective. The observer can create new turtles,
and 1t can monitor the activity of the existing turtles and
patches.

The modeling component 108 of the present invention
allows users to create models of individual elements of a
system. As will be appreciated, this component can be imple-
mented with object-based languages, object-based-parallel
languages, individual-based languages, embodied languages
and agent-based languages. While the description of the
embodiment described below refers to the constituents—the
turtles, patches, and the observer—as “agents,” 1t will be
appreciated that the present ivention applies to allow for
simulations of complex systems of independent actors,
whether described as objects, individuals, embodiments,
agents or otherwise.

As shown 1n the exemplary simulation depiction in FIG. 6,
the simulation workspace consists of several windows and
toolbars. The main interface window 501 contains buttons,
sliders, and monitors that permits direct interaction with Star-
LogoT programs. The Main Toolbar 1s used to create and
inspect interface objects. The sample interface 501 contains
interface elements, including buttons (e.g., 502, 503, 504),
sliders (e.g., 505,506,507, 508), and monitors (e.g., 509, 510,
511).

The exemplary workspace 500 depicted on the central dis-
play 101 may also include a main toolbar 520 which 1s used to
create mnterface elements. For example, icon 527 1s used for
selecting the paint pools and 1con 528 1s used for selecting a
shapes palette. A new interface element can be created by
clicking on the appropriate tool on the main toolbar 520, and
dragging out a rectangle i the interface window 501 to
choose a location. For example, a button can be created by
clicking on the button icon 522 on the main toolbar 520, and

10

15

20

25

30

35

40

45

50

55

60

65

12

then dragging out a rectangle 1n the interface window 501. In

one embodiment, the button functionality 1s provided with
two modes: once-buttons and forever-buttons. When a once-
button 1s clicked, 1t executes 1ts instructions once. When a
forever-button 1s clicked, 1t executes its instructions over and
over, until the button 1s clicked again. Forever-buttons are
particularly useful for executing multiple 1nstructions 1n par-
allel. As shown 1n FIG. 6, forever-buttons 503 are identified
by a looping pair of arrows on the face of the button, and are
sometimes known as “loopers.”

The main toolbar 520 may also include variable switches
nat are set to either 1 or 0. The modeling component permits
e creation of a switch by clicking on the toolbar item 524
nat looks like a small switch, and then naming the vaniable
nat the switch corresponds to.

Textboxes can also be created as part of the modeling
component for placement in the interface to explain certain
controls. To create a textbox, the text icon 526 on the toolbar
1s selected, and then the text 1s entered in the window.

Slidersicons (e.g., 505, 506) are also provided as part of the
modeling component functionality to create new global vari-
ables. When a slider 1s created through the modeling compo-
nent, the modeling program creates a procedure for that shider
that reports the value of the slider/vaniable. Minimum and
maximum values of the slider 1n the dialog box can be
selected, as can the current value of the slider. To create a
slider as shown 1n FIG. 6, click on the slider icon 523 on the
main toolbar 520, and then drag out a rectangle 1n the inter-
face window 501.

A further feature optionally provided by the modeling
component of the present invention 1s the momitor 1icons (e.g.,
509, 510, 511). As shown 1n FIG. 6, momitors are used to
display the value of an observer expression. The modeling
component permits the creation of a monitor by clicking on
the monitor icon 5235 1n the main toolbar 520, and then drag-
ging out a rectangle in the interface window 501. In the
monitor field, any instruction can be entered that returns a
value. In a selected embodiment, the monitors are regularly
updated every 0.5 seconds.

The exemplary workspace 500 depicted on the central dis-
play 101 may also include a graphics window 540 where the
simulation 1s shown. This window 1s where the StarLogoT
turtles move and draw. The turtles move on top of a grid of
patches. When a turtle moves ofl the edge of the screen, 1t
“wraps” around to the other side. A turtle can be moved
directly by dragging it with the mouse.

The modeling component may also provide for command
entry and execution through a command center mnput window
530 where commands for StarL.ogoT are entered and run. In
addition, a procedures window 1s provided for entry of pro-
cedures for the turtles, patches, and observer. The procedures
window 1s the main programming console for StarLogoT
models.

Upon double-clicking a turtle 1n the graphics window 540,
a turtle monitor 700 will appear as shown in FI1G. 7, showing
the turtle’s state variables (and their values). The lower half of
the monitor window 1s a command center 720, like the above-
described command center window 530. However, command
center 720 only accepts turtle commands, and it only controls
the single turtle that1t1s monitoring. This feature 1s extremely
usetul for debugging turtle behavior.

t
t
t
t.

US 7,711,533 B2

13

The turtle monitor 700 shown 1n FIG. 7 1s displaying infor-
mation about turtle #87. It shows the state variables of the
turtle: color, Xcor, Ycor, heading, shape, and breed. The
monitor 700 may also show and also shows user-created turtle
variables. Turtle monitors may be regularly update while the
model program 1s executing. Values 1n the turtle monitor 700
can also be directly edited by the user by clicking on a variable
value, typing in the new value (or any StarLLogo expression),
and pressing return (or click out of the box). A similar monitor
functionality 1s provided for path monitors.

While the system and method of the present invention has
been described 1in connection with the preferred embodiment,
it 1s not mtended to limit the ivention to the particular form
set forth, but on the contrary, 1s intended to cover such alter-
natives, modifications and equivalents as may be included
within the spirit and scope of the mvention as defined by the
appended claims so that those skilled 1n the art should under-
stand that they can make various changes, substitutions and
alterations without departing from the spirit and scope of the
invention 1n 1ts broadest form.

What 1s claimed 1s:
1. A modeling device for a sitmulation of complex dynamic
systems, comprising;:
a plurality of remote agents, each remote agent comprising;:
logic to recerve input data;
object control node information corresponding to per-
formance of the remote agent and a relationship of the
remote agent to the simulation;
control instructions to convert the input data into the
control node information; and
logic to transmit the object control node information and
the control instructions to a server computing device;
and
the server computing device, comprising:
an object-based parallel modeling language component
that collects object control node information and con-
trol mstructions corresponding to each of the remote
agents of the plurality of remote agents and coordi-
nates the interaction of the remote agents based upon
the collected object control node information and
control instructions;
processing logic for generating interactive simulation
information based upon the interaction of the remote
agents by processing a string corresponding to each of
the remote agents to 1dentily first or second co-posi-
tioning elfects, where the first co-positioning eifect
deletes a first object associated with a first remote
agent 11 the first object 1s not co-positioned with
another object within a predetermined amount of
time, and where the second co-positioning effect
duplicates a second object associated with a second
remote agent 1f the second object 1s co-positioned
with another object;
logic to transmit interactive simulation information to
the plurality of remote agents; and
a central control panel comprising a graphical display
for viewing the simulation information.
2. The modeling device of claim 1, the server computing
device further comprising:
modeling tools;
analysis tools; and
display tools for displaying the interactive simulation
information on a centrally located display at the server
computing device.

10

15

20

25

30

35

40

45

50

55

60

65

14

3. The modeling device of claim 1, wherein the interactive
simulation information 1s transmitted to a particular remote
agent only 1f the simulation information of the particular
remote agent 1s impacted by control node information and
control instructions of a second remote agent.

4. The modeling device of claim 1, wherein the input infor-
mation comprises:

input data; and
control instructions corresponding to the remote agent.

5. The modeling device of claim 1, wherein the graphical

display also displays mnput information and status data for a
selected remote agent of the plurality of remote agents.

6. The modeling device of claim 1, the central control panel
turther comprising:

a plurality of user iput devices for providing direct inter-
action with the object-based parallel modeling language
component by enabling a user to input information and
control instructions, both corresponding to a selected
remote device.

7. A method of producing a coordinated and interactive
simulation of a dynamic system, comprising the steps of:

defining a set of remote agents, wherein each remote agent
performs the steps of:

receiving input data; and
transmuitting the imnput data and control instructions relat-

ing to a corresponding remote agent of the set of
remote agents to a server computing device;

collecting the input data and control instructions from each

of the remote agents of the plurality of remote agents at
the server computing device;

coordinating the interaction of the remote agents at the
server computing device to generate interactive simula-
tion information based upon the input data and the con-
trol instructions from each remote agent by processing a
string of input data and control instructions correspond-
ing to each of the remote agents to 1dentity first or second
co-positioning effects, where the first co-positioning
clfect deletes a first object associated with a first remote
agent 11 the first object 1s not co-positioned with another
object within a predetermined amount of time, and
where the second co-positioning effect duplicates a sec-
ond object associated with a second remote agent 11 the
second object 1s co-positioned with another object; and

transmitting interactive simulation information based upon
the coordination of the interaction of the remote agents

from the server computing device to the plurality of
remote agents.

8. The simulation method of claim 7, the simulating step
comprising the steps of:

analyzing the input data corresponding to a particular
remote agent based upon control instructions corre-

sponding to the particular remote agent;

modeling the interactive simulation information based

upon an interaction between the analyzed imput data
from the remote agents; and

displaying a simulation based upon the interactive simula-
tion 1nformation.

9. The simulation method of claim 7, wherein the interac-
tive simulation information 1s transmitted to a particular
remote agent only 1f the simulation information for the par-
ticular remote agent 1s impacted by control node information
and control nstructions of a second remote agent.

US 7,711,533 B2

15 16
10. The simulation method of claim 7, further comprising 12. The simulation method of claim 11, further comprising
the step of: the step of:
defimng sets of control instructions, each set of control displaying on the central control panel input information
instructions corresponding to a remote agent of the plu- 5 and status data for a selected remote agent of the plural-
rality of remote agents; and ity of remote agents.
input to each particular remote agent the set of control 13. The simulation method of claim 11, further comprising
istructions corresponding to the particular remote the step of:
agent. entering input information and control 1nstructions, both
11. The stimulation method of claim 7, further comprising 1o corresponding to a selected remote device, at the server
the step of: computing device.

displaying on a central control panel coupled to the server
computing device a graphical display of the interactive
simulation 1nformation. S I T

	Front Page
	Drawings
	Specification
	Claims

