US007710993B1
a2 United States Patent (10) Patent No.: US 7.710,993 B1
Burton, I1I et al. 45) Date of Patent: May 4, 2010
(54) PSEUDO WIRE PROCESSING IN A PACKET (56) References Cited
FORWARDING DEVICE U.S. PATENT DOCUMENTS
(75) Inventors: Charles Frederick Burtonj IILJ (jaryj 2004/0141506 Al1* 7/2004 KiImM coovvnvivininnnnnnns 370/395.31
NC (US): Tulasi S. Veguru, Sunnyvale 2005/0147114 Al* 7/2005 Stewart et al. 370/432
CA (US), Meera Siva Kasinath " 2005/0226253 Al* 10/2005 Parkeretal. 370/395.42
(US); Meera Siva Kasinathan, 2006/0007859 Al* 1/2006 Kadambi et al. 370/229
Bangalore (IN) 2006/0098660 Al* 52006 Paletal. 370/395.51
(73) Assignee: Extreme Networks, Inc., Santa Clara, * cited by examiner
CA (US) Primary Examiner—Ayaz R Sheikh

Assistant Examiner—Tarell Hampton

(*) Notice: Subject. to any disclaimer,. the term of this (74) Attorney, Agent, or Firm—Blakely Sokoloff Taylor &
patent 1s extended or adjusted under 35 7 afman

U.S.C. 154(b) by 210 days.

(57) ABSTRACT
(21) Appl. No.: 11/933,032

A method 1s provided for pseudo wire processing 1n a packet

(22) Filed: Oct. 31, 2007 forwarding device in which a packet 1s processed based on
whether the ports through which the packet 1s transmitted are
(51) Int. CL. real or pseudo wire ports. The inbound and outbound port
HO4L 12/28 (2006.01) information 1s encoded using a predefined range of index
HO4L 12/56 (2006.01) values such that index values falling within one range of
HO04J 3/16 (2006.01) values are used for passing real port information, and imndex
HO04J 3/22 (2006.01) values falling within another range of values are used for
Gool’ 15/173 (2006.01) passing pseudo wire port information. The mdex values are
(52) US.CL 370/419; 370/399; 370/395.53: used 1n a manner that facilitates efficient pertormance of
370/469; 709/238 pseudowire processing for the packets in the switch fabric
(58) Field of Classification Search 370/419, component of the packet forwarding device.
370/399, 395.53, 469; 709/238
See application file for complete search history. 5 Claims, 13 Drawing Sheets

100 — PSEUDOWIRE PROCESSING OVERVIEW

<

102 \| REAL INBOUND P SEH[E’O 104
PORT PACKETS P' ‘GHRZT

SWITCH 108
112
110 ADDRESS FDB
"\| FILTER/PACKET
PROCESSOR 114
ILM

SWITCH FABRIC

Y

118 ™\ OUTPUT TAG
PROCESSOR

120\| RreEar OUTBOUND ool VR~
PORT PACKETS Minied

124

U.S. Patent May 4, 2010 Sheet 1 of 13 US 7,710,993 B1

100 — PSEUDOWIRE PROCESSING OVERVIEW

™~
< 108
102 ..
\| REAL | INBOUND P %IL;{[};O 104
PORT PACKETS DORT

v
SWITCH 108

112

1o ADDRESS > FDB
\| FILTER/PACKET
PROCESSOR 114

» JIM

SWITCH FABRIC
Y

118 _ OUTPUT TAG
PROCESSOR

120\ PSEUDO 122

REAL OUITBOUND
> WIRE
PORT PACKETS PORT

FIG. 1

U.S. Patent May 4, 2010 Sheet 2 of 13 US 7,710,993 B1

200 - PSEUDOWIRE PROCESSING
COMPONENTS OVERVIEW

% 1101 119

ADDRESS » DB
FILTER/PACKET
PROCESSOR 114
CHIP > ILM

v

20z “\\ INGRESS

ABSTRACT PORT

INDEX
(API)

204

EGRESS
\ PORT TAG
INDEX
(PTI)

118

vy /

_—

OUTPUT TAG (OT) PROCESSOR

2

MULTICAST (MC) 206 ouTPuUT
RAM _ TAG
INDEX
OT_MC RAM 208

MC LIST '
210

OUTBOUND
PORT NUMBER

FIG.
2B

FIG. 2A

U.S. Patent May 4, 2010 Sheet 3 of 13 US 7,710,993 B1

200 — PSEUDOWIRE PROCESSING
COMPONENTS OVERVIEW (CONT’D)

3

FIG.
2A

218 220
v [/S

OUTBOUND
PORT
NUMBER

202\ I ;[222 | /‘224

INGRESS FCHO ITRUNKING
ABSTRACT PORT RAM
| > KILIL
INDEX _: PROCESSOR OUTPUT
(APP]) ' PORT(S)

LOAD
BALANCING
PROCESSOR

228
v |

FINAL
OUTBOUND
PORT
NUMBER(S)

FIG. 2B

U.S. Patent May 4, 2010 Sheet 4 of 13 US 7,710,993 B1

300 — PSEUDOWIRE PROCESSING
LOGIC OVERVIEW

302

DOLES

PACKET REQUIRE f o
UNICAST MULTICAST
MULTICAST
PROCESSING

e

“UNICAST

306
f303
PACKET - A

BOUNDFORA > YES || ooy

PSEUDOMiIRE PORT - PORT (FIG. 5)
NO
y
310

OUTBOUND REAL

PORT (FIG. 6)

FIG. 3

U.S. Patent May 4, 2010 Sheet 5 of 13 US 7,710,993 B1

400 - MULTICAST PSEUDOWIRES
LOGIC OVERVIEW

N

USE PTI AS AN INDEX TO THE
START ENTRY OF THE MC LIST
ENTRIES

EGRESS
“04°\| PORTTAG
INDEX

(PTI)

MC LIST 104~
A 4

START ENTRY

406\ 403\

COPY |
COUNTER MEPIR

'

LIST ENTRY 1

7N\
4104

LIST ENTRY 2

2
4108

A 4
LISTENTRY N

oy
410C | —

U.S. Patent May 4, 2010 Sheet 6 of 13 US 7,710,993 B1

FIG.

4A 400 - MULTICAST PSEUDOWIRES
LOGIC OVERVIEW (CONT’D)

T e

READ COPY COUNTER AND
MULTICAST POINTER FROM THE
START ENTRY

414
| /

SET OTI = CONTENTS OF MPTR
PLUS ENTRY NUMBER

416

/303

PACKET
BOUND FOR A

PSEUDOWIRE PORT

OUTBOUND
> PSEUDOWIRE
PORT (FIG. 5)

YES

-~
Y
OUTBOUND REAL | |31
PORT (FIG. 6)
418 422
ROCESSEL YES [

END

ENTRIES = COPY
~_COUNTER o~

420 \

NEXT MPITR € NO

FIG. 4B

U.S. Patent May 4, 2010 Sheet 7 of 13 US 7,710,993 B1

300 - OUTBOUND PSEUDOWIRE PORT

% (502

COMPUTE O11 FROM:

2021 » PTI
» PW OFFSLT TO THE OT RAM
» PWLOAD BALANCE HASH VALUE

INGRESS
ABSTRACT
PORT |
INDEX
(API)

ES (506

PERFORM PSEUDOWIRE
ECHO KILL CHECKING
(FIG. 7)

508

PACKET

S
? A o >

\ et .

A {
TRUNKING USE OTTTO LOOKUP OT RAM >
RAM

OUTBOUND PORT NUMBER AND ACCESS
ourpPur

TRUNKING RAM - ALL OUTBOUND
PORT(S) PORTS FOR AN AGGREGATED LINK

f 1
DETERMINE FINAL OUTBOUND PORT
BASED) ON LOAD BALANCE HASH,

INGRESS OFFSET, ROUND ROBIN, ETC.

YES

218

FINAL
OUTBOUND
PORT(S)

Y 514

224

FIG. 5

U.S. Patent May 4, 2010 Sheet 8 of 13 US 7,710,993 B1

600 - OUTBOUND REAL PORT
N

“a /602

SET OTI = PTI, OR FORMULTICAST
PACKLETS USE THE OTI COMPUTED
FROM THE MC LIST ENTRIES

/604
USE OTI TO LOOKUP OT RAM -

OUTBOUND PORT NUMBER AND

ACCESS TRUNKING RAM 2 ALL
OUTBOUND PORTS FOR AN ?
AGGREGATED LINK '

218

1

TRUNKING
RAM
OUTBOUND

PORT(S)

606

INGRESS
ABSTRACT
PORT
INDEX
(API)

INBOUND

NO

YES 608

202 Y g

PERFORM REAL PORT
ECHO KILL CHECKING
(FIG. 8)

610

YES PACKET

NO 612

' f

DETERMINE FINAL OUTBOUND PORT |
BASED ON LOAD BALANCE HASH, |
INGRESS OFFSET, ROUND ROBIN, ETC. |

FINAL

OUTBOUND
PORT(S)

224

FIG. 6

U.S. Patent May 4, 2010 Sheet 9 of 13 US 7,710,993 B1

700 — PSEUDOWIRE ECHO KILL

Q? f 704

/ 702
FGRESS
COMPUTE EGRESS ABSTRACT ABSTRACT
PORT INDEX (EGRESS_API) > PORT
FROM THE COMPUTED OTI INDEX

202

1

INGRESS
ABSTRACT
PORT
INDEX
(INGRESS_API)

706 708

INGRESS_API
IN CORE PW

. P

EGRESS API
IN CORE PW

RANGE
9

YES

NO

- i -~
v /

INGRESS_API
IN SPOKE PW RANGEL

0 s 714

» KILL THIS
PACKET

716
RETURN

INGRESS_API

FIG. 7

U.S. Patent May 4, 2010 Sheet 10 of 13 US 7,710,993 B1

800 - REAL PORT ECHO KILL

<
202 1 218 \
INGRESS
ABSTRACT TRUNKING
PORT RAM OUTPUT
INDEX PORT(S)
(INGRESS_API)

Y

DOES 502

INGRESS_API

NO

ANY OF THE OUTPUT

PORT(S)
o

YES

Y

ECHO
KILL THIS
PACKET

804

US 7,710,993 B1

Sheet 11 of 13

May 4, 2010

U.S. Patent

ACLS

MICT
+ LSO eEM

1LO

Lt

JBURY yider 3
a41m opnasd %

_m

1ASHO Md L & » s

E .#\ M—. ;,,,,f,,,, v .5
Moez | 10 N

-~
N
y -
-‘-FI‘__.-I'
___.-I"
.

‘F\é ‘_H. ;.....a ;,.a.. ..._._...__,,_ ,,,..._...f
-f,.r - .._,.......;.
SRINEN S A 70 IR WO\
3 ,,,,.J, . \ \
*, T Y, "
......,.__ .,
....,.. 5
™, ~ R
.,.,, “ fﬂ..f
" ..,..,I..
,,._,,,,,ff r.r,.,, ~,

006 WVIOVIA ONIdJdVIN ILO <- ILILd

6 OId

INT

H !
NV
MotT A - NREL D) |
(M8z1) LLd S ee

ddp MBS ISYDILLINA
Y IST'T DN
Y

- (lo611iLo)
- ISTT DN |
| NV
YATLO
mm_bmm“

e __D_' p -,

— -—— m

I1d
JSYOLLTNIN

£ 1SVDINN

,,
™

| : N B J
,,,,,,,,,,,,,, __ ,,,,,,,,,,,, ,;,,,,,,, m—r_.h— ~H~ ..u,u&.\U
O /,,,_Sn 1] LLd Y
O\ LSVIINN U Olsen)
) , N
N adueyy
,,.,Hf,, ,;f,, “—m5r .H_.,—‘: z
.,.,,,, ", : ..;..,
,,;.,,,,, fﬁ “
............_.. " . “ ...,...... %
.,f, _.....f . _
o /,, .
. Dseree? J aBuey
A it ~ m ,,
el DlTe) osuey 1SeDIUN
_ . _ 4- m.HTﬁ. Oﬂ.ﬂm.m& e - Hr._.LﬁH
| o 1SVDINN v

A9GC
aduey L

< o1 11d o
aguey [I

U.S. Patent May 4, 2010 Sheet 12 of 13 US 7,710,993 B1
From
Process OUTPUT TAG PROCESSOR EXAMPLE
Controller 1000
(PC)
PTI
UNICAST
MC Check PTI S OT RAM
- > T
128K x 1 S TMx 72
PTI-—>O—[f|j:;?-'--—---“--“->* External
. | 7 DDR
Multicast T SRAM
) OUTBOUND
;,f-f”friori tgf“x Y PORT NUMBER
.*[\ ~~._Che CK_;_,fe~-*”"f' I'H }
High o~ Low Egress LB
,"y ‘ Link Translation /
Echo Kill RAM
Multicast Multicast K x 200
High Low
Queue Queue
H&_ ff;
x& ,r/
N / =cho / Jumbo
Kill
Check
MC List
Processor ‘Y
Backplane
LB
. 4 Link
OT MC Trasnilggon
RAM
TMX7 2
External
DDR SRAM
Y
To
Queue
Manager
(QM)

FIG. 10

US 7,710,993 B1

Sheet 13 0of 13

May 4, 2010

U.S. Patent

cLL1
dOVA/_UALNI
AHOMILIN

Ll "OId

SOLL SNA

0111

dOVHOLS

vivd

9Ll

O/1

rOLL

AdOWITW

NIVIA

COLL

HOSSHAD O}

N 0011

US 7,710,993 Bl

1

PSEUDO WIRE PROCESSING IN A PACKET
FORWARDING DEVICE

FIELD OF THE INVENTION

The present invention relates to the field of computer net-
works and internetworking communications technologies. In
particular, the present invention relates to processing packets
in a network supporting pseudo wires.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as 1t appears 1n the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The following notice applies to the software and data as
described below and in the drawings hereto: Copyright©
2007, Extreme Networks, Inc., All Rights Reserved.

BACKGROUND AND RELATED ART

A switch 1s a packet-forwarding device, such as a bridge
(layer 2 switch) or a router (layer 3 switch), that determines
the destination of individual data packets (such as Ethernet
frames) and selectively forwards them across a packet
switched network (such as an IP or MPLS packet switched
network) according to the best route to their destination. The
best route 1s associated with one of a number of ports on the
packet-forwarding device, which are the device’s external
interface to the network.

In a network that supports pseudo wire emulation, the ports
on the packet-forwarding device may include both real ports
and pseudo wire ports. Pseudo wires are used to emulate
native wire-line services, such as Ethernet, over a packet
switched network (see, Pseudo Wire Emulation Edge-to-
Edge (PWE3) Architecture, RFC 3985, March 2003). In gen-
eral, a real port refers to a physical port on the packet-for-
warding device through which packets may be transmitted,
such as an Ethernet port. A pseudo wire port refers to a virtual
port associated with one or more pseudo wires through which
packets may be transmitted.

Packets transmitted to and from a packet-forwarding
device through a pseudo wire port generally travel through a
tunnel across the packet-switched network; the packet-for-
warding device 1tsell may be unaware whether the packets
transmitted through 1ts ports are transmitted using real ports
or pseudo wire ports.

In today’s packet-forwarding devices, much of the packet
forwarding 1s performed in the switch fabric. The switch
tabric 1s a hardware component of the packet-forwarding
device, and thus provides high-speed forwarding perfor-

mance. The packets transmitted through the pseudo wire
ports, however, typically require additional pseudo wire pro-
cessing to provide proper forwarding, not all of which 1s
capable of being performed in the switch fabric of a typical
packet forwarding device. For example, the pseudo wire trai-
fic may require special echo kill or load balancing processing.
As aresult, the additional pseudo wire processing 1s typically
performed in software rather than in the switch fabric, which
can 1mpair the efficiency of the forwarding function of the

10

15

20

25

30

35

40

45

50

55

60

65

2

packet forwarding device, especially when handling large
volumes of packets transmitted through pseudo wire ports.

SUMMARY

According to one aspect of the mvention, a method and
system 1s provided for pseudo wire processing 1n a packet
forwarding device in which a packet 1s processed based on
whether the ports through which the packet 1s transmitted are
real or pseudo wire ports. The pseudo wire processing 1s
performed 1n a manner that facilitates carrying out all or part
of the processing in the switch fabric component of the packet
forwarding device.

According to one aspect of the invention, a packet process-
ing component of a packet forwarding device determines
whether an ibound packet has been transmitted through a
real port or a pseudo wire port. The packet processing com-
ponent further determines whether an outbound packet will
be transmitted through a real port or a pseudo wire port.

According to one aspect of the invention, the packet pro-
cessing component passes the mbound and outbound port
information to a switch fabric component of the packet for-
warding device using index values, referred to 1n thus appli-
cation as abstract port imndexes (API) when referring to
inbound, or 1ngress, port information, and port tag indexes
(PT1) when referring to outbound, or egress, port information.

According to one aspect of the invention, the range of
values used for passing the inbound port information span
predefined ranges such that index values falling within one
range of values are used for passing real port information, and
index values falling within another range of values are used
for passing pseudo wire port information.

According to one aspect of the mvention, the range of
values used for passing the imbound port information are
further subdivided into predefined ranges including a core
pseudo wire range and a spoke pseudo wire range that indi-
cate whether the inbound packet has been transmitted through
a core or spoke pseudo wire port.

According to one aspect of the invention, the range of
values used for passing the outbound port information also
span predefined ranges, but rather than passing real and
pseudo wire port information, the predefined ranges are used
for passing multicast and unicast information such that index
values falling with one range of values are used for indicating
that an outbound packet requires multicast processing, and
index values falling with another range of values are used for
indicating that an outbound packet requires unicast process-
ng.

According to one aspect of the invention, the switch fabric
component of the packet forwarding device comprises,
among other components, and output tag processor compo-
nent that uses the index values contaiming the inbound and
outbound port information, 1.e., the API and PT1, to determine
how to process the outbound packet.

According to one aspect of the mvention, the output tag
processor component uses the outbound port information,
1.e., the PT1I, to determine a new 1index value, referred to 1n this
application as an output tag index (OTI), that indicates
whether the outbound packet should be transmitted through a
pseudo wire port or a real port.

According to one aspect of the invention, for packets
requiring multicast processing, the output tag processor uses
the PTT as an index to a multicast list having entries that are
used to determine multiple ones of the new OT1 values. For
example, the output tag processor uses the PT1 as an index to
access the first entry 1n the multicast list, and pointers con-

US 7,710,993 Bl

3

tained 1n the entries are used to access subsequent entries until
the list1s exhausted. Each entry 1s used to determine one of the
new OT1 values.

According to one aspect of the invention, the new OTI
values span a predefined range such that index values falling
within one range of values are used to specily real port infor-
mation, and index values falling within another range of
values are used to specily pseudo wire port information.

According to one aspect of the invention, the OTI values
may be used as an index to an entry in the output tag memory
portion of the switch fabric to look up the outbound port
number when the OT1 value falls within the range used to
specily real port information. Otherwise, the OTI value 1s
used to compute the outbound; pseudo wire information.

According to one aspect of the invention, the output tag
processor mitiates echo kill processing for outbound packets
when both the inbound port information, API, and the out-
bound port information, OTI, indicate that the packet 1s trans-
mitted homogeneously through the same type of port, 1.¢.,
real to real or pseudo wire to pseudo wire. Echo kill process-
ing need not be mmtiated for packets transmitted heteroge-
neously through different types of ports, 1.e., real to pseudo
wire, or pseudo wire to real.

According to one aspect of the invention, packets transmit-
ted homogenously through pseudo wire ports are echo killed
when both the ingress and egress pseudo wire ports are 1den-
tical, as well as when they are not 1dentical but both fall within
the core pseudo wire range. However, packets transmitted
homogeneously through real ports are echo killed only when
both the imngress and egress real ports are 1dentical.

According to one aspect of the invention, for outbound
packets that have not been echo killed, the output tag proces-
sor determines the final outbound port based on load balanc-
ing, including a load balancing hash value, an ingress offset,
a round robin scheme or the like.

In addition to the aspects and advantages of the present
invention described in this summary, further aspects and
advantages of the invention will become apparent to one
skilled in the art to which the invention pertains from a review
of the detailed description that follows, including aspects and
advantages of an apparatus to carry out the above and other
methods.

BRIEF DESCRIPTION OF DRAWINGS

The present mnvention will be described by way of exem-
plary embodiments, but not limitations, illustrated in the
accompanying drawings in which like references denote
similar elements, and 1n which:

FIG. 1 1s a block diagram illustrating certain aspects of
pseudo wire processing in a packet-forwarding device in
accordance with an embodiment of the invention;

FIG. 2A-2B are block diagrams 1llustrating in further detail
certain other aspects of pseudo wire processing 1n a packet-
forwarding device 1n accordance with an embodiment of the
invention;

FIGS. 3-8 are flow diagrams 1llustrating certain aspects of
a method to be performed by a packet-forwarding device

incorporating pseudowire processing in accordance with an
embodiment of the invention;

FIG. 9 1s a mapping diagram illustrating an example of
index conversion for pseudowire processing in accordance
with an embodiment of the invention;

FIG. 10 1s a block diagram illustrating an example imple-
mentation of an output tag processor incorporated 1n a packet

5

10

15

20

25

30

35

40

45

50

55

60

65

4

forwarding device for processing packets transmitted over
pseudowires in accordance with an embodiment of the inven-
tion; and

FIG. 11 1llustrates one embodiment of a suitable comput-
ing environment in which certain aspects of the invention
illustrated in FIGS. 1-10 may be practiced.

DETAILED DESCRIPTION OF THE INVENTION

In the following description various aspects of the present
invention, a method and apparatus for a pseudowire process-
ing 1n a packet forwarding device, will be described. Specific
details will be set forth in order to provide a thorough under-
standing of the present invention. However, 1t will be apparent
to those skilled in the art that the present invention may be
practiced with only some or all of the described aspects of the
present invention, and with or without some or all of the
specific details. In some 1nstances, well known architectures,
steps, and techniques have not been shown to avoid unneces-
sarily obscuring the present invention. For example, specific
details are not provided as to whether the method and appa-
ratus 1s implemented 1n a router, bridge, server or gateway, or
as a software routine, hardware circuit, firmware, or a com-
bination thereof.

Parts of the description will be presented using terminol-
ogy commonly employed by those skilled in the art to convey
the substance of their work to others skilled 1n the art, includ-
ing terms of operations performed by a computer system or a
packet-forwarding device, and their operands. As well under-
stood by those skilled 1n the art, these operands take the form
of electrical, magnetic, or optical signals, and the operations
involve storing, transferring, combiming, and otherwise
mampulating the signals through electrical, magnetic or opti-
cal components of a system. The term system includes gen-
eral purpose as well as special purpose arrangements of these
components that are standalone, adjunct or embedded.

Various operations will be described as multiple discrete
steps performed 1n turn in a manner that 1s most helpful 1n
understanding the present invention. However, the order of
description should not be construed as to imply that these
operations are necessarily performed in the order they are
presented, or even order dependent. Lastly, reference
throughout this specification to “one embodiment,” “an
embodiment,” or “an aspect,” means that the particular fea-
ture, structure, or characteristic that 1s described is included in
at least one embodiment of the invention, but not necessarily
in the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner in one or more embodiments.

FIG. 1 1s a block diagram illustrating certain aspects of
pseudo wire processing in a packet-forwarding device in
accordance with an embodiment of the invention. As 1llus-
trated, inbound packets to a packet forwarding device such as
switch 108 may be transmitted over a real port 102 or a
pseudowire port 104. The packets may be transmitted using a
forwarding protocol such as the Internet Protocol (IP) or the
MultiProtocol Label Switching (MPLS). An address filter/
packet processor chip 110 in the switch 108 operates 1n con-
junction with a forwarding data base (FDB) 112 and/or an
inbound label map (ILM) 114 to determine whether the
inbound packet was transmitted through one of the real ports
102 or the pseudowire ports 104, and likewise, to further
determine whether the outbound packet 1s to be transmaitted
through one of the real ports 102 or the pseudowire ports 104.
The address filter/packet processor chip 110 encodes this port
information into indexes that are made available to an output
tag processor 118 1n the switch fabric 116 component of the

US 7,710,993 Bl

S

switch 108. The output tag processor 118 1s then able to
access the indexes to perform pseudowire processing on the
packets based on the encoded port information. Upon com-
pleting the pseudowire processing, the switch 108 subse-
quently transmits the packets as outbound packets 124
through their designated outbound real port 120 or pseudo
wire port 122, as appropriate.

FIGS. 2A-2B are block diagrams illustrating in further
detail certain other aspects of pseudo wire processing 1n a
packet-forwarding device in accordance with an embodiment
of the invention. As noted with reference to FIG. 1, the
address filter/packet processor chip 110 operates 1n conjunc-
tion with the FDB 112 and/or the ILM 114 to determine
whether the inbound packet was transmitted through one of
the real ports 102 or the pseudowire ports 104, and likewise,
to further determine whether the outbound packet 1s to be
transmitted through one of the real ports 102 or the pseudow-
ire ports 104. The address filter/packet processor chip 110
encodes this port information into indexes that are made
available to an output tag processor 118 in the switch fabric
116 component of the switch 108. The indexes include an
ingress abstract port index (API) 202 in which to encode the
inbound port information, and an egress port tag index (PT1)
204 1n which to encode the outbound port information. In a
typical embodiment, the API 202 and P11 204 index values
span a predefined range of values such that index values
falling within one range of values are used for representing
real port information, and index values falling within another
range of values are used for representing pseudowire port
information. In one embodiment, the index wvalues are
encoded as a bit field that 1s large enough to accommodate
256K values. The range of values may be further subdivided
such that one portion of the range 1s reserved for packets
requiring unicast processing, and another portion of the range
1s reserved for packets requiring multicast processing.

In one embodiment, the output tag (OT) processor 118 may
be comprised of several sub-components, including a multi-
cast (MC) random access memory (RAM) component 206, an
OT MCRAM component 208 in which a MCl1st 210 1s stored
containing entries for packets requiring multicast processing.
The output tag processor 118 further comprises logic for
mapping a given PTI to an output tag index (OT11) 214. The
OTI 214 1s yet another index value that 1s used to access
entries stored in another component of the OT processor 118,
the OT RAM 216. The entries of the OT RAM 216 may be
used to obtain the outbound port number 218 that1s to be used
when transmitting the outbound packet to an outbound port.

Continuing 1n FIG. 2B, the outbound port number 218 1s
used to access the trunking RAM 220 to obtain the port
numbers of an aggregated port 224. This information 1s used
along with the ingress API 202 representing the inbound port
through which the inbound packet was transmitted to perform
echo kill processing. The echo kill processor 222 performs
echo kill processing on packets that are being transmitted
homogeneously through the same type of port, 1.e., real to real
or pseudowire to pseudowire. In a typical embodiment, the
echo kill processing for real ports 1s performed differently
that for pseudowire ports as will be described 1n further detail
with reference to FIGS. 7-8.

For packets that have not been echo killed, or that do not
require echo kill processing, the output tag processor 118
turther includes a load balancing processor component 226 to
determine the final outbound port number 228 to be used
when subsequently transmitting the outbound packet through
the outbound port.

FIGS. 3-8 are tlow diagrams 1llustrating certain aspects of
a method to be performed by a packet-forwarding device

10

15

20

25

30

35

40

45

50

55

60

65

6

incorporating pseudowire processing in accordance with an
embodiment of the imvention. FIG. 3 illustrates an overview
of the logic performed within a packet forwarding device to
support pseudowire processing. At decision block 302 a
method 300 determines whether the packet requires unicast
or multicast processing based on the P11 index value passed
from the address filter/packet processing chip, where the PT1
1s an 1index value that represents the egress port information.
As noted earlier, a portion of the range of the PT1 index values
1s reserved for packets requiring unicast processing and pack-

ets requiring multicast processing. Therefore the method 300
performs the decision block 302 based on where 1n the range
of values the PTI falls. The PTI index value for packets
requiring unicast processing 1s further interrogated at deci-
sion block 306 to determine the port mformation, 1.e.,
whether the packet 1s bound for a pseudowire port or a real
port. Outbound pseudowire process 308 1s described 1n fur-
ther detail in FIG. § and outbound real port process 310 1s
described 1n further detail in FIG. 6. The processing of pack-

ets requiring multicast processing 1s further described at 304
in FI1G. 4.

FIG. 4 includes FI1G. 4 A beginning at process block 402 1n
which a method 400 for handling packets requiring multicast
processing uses the PTT index value 204 as an index to the
start entry of the MC list entries 210 that are part of the OT
MC RAM 208 described earlier with reference to FI1G. 2A. In
a typical embodiment, the method 400 obtains the copy
counter 406 and a multicast pointer MPTR 408 value to

process the list entries LIST ENTRY 1 410A, LIST ENTRY
2 410B as needed until reaching the end of the list at LIST
ENTRY N 410C. As shown 1n further detail in FIG. 4B, at
process block 412 the method 400 reads the copy counter and
the MPTR from the start entry and at process block 414 the
method 400 continues by setting an O11 index value equal to
the contents of the MPTR plus the entry number. In this
manner the multicast P11 1s used to generate the OTT index
values, which are then used to determine whether a particular
one of the outbound multicast packets 1s bound for a
pseudowire or real port, as shown in decision block 416.
Similarly to the unicast packets, packets bound for a
pseudowire port are processed 1n the outbound pseudowire
port process 308 described 1n further detail in FIG. 5, and
packets bound for a real port are processed 1n the outbound
real port process 310 described 1n further detail in FIG. 6. In
one embodiment, the method processes the MC list entries
until the number of processed entries equals the copy counter.
If yes, the method terminates processing at termination block
422; otherwise processing continues at 420 using the next
MPTR value to access the next entry 1n the list.

FIG. 5 1s the flow diagram illustrating the outbound
pseudowire port process 308 referenced i FIGS. 3 and 4B.
Themethod 500 begins at process block 502 1n which the OTI
index value 1s computed from the PTI. In a typical embodi-
ment, for a unicast packet, the OT1 1s computed from the PTI
as well as a pseudowire oifset value to the OT RAM and a
pseudowire load balance hash value. For example, one algo-
rithm that may be employed for unicast packets 1s as follows:

OTI=PW_OFFSET+PTI[14:0]*8+PW_LB_HASH

Where the PT1 value 1s multiplied by 8 and added to the offset
and hash values. For multicast packets, the ofifset value 1s
typically not used, and the OTI 1s set to the PTI that was
obtained during the MC list processing described in FIG. 4B
and added to the pseudowire hash value as follows:

OTI=0TI (from OT_MC_RAM)+PW_LB_HASH

US 7,710,993 Bl

7

Once the OTT has been computed, the method 500 uses the
ingress API value passed from the address filter/packet pro-
cessing chip to determine at decision block 504 whether the
inbound port on which the packet arrived was a pseudowire
port or a real port. If 1t arrived on a pseudowire port, then the
packet requires pseudowire echo kill processing 506 since the
packet 1s being transmitted homogeneously through the
switch on pseudowire ports. Otherwise the method 500 can
skip echo kill processing and branch to the process block 510.
Similarly, for those packets that are subject to echo kill pro-
cessing but survive echo kill processing as determined at
decision block 508, the method 500 branches to process block
510. There, the method 500 uses the computed OTI value to
lookup the OT RAM entries to obtain an outbound port num-
ber, which can be used 1n turn to access trunking RAM 218 to
determine all of the outbound ports for an aggregated link, 1f
any. The method concludes at process block 512, determining
the final outbound port 224 based any number of techniques
that are known 1n the art, including but not limited to a load
balance hash, an ingress offset, or a round robin process.

FIG. 6 15 the flow diagram 1llustrating the outbound real
port process 310 referenced in FIGS. 3 and 4B. The method
600 begins at process block 602 1n which the OTT index value
1s computed from the PTI. In a typical embodiment, for a
unicast packet, the OT1 1s simply set to the value of the PTI
that was 1nitially determined by the address filter/packet pro-
cessing chip. For multicast packets, however, the OT1 1s typi-
cally set to the value of the OT1 that was obtained from the
MC list processing described in FIG. 4B.

Once the OTT has been determined, at process block 602,
the method 600 uses the determined OT1 value to lookup the
OT RAM entries to obtain an outbound port number, which
can be used 1n turn to access trunking RAM 218 to determine
all of the outbound ports for an aggregated link, 11 any. The
method 600 uses the ingress API value 202 passed from the
address filter/packet processing chip to determine at decision
block 606 whether the inbound port on which the packet
arrived was a pseudowire port or a real port. If 1t arrived on a
real port, then the packet requires real port echo kill process-
ing 608 since the packet 1s being transmitted homogeneously
through the switch on real ports. Otherwise the method 600
can skip echo kill processing and branch to the process block
612. Similarly, for those packets that are subject to echo kill
processing but survive echo kill processing as determined at
decision block 610, the method 600 branches to process block
612. There, the method 600 concludes at process block 612,
determining the final outbound port 224 based any number of
techniques that are known 1n the art, including but not limited
to a load balance hash, an ingress oifset, or a round robin
process.

FI1G. 7 1s the tlow diagram 1llustrating the pseudowire echo
kill process 506 first referenced 1n FIG. 5. The method 700
begins at process block 702 by computing an egress abstract
port index 704 (not to be confused with the ingress API 202
determined earlier by the address filter/packet processing
chip). In a typical embodiment, the egress API 1s computed
from the already computed OTI value. The method 700 con-
tinues at decision block 706 to determine whether the ingress
API 202 1s within the core pseudowire range of values, where
the core range 1s typically predefined for a particular
pseudowire implementation. I1 so, the method 700 continues
at decision block 708 to determine whether the egress API
704 1s also within the core pseudowire range. If both the
ingress and egress APIs fall within the core pseudowire range,
then the method 700 continues at process block 714 to echo
kill this packet. If the ingress API was determined at decision
block 706 not to fall within the core pseudowire range, then

10

15

20

25

30

35

40

45

50

55

60

65

8

the i1ngress API 1s considered to fall within the spoke
pseudowire range 710, and the method 700 continues at deci-
sion block 712 to determine whether the ingress API 202 1s
identical to the egress API 704. If so, then the method 700
continues at process block 714 to echo kill this packet. When
the packet 1s not echo killed, the method 700 returns 716
control to the process that mitiated the echo kill processing.

FIG. 8 1s the flow diagram illustrating the real port echo kill
process 608 first referenced 1 FIG. 6. Real port echo kill
processing 1s more straightforward than pseudowire echo kall
processing, since the mgress API 202 represents a real port,
and can be compared against the outbound port candidates
accessed 1n the trunking RAM. The method 800 begins at
decision block 802 to compare the ingress API to the trunking
RAM outbound ports to determine whether the ingress API
matches any of them. If so, then the packet 1s echo killed at
process block 804 and the method 800 returns 806 control to
the process that initiated the real port echo kill processing.
When the packet 1s not echo killed, the method 800 simply
returns 806 control to the process that imitiated the real port
echo kill processing.

FIG. 9 illustrates an example of mapping the PT1to an OT1I
in accordance with an embodiment of the ivention. As
shown, the PT1 range of values span 256K, and 1s subdivided

into a unicast range and a multicast range, and 1n some cases
reserving a portion of the P11 for special processing. In one
embodiment, certain PTTs 1n the multicast range may still be
processed as a unicast PTI when an MC CHECK RAM 1s
programmed as unicast for the PT1, even though the PTT falls
into the multicast range. The multicast PTIs are translated
into multiple OT1 values, where the OT1 values fall within
predefined ranges similar to the P'T1s, where a portion of the
range 1s reserved for pseudo wires, and the remaining portion
or portions of the range are reserved for real ports. In one
embodiment the range of OT1 values spans up to 1M values.
The unicast PTIs are likewise translated into corresponding
OT1 values. In one embodiment, the pseudowire range of
unicast PTIs spans 32K values, but corresponds to an OTI
pseudowire range of 256K values in the OT RAM. FIG. 10
illustrates an example embodiment of an output tag processor
formed 1n accordance with an embodiment of the ivention

and which may be used together with the example mapping
shown 1n FIG. 9.

FIG. 11 illustrates one embodiment of a suitable comput-
ing environment in which certain aspects of the invention
illustrated 1n FIGS. 1-10 may be practiced. In one embodi-
ment, the method for a pseudowire processing system 200
may be implemented on a computer system 1100 having
components 1101-1106, including a processor 1101, a
memory 1102, an Input/Output device 1103, a data storage
1104, and a network interface 1105, coupled to each other via
a bus 1108. The components perform their conventional func-
tions known in the art and provide the means for implement-
ing the pseudowire processing system 200. Collectively,
these components represent a broad category of hardware
systems, including but not limited to general purpose com-
puter systems and specialized packet-forwarding devices.

In one embodiment, the memory component 1102, may
include one or more of random access memory (RAM), and
nonvolatile storage devices (e.g., magnetic or optical disks)
on which are stored 1nstructions and data for use by processor
1101, including the instructions and data that comprise the

switch fabric 116 and switch fabric components, including
the output tag processor 118, the MC RAM 206, the OT MC

RAM 208, the MC list entries 210 1n the OT MC RAM, and

US 7,710,993 Bl

9

the OT RAM 216, as well as the PT1 to OTI mapping instruc-
tions process 212, and any other components of the pseudow-
ire processing system 200.

In one embodiment, the network interface component 1105
may include the real ports, as well as the logical groupings of
ports 1nto load shared groups and the virtual pseudowire
ports. The data storage component 1104 may also represent
the index values used by the address filter/packet processor
and output tag processor as well as any routing or bridging
tables, and any other storage areas such as packet butfers, etc.,
used by the packet-forwarding device 100 and switch fabric
116 for forwarding network packets or messages transmitted
through real or pseudowire ports.

It 1s to be appreciated that various components of computer
system 1100 may be rearranged, and that certain implemen-
tations of the present invention may not require nor include all
of the above components. Furthermore, additional compo-
nents may be included in system 1100, such as additional
processors (e.g., a digital signal processor), storage devices,
memories, network/communication interfaces, etc.

In the 1llustrated embodiment of FIG. 11, the method and
apparatus for a pseudowire processing system 1n accordance
with one embodiment of the invention as discussed above
may be implemented as a series of soltware routines executed
by computer system 1100. The software routines may com-
prise a plurality or series of instructions, code sequences,
configuration information, or other data to be accessed and/or
executed by a processing system such as one or more of
processor 1101. Inmitially, the series of instructions, code
sequences, configuration iformation, or other data may be
stored on a data storage 1104 and transierred to memory 1102
via bus 1108. It 1s to be appreciated that the series of 1nstruc-
tions, code sequences, configuration mmformation, or other
data can be stored a data storage 604 using any conventional
computer-readable or machine-accessible storage medium,
such as a diskette, CD-ROM, magnetic tape, DVD, ROM, eftc.
It1s also to be appreciated that the series of instructions, code
sequences, configuration information, or other data need not
be stored locally, and could be stored on a propagated data
signal recerved from a remote storage device, such as a server
on a network, via a network/communication interface 1105.
The mstructions, code sequences, configuration information,
or other data may be copied from the data storage 1104, such
as mass storage, or from the propagated data signal into a
memory 1102 and accessed and executed by processor 1101.

In alternate embodiments, the present invention 1s 1mple-
mented 1n discrete hardware or firmware. For example, one or
more application specific itegrated circuits (ASICs) could
be programmed with some or all of the above-described func-
tions of the present invention.

Accordingly, a novel method and system 1s described for a
method and apparatus for a pseudowire processing system.
From the foregoing description, those skilled in the art will
recognize that many other variations of the present invention
are possible. In particular, while the present invention has
been described as being implemented 1n a network compris-
ing one or more packet-forwarding devices 108 1n a packet
switched network, some of the logic may be distributed 1n
other components of a network or internetwork application.
Thus, the present mvention 1s not limited by the details
described. Instead, the present invention can be practiced
with modifications and alterations within the spirit and scope
ol the appended claims.

What 1s claimed 1s:

1. A computer-implemented method for pseudowire pro-
cessing 1n a packet forwarding device, the method compris-
ng:

determining whether an inbound port through which a

packet has been transmitted to a packet forwarding
device 1s a real port or a pseudowire port, wherein deter-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

mining 1s performed in conjunction with mbound port
information stored 1n at least one of a forwarding data
base and an inbound label map of the packet forwarding
device;

encoding the inbound port through which the packet 1s
transmitted 1n a value of a first index having a predefined
range of values representing real ports and pseudowire
ports, the value based on whether the inbound port 1s
determined to be the real port or the pseudowire port 1n
conjunction with the stored inbound port information;

encoding an outbound port through which the packet will
be transmitted 1 a value of a second index having a
predefined range of values representing real ports and
pseudowire ports; and

performing outbound packet processing for the packetin a
switch fabric of the packet forwarding device based on
determining, within their respective predefined range of
values, where the first index value and the second index
value fall, including:

determining whether the packet is transmitted through the
packet forwarding device homogeneously, wherein the
respective predefined ranges within which the first and
second index values fall both represent real ports or both
represent pseudowire ports, or heterogeneously,
wherein the respective predefined ranges within which
the first and second index values fall represent different
types of ports, one representing a real port and the other
representing a pseudowire port;

performing echo kill processing for packets transmitted
homogenously; and

bypassing echo kill processing for packets transmitted het-
erogeneously.

2. The computer-implemented method of claim 1, wherein
the value of the second index having the range of values
representing real ports and pseudowire ports further indicates
whether the packet requires multicast processing or unicast
processing, wherein multicast processing includes:

accessing a list of multicast entries corresponding to the
value of the second index, the multicast entries being
accessed via a multicast pointer and a copy counter; and

generating, for each entry in the list of multicast entries
corresponding to the value of the second index, a new
value for the second index; and

turther performing outbound packet processing for the
packet in the switch fabric of the packet forwarding
device based on the new value of the second index, the
new value of the second index falling within the pre-
defined range of values for the second index represent-
ing real ports and pseudowire ports.

3. The computer-implemented method of claim 1, further
comprising;
mapping the value of the second 1index to a value of a third
index, wherein values of the third index correspond to
outbound port entries stored on the packet forwarding
device, the entries for obtaining outbound port numbers;

accessing the outbound port entry to which the value of the
third index corresponds; and

obtaining an outbound port number to be used when trans-
mitting the packet to an outbound port based on the
outbound port entry to which the value of the third index
corresponds.

4. A packet-forwarding device for supporting pseudowire
processing, the device comprising:

real ports;
pseudowire ports;

inbound port information stored on the packet forwarding,
device for determining whether an inbound packet 1s
transmitted on one of the real ports or pseudowire ports;

US 7,710,993 Bl

11

outbound port information stored on the packet forwarding,
device for determining whether an outbound packet 1s
transmitted on one of the real ports or the pseudowire
ports; and
a processor 1n which to:
encode the mbound port information 1nto an abstract
port index having a predefined range of values repre-
senting the real ports and pseudowire ports;
encode the outbound port information into an egress port
tag mndex having a predefined range of values repre-
senting the real ports and pseudowire ports;
perform outbound packet processing 1n accordance with
the abstract port index and the egress port tag index,
including:
performing echo kill processing of packets that are
transmitted through the packet forwarding device
homogenously, wherein the respective predefined
ranges within which the abstract port and egress
port tag mndex values fall both represent real ports
or both represent pseudowire ports; and
bypassing echo kill processing of packets that are
transmitted through the packet forwarding device
heterogeneously, wherein the respective pre-

5

10

15

20

12

defined ranges within which the abstract port and
egress port tag index values fall represent different
types of ports, one representing a real port and the
other representing a pseudowire port.

5. The packet forwarding device of claim 4, wherein the
value of the egress port tag index having the range of values
representing real ports and pseudowire ports further indicates
whether the packet requires multicast processing or unicast
processing, wherein the processor further:

accesses a list of multicast entries corresponding to the

value of the egress port tag index,

the multicast entries being accessed via a multicast pointer

and a copy counter; and

generates, for each entry in the list of multicast entries

corresponding to the value of the egress port tag index, a
new value for the egress port tag index; and

performs outbound packet processing based on the new

value of the egress port tag index, the new value of the
egress port tag index falling within the predefined range
of values for the egress port tag index representing real
ports and pseudowire ports.

	Front Page
	Drawings
	Specification
	Claims

