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METHOD AND APPARATUS FOR
OPERATING FAST SWITCHES USING SLOW
SCHEDULERS

FIELD OF THE INVENTION

The 1nvention relates to the field of communication net-
works and, more specifically, to scheduling for input-queued
switches.

BACKGROUND OF THE INVENTION

As the volume of Internet traific continues to grow, tele-
communications equipment providers and telecommunica-
tions service providers continue working to increase network
transmission capacity between switches and switching capac-
ity within switches. The rapid growth in network transmission
capacity, however, has shifted the network bottleneck from
network transmission capacity to switching capacity. Due to
the need to rapidly scale switching capacity to match the fast
growth of network transmission capacity, high-speed switch
architectures have been intensely studied recently. The most
common types of switches include shared-memory switches,
output-queued switches, and input-queued switches.

A basic 1ssue 1n scaling switching capacity 1s memory-
bandwidth, particularly for output-queued switches since
speed-up proportional to switch size 1s required at the output
ports. While input-queued switches do not inherently require
such speedup, mput-queued switches may have throughput
bounds due to output port contention. The potential of input-
queued switches for maintaining good switching pertor-
mance with reduced memory-bandwidth requirements (as
compared to shared memory switching architectures and out-
put-queued switching architectures) have made iput-buil-
ered switches preferred for high-speed switching applica-
tions. Disadvantageously, however, existing input-queued
switches have numerous 1ssues impacting both switch stabil-

ity and switching throughput.

While input-queued switches avoid the requirement of

large speed-up at the output ports, a major bottleneck 1n
scaling input-queued switches 1s the scheduler needed to keep
the input-queued switch stable and achieve high throughput.
Several approaches have been proposed to solve this problem,
including pipelining the implementation, reducing the fre-
quency ol scheduling computations, and eliminating the
scheduler altogether using a two-stage load-balancing archi-
tecture. Such approaches, however, fail to keep the input-
queued switch stable and achieve high throughput. Further-
more, approaches which eliminate the scheduler 1n favor of a
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the switch and additional mechanisms to re-sequence out-oi-
order packets, and often do not have good performance with
respect to packet delay.

In existing input-queued switches, a scheduler uses a
scheduling algorithm which determines matching (e.g.,
maximum weighted matching problem) between 1nput ports
and output ports. As the number of ports and associated line
speeds continue to increase, 1t becomes increasingly difficult
to solve the matching problem within required time frames.
For example, for lines having line rates of 40 Gbps (OC768)
that convey 64-byte packets, a match must be computed every
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12.8 nanoseconds. Although approaches to decrease the 1re-
quency of matching computations have been proposed (e.g.,
decreasing frequency of matching by increasing packet size,
using the same matching for multiple time frames, or pipe-
lining the matching computation), such approaches fail to
keep the input-queued switch stable and achieve high
throughput.

SUMMARY OF THE INVENTION

Various deficiencies 1n the prior art are addressed through
the mvention of an apparatus and method for switching pack-
cts through a switching fabric. The apparatus includes a plu-
rality of input ports for recerving arriving packets, a plurality
of output ports for transmitting departing packets, a switching
tabric for switching packets from the input ports to the output
ports, and a plurality of schedulers controlling switching of
packets through the switching fabric. The switching fabric
includes a plurality of virtual output queues associated with a
respective plurality of input-output port pairs, where each
packet received on one of the mput ports that 1s destined for
one of the output ports 1s queued 1n the virtual output queue
associated with the input port and the output port.

One of the schedulers 1s active during each of a plurality of
timeslots. The one of the schedulers active during a current
timeslot provides a packet schedule to the switching fabric for
switching packets from selected ones of the virtual output
queues to associated ones of the output ports during the cur-
rent timeslot. The packet schedule 1s computed by the one of
the schedulers active during the current timeslot using packet
departure mnformation for packets departing from the virtual
output queues during previous timeslots during which the one
of the schedulers was active and packet arrival information
for packets arriving at the virtual output queues during pre-
vious timeslots during which the one of the schedulers was
active.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the following detailed description
in conjunction with the accompanying drawings, in which:

FIG. 1 depicts a high-level block diagram of a switching
including a plurality of schedulers;

FIG. 2 depicts a method according to one embodiment of
the present invention;

FIG. 3 depicts a method according to one embodiment of
the present invention;

FIG. 4 depicts maximum weighted matching graphs with-
out inflated edges and with inflated edges; and

FIG. 5 depicts a high-level block diagram of a general-
purpose computer suitable for use 1n performing the functions
described herein.

To facilitate understanding, 1dentical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides fast switching using a
switching fabric and a plurality of schedulers. The schedulers
become active 1n a round-robin manner such that only one of
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the schedulers 1s active during any given timeslot. The sched-
uler active during a given timeslot provides a packet schedule
to the switching fabric during that given timeslot. The switch-
ing fabric switches packets through the switching fabric dur-
ing the given timeslot according to the packet schedule
received during the given timeslot. A scheduler determines a
packet schedule using packet arrival information and packet
departure information for packets arriving to and departing
from the switch only during timeslots 1n which that scheduler
1s the active scheduler (i.e., packets arriving and departing
during every k™ timeslot where the switch includes k sched-
ulers).

FIG. 1 depicts a high-level block diagram of a switch.
Specifically, switch 100 includes a plurality of mput ports
(IPs) 110,,-110,,, (collectively, IPs 110,) and a plurality of
output ports (OPs) 110,,-110 ., (collectively, OPs 110 ,)
interconnected via a switching fabric (SF)120. The IPs 110, -
110,,, receive packets over a plurality of mput lines (ILs)
102,,-102 . (collectively, ILs 102,) and provide the packets to
SF 120. The OPs 110,,-110 ., receive packets from SF 120
and transmit packets over a plurality of output lines (OLs)
102,,-102 . (collectively, OLs 102 ). The SF 120 can con-
nect any of the IPs 110, to any of the OPs 110 . The switch
100 i1ncludes a plurality of schedulers 130,-130, (collec-
tively, schedulers 130) which control switching of packets
through SF 120.

As depicted 1n FIG. 1, SF 120 includes queues 125 which
queue packets at SF 120. The queues 125 include a plurality
of virtual output queues (VOQ)s). The queues 125 include one
VOQ for each combination of IP 110, and OP 110,. A packet
arriving at an input port 1 whose destination 1s output port j 1s
queued at VOQ),,. In other words, since switch 100 includes N
IPs 110, and N OPs 110, queues 125 include N* VOQs. For
purposes of clarity, assume that SF 120 processes fixed length
packets, and that time 1s slotted so that, at most, one packet
can arrtve at each IP 110, during a given timeslot and one
packet can depart from each OP 110, during a given timeslot.

As depicted i FIG. 1, SF 120 includes a controller 121.
The controller 121 controls queues 125. The controller 121
controls arrivals of packets at queues 125 and departures of
packets from queues 125. The controller 121 includes
counters 122. In one embodiment, counters 122 include one
counter for each VOQ), .. The controller 121 updates counters
122 1 response to packet arrivals to SF 120 and packet
departures from SF 120. The counters 122 represent current
queue lengths ot queues 125 (a queue length for each VOQ,)).
The controller 121 uses packet schedules (computed by
schedulers 130 as depicted and described herein) to control
switching of packets through queues 1235 (1.e., to trigger
queues 1235 to provide packets to OPs 110, according to
packet schedules).

As depicted 1n FIG. 1, schedulers 130 compute schedules
which control switching of packets through queues 125 (1.¢.,
to trigger queues 125 to provide packets to OPs 110, accord-
ing to packet schedules). In a given timeslot, only one of the
schedulers 130 1s active. In one embodiment, SF 120 selects
one of the schedulers 130 to be active during a given timeslot.
In one such embodiment, SF 120 polls schedulers 130 (and
the scheduler 130 polled during a given timeslot 1s that active
scheduler for that given timeslot). In one embodiment, sched-
ulers 130 become active 1n a round-robin manner (e.g., sched-
uler 130, 1s active 1n a first timeslot, scheduler 130, 15 active
in a second timeslot, scheduler 130,-1s active1ina K? timeslot,
scheduler 130, is active in a (K+1)” timeslot, and so on).

As depicted in FI1G. 1, each scheduler 130,-130, includes
a plurality of counters (denoted as counters 132,-132,- asso-
ciated with schedulers 130,-130,,). In one embodiment, each
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of the counters 132,-132. includes one counter for each
VOQ,, (i.e., counters 132, include N* counters for the N*
VOQs, counters 132, include N” counters for the N* VOQs,
and so on). The scheduler 130, active during a given timeslot
updates corresponding counters 132, during that given
timeslot (1.e., only one set of counters 132 1s updated during
any given timeslot). The scheduler 130, active during a given
timeslot updates corresponding counters 132, using packet
departure information specified in a packet schedule provided
from scheduler 130, to SF 120 during the given timeslot and
packet arrival information received by scheduler 130, from SF
120 during the given timeslot.

As described herein, 1n a given timeslot, SF 120 processes
arriving packets, a scheduler 130, active during the given
timeslot provides a packet schedule to SF 120, SF 120 pro-
cesses the packet schedule from active scheduler 130, to
transier packets from SF 120 to OPs 110, according to the
packet schedule, SF 120 provides packet arrival information
to active scheduler 130, and active scheduler 130, begins
computing the next packet schedule which will be provided
from scheduler 130 to SF 120 during the next timeslot 1n
which scheduler 130, 1s active. In other words, since K
timeslots pass betore scheduler 130, becomes active again,
scheduler 130, has K timeslots during which to compute the
next packet schedule. The operation of SF 120 and schedulers
130 may be better understood with respect to FIG. 2 and FIG.
3.

FIG. 2 depicts a method according to one embodiment of
the present mvention. Specifically, method 200 of FIG. 2
includes a method for switching packets through a switching
fabric according to a packet schedule computed by a sched-
uler. The method 200 describes steps performed during one
timeslot 1n which one of K schedulers 1s active where the
current packet schedule was computed by that one of the K
schedulers during the previous K timeslots (i.e., during the
time since that scheduler was last active). Although depicted
and described as being performed serially, at least a portion of
the steps of method 200 may be performed contemporane-
ously, or 1n a different order than depicted in FIG. 2. The
method 200 begins at step 202 and proceeds to step 204.

At step 204, the switching fabric processes arriving pack-
ets. The switch recerves packets at input ports. The input ports
direct the packets to the switching fabric. The switching fab-
ric queues the received packets. At step 206, the switching
tabric polls the active scheduler (1.e., one of the K schedulers
in the switch) for the current packet schedule. The current
packet schedule 1s the packet schedule computed by the active
scheduler over the previous K timeslots (1.e., during the time
since that scheduler was last active). The current packet
schedule identifies which queued packets should be removed
from the queues and switched through the switching fabric to
associated output ports.

At step 208, the switching fabric implements the current
packet schedule. The switching fabric removes identified
packets from the queues and switches the 1dentified packets
through the switching fabric to associated output ports from
which the packets are transmitted over associated output
lines. At step 210, the switchuing fabric provides packet arrival
information to the active scheduler. The packet arrival infor-
mation i1dentifies packets received and queued during the
current timeslot. The packet arrival imnformation i1dentifies
input-output port pairs for which a packet was received and
queued during the current timeslot.

At step 212, the active scheduler begins computing the next
packet schedule. The active scheduler computes the next
packet schedule using the packet arrival information (1denti-
tying packets received at the switching fabric and queued 1n
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the switching fabric queues during the current timeslot) and
the current packet schedule (also denoted herein as packet
departure information 1dentifying packets removed from the
switching fabric queues and switched through the switching
fabric to associated output ports during the current timeslot).
In other words, each scheduler computes a packet schedule
using only packet arrival and departure information for pack-
ets arriving and departing the timeslot 1n which that scheduler
1s active. At step 214, method 200 ends.

Although omitted for purposes of clarity, method 200 1s
repeated during each timeslot using a different one of the
schedulers of the switch. In one embodiment, the schedulers
of the switch become active 1n a round-robin manner such
that, for a switch having K schedulers, each scheduler 1s
active once every K timeslots. As depicted 1n FIG. 2, during
the current timeslot the scheduler active during that timeslot
begins computing the next packet schedule which will be
implemented by the switch fabric during the next timeslot 1n
which that scheduler 1s active. In other words, for a switch
having K schedulers, each scheduler has K timeslots during
which to compute the next packet schedule which will be
implemented by the switch fabric during the next timeslot 1n
which that scheduler 1s active. The steps of method 200 may
be better understood with respect to FIG. 3.

FIG. 3 depicts a method according to one embodiment of
the present imnvention. Specifically, method 300 of FIG. 3
includes a method for switching packets through a switching
tabric according to a packet schedule computed by a sched-
uler. The method 300 describes steps performed during one
timeslot 1n which one of K schedulers 1s active where the
current packet schedule was computed by that one of the K
schedulers during the previous K timeslots (i.e., during the
time since that scheduler was last active). Although depicted
and described as being performed senally, at least a portion of
the steps of method 300 may be performed contemporane-
ously, or in a different order than depicted mn FIG. 3. The
method 300 begins at step 302 and proceeds to step 304.

At step 304, the switching fabric receives packets. The
switch receives packets at input ports which direct the packets
to the switching fabric. At step 306, the switching fabric
queues the received packets. The switching fabric includes
virtual output queues (VOQs), one VOQ) for each combina-
tion of IP110,and OP 110,,. A packet arriving at an input port
1 whose destination 1s output port j 1s queued at VOQ),,. For
purposes of clarity, the current timeslot 1s denoted as time t
(1.e., packets recerved and queued during the current timeslot
are denoted as packets recerved and queued at time t). At step
308, the switching fabric stores packet arrival information for
packets recetved and queued at the switching fabric during the
current timeslot.

In one embodiment, packet arrival information for the cur-
rent timeslot 1s represented using an NxN binary matrix A(t)
which represents packet arrivals at time t. The NxN binary
matrix A(t) includes N* values (one value associated with
each VOQ),; of the switching fabric) where A, (t)=1 1t a packet
arrives at input port 1 with an associated destination of output
port ]. Since there can be, at most, one packet received at each
input portina given timeslot, 2.A,(t)=1. In one embodiment,
packet arrtval information may be represented using an
N-sized vector. In this embodiment, the N-sized vector may
be denoted as o where . (t)=] 11, at time t, a packet destined
for output port j arrives at input port 1 and .,(t)=0 11 no packet
arrives at iput port 1 at time t.

At step 310, the switching fabric requests the current
packet schedule from the active scheduler. In one embodi-
ment, the switching fabric polls the active scheduler for the
current packet schedule. At step 312, the active scheduler
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receives the request for the current packet schedule. At step
314, the active scheduler provides the current packet schedule
to the switching fabric. The current packet schedule identifies
which queued packets should be removed from the queues
and switched through the switching fabric to associated out-
put ports. At step 316, the switching fabric receives the cur-
rent packet schedule. At step 318, the switching fabric imple-
ments the current packet schedule. The switching fabric
removes 1dentified packets from the queues and switches the
identified packets through the switching fabric to associated
output ports.

In one embodiment, the current packet schedule 1s repre-
sented using a binary switching matrix S(t) which identifies
matches to be implemented at the switching fabric during
current timeslott. The binary switching matrix S(t) 1s an NxN
matrix including N* values (one value associated with each
VOQ,; ofthe switching fabric). If' S, (t)=1, a packet at the head
oI VOQ),; 1s removed trom VOQ,; and transmitted through the
switching fabric to output port j. It S (1)=0, no packet 1s
removed from VOQ),,. Since there can be, at most, one packet
transmitted from each output port in a given timeslot (and one
packet received at each input port in a given timeslot), 2,S
O=landX S, (t)=1.1f S, (1)=1 and VOQ,;1s empty the match
1s wasted since there 1s no packet available to be switched
through the switching fabric.

At step 320, the switching fabric updates counters associ-
ated with respective queues VOQ,,. The switching fabric
counters associated with respective queues VOQ,; represent
queue lengths of respective queues VOQ,.. In one embodi-
ment, queue lengths of respective queues VOQ),; are repre-
sented using an NxN binary matrix Q, (t). The queue lengths
Q,(t) of respective queues VOQ),; represent queue lengths
after the switching fabric accepts packet arrivals during
timeslot t and processes the current packet schedule by which
packets depart the switching fabric during timeslot t. The
queue lengths Q, (1) of respective queues VOQ),; are updated
during the current timeslot t as follows:

(Q;r—=1)+1 it a;(2) = j, S;;(0) =0 Eqg. 1
Qij(r) = 9 (Qi_,.r'(r - 1) - 1)+ 1f ﬂ’j(f) * j,. SU(I) =1 where (ﬂ:’)+ =
L Qii(r—1) otherwise
max{a, 0]}

At step 322, the switching fabric provides packet arrival
information to the active scheduler. The switching fabric pro-
vides packet arrival information for packets recerved and
queued at the switching fabric during the current timeslot. In
other words, arriving packets are virtually partitioned
between the different schedulers such that each arriving
packet may be thought of as being associated with the one
scheduler that 1s active during the timeslot 1n which that
packet arrives at the switch. Although a packet queued 1n a
VOQ may be associated with a particular scheduler based on
which scheduler was active during the timeslot 1n which that
packet arrived, that packet may be selected for transmission
(as specified 1n a packet schedule) by any of the schedulers.

The switching fabric may provide packet arrival informa-
tion to an active scheduler using one or more formats. In one
embodiment, the switching fabric provides the packet arrival
information to the active scheduler using an arrival matrix
(e.g., using an arrrval matrix denoted as A(t)). In one embodi-
ment, the switching fabric provides the packet arrival infor-
mation to the active scheduler using an arrival vector (e.g.,
using an arrival vector denoted as c.(t)). In one such embodi-
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ment, arrival vector a(t) uses O(N log N) bits. The switching,
tabric does not provide the current queue lengths of queues
VOQ),; as the packet arrival information. The actual packets
are not provided to the active scheduler.

At step 324, the active scheduler receives the packet arrival
information from the switching fabric. As described herein,
each scheduler maintains N* counters corresponding to the
N VOQs of the switching fabric. The value of the counter (i)

at scheduler k which corresponds to VOQ,; at the switching

fabric at timeslot t 1s denoted as nky.(t). The value nky.(t)
estimates the number of packets remaining in VOQ,; that are
associated with scheduler k (i.e., the packets that arrived at
VOQ),; during one of the previous timeslots in which sched-
uler k was the active scheduler). Since each scheduler is active
only once every K timeslots, the values of counters nky.(t)

change only once every K timeslots and do not represent the
current state (1.e., current queue lengths) of respective queues

VOQ,,.

At step 326, the active scheduler updates counters associ-
ated with respective queues VOQ), .. Since the active scheduler
1s only active once every K timeslots, the active scheduler
counters associated with respective queues VOQ),; do not rep-
resent queue lengths of respective switching fabric queues
VOQ,.. In one embodiment, the active scheduler counters
nkl_.;.(t) assoclated with respective switching fabric queues
VOQ),; are represented using an NxN binary matrix. The
counters nky.(t) associated with respective queues VOQ,, are
updated using the packet departure information (i.e., the cur-
rent packet schedule sent from the active scheduler to the
switching fabric) and the packet arrival information received
from the switching fabric. The counters nkz_.;.(t) associated with
respective queues VOQ,, are updated during the current
timeslot t as follows:

( k . . 3\
m(r—-K)+1 it a;(t) = j, 5;(0) =0

A =9 se-K) = 1D" if a0 # J, S =1 ¢

n‘:-}(r — K) otherwise

\,

Atstep 326, the active scheduler begins computing the next
packet schedule. The active scheduler k computes the next
packet schedule using counters nkl_.;.(t) associated with respec-
tive switching tabric queues VOQ,, including the packet
departure mnformation (1.e., the current packet schedule) and
the packet arrival information. Since each scheduler 1s active
once each K timeslots, each scheduler has K timeslots during
which to compute the next packet schedule. The next packet
schedule 1s used as the current packet schedule during the
next timeslot 1n which that scheduler 1s active (1.e., the next
packet schedule that 1s computed during timeslots t through
(t+(K-1)) 1s used to switch packets through the switching
fabric during the next timeslot in which that scheduler is
active, 1.e., during timeslot (t+K)). At step 328, method 300
ends.

As described herein, a scheduler may compute a packet
schedule using one or more algorithms. In one embodiment,
a scheduler may compute a packet schedule using a maximum
weighted matching algorithm. In one such embodiment,
scheduler k computes a packet schedule by computing a
maximum weighted matching on an NxN bipartite graph (1.¢.,
using counters nkg(t) associated with respective switching
tabric queues VOQ),;). The active scheduler k may use one of
many different algorithms for computing the maximum
welghted matching on the NxN bipartite graph. The maxi-
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mum weighted matching algorithms compute maximum
weighted matching to guarantee stability and provide good
delay performance.

In one embodiment, the maximum weighted matching
algorithm 1s a variant of the shortest augmenting path algo-
rithm (e.g., a flow augmentation algorithm). In one embodi-
ment, the maximum weighted matching algorithm 1s a pri-
mal-dual-based auction algorithm. The auction algorithm has
several advantages over the flow augmentation algorithm.
The auction algorithm 1s simple to implement 1n hardware
and, unlike the flow augmentation algorithm, the auction
algorithm 1s easy to parallelize. Furthermore, memory of the
last match may be built into the auction algorithm using dual
prices, thereby reducing the number of iterations required to
compute the maximum weighted matching.

The maximum weighted matching algorithms compute
maximum weighted matches to guarantee stability of the
switch and provide good delay performance for packets tra-
versing the switch. With respect to stability of the scheduling
algorithm, consider each arrival to the switching fabric as
being virtually assigned to one of the schedulers (since only
one scheduler 1s active during each timeslot). In order to show
the stability of the scheduling algorithm, let A ; denote the
arrival rate at VOQ,, where arrival rate A, 1s computed
according to Equation 3. In order for the switch to be stable,
arrival rates A;; must satisty conditions ot Equation 4.

Z Azj(r)
A = lim —

1— 00 i

D=l )y A=l
i /

A set of arrival rates A, satistying the conditions of Equa-
tion 4 1s termed admissible. Assuming, for purposes of clarity,
that packet arrivals at the switching fabric form an indepen-
dent, identically distributed Bernoulli process, the probabaility
that a given packet arriving at port 1 will have a destination of
port j1s A,; independent of all other packet arrivals and depar-
tures. The queues VOQ),; at the switching tabric are defined to
be stable 1f there exists a constant B such that Q, (t)=B, tfor all
combinations of (1,7), for all timeslots t. If the switch 1s stable
the queue lengths are bounded and, theretfore, the switch can
achieve 100% throughput (1.e., the terms stable and 100%
throughput may be used interchangeably). The maximum
weighted matching algorithm that selects a matching S*(t) at
timeslot t that maximizes 2.,2.(S,(1)Q,(t)) guarantees 100%
throughput for any admissible arrival rate matrix.

As described herein, Q,(t) 1s the number of packets in
VOQ,; at timeslot t and nk{;.(t) 1s the counter value at scheduler
k for port pair (1,)) at timeslot t. When a packet enters VOQ,
the value of counter nky.(t) 1s incremented by one at the active
scheduler k. If the active scheduler k specifies a match
between 1put port 1 and output port j, the value of counter
nkl_.;.(t) 1s decremented by one 1f nklj(t)>0. If there 1s a packet in
VOQ,,, that packet (or the packet at the head of the queue 1t
there are multiple packets in VOQ),;) 1s switched through the
switching fabric and transmitted out of the switch via output
port . Since there 1s not a requirement that active scheduler k
may only specity a match when nkg(t)>0,1 active scheduler k
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may specily matches when nky.(t):O. Based on this, Equation

5 and Equation 6 hold, as follows:

K
Z (1) 1t matches are made only 1t Rt () >0
k=1

Qi (1)

K
Q;i(1) = Z m;;(r) 1t matches are made when n () =
k=1

Based on Equation 5 and Equation 6, the switching fabric
queues are stable if the counters at all of the schedulers are
stable. Thus, 1n order to maintain the stability of the switch,
the schedulers must ensure that the counters at the schedulers
are stable. Since only one scheduler 1s active during each
timeslot, each packet arriving at the switching fabric may be
Cons1dered to be virtually assigned to the scheduler actlve
during the timeslot 1n which the packet arrives. Letting [3
the fraction of packet arrivals associated with port pair (1,,3)
that are virtually assigned to scheduler k, since arrivals to the
switch are independent 1dentically distributed Bernoulli and
schedulers become active 1n a round-robin manner, Equation

7 holds, as follows:

Ay
=%

K

The condition of Equation 7 formally states that, in the long
term, packet arrivals are uniformly spread across the different
schedulers (1n the sense that they are spread over the different
timeslots in which the different schedulers are active). Based
on Equation 7, the admlssﬂz)ihty condition for each of the
schedulers 1s X IB <1/K and Z_}B ;~~1/K, where the factor 1/'K
1s due to the fact that cach scheduler k 1s active only once
every K timeslot and, thus, the effective service rate 1s only
1/K. The admissibility of an arrtval rate matrix A for the
switch implies thatB -1s admissible for scheduler k. Based on
such results, letting k denote the active scheduler during
timeslot t, 1I scheduler k computes a matching S*(t) that
maximizes Equation 8, then counters nky.(t) at the schedulers

are bounded.

;: ;: Sy (Onk (- K)
T

Based on Equation 8, since each scheduler 1s active only
once every K timeslots, each scheduler has K timeslots during
which that scheduler may compute a packet schedule (1.e., the
present invention may be viewed as slowing the clock at the
scheduler by a factor of K). Although the current packet
schedule implemented during the current timeslot 1n which
scheduler k 1s active was computed using counter matrix
nkl_.;.(t—K) from the previous timeslot 1n which scheduler k was
active, since there can be a maximum of one arrival per input
and one departure per output during the time from the previ-
ous timeslot in which scheduler k was active to the current
timeslot 1n which scheduler k 1s active, use of counter matrix
nk{;.(t—K) from the previous timeslot 1n which scheduler k was
active for computing the current packet schedule imple-
mented during the current timeslot 1s not an 1ssue.

As described herein, an active schedule computes a packet
schedule by computing a maximum weighted matching using
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a maximum weighted matching algorithm. In one embodi-
ment, the active scheduler k may use the values of the
counters nky.(t) as the weights of the matching for generating
the packet schedule. I active schedulers use respective
counters n, (t) as weights for the maximum weighted match-
ing problem, queues VOQ at the switching fabric remain
stable; however, there 1s no guarantee with respect to delay
performance of the switch. Specifically, using the values of
the counters nky.(t) as the weights of the matching provides
good delay performance for uniform traifl

ic, however, using
the values of the counters nky.(t) as the weights of the match-
ing does not provide good delay performance for non-uni-
form tratfic. For non-uniform tratfic, average packet delay
increases rapidly as the number of schedulers increases.

In one embodiment, 1n order to improve delay perfor-
mance, rather than using the values of the counters nkzj(t) as
the weights 1n the maximum weighted matching problem,
changes may be made to the weights used 1n the maximum
weilghted matching problem. In one embodiment, 1n order to
maintain the stability of the switching fabric queues while
providing good delay performance for both uniform and non-
uniform traffic, memory may be built into the edges at the
schedulers, as described herein below. In one embodiment, in
order to maintain the stability of the switching fabric queues

while providing good delay performance for both uniform
and non-uniform traflic, the size of the matching may be
increased, as described herein below.

In one embodiment, 1n order to maintain the stability of the
switching fabric queues while providing good delay perfor-
mance for both uniform and non-uniform traffic, memory
may be built into the edges at the schedulers. As described
herein, since 1n each timeslot there 1s at most one arrival per
input port and one departure per output port, the maximum
weight match cannot change drastically over consecutive
timeslots. Therefore, 1n each timeslot the weight of an edge
may only change by a maximum of one. In some existing
algorithms the scheduler remembers matches from the previ-
ous timeslot, where either the same match 1s repeated for
many timeslots or the match from the previous timeslot 1s
modified for use in the current timeslot. In such algorithms 1t
1s often better to remember “good” edges from the previous
timeslots than remembering the whole match from the previ-
ous timeslots.

For the present invention, since the packet arrival informa-
tion 1s partitioned among the K schedulers, none of the sched-
ulers have a complete picture of the packet arrival process;
however, all of the schedulers undergo the same stochastic
evolution. Thus, 1f there 1s a persistent queue for a given port
pair (1,]) at a scheduler 1t 1s likely that there are other sched-
ulers with persistent queues for that given port pair (1,7), and
if there 1s a port pair (1,)) with an associated queue VOQ,,
which became empty during the current timeslot it 1s more
likely that there are other schedulers that have an occupied
queue for port pair (1,1) than an empty queue for port pair (1,1).
This observation 1s especially true where the tratfic 1s non-
uniform and some port pairs are heavily loaded.

Based on such observations, when computing a maximum
weighted match at a scheduler, among all edges the edges (1,7)
with counters n* A0>0 will be preferred to edges (1,)) with
counters n® A= 0 and, among edges (1,3) with counters
n* A0=0 edges (i,j) with counters n* (>0 1n the recent past
Wlii be preferred to edges (1,7) with counters n y(t) =0 1n the
recent past. An edge (1,1) will be denoted as an active edge at
timeslot t 1t nky.(t)>0. The set of active edges at scheduler k at
timeslot t will be denoted as A (t). An edge (1,)) will be
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denoted as an mactive edge at timeslot t1f nky.(t):(). The setof
inactive edges at scheduler k at timeslot t will be denoted as

L(t).

An edge (1,]) will be denoted as a zombie edge at timeslot
t1f: (1) that edge (1,7) became 1nactive during one of the last s
timeslots during which scheduler k was active, and (2) that
edge (1,7) has not become active since that time. The set of
zombie edges at scheduler k at timeslot t will be denoted as
Z.(1). The mteger s 1s denoted as the persistence factor.
Although persistence factor s can be different for different
edges, for purposes of clarity an assumption 1s made that
persistence factor s 1s common for all edges associated with
scheduler k. The persistence factor s 1s local to scheduler k. In
other words, once an edge becomes active that edge will be
a zombie edge for the next s timeslots during which scheduler
k 1s active. In one embodiment, the chances of using zombie
edges 1n a match rather than using mactive edges in a match
may be improved by manipulating the edge weights.

In one embodiment, edge weights may be manipulated by
inflating the edge weights. In one such embodiment, a non-
negative constant b (denoted as the weight intlation factor)
may be added to each non-zero edge weight. The weight
inflation factor b increases the size of the matching while
ensuring that the weight of the match 1s also high. Although
maximum size matching improves instantancous switch
throughput, using maximum size matching during each
timeslot does not guarantee switch stability. By contrast,
maximum size—maximum weight matching, which uses the
maximum weight among the matches with the largest number
of edges, provides good delay performance. Since the weight
of edge (1,1) at scheduler k during timeslot t to guarantee
stability 1s wy.(t)znkg.(t—K)j the edge weights may be modified
using the weight inflation factor as shown in Equation 9,
which follows:

(n(t—K)+b if nfi(t— K)> 0

0 if ni(t—K)=0

',

In this embodiment, active scheduler k computes a packet
schedule by computing a maximum weighted matching using
inflated edge weights (e.g., edge weights inflated as shown 1n
Equation 9). Letting 1{(m) represent the maximum weight
match (without weight inflation) with m edges, then solving,
the maximum weight matching with inflated edge weights 1s
to solve Equation 10. In Equation 10, 1f weight inflation factor
b=0 then the problem 1s a standard maximum weight match-
ing problem and if weight inflation factor b=co then the prob-
lem 1s a maximum si1ze matching problem. Therefore, weight
inflation factor b represents the compromise between achiev-
ing switch stability and increasing instantaneous switch
throughput.

max f{m)+mb

l=m=N

Eq. 10

As described herein, using inflated edge weights to com-
pute maximum weighted matching increases the number of
matches identified and specified in the packet schedule (and,
therefore, increases the number of packets switched through
the switching fabric 1n each timeslot according to the associ-
ated packet schedule), thereby improving packet delay per-
formance. FIG. 4 depicts a comparison of maximum
welghted matching without inflated edges (shown 1n a graph
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410 on the left) and maximum weighted matching with
inflated edges (shown 1n a graph 420 on the right), clearly
showing the advantage of using intlated edge weights in solv-
ing maximum weighted matching problems.

As depicted 1n FIG. 4, graph 410 depicting maximum
weilghted matching without inflated edges (the graph on the
left) includes five possible edges. The numbers next to the
edges represent the weights of the respective edges. The
edges (1rom top to bottom) have weights of 10, 25, 14,77, and
10, respectively. The maximum weight matching 1n graph
410 1includes two edges (denoted using solid lines); one with
a weight of 25 and another with a weight of 10, giving a
maximum weight matching of 33. In order to demonstrate the
advantage of using intlated edge weights, the edge weights 1n
the graph depicting maximum weighted matching without
inflated edges (graph 410 on the lett) are each increased by 10,
resulting in the graph depicting maximum weighted matching
with inflated edges (graph 420 on the right).

As depicted 1n FIG. 4, graph 420 depicting maximum
weight matching with 1nflated edges (the graph on the right)
includes five possible edges (the same five edges depicted 1n
graph 410). The numbers next to the edges represent the
inflated weights of the respective edges. The edges (from top
to bottom) have weights of 20, 35, 24, 17, and 20, respec-
tively. The maximum weight matching 1in graph 420 includes
three edges (denoted using solid lines) having weights of 20,
24, and 20, respectively. In terms of inflated edge weights of
the three edges, the maximum weight matching in graph 420
1s 64; however, 1n terms of original edge weights of the three
edges the maximum weight matching 1n graph 420 1s 34.
Therefore, by inflating edge weights from graph 410 to graph
420, the resulting maximum weight matching includes an
extra edge (three matches versus two) with a slight decrease
in the maximum edge weight (from 35 to 34), thereby
improving packet delay performance.

Furthermore, in addition to increasing the size of the match
in the maximum weight matching, edge weight inflation pro-
vides a means by which zombie edges may be incorporated
into the maximum weight matching. As described herein, for
maximum weight matching zombie edges are preferred over
other mnactive edges. In one embodiment, this preference for
zombie edges over other inactive edges may be implemented
by intlating the edge weights of active edges and zombie
edges by a weight inflation factor b while edge weights of
other mnactive edges are set to zero, as depicted in Equation
11, which follows:

(r(t-K)+b if (i, ) € A (D) Eq. 11
wiill) =4 b it (i, j) € (1)
0 otherwise

As described herein, although modified edge weights were
primarily applied to improve packet delay performance, sta-
bility results may be extended for embodiments using modi-
fied edge weights. Specifically, with respect to switch stabil-
ity, instead of solving the maximum weight matching
problem using counter values nky. of scheduler k as edge
weights, 1t 1s sullicient to use any other edge weight which
results 1n a match that 1s bounded away from the maximum
welght match. If a scheduling algorithm B 1s used, letting
W” (1) denote the weight of the schedule used at timeslot t and
W*(1) denote the weight of maximum weight matching on a
queue process resulting when scheduling algorithm B 1s used,
if there exists a positive constant ¢ such that W? ()= W*(t)-c
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for all timeslots t then scheduling algorithm B is stable.
Therefore, a scheduling algorithm with modified weights 1s
stable.

In one embodiment, the maximum weighted matching
algorithm 1s a primal-dual-based auction algorithm that itera-
tively matches input ports to output ports. Initially, all input
ports and all output ports are unassigned, and each output port
has an associated price p, that 1s imitialized to zero. Using the
auction algorithm, assume that edge (1,)) has weight w, . The
value of output j to mnput 1 1s w,,—p,. The auction algorithm
involves cycling through two phases: a bidding phase and an
assignment phase. In the bidding phase, mput ports bid on
output ports (or a controller simulates bids made by 1nput
ports for output ports. In the assignment phase, output ports
are assigned to mput ports based on the bidding phase.

In the bidding phase of the auction algorithm, for each
input port 1 that 1s not assigned to an output port 1, a highest
value output port (denoted as B(1)) 1s determined as

B(i) = argmjax (Wij — P,

a value of the best object 1s determined as {,=w 5, P, and
a value of the second best object 1s determined as s,. The
auction algorithm then operates such that each put port 1
places a bid on an output port B(1). The amount of the bid of
an input port 1 on output port B(1) 18 pg,,+t,—s,+€. Using the
auction algorithm, each imnput port 1 bids on exactly one output
port, while each output port can receive bids from multiple
input ports (since multiple input ports may be vying for the
same output port).

In the assignment phase of the auction algorithm, each
output port 1 having at least one associated bid from an 1input
port 1 selects the input port P(3) associated with the highest
bid. In other words, for each output port j, the selected input
port

P(j) = arg max (p;+ fi —si + o)

I1 the output port j 1s currently assigned to another input port
(during a previous iteration of the bidding phase and assign-
ment phase), that output port 1 1s unassigned from that input
port and re-assigned to mput port P(3) instead, and, further-
more, the price of output port j 1s updated as p,<—p+ip -
S pj)yFHE.

The scheduler performing the auction algorithm 1teratively
repeats the bidding phase and the assignment phase until all
input ports have been assigned to a corresponding output port,
thereby specitying the packet schedule which that scheduler
provides to the switching fabric during the next timeslot in
which that scheduler becomes the active scheduler. In the
auction algorithm, an accuracy parameter € determines accu-
racy of the optimal solution. A larger value of € implies that
the solution 1s less accurate. In order to obtain an optimal
solution accuracy parameter € must be set to a value less than
1/N, where N 1s the number of ports 1n the switch.

In the auction algorithm, once an output port 1s matched 1t
remains matched until termination (although, as described
herein, the mput port to which an output port 1s matched may
change 1n different iterations of the auction algorithm). Using
the auction algorithm, whenever an output port recerves a bid
the price of the output port increases by at least € such that, 1f
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e<<1/N all data 1s integral, the auction algorithm terminates
with the maximum weight matching. In one embodiment, to
avold real-number computations, the costs may be scaled and
the accuracy parameter € may be set equal to one (e=1).

In the auction algorithm, the number of iterations 1s
pseudo-polynomial; however, for most maximum weight
matching problems the auction algorithm works extremely
fast. In such embodiments, the delay results are practically
unaffected regardless of whether the auction algorithm 1s
solved to optimality or terminated after a predetermined num-
ber of iterations (e.g., aiter 100 iterations). In most cases, the
auction algorithm reaches the optimal solution within 100
iterations; however, if the auction algorithm does not reach
the optimal solution within 100 iterations (or some other
predetermined number of iterations), only a partial match 1s
identified. In one embodiment, a greedy algorithm may be
used on the partial match 1n order to complete the match (and
thereby obtain the packet schedule for that scheduler). In one
such embodiment, the greedy algorithm may include, for
cach unassigned output port, selecting an unassigned 1nput
port 1 to assign to an unassigned output port 1 having the
highest w,; value.

FIG. 5 depicts a high-level block diagram of a general-
purpose computer suitable for use 1n performing the functions
described herein. As depicted 1n FIG. 5, system 500 com-
prises a processor element 502 (e.g., a CPU), a memory 504,
¢.g., random access memory (RAM) and/or read only
memory (ROM), a packet scheduling module 5035, and vari-
ous mput/output devices 506 (e.g., storage devices, including
but not limited to, a tape drive, a floppy drive, a hard disk drive
or a compact disk drive, a receiver, a transmitter, a speaker, a
display, an output port, and a user mput device (such as a
keyboard, a keypad, a mouse, and the like)).

It should be noted that the present invention may be imple-
mented 1 software and/or 1n a combination of soitware and
hardware, e.g., using application specific integrated circuits
(ASIC), a general purpose computer or any other hardware
equivalents. In one embodiment, the present MTU size pro-
cess 505 can be loaded into memory 504 and executed by
processor 502 to implement the functions as discussed above.
As such, MTU size process 305 (including associated data
structures) of the present invention can be stored on a com-
puter readable medium or carrier, e.g., RAM memory, mag-
netic or optical drive or diskette and the like.

It1s contemplated that some of the steps discussed herein as
software methods may be implemented within hardware, for
example, as circuitry that cooperates with the processor to
perform various method steps. Portions of the present inven-
tion may be implemented as a computer program product
wherein computer instructions, when processed by a com-
puter, adapt the operation of the computer such that the meth-
ods and/or techniques of the present invention are invoked or
otherwise provided. Instructions for mvoking the inventive
methods may be stored 1n fixed or removable media, trans-
mitted via a data stream 1n a broadcast or other signal bearing
medium, and/or stored within a working memory within a
computing device operating according to the instructions.

Although various embodiments which incorporate the
teachings of the present mvention have been shown and
described 1n detail herein, those skilled 1n the art can readily
devise many other varied embodiments that still incorporate
these teachings.

What 1s claimed 1s:

1. An apparatus, comprising;

a plurality of input ports for receiving arriving packets;

a plurality of output ports for transmitting departing pack-

els;
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a switching fabric for switching packets from the nput
ports to the output ports, the switching fabric comprising
a plurality of virtual output queues for queuing packets
based on the respective input ports on which the packets
are received and the respective output ports for which the
packets are destined; and
a plurality of schedulers for computing packet schedules
for use by the switching fabric in switching packets,
wherein the schedulers are active during timeslots,
wherein during a given timeslot only one of the sched-
ulers 1s active for exchanging information with the
switching fabric;
wherein each of the schedulers 1s configured to, during a
current timeslot in which the scheduler 1s active:
receive, from the switching fabric, packet arrival infor-
mation for packets arriving at the virtual output
queues during the current timeslot; and
provide, to the switching fabric, a packet schedule for
use by the switching fabric 1n switching packets from
selected ones of the virtual output queues to associ-
ated ones of the output ports during the current
timeslot, wherein the packet schedule 1s computed by
the scheduler using packet departure information for
packets departing from the virtual output queues dur-
ing at least one previous timeslot during which the
scheduler was active and packet arrival information
tor packets arriving at the virtual output queues during
at least one previous timeslot during which the sched-
uler was active.
2. The apparatus of claim 1, wherein each of the schedulers
1s configured to:
determine the packet departure information for the current
timeslot from the packet schedule.
3. The apparatus of claim 1, wherein each scheduler com-
prises a respective plurality of counters;
wherein, for each scheduler, the plurality of counters of the
scheduler are associated with the respective plurality of
virtual output queues.
4. The apparatus of claim 3, wherein each of the schedulers
1s configured to:
during the current timeslot in which the scheduler 1s active,
update counters of the scheduler using the packet depar-
ture mformation for packets departing from the virtual
output queues during the current timeslot and the packet
arrival information for packets arriving to the virtual
output queues during the current timeslot.
5. The apparatus of claim 1, wherein the schedulers
become active i a round-robin manner.
6. The apparatus of claim 1, wherein each of the schedulers
1s configured to:
compute the packet schedule for the current timeslot dur-
ing a plurality of timeslots between a previous timeslot
in which the scheduler was active and the current
timeslot.
7. The apparatus of claim 1, wherein each of the schedulers
1s configured to:

compute a next packet schedule over a plurality of
timeslots between the current timeslot in which the
scheduler 1s active and a next timeslot 1n which the
scheduler 1s active.

8. The apparatus of claim 7, wherein each of the schedulers
1s configured to:

compute the next packet schedule using packet arrival
information associated with the current timeslot and
packet departure information associated with the current
timeslot.
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9. The apparatus of claim 1, wherein each of the schedulers
1s configured to:

compute the packet schedule for the current timeslot using

a maximum weight matching algorithm.

10. The apparatus of claim 9, wherein the maximum weight
matching algorithm uses values of the counters, of the sched-
uler computing the packet schedule, as weights.

11. A method for switching packets via a switching fabric,
the switching fabric comprising a plurality of virtual output
queues for queuing packets being switched between a plural-
ity ol input ports and a plurality of output ports, the switching
fabric having a plurality of schedulers associated therewith,
the method comprising:

queuing packets received during a current timeslot,

wherein the packets are queued using the virtual output
queues based on the respective input ports on which the
packets are received and the respective output ports for
which the packets are destined; and

polling one of the schedulers for a current packet schedule

for use 1 switching packets during the current time slot,
wherein the current packet schedule 1s computed using
packet departure information for packets departing from
the virtual output queues during at least one previous
timeslot during which the polled one of the schedulers
was active and packet arrival information for packets
arriving at the virtual output queues during at least one
previous timeslot during which the polled one of the
schedulers was active; and

switching packets from selected ones of the virtual output

queues to associated ones of the output ports using the
current packet schedule.

12. The method of claim 11, further comprising:

providing current packet arrival information to the polled

one ol the schedulers during the current timeslot,
wherein the current packet arrival information identifies
packets arriving at the virtual output queues during the
current timeslot.

13. The method of claim 12, further comprising:

receving, at the polled one of the schedulers, the current

packet arrival information; and

updating, at the polled one of the schedulers, selected ones

of a plurality of counters associated with respective ones
of the virtual output queues associated with iput ports
on which packets were received during the current
timeslot, wherein the selected ones of the counters are
updated using the packet arrival information.

14. The method of claim 11, further comprising:

updating, at the polled one of the schedulers, selected ones

of a plurality of counters associated with respective ones
of the virtual output queues associated with output ports
on which packets were transmitted during the current
timeslot, wherein the selected ones of the counters are
updated using the current packet schedule.

15. The method of claim 11, further comprising;:

computing, at the polled one of the schedulers, a next

packet schedule, wherein the polled one of the schedul-
ers computes the next packet schedule over a plurality of
timeslots between the current timeslot 1n which the
polled one of the schedulers 1s polled and a next timeslot
in which the polled one of the schedulers 1s polled.

16. A method for switching packets though a switching
tabric, the switching fabric comprising a plurality of virtual
output queues and having a plurality of schedulers associated
therewith, wherein for one of the schedulers active during a
current timeslot the method comprises:

providing a current packet schedule from the active one of

the schedulers to the switching fabric during the current




US 7,710,953 B2

17

timeslot, wherein the current packet schedule 1dentifies
selected ones of the virtual output queues from which
packets are scheduled to depart during the current
timeslot;

receiving packet arrival information at the active one of the
schedulers from the switching fabric during the current
timeslot, wherein the packet arrival information 1denti-

fies selected ones of the virtual output queues at which
packets arrive during the current timeslot; and

computing a next packet schedule using the current packet
schedule and the packet arrival information.

17. The method of claim 16, wherein the schedulers
become active in a round-robin manner 1n response to polling,
by the switching fabric.

18. The method of claim 16, wherein the current packet
schedule 1s computed using packet departure information for
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packets departing from the virtual output queues during at
least one previous timeslot during which the active one of the
schedulers was active and packet arrival information for
packets arriving at the virtual output queues during at least
one previous timeslot during which the active one of the
schedulers was active.

19. The method of claim 16, wherein the one of the sched-
ulers active during the current timeslot computes the next
packet schedule using a maximum weight matching algo-
rithm.

20. The method of claim 16, wherein the active one of the
schedulers computes the next packet schedule over a plurality
of timeslots between the current timeslot 1n which the active
one of the schedulers 1s active and a next timeslot in which the
active one of the schedulers 1s active.
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