United States Patent

US007707160B2

(12) (10) Patent No.: US 7,707,160 B2
Tunstall-Pedoe 45) Date of Patent: Apr. 27,2010
(54) KNOWLEDGE STORAGE AND RETRIEVAL 6,438,533 Bl 8/2002 Spackman et al.
SYSTEM AND METHOD 6,446,081 Bl 9/2002 Preston 707/104.1
7,092,928 Bl 8/2006 Elad et al.
(75) Inventor: William Tunstall-Pedoe, Cambridge 2003/0126136 Al 772003 Omoigui
(GB) 2003/0130976 Al 7/2003 Au
2004/0030556 Al 2/2004 Bennett
: . 2004/0107088 Al 6/2004 Budzinski
(73) Assignee: True Knowledge Ltd., Cambridge (GB) 5004/0129656 Al 6/2004 Abir
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1068 days. FOREIGN PATENT DOCUMENTS
FR 2865055 7/2005
(21) Appl. No.: 11/318,316 WO WO 00/57302 9/2000
_ WO W0O2005/073908 8/2005
(22) Filed: Dec. 23, 2005
OTHER PUBLICATIONS
(65) Prior Publication Data Liu et al., “ConceptNet—a practical commonsense reasoning tool-
IS 2007/0043708 Al Feb. 22, 2007 kit,” BT Technology Journal, vol. 22, No. 4, Oct. 2004, pp. 211-226.
Continued
Related U.S. Application Data ()
(62) Davision of application No. 09/990,188, filed on Nov. Primary Lxaminer—sana AI-Hasheml A
21 2001 Pat No. 7013 308 (74) Attorney, Agent, or Firm—Weaver Austin Villeneuve
’ o HOW Tt O /512,900, and Sampson LLP
(60) Provisional application No. 60/253,679, filed on Nov.
28, 2000. (57) ABSTRACT
(51) Int. CL A system and method for representing, storing and retrieving
GO6F 17/00 (2006.01) real-world knowledge on a computer or network of comput-
. . . ers 1s disclosed. Knowledge 1s broken down into permanent
(52) US.CL ... 707/103 R; 707/100; 707/101; _ _ S _ D _
707/100 atomic “facts” which can be stored 1n a standard relational
(58) Field of Classification Search 707/103 R database and processed very efficiently. It also provides for
""""""" 707/100-1 02’ the eflicient querying of a knowledge base, efficient inference
Qee annlication file for comnlete search histo of new knowledge and translation into and out of natural
PP P 24 language. Queries can also be processed with full natural
(56) References Cited language explanations of where the answers came from. The

U.S. PATENT DOCUMENTS
5,794,050 A 8/1998 Dahlgren et al.

5,809,493 A 9/1998 Ahamed etal. 706/52
6,263,335 B1* 7/2001 Paiketal. 707/5
6,377,944 Bl 4/2002 Buseyetal. 707/3
\L gu\.q. ymp]ayﬁfew gaﬂ i
| i e e

| | '

pre—ve— Lo______l 1 906 P
: — '
1 i

i | |[Knowledge Base fa—m Knowledge !
R, . Inference system |
i

—————————

p——— T [ESp—
D02
012
______________________ A
e
914
Serve Qusery
_ '. processing |
1 t
....... ?._._._. = : Eystem :
N2 Server 2 ! :
| N If 1H“HHHH*‘ 918 |
e md ! / 1
7 : :
%12
Knowledga

1
Knowledge Basa g |
: g Inference system | 1

e e e e E e —-——— e e —————

Server Computer Systemn

method can also be used 1n a distributed fashion enabling the
system to be a large network of computers and the technology
can be integrated into a web browser adding to the browser’s
functionality.

41 Claims, 21 Drawing Sheets

Consider knowledge as |
relatichships between |~ boe
objects

Y

Create list of all the
chjects and
relationships nesded

'

Select first 1006
needed object/ -
redlatlon

L~ 1004

1012

a I2 it already
presant in Knowladge
Base?

Yes

1016\, [Create a unigue
name for objact

Y Record itz ;1014
Add this object to intemal
1018 — Knowledge Base including name

tranglation information and
its principal class. Record
its intemal name

1008

More Yes — Salect hext
Objects? chject

-
1010

MNo

Using our list of internal names for objects and relationships, represent our
. kKnowledge as four object facts:
[«fact ld_F]: [<name of first ohject>] [<relation>] [<name of second object>] r’,,IWEI'
Ime information can be included by using facts in the form:
[<fact id 2=]. [<fact [d=] [applies for timeperiod] [<timepeariod>]

Y

Insertthesa imte | 1027
Knowledge Base |~

for future usa

US 7,707,160 B2
Page 2

U.S. PATENT DOCUMENTS

2004/0122661 Al 6/2004 Hawkinson et al.

2004/0205065 Al 10/2004 Petras et al.

2004/0220969 A1 11/2004 Cho

2004/0249635 Al 12/2004 Bennett

2005/0043940 Al 2/2005 Elder

2005/0065777 Al 3/2005 Dolan et al.

2005/0114282 Al 5/2005 Todhunter

2005/0144000 Al 6/2005 Yamasakietal. 704/242
OTHER PUBLICATIONS

Liuetal., “Commonsense Reasoning in and over Natural Language,”
Media Laboratory, Massachusetts Institute of Technology, no date,
pp. 1-14.

Stork, D., “An architecture supporting the collection and monitoring
of data openly contributed over the World Wide Web,” Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
MIT, Jun. 2001, pp. 1-0.

“Mindpixel,” Wikipedia, the free encyclopedia, Jul. 15, 2006,
Stork, D., Open data collection for training intelligent software in the
Open Mind Initiative, Proceedings of the Engineering Intelligent
Systems Symposium (EIS2000), Paisley Scotland, Jun. 2000; pp.
1-7.

Hearst, M., “Building intelligent systems one e-citizen at a time,”
Trends & Controversies, IEEE Intelligent Systems, May/Jun. 1999,
pp. 16-20.

Oflice Action dated Jun. 8, 2004 from U.S. Appl. No. 09/990,188.
Final Office Action dated Jan. 5, 2005 from U.S. Appl. No.
09/990,188.

Notice of Allowance dated May 20, 2005 from U.S. Appl. No.
09/990,188.

Notice of Allowance dated Sep. 29, 2005 from U.S. Appl. No.
09/990,188.

International Search Report and Written Opinion dated Sep. 18, 2006
for related PC'T Application Serial No. PCT/GB2006/050014.

L1 et al., “NaLIX: an Interactive Natural Language Interface for
Querying XML”, SIGMOD 2005, Jun. 14-16, 2005, XP002397059,

3 pages.

Baxter et al., “Interactive Natural Language Explanations of Cyc

Inferences”, AAAI 2005: International Symposium on Explanation-
Aware Computing, Nov. 30, 2005, XP002397060, 11 pages.

Office Action dated Jun. 10, 2009 from U.S. Appl. No. 11/459,202.
Douglas B. Lenat, “CYC: A Large-Scale Investment in Knowledge
Infrastructure”, Communications of the ACM, Nov. 1995, vol. 38,
No. 11, pp. 33-38.

George A. Miller, “WordNet: A Lexical Database for English”, Com-
munications of the ACM, Nov. 1995, vol. 38, No. 11, pp. 39-41.
Toshio Yokoi, “The EDR Electronic Dictionary”, Communications
of the ACM, Nov. 1995, vol. 38, No. 11, pp. 42-44.

Lenat et al., “CYC, WordNet, and EDR: Critiques and Responses”,
Communications of the ACM, Nov. 1995, vol. 38, No. 11, pp. 45-48.
Miller et al., “Introduction to WordNet: An On-line Lexical Data-
base”, Revised Aug. 1993, pp. 1-9.

Miller, “Nouns in WordNet: A Lexical Inheritance System”, Revised
Aug. 1993, pp. 10-25.

Fellbaum et al., “Adjectives 1n WordNet”, Revised Aug. 1993, pp.
26-39.

Fellbaum et al., “English Verbs as a Semantic Net”, no date, pp.
40-61.

Beckwith et al, “Design and Implementation of the WordNet Lexical
Database and Searching Software”, no date, pp. 62-82.
Berners-Lee, “Semantic Web Road Map”, http://www.w3.org/
Designlssues/Semantic.html, Sep. 1998, pp. 1-9.

Berners-Lee, “What the Semantic Web can represent™, http://www.
w3.org/Designlssues/RDFnot.html, Sep. 1998, pp. 1-6.

Resource Description Framework (RDF) Model and Syntax Speci-
fication, http://www.w3.org/TP/PR-rdf-syntax/, Jan. 5, 1999, pp.
1-40.

Brachman et al. “Living with CLASSIC: When and How to Use a
KL-ONE-Like Language”, Principles of Semantic Networks: Explo-
rations 1n the Representation of Knowledge, 1991, pp. 401-456.

Cycorp, Features of CycL, Sep. 27, 2001, http://www.cyc.com/cycl.
html, pp. 1-59.

American National Standard, Knowledge Interchange Format, Apr.
10, 2001, http://www.logic.stanford.edu/kif/dpans.html, pp. 1-31.

* cited by examiner

US 7,707,160 B2

Sheet 1 of 21

Apr. 27, 2010

U.S. Patent

¥ e m

22 ‘wmod Lanb .
U0 g JO AND YouIig 3y |,

U} T SIAMSITR a1y are axajy |

] 23uss4 0 [eyded agy BY 184AN PUPLLLOY 0 UORSANTY
*@ SRR PRIS Gasi WO ONE pUWInd gy |

@@ @ﬁ ® ¢ = |

ﬂzﬁﬁ.ﬁaﬁiﬁ

e s
s " r - r ry i T . . . o . r Fl
r
.‘._. - - . . . - " - .-w '._.m "
— - * r . B] [| !
r1 . .!tilltiillﬁ i
1]

75 wng [ISIGINY . RRUCEIR - WPIRTS. Oy . OO0 RTY ruwesiag |
IR - IO - (97 - 1207000 - V50T - TD) - W) - TSIy aasnme)

ULoY IuTRY- Mo L-umepa@nos
HEENJ# uHosia g

901l
7w >

L
. -— r - = a -
' ‘ ' 1
S i s » u . e) 1
'.. = - - - —Hr - - - - - r . —_ . A - - . . .

Y5 wnyg PIEIEY . PUREAR - NPUNTS. ORI, (EARPY [rwozsag
. IR . IOTR . (TN . THORVSEID . BENTOU0 . TS . VY. EVSIFEY aaaneo)
K TR . SETRONSX . [FAOYY . SUNOYS . SPIPIIT) . TW . PTG deys

iR mmmu:_w a® _..ia.a. mcam uﬁEU XD MIL] - F0INYS [X

m....._ (pieag | |
[WO FURE- 204 - Umn XDmed
EEM ?:uw!..wu

ﬁé%w@

wﬁ:a.&n_aznﬁosn:ﬂ.ﬁ?ﬂ;ﬁ y_ .

SIP0ADY ﬁhom dm0n PONRY NS posaoy g |
* M & @ B & ¢« » |
T dod fopkweg 09 MoW Op ¢

_ul—.ﬂ._d- __. ﬁi ot :Lw Eaﬁb

m_ 38ed weys aq s sy u

W02 00YBA MMM PUSUID 4 cﬂu..u..a—
yssgpy 005 pawod peg |

U.S. Patent

Apr. 27, 2010

A @ & D
e Sooch Revates Pk
‘-Iml
| Agreomennd fasglond N Y

Sheet 2 of 21 US 7,707,160 B2

204

- Sefn il Kntwiede » Senrcrig - R _iof X
Flo Vou G FOmtis WD oo oo e s+
> Q0 B 4 a @ .5 |

| &

Fowad Sop Refresh Mome Sewch Fawortes Print
i § Question & commard 18 MIT in the USY !

I undarstood your question to mean: L

Determine whether the collertion of bulldings and ather tungible]
siructures that compaso the AMassarhucoties Inctitotn of Tochnology -

hicnlly boeated within tha Unpited States ol Amerirn at the |
e i

| and 1 followed the following chuin of reasonmng:

By ralrulation {toolnowiaisemsenpt.com) we know thats
- The cuwrrent tune 1t §):23 33 UTC on the b of Oesebezr 2000

2 Senmaniet Eoowiedyn « Sonmscrin
‘Fio Vow G0 Pavaites Mk

Tvdod bt wn “mi R ARG F el 1 L0

> Q@ B

- 42
4 8ok Fowwd Siop Refresh Home
?Ewumw to MIT En the US?

Fact 2 3¢ true for the peniod from the vewr 1646 ommards
By ¢alrulation (tood. equals2(@semscript.camn) we know that:
@azgachastiog 1t not the pame ax cambrider masgachusenies

Wa krow frons locally stored knowtedge that:

Fact 2: gnastachasents s i o Aments

We know from tocally stored knowtedge that:

Fact 3 12 true for the pertod from the yrar 1789 onwmds

By calculation (Inn!.nquathllm::anrnm} wu know thar;
fragiachmietion 1§ not the thme ag America

By ealcdlanon (tool tpintersecti@isemsoript.com) we know dhar:

38 none aftag thw vear 1789 14 the emepestod mtessection of the pedged from
the Yer 1645 enwards and the perrod Fom the year 1789 onweds
Therefare (generater generator.oransitive}{@sems crigt.com):

Fact 4: cambndow maseaciusstes 1= m Amenca

Fact 4 35 troe for a8 tme affes the year 1789

We already know thar

| Facs 4 13 5rye oy Ml v pdleg the 9ear 1789

By calculation (tosl.equals2(@semseript.com) we know thar:
cormbridoe maseactsentss is not the siyme as Amen

By calcolatzan (tnnl.tp:lmgntn@smscm know that:

a? trme afler the year 1865 1 the tmeperiod Enereection of the period from

the vear !@mggmdﬂmﬂgggg 1789
Therelore (generator gensratar.ransitivel @semscript.com):

Fact 3 MIT ¢ v America
Fact 512 true for o8 time ey the vear 1865

\Wea already know thot-

Fact 5 true for a8 Sme gfer the year 1865

Therefors (gen {grnerutor tooktimeperiodicpoint(@s rmscript.com):
| Fact Sjutmue 2 012833 UTC o the 10th of October 2000

a

mwm

N «

We know from locally stored knowledge that:

RRESYE apphas to 45t

We know [rom locally stored knowledge that

Fact §: MIT o in cambnidat massachusernes

We know from loeafly stored knowledge that:

Fact } i oue for the nevsod fom the qear 1855 onemds

Bjr :a.tmlahm (tnnLﬁqunlﬂ@mmtchum} ve know thar

We mw know that;
transenve anpreg toism

Weo know Irom locally stored knovledgo that:

Fact 2 earkndes magsachiseltes 1t in maggachuseites
We know fromn locafly stored knowledge that:

Fact 2 13 trus foq the penod foo the voag 646 onveards
By talrulation (tnni.nqnnl:?@mmmmt.tnm} wr know thas:
magexchmietieg ic not the same 2y cambeidee mascacimeetes
We know [rom locally stored knowledge that:

Fact 3: maseathusesta2 1 in ﬁmm

Wﬂmmm Iacood wathin}

| =]
i Ml s

D Generw Prulile » Setei rigd

immmfmmm .
e 22 @ B 4

1
,}J Uak Fowsd Qoo Refresh
1| Question or cornmend 15 MIT In the US?

Generic object profile
Logg name: the United States of America
Shoat narme: Amserica

Semsorpt name: [united states of america)

Ths objzct is 2 member of four classes;

[s

U.S. Patent Apr. 27, 2010 Sheet 3 of 21 US 7,707,160 B2

; 5emstrfpt knowledge - Semscript
Hh View Go . Fmites Hﬂp

T« = @ B & . &

Back Forward Refrash Home Saarch Favm'il:es Print

e el

1| Question ofcnrkmand Is Hlllary Clinton married to Tony Blair?|

No.

!
<

query count: 59 . :: 302

— Ege—agLE g W LY el . maa —_— — -—— s, s rmm = - — —_—— e - -

lm -y b ks ey g e S Sy R L e Slmrale AT LS, U LA E—— R W 4 e emmrmam e = rege = emes = e — —_

kp:command: $explaing
 Sexmceiol Knowledr. - Sermscrpl - , __ e SRR
e Vrer ﬁuwm - I) R L , B : L
- . o Q9 @ . &y A . &
8adk. Fa-nad m Refrech Home Sewdh Foveries Prir Fork

| Quettion or e I8 Hillsry Clintan married o Yany B!air'ﬁ

ey
-

I undorstood your guestian to mean: F

Determine whether Hillwry Raﬂhm (linton {the United States First Lady) is joined by marriage (monogameus) to Tony (Antony Chardes Lynton)
tnir, Prinye Mimicte at Britam qt the cwrrent tUme.

and I followed the following chain of reasoning:

By calculation (to nl.naw@mmxmpl.cnm we know that:
The cwryen? bme i3 GO O04:(
Wo know from locally stored Ir.nuwlmlgn lluu:

led ureque Applet Lo ¥ mamed to

We know [rom locally stored knowledge thar;

SYMMOmIE Apphes 1o i matried 1o

Wa know from locally stored knowledge that:

Fact 1; B Crnton 13 pamied to Hilwy Clrton

Wo know [rom lacally ttored knowledge thar:

Face 118 rue for the penod from the year 1975 onwards
Therefore (generator generntor. symmetric] (@ semseript.com):

Fact 2: Hillary Chnion is marricd to B Gwon

Fact 235 trur for the period from the vear 1975 onwards
We abready know that:

Face 2 18 true for the penod frem the year 1975 oowards

By calculation (teol.equals2@semseript.com) we know that:

£ Chron i pot the sarmve as Tory Blay

Therefare (generator gencrator lefhmique l @ semscript.com):

Fact 3: Hilay Clmton & nol marrisd to Tooy Rlsy

Fact 3 i mue for the peniod from the year 1975 oowenrds

We already know that;

Fact 3 i3 e for the period fom the vear 1975 omwards

Therefore (generater tocktimepencdtotimepoint? @sems cript.com):

Face 3 apphes for a3 of trepoty 00 04:07 OTC on the 14th of Wovember 2000

Ipprofle {Arthory Chrles Lynton tor] NI

n-.-l-l- P o Em A e MR R . — L e e p— T —— i R el T Y PP sl W W] o 2 PN T . g W o e il i

e N e T T i T e e Sl T W=y et s i T N Py

FIG. 3 0

U.S. Patent Apr. 27, 2010 Sheet 4 of 21 US 7,707,160 B2

s Semiscript Xnowledge - Semscript
s Fle View Go Favortes Help

. - — . T .
i
II‘I] ":.""" | @
1] .H ;

[E— = - s = = ———— — e . O U S RS RAEAe gL LEiges RELIL AR et Y —her b o - m eaom md

_ B & @@ @ .85 A .

7] Batk Forwxd Stop Refresh Home Search Favorites Piint Font
/] Question or comvnand When was Paris released?)

*]

I have found more than one interpretation of what you typed.
} Please click on the number next to the interpretation that you mean.

1: Find objects to which The 1997 movie Pans has the relationship was published at timepoint
£: Find objects to which The 1951 documentary short movie Parnis has the relationship was published at imepoint
 Find objects to which The 1936 mowie Panis has the relationship was published at timepoint

%Find objects to which The 1929 musical movie Paris has the relatonship was published at tmepoint

| 5:Find objects to which The 1926 drama movie Paris has the relationship was published at tmepoint

| & Find objects to which The 1994 television series Paris has the relationship was published at timepoint
Z: Find objects to which The 1979-1980 drama television series Paris has the relationship was published at
bnepomt

= wr e =rwr aacicaeEms ot

: Semscript Knowledge - emscript
' Fle View Go Favorites Help
1« =2 @ @ Q & A .
; Back Forward Rop Refresh Home Search
’]thﬁmnf:merhtn was Paris released?

f Here are the answers I found:

the year 1936
| query count 47
| explain [%

U.S. Patent Apr. 27,2010 Sheet 5 of 21 US 7,707,160 B2

502

s Semscript Knowledge - Semscript
g Fila View '30 Favorkes Hetp

E:j - @ B & @ -

Back Forward Refresh Home Search
| Question or command Is Paris the capital of France?

Yes.

rrr-—---
-

- - r mmww ~m
“rirmr

query count: 21

e

-' ""rh- Eiiiates e -'\-H-l-'-'l-"\-l'\--'\-d'\-'\—'-'ﬂ = ey -|‘\-l-'\—|‘\-'\- m“qﬂlﬂnmmqnummm
e e "‘-\.r\.-\.-\..'ﬁ' e ki -l —‘ et Tt S Wt e T e '\-H-\-'\-'\- el —— “1‘“111L1lﬂ}rl-ﬂmﬁﬂ'ww1-:| Al " -

504

b ALY A m"m #M‘* Wﬂmm’“r A R R R o A T e T e R R TR AR R R R B e o 'JHE'EL -:w:-* St | L 2D kg LR o WY "‘ﬂ-;‘k"\-‘u.‘-&-‘q« Wﬁﬂ'&'ﬁ'm‘ﬁ
S e L TR RO VP SRy VU S Sy Se TR e ; - g nz e .

R PR i TR R hﬁ'uﬁm‘m T o AR A, o, T, o -:H'L,.hﬂ

S&mqtriﬂt K:mwl&dg& Senﬁ::ngt
{F& %w Go Fwitas I"Eh

j»::a > @ B 4

il ﬁac:k F:omazﬁ Rop Refrem Home Sewd': Fm&e;

el el o T Ll B L TR NE - R ot N, b ASE - T Tl R ek kg

f] MMW command Is Paris l:h: capltnl ni Francc?

I.understood your question to mean:

Determine whether the French city of Paris is the capital city of The Republic of France at the current time.

and I followed the following chain of reasoning:

By calculation (tool.now(@semscript.com) we know that:
The current tome 15 01:20:43 UTC on the 10th of Qctober 2000
We know from locally stored knowledge that:

Fact I; Pans is the capital of France

We know from locally stored knowledge that:

Fact 1 15 true for the begimning of time onwards l%
Therefore (generator tool.timeperiodtopoint@semscript.com):

Fact 115 true at 01:20:49 UTC on the 10th of October 2000

FIG. 5

U.S. Patent Apr. 27, 2010 Sheet 6 of 21 US 7,707,160 B2

: Semscript Knowledge - Semscript
| Fle View Go Favori:es HBb

¥
C o ow Do o “a ko G e e e - .. e -

|l 2. © & @

Back Forward Refresh Home Search Favorites
| Question or command [Htm Tall is Tony Blair?

| Sorry. I couldn't understand what you are asking. Please rephrase.

However, 1 recognised the following bits of what you asked.

Tony Blas
Tony 1 ;

: E ow‘ IE. nf d strmg St.nmcr:p{
ﬂ& 'ﬁew Go Favorites 1

k} o L= Bl WA s - B o Lt . N ELE T R et L% 1 BRSNS

' - T
¢ ' ",

H

i

1] Question or command How Tall is Tony Blair?

Profile of the string: "Tony Blair"

| Iam aware of one object which this string can denote:
Tony (Anthony Charles Lynton) Blair, Prime Minister of Great Bnita;

By e A B rra

ol e g s e . e — LIRS Ll

f l:ta:pmf&e:[ﬂ&h@y Charles Lynton Blair}

am .
.oor . . .
a
.
P
£
v F
H
L
- < —rr -+ - -
LE T L Ly T R
- —ry i Ly Xa A e — lielalblleielirleialinll - [P Ty s H H
. e i =L
L R T L L T o st e T Y bk A - o gh - e Cavn R T el AR A S R R L BAEELS B b beell R e . e = ke A R R d e Gk
5
.

e A

,_ Fm!‘ !e af a human ’ﬂemg Semﬁ{:ﬂgt """ i i Dg
| Fle View Go Favorkes tes Help
e
1] B = A +
‘t Badk Forward F
||| Question or command How Tall is Tony Blair?

Profile of a human being

Long name: Tony (Anthony Charles Lynton) Blair, Prime Minister of Great 006
Bntan
Short name: Tony Blair %

- —— L i ————— o w— wma _— - - —t

FIG. 6

US 7,707,160 B2

Sheet 7 of 21

Apr. 27, 2010

U.S. Patent

[ElE

¥ ¥ .
Nan
"y
2

L gk

Tk ot

SRS
ot
I e N
0
A AN N

o,

NN
A %Emgz‘* *-E:"E&::}q-qg

ARSI AN
iy
I
+h

L 4
o
P
F o

.""'\.-"

b
; o)
S8

--------- s T e rifr i e e

- e

JU0-

4

..“.uE.EE SAWE JU3PISald JO PIIYD B S| OYA Puewwod Jo uopsand ||

ulid

5210AR _._y_mmm

BECEE

& -Junod Lianb

0G81-2081) 20IUO 419159 ELEJN
O0R1-K&7) ICTUOTA] 20Uadg sawue[

OF81-LBLT) SOOI 3

JWOoH

Ysaijay

doig

DARMIOZ

1 B € <«

n__mf

mm“_zo}mn_ ow. ..,._.m_} a4

:)s1] @3a[durod e st a1a "uonsanb sy} 0) sId3MSUE AN} aIe 3IIY],

1-°ed

=

1d11dswiag - abpajmou) 1di1Dsw3s

i .

U.S. Patent Apr. 27, 2010 Sheet 8 of 21 US 7,707,160 B2

302
User Interface 804
(web browser)
306 814
AN / 816
B s
Query Natural
- | Language Translation
protessing translation | templates
SyStem n Ssysteém
208 810
~ V¥V A _ 812
/
Knowledge
Knowledge Dumb and
Inference Smart
Base (Generators
System

FIG. 8

U.S. Patent Apr. 27, 2010 Sheet 9 of 21 US 7,707,160 B2

- - - - A
:
902 =
004 CPU/Display/Web_Browser
\ / \ 910 ¢
/ I
902 l ue
Nl Q ry Natural language
- | protessing translation system
i : l system
| Client2 | |
902 : }
R W |
== B i 08
i |
E i A
. Client3 | |
i ’ ' Knowledge |
| : . IKnowledge Base 5 I
o - , Inference system |
|
l 1 I |
| | J
. I . .
, Clientn Client Computer system
| |
__ _.
/
902
912
e o _/ | 1
: -
| I
I
I I
: 914 | *
r— |
| |
‘ :
, Server n | Query
E ________) : processing
ey At i ' : system
/ : .
912 Server 2 | :
|
| | 918 |
I i [
4 ! :
012 | owled !
| nowledge
K ledge B L
: nowlietige Base Inference system :
:
|
I
|
|

Server Computer System

U.S. Patent Apr. 27, 2010 Sheet 10 of 21 US 7,707,160 B2

Consider knowledge as 1002
relationships between
objects

v

Create list of all the
objects and |~ 1004
relationships needed

v

Select first 1006
needed object/ -~
| relation

1012

Is it already
present in Knowledge
Base?

Yes

1016 ~Create a uniquel
name for object

; - R_ecord Its 1014
Add this object to internal
1018 = Knowledge Base including name
translation information and |
its principal class. Record
its internal name
1008 - —
Yes >l Select next
object
<
1010

Using our list of internal names for objects and relationships, represent our
| knowledge as four object facts:
[<fact id>]: [<name of first object>] [<relation>] [<name of second object>] 1020
Time information can be included by using facts in the form:
[<fact id 2>]: [<fact id>] [applies for timeperiod] [<timeperiod>]

Insert these into
Knowledge Base
‘ for future use

1022

U.S. Patent Apr. 27, 2010 Sheet 11 of 21 US 7,707,160 B2

@ | If not implied by the name, insert

data into Knowledge Base asserting
the object is a memberofthe | - 1114

Select an object which you _ Pnncipal Class
wish to :Jadd to the Y 1102 ([William Jefferson Clinton] [is an

Knowledge Base | Instance of] [Human Being])
(e.g. The person Bill | _ _ ¢ L

Clinton)
| Insert data into Knowledge Base
asserting that the object uniquely

ai inci translates as the long output strin
per%t;tr?g:\ta cFl)ans?s? :‘%Erllthe 1104 [William Jefferson Clintonf[unique Vi~ 1116

: L translates as] ["'William Jefferson
object selected whichis | — : -
already in the ontology of | Clinton, the 4]an President of the

Knowledge Base and of United States”]
which the object is a ¢

member. ((Human Being])

(Optional)
| | Insert data into Knowledge Base
_ 1106 asserting that the object informally
Create unique name for translates as the short output string |— 1118
this object for use within " ([William Jefferson Clinton).
the Knowledge Base [commonly translates as] ["Bill
(William Jefferson Clinton"]

Clinton]) ﬁ

Select a long outbut

Select first possible name

translation string which 1108 .
uniquely identifies this | — _ string 1120
object in natural language ("Bill Clinton®)

("William Jefferson Clinton,
the 42nd President of the
United States") l

Y

| Insert data into Knowledge Base] - 1122
(Optional) asserting that current name
Select a short output 1110 string may translate as the
translation string containing " object -t
a common short name for (['Bill Clinton"] [ns] [William |
the object Jefferson Clinton])
("Bill Clinton")

¢ 1124

Obtain a list of possible Yes | Select next

name for the object which | 111> - > string
may be used to identify it in |_— Strings 2 L7__l
natural language

1126

("Bill Clinton", "President
I Clinton", "William Jefferson

No
| Clinton", "W.J. Clinton".....) @ FIG 1 1

U.S. Patent

Apr. 27,2010 Sheet 12 of 21 US 7,707,160 B2

Identify name of group

1202
of which object is —
member

Identity collection of one or
more other objects which | __— 1204

together 1dentify object
uniquely within this group |

_ _ y

Obtain names for these other
objects by looking them up 1906
in Knowledge Base or by

adding them if not present
_]

4

Create name for object by

' combining group name with

. . 1208
the other object names into a

single name

0 mG 12

U.S. Patent Apr. 27, 2010 Sheet 13 of 21 US 7,707,160 B2

1302

No s gquestion a Yes/No

question?

Assign one or more
variables to the
objects requested as | 1306
the answer \ 4

1304._|Start the query with:

l query
Start the query with:
l query <var1>, —— 303

I

Continue query with sequence of four item lines in
the form:

Id: obj1 relation obj2
each object being either a specific named object or
a variable. The id object is optional if not needed.
New variables ask system to generate list of ™~ 1310
objects that match variables from facts in
knowledge base. Variables mentioned earlier ask

the system to reduce the list by only carrying
forward values that can still be justified.

End

FIG. 13

U.S. Patent Apr. 27, 2010 Sheet 14 of 21 US 7,707,160 B2

I

Write footer listing the facts that can
potentially be generated by this generator.
Label one or more of these lines for | ~1402
matching by the inference engine. Choose
categories of matching for any variables in
these lines and identify the chosen category
the choice of variable name.

.

Write header query to be
executed by inference system
when footer lines are
|matched with lines in a query

1404

1406

|s a successful
answer to the query and the
results sufficient to
assert the foote

No Yes

Smart generator. Identify a
routine that can calculate
hether and with what values the

ooter lines can be asserted to be)
called after the header query has be generated from the 1408

been run. Link the header and resultsugf tl})enreader
footer with this routine's name. query only.

Dumb generator. Link
the header and footer to
Indicate that footer can

1410

U.S. Patent Apr. 27,2010 Sheet 15 of 21 US 7,707,160 B2

 Create sequence of strings and
variables to match class of
questions that template is for

1502

e

—

Y

| Create header query to do translation
of strings matched with variables and

| optionally other checks to ensure that

the translation i1s appropriate. Query
generates values for one or more new

variables

1504

Create translation query. This is
the intended translation of the
question once the results 1506
generated by the header query
have been substituted in.

U.S. Patent

|_Locété translation templates which

Apr. 27, 2010 Sheet 16 of 21

CStf t

Break input string into list of
sequences of recognized 1602
substrings
Any. 1604

remaining
sequences of
substrings?

Yes

Select next sequence of | __ 1606
substrings

—

_1608

might match currently selected
sequence

1610

Any remaining No

No

transiation
emplates?

Yes

Select next translation] 1612
template

Does ™~
elected translation
template match
currently selected
sequence?

1614

1616

Substitute matched strings for
variables in header query.

No

Any remaining
results?

Yes

- 1622
Select next set of results I/

Substitute results into
translation query to
generate a translation

1624

US 7,707,160 B2

U.S.

Patent Apr. 27,2010

Start

Get list of possible | 1702
translation queries (

- -

Sheet 17 of 21

1704

No Are there any A
remaining untested
translations?
Yes No
Y 1706

Select next an currently

untested selected
translation translation be

How many

more than one

¥

1714

Display list of remaining
translations on screen
translated back into natural
language and let user select

__the intended one

I

translations
remain’?

rejected?

1708

1712

US 7,707,160 B2

1710
e

Erase current
transiation

Return it as the
translation

1716

l none

Confess that
question not

translated and use
fall-back strategy

1718

Y

(C_End >
FIG. 17

U.S. Patent Apr. 27, 2010 Sheet 18 of 21 US 7,707,160 B2

1804
Ky 1802
remaining No Translation
lines in OK End
ranslation?

Select next
line

~ 1806

808

1812

Yes

1810

Does the class of the
left object contradict the
permitted left class fo
the relation?

Yes Yes

bject named’.

No

Y

Reject 1814
translation

Does the class of the
left object contradict the
nermitted left class for
the relation?

Yes

FIG. 18

U.S. Patent

No

l

Apr. 27, 2010

Pass text to natural
language subsystem

Sheet 19 of 21

Retrieve text
from URL line }’ 1902
[

— v

Analyze text

— 1904

1906

L— 1912

|

Display result

|, 1914

Yes

l

US 7,707,160 B2

Retrieve web page — 1908

|

End

FIG. 19

Display web page |f 1910

U.S. Patent Apr. 27, 2010 Sheet 20 of 21 US 7,707,160 B2

v

Retrieve list of classes of] - 2002
which object 1s member

L

Eliminate all classes which
do not have an associated —
display template

|

Use Knowledge Base
ontology to i1dentify the most 2006
specific (smallest) of
remaining classes

4

Use associated display
template to display an
information summary for the

object

N

2008

U.S. Patent Apr. 27, 2010 Sheet 21 of 21 US 7,707,160 B2

Recode query into a single line 2102
of text
)
_ y
Replace any forbidden characters with | 2104

allowed characters

Place "ktp :" in front of line to | _ 2106
I form pseudo-URL

hin weh |

Use pseudo-URL within web |

page as a link wherever you | -

want a mouse click to trigger
execution of query

2108

FIG. 21

US 7,707,160 B2

1

KNOWLEDGE STORAGE AND RETRIEVAL
SYSTEM AND METHOD

RELATED APPLICATION DATA

The present application 1s a divisional of and claims prior-
ity under 35 U.S.C. 120 to U.S. patent application Ser. No.
09/990,188 filed on Nov. 21, 2001 now U.S. Pat. No.7,013,
308, which claims priority from U.S. Provisional Patent
Application No. 60/253,679 filed on Nov. 28, 2000, the entire
disclosures of both of which are incorporated herein by ret-
erence for all purposes.

REFERENCE TO COMPUTER PROGRAM
LISTING APPENDIX

A computer program listing appendix has been submitted
herewith 1n accordance with 37 C.F.R. 1.96 and 1.52(e). The
computer program listing appendix 1s stored in duplicate on
two CD-ROMs entitled “Computer Program Listing Appen-
dix Copy 17 and “Computer Program Listing Appendix Copy
2. respectively. The entire contents of these CD-ROMs are
incorporated herein by reference for all purposes. Each CD-
ROM contains a Microsoit Word file entitled “appendix™
created on Oct. 13, 2001, and being 940 kbytes 1n size.

BACKGROUND OF THE INVENTION

The mnvention addresses the problem of efficiently repre-
senting, storing, retrieving and processing real world knowl-
edge on a computer or network of computers.

The problem 1s a fundamental one which has been made all
the more apparent since the mmvention and growth of the
internet. It 1s also one that has enormous ramifications 1n
every area of human endeavor. Historians have argued that
much of the scientific and cultural progress that the human
race has made can be traced to innovations which positively
alfected the storage and spread of knowledge between
peoples and generations. The internet has the potential to be
another mnnovation in this list but 1s hindered by technological
barriers which prevent the knowledge contained 1n 1ts mil-
lions of linked computers being exploited to 1ts full potential.

Typically, a computer system will store any knowledge it
needs to keep 1n a local form understood only by the local
system. The files recording this mnformation will only be
updated and read by the local software and the knowledge
contained 1n them will only be usable by other computer
systems after a great deal of programming work has been
done to integrate the two systems. This problem applies even
if the files are stored 1n a widely-recognized file format. For
example, a database application may store an employee data-
base 1n a recognized relational database format which can be
read by other database systems. However, without specific
programming, all the new system will see are rows and named
columns containing numbers and strings. It will have no
understanding, say, that the fields entitled “employee name”
denote people and would certainly not be able to answer, for
example, a query about monthly salary by dividing the num-
ber under “annual salary” by twelve.

Another limitation of a typical computer system 1s the
narrow domain of the knowledge 1t can contain. The program-
ming elfort required even to handle very specific knowledge
1s huge so a typical computer system can only deal with the
very narrow scope that the application 1s designed to cover.
Once that effort has been made the program generally cannot
be made use of elsewhere.

10

15

20

25

30

35

40

45

50

55

60

65

2

A common way to store general knowledge 1n some appli-
cations 1s to use natural language (e.g. English text) to store
the mformation. This approach certainly allows the widest
possible domain of knowledge to be stored but natural lan-
guage 1s not a format that 1s understandable to computers 1n
any realistic way. This means that although computers can
store and display natural language to humans with ease they
cannot fully exploit the real meaming of the text.

Nowhere are the limitations of natural language as a
knowledge-storing mechanism more apparent than with the
World Wide Web. The Web consists of billions of pages of text
all of which are instantly retrievable and displayable by any
computer on the internet. The amount of knowledge con-
tamned within these pages 1s phenomenal. However, if a
human user wants to find something out using this knowledge
the only practical technique that 1s available at the moment 1s
keyword searching.

In order to find information using keyword searching the
human user first hopes that a page exists which answers the
question, hopes again that this page has been copied and
indexed by a search engine and then tries to 1imagine what
distinctive words will appear on this page. If any of the words
guessed are wrong or the page has not been indexed by the
search engine they will not find the page. If the combination
of words requested 1s contained on too many other pages the
page may be listed but the human user will then have to
manually read through hundreds or thousands of similar
pages before finding the knowledge they require.

In addition there 1s a certain arbitrariness about the words
being used. Searching for general information on a person or
product with a unique, distinctive name has a high probability
ol success but 11 the search 1s for someone with a common
name or for imnformation on something where the name also
means something else (the Japanese board game “Go™ 1s a
very good example) the search will fail or an extraordinary
amount of extra human effort 1s needed to locate the infor-
mation. Furthermore, different ways of describing the same
thing mean that several different queries oiten need to be
made or the search may fail. For example, a search for infor-
mation on “Bill Clinton™, will not produce documents where
he 1s referred to as “President Clinton” or “William Jetferson
Clinton”.

In summary, although innovations may be possible that can
statistically improve the results produced by search engines
none can completely avoid the fundamental problems with
the indexing and keyword searching approach. To overcome
these problems requires a strategy that includes representing
knowledge 1n a form other than natural language.

Methods other than natural language of representing
knowledge on a computer have been proposed previously.
These include systems based on logic where a mathematical
language with syntax and semantics 1s used to represent the
knowledge; Semantic Nets where the information 1s modeled
graphically using nodes which represent objects and links
between the nodes which represent relationships between
objects and frame-based systems where the knowledge 1s
represented using frames which represent objects and slots
which represent properties of those objects.

However, these methods have serious limitations and have
failed to be widely adopted except 1n narrow applications.

SUMMARY OF THE INVENTION

The present invention enables a wide variety of knowledge
to be stored and retrieved such as factual knowledge repre-
senting things that people do not know but may want to find
out. The underlying knowledge storage mechanism 1in the

US 7,707,160 B2

3

preferred embodiment 1s also very efficient and does this with
very little additional complexity. This lack of complexity has
many advantages including processing time and the ability to
develop and implement sophisticated methods based on this
representation without having to deal with large numbers of
exceptions and special cases. This advantage can easily make
the difference between success and failure. The world around
1s very complicated so achieving this 1s difficult. It 1s far easier
to add additional syntax and techniques to cover the excep-
tions than 1t 1s to find single methods that apply 1n a wide
range of situations.

The models underlying the present invention are also
designed to be close to human perception. The computers that
incorporate various embodiments of the invention are usually
there to provide knowledge to humans and the wider the gap
between the invention’s model and the human model, the
more difficult this commumication may be. The human brain
and a digital computer work 1n fundamentally different ways
so achieving this 1s by no means automatic.

According to various embodiments, a knowledge represen-
tation system implemented according to the present invention
may be used on vast distributed systems such as, for example,
the internet. Desirably, such embodiments are universal and
simple enough to be widely adopted having the goal of
enabling the world’s computers to share and communicate
real knowledge with each other. The layer of knowledge
represented on top of any such distributed system 1s referred
to herein as a Global Knowledge Base (GKB). This conceptis
analogous to the World Wide Web being a hypertext layer on
top of the internet and the (now obsolete) Gopher system
being thought of as a menu driven layer on top of the internet.

Various distributed embodiments also enable incentives to
be given to publishers of knowledge. Incentives are not
always necessary as there 1s often a public relations advantage
to being a source of information but the invention enables
additional incentives that may encourage businesses and indi-
viduals to become publishers of high quality information.
These 1incentives include the imcorporation of payment sys-
tems 1n return for providing knowledge and the ability to
spread additional knowledge than that requested. This addi-
tional knowledge could include marketing mnformation such
as product details that the publisher has a commercial incen-
tive to spread.

Much of the knowledge that we use 1s not stored statically
but 1s adapted using reasoning from other facts. Answering,
the most basic questions often involves some implicit reason-
ing. For example, even for us to answer the question “What 1s
your name?” we implicitly have to infer the answer from what
our name was last time we thought about i1t and the fact we
have not changed our name since. With other questions the
inference required to answer 1s more ivolved. Although such
reasoning 1s oiten done subconsciously by us, a computer
system has to do this inference explicitly. Various embodi-
ments including the preferred embodiment incorporate infer-
ence and reasoning 1n a highly itegrated and efficient way
enabling far more knowledge to be presented than that stored
statically.

As human beings are often the ultimate consumers of
knowledge an important feature of various embodiments of
the invention 1s its ability to translate internal representations
to and from natural language. One use of this feature 1s to
enable human users to enter natural language questions and
have those questions answered 1n natural language too. A
turther possible use 1s integration of other technologies. For
example, an embodiment containing a voice recognition sys-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

tem could enable answers to spoken questions being gener-
ated and additionally a voice synthesis system could speak the
responses.

A related feature present in some embodiments 1s for the
reasoning process and source of the answers to be fully
explained to the human operator. The knowledge produced by
a knowledge representation system 1s often ultimately used
by a human being and that human being generally has to take
responsibility both for the accuracy of that knowledge and for
any decisions which are based on 1t. For this reason, 1t 1s
desirable that the system 1s able to justily and explain where
the knowledge came from. By doing so, the human user can
have more confidence in the information and justify those
facts to others. A “black box” which simply prints out an
answer without an explanation 1s of less use 1n many situa-
tions.

Another advantage of various embodiments 1s their ability
to 1nterface smoothly with existing technologies such as the
World Wide Web. Methods are described of incorporating the
invention within a web browser adding to 1ts existing func-
tionality. Other important technologies are existing database
systems: 1t 1s possible to place a knowledge representation
layer over existing database servers and to convert existing
data into the present knowledge representation method. Other
sources of knowledge including documents and web pages
can also be referenced.

The mvention also enables other strategies to be used 1n
certain embodiments. These include the ability to display
general information screens about any object based on 1ts
class and properties and to provide useful information even
when a natural language question has not been answered
successiully.

A Turther understanding of the nature and advantages of the
present invention may be realized by reference to the remain-
ing portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. shows a web browser incorporating the mvention
displaying web pages or answering a natural language ques-
tion depending on what 1s typed into the URL line by the
human operator.

FIG. 2. shows a sequence of four screen shots of a web
browser incorporating the invention. The first shows the soft-
ware answering a Yes/No question. The second shows the
result after the human operator requests an explanation of the
answer by clicking on the “explain’ link. The third shows the
same windows aiter 1t has been scrolled to show the remain-
ing lines. The fourth shows the results after the operator
clicked on the link labeled “America” to produce an informa-
tion screen on that object.

FIG. 3. shows a Yes/No question being answered with
“No” and an explanation showing how the “no” answer was
created by proving the opposite for an overlapping time
period.

FIG. 4. shows the response to an ambiguous question
where the natural language question can mean a number of
different things. It also shows the result after the human
operator selected the intended question by clicking on a link
encoding the true question 1n internal format.

FIG. 5. shows the immediate response to another poten-
tially ambiguous question where all the non-geographical
interpretations of the word “Paris™ were rejected to produce
only one correct interpretation.

FIG. 6. shows the fall-back strategy used by the mnvention
when a question 1s not understood. It also shows a profile
screen generated when the human operator clicked on the

US 7,707,160 B2

S

“Tony Blair” link and a further profile screen when the link on
the first profile screen was clicked.

FIG. 7. shows a response to a query where the system 1s
able to say that the answer 1s complete.

FI1G. 8. depicts an embodiment of the invention on a stand-
alone system.

FIG. 9. depicts a distributed embodiment of the system
where the internet 1s used to exchange knowledge between a
number of clients and servers.

FI1G. 10. illustrates the process of placing knowledge in a
knowledge base powered by the invention.

FI1G. 11. illustrates the steps required to add a new object to
a knowledge base.

FIG. 12. illustrates the steps required to name a param-
ctered object.

FIG. 13. illustrates the process of creating a query.

FI1G. 14. 1llustrates the process of creating a dumb or smart
generator.

FIG. 15. illustrates the process of creating a translation
template.

FI1G. 16 1llustrates the computer-implemented process of
translating a natural language question using the templates.

FI1G. 17. illustrates how ambiguity 1s dealt with by post-
processing a list of possible translations.

FI1G. 18. illustrates how some translations are rejected.

FI1G. 19.1llustrates a method of separating natural language
questions and URLs typed into a web browser.

FIG. 20. illustrates the process of displaying a profile
screen about an object.

FI1G. 21. illustrates the process of encoding a query within
a web page.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

1. General

This section describes 1n detail how the present invention
works. It should be noted that many of the choices made in
describing the preferred embodiment are fairly arbitrary
including for example, the choice of ontology, the syntax and
the names given to the classes and objects used as examples.
Moreover, much of the description of the processing of the
English language 1s trivially adaptable to other languages and
thus the description should not be taken as limiting the choice
of natural language to English. Many choices for implement-
ing much of the technology are available and many different
embodiments will be obvious to anyone skilled 1n the art who
has read what follows. Any specifics described should not be
interpreted as limiting the generality of what 1s claimed.

2. Basics

The mvention 1s modeled on some of the basic principles of
human perception. This 1s partly because human beings are
the only intelligent entities that are known to exist and so are
the only model and partly because even 1f there were other
equally useful models it would make sense to use the human
one as the computer systems using 1t often have to commu-
nicate with humans.

2.1 Objects

The fundamental thing that human beings do to the uni-
verse 1n order to make sense of 1t 1s to divide 1t up 1nto objects.
This process 1s fTundamental to our thinking and reasoning 1s
impossible without this basic conceptualization.

Having broken the universe up into objects we can then
reason about our situation by various basic techniques. One of
the most basic 1s to place that object 1nto a class and draw on
our past experiences with similar objects. For example, 1f we
see an apple hanging from a tree, although we do not know

10

15

20

25

30

35

40

45

50

55

60

65

6

anything about that specific apple, we have eaten other
instances ol apple before and know that each was good to eat.
We can then use those experiences to make a decision to eat
the one we see now. We are naturally capable of far more
complicated acts of reasoning than this but core to all reason-
ing are objects.

Another thing to note 1s that non-physical objects are core
to higher reasoning—it 1s virtually impossible to say or think
anything without using this basic conceptualization.

Naturally objects are core to the invention too. In a natural
language such as English nouns are one of the main building
blocks of the language. In the present invention 1t 1s important
to distinguish between an 1nstance and a class, both of which
are objects but of different types. This distinction 1s not imme-
diately obvious when thinking about nouns. “Apple” for
example 1s a class; “Albert Einstein™ 1s an nstance (of the
class “Human Being™); “An apple” 1s English for an unspeci-
fied 1nstance of the class “apple”.

Basically 1n the mvention plurals do not normally exist—
objects are considered to be unique and singular. English
phrases like “ten trees” correspond to a single instance of the
class “group” where the constituents of that specific group
object are ten unspecified mstances of “tree”.

In the invention all identified objects have a name. This
name must be unique and 1n the preferred embodiment should
correspond to a common yet fairly specific English noun or
noun phrase for the same object. Instances are usually given
the English proper name for the object 1f there 1s one. It the
proper name 1s not unique then a noun phrase 1s used mclud-
ing the proper name. In the preferred embodiment these
names can include spaces making them very close to normal
English.

As a last resort, one can distinguish between objects that
would otherwise have been assigned the same name, by add-
ing an 1integer at the end (after a space). If the integer 1s missed
off 1t 1s assumed to be 1 so new objects which clash with
existing objects start their numbering with 2. For example:

| William Jefferson Clinton] 1s the object name for Presi-
dent Bill Clinton and 1s exactly the same as [William Jetfer-
son Clinton 1]. Should there be another William Jefferson
Clinton out there he might be assigned the name [William
Jetferson Clinton 2]. Names are case insensitive. e.g. [Will-
1am Jeflerson Clinton] 1s the same object as [william jefierson
clinton]

Note how the names are written in square brackets. This
identifies the thing as a name and also means that such names
are recognizable as being part of the present invention even
when written out 1n some context where what 1t 1s would not
otherwise be obvious.

A name within the disclosed knowledge representation
system 1s elffectively a universal identifier. Although “Bill
Clinton”, “William Jetferson Clinton”, “President Clinton”
etc. may all be versions of one person’s name and may all
denote him uniquely 1n natural language, there 1s only one
name for him within the knowledge representation system.

The real world names that denote him including all the
above examples, can be specified as denoting [William Jet-
terson Clinton] by the use of facts (described below). These
translation facts enable references to “Bill Clinton™ efc.
within natural language questions to be successtully under-
stood.

Generally the above syntax 1s unrelated to the ontology
used or the class of the object. One exception in the preferred
embodiment 1s the class of strings (sequences of characters).
Instances of this class are simply the string 1tself put in quotes.
c.g. [“William™] 1s the name for the sequence of characters
"W Lot ot fal . L ‘m—atmeans nothing

US 7,707,160 B2

7

more than that. Such objects are useful for stating information
uselul for translation and for parametered objects (described
below).

2.1.1 Parametered Objects

Some classes contain an infinite (or extremely large) num-
ber of objects that can be consistently understood 1n some
way. For this reason we need to denote such objects by a
combination of the class name and data as 1t 1s not practical
(or indeed possible for infinitely large classes) to statically
identily and manually name every instance of the class. The
syntax ol a parametered object 1n the preferred embodiment
1S:

[<class name>: [object 1]; [object 2]; . . . ; [object n]]

Parametered objects have at least one object within the
name as a parameter. The number of parameters can be fixed
for a particular class e.g. Timepoint (a moment 1n time) or
vary e.g. Group (a collection of objects regarded as a single
object).

For some objects strings containing the important informa-
tion are used as the parameter or parameters. This 1s espe-
cially useful where there 1s already a well-established “real-
world” syntax for members of the class. A simple example 1s
the class of integers. e.g. [Integer: [“8128”]]. Integers already
have a universal syntax and meaning using the digits 0-9 in
sequence and the decimal system. It 1s thus easy and obvious
to denote them using a single string object as the parameter. A
more complicated but equally valid example 1s a chess posi-
tion where a standard way of denoting them as strings and
including all the other information (such as the side to move
and castling rights) has already been established. e.g. [chess
position: [“R7/5plp/SKpl/8/k6P/plr5/2P5/8 b - -]

Another common class of parametered objects used 1n the
preferred embodiment 1s the timepoint class. Here a single
string object 1s used with a format that 1s not widely used. It 1s
a sequence ol integers separated by */” characters, denoting
(in order), the year, the month, the day, the hour 1n 24-hour
clock, the minute and the second. Any further integers are
tenths, hundredths, thousandths of seconds etc. e.g.

[timepoint: [*1999/6/3/15/0]] is 3pm on the 3™ of June
1999 UTC. The accuracy of this timepoint 1s within one
minute. [timepoint: [*“19997°]] specifies a “moment” of time
but the accuracy 1s one year.

Parametered objects are compared by comparing each
parameter 1n turn. If the nature of the class means that order 1s
unimportant (e.g. group) the parameters need to be consid-
ered 1n a pre-determined order (e.g. alphabetical) so that the
same objects will be compared as equal.

Parametered objects can also have other parametered
objects as parameters. This nested nature of parametered
objects can be extended indefimitely deep. For example, we
could define a class “pair” specifically for objects consisting
of exactly two things, e.g. [pair: [integer: [*“3”]; [integer:
[*“7’]] and having done so there 1s no reason why we could not
create a name for the object consisting of the group of this
object and other things, e.g. [group: [pair: [integer: [*57];
[integer: [*77]]; [William Jefferson Clinton]] 1s the object
which involves considering the pair (5,7) and Bill Clinton as
a single thing.

The process of creating a parametered object 1n illustrated
in FI1G. 12. The first step 1s to determine the group that1s going
to be used (step 1202). Next the objects which together
uniquely 1dentity our object within this group are 1dentified
(step 1204) and the internal names for these objects obtained
(step 1206). Step 1206 may even involve using this same
method to obtain names for one or more of these objects.
Having obtained internal names for all the objects, the name
of the object 1s created by combing the group name with the

10

15

20

25

30

35

40

45

50

55

60

65

8

objects names to create a single identifier (step 1208). In the
preferred embodiment this 1s 1n the form [<class name>:
[object 1]; [object 2]; . . . ; [object n]] as described above.

2.2 Relations

The second core concept to the human perception of the
unmiverse 1s that of a relationship between objects. Relation-
ships can exist between physical objects and also between
physical objects and non-physical objects (concepts). e.g.
“John 1s married to Sarah” i1s a natural language assertion
about a relationship between two physical objects (1n this case
people). “The apple 1s green™ asserts a relationship between
the attribute “green” with the istance of apple being talked
about. ““The book 1s about Albert Einstein’s carcer’” asserts a
relationship between a book and the concept of Albert Ein-
stein’s work history. “The soup tastes salty” asserts a rela-
tionship between the attribute “salty” with the soup. All of
these natural language assertions also contain nformation
about time (tense): this will be dealt with below.

As relationships are core to human perception they are also
core to the present invention. Relationships are also objects.
For example:

[1s married to] 1s the object (relation) that corresponds to
the Western concept of marriage between a man and woman.
1.e. a formalized monogamous marriage.

[1s an instance of] relates an instance object to a class
object. e.g. the relationship between Albert Einstein and the
class Human Being

|applies to] relates an attribute object to another object. 1.¢.
It says that a certain property applies to something. This
second object can be anything: an instance, a class, a relation
or even another attribute.

[1s a subclass of] relates one class to another and says that
the first class 1s more specific class than the second and that all
objects that are members of the first class are also members of
the second. For example, this relationship applies between the
class [apple] and the class [fruit]. This relation defines a tree
of classes and objects are members of all the classes going up
the tree with the root class being the class of all objects.

Relations are typically named by finding a present tense
verb phrase that unambiguously describes the relationship.

2.3 Facts

Core to the preferred embodiment of the disclosed knowl-
edge representation technology 1s the four object fact. The
basic syntax 1s:

[name of fact]: [object 1] [object 2] [object 3]

1.e. Four objects listed 1n order on one line, with a colon
alter the first one. A great deal can be achieved without the
[name of fact] object and an alternative embodiment could
omit this extra identifier completely or make 1t optional. How-
ever, 1n the preferred embodiment 1t 1s compulsory.

Object 1 and Object 3 can be of any type. Object 2 has to be
a relation. This fact itself 1s an object with the name [name of
fact]. When asserting knowledge all four objects have to be
names.

In the preferred embodiment, the names of facts are of the
form

[fact.<unique string>(@network.machine.name]

The network machine name (e.g. an internet host name)
“owns” the fact and 1s responsible for its truthfulness and
maintaining 1t. Other machines will refer to this machine to
get information about this fact 1if necessary. An alternative
embodiment would be to associate the machine with the fact
but to include the name of the machine separately from the
fact name.

Here are some simple examples of facts:

[fact.1(@semscript.com]: [William Jefferson Clinton] [is
married to] [Hillary Rodham Clinton]

US 7,707,160 B2

9

[fact.2(@semscript.com]|: [William Jefferson Clinton] [1s
an instance of]| [human being]

[fact.3(@semscript.com]: [Paris] [1s the capital of] [France]

Note how facts are essentially strings of text and are thus
casily stored on a computer and communicated over a net-
work between computers.

The other advantage of the fact concept 1s 1ts lack of com-
plexity. A sequence of four objects with an extremely straight-
forward syntax can be regarded as a permanent atom of
knowledge. An unordered collection of such atoms can com-
municate and permanently store real knowledge without any
of the problems of natural language. Yet another advantage of
the representation 1s that facts such as the above can easily be
stored 1n a standard relational database consisting of four
columns with each field being text. Use of indexes means that
combinations of known and unknown objects can rapidly be
looked up. A turther advantage 1s that as each atom of knowl-
edge has a name, 1t 1s very easy to represent facts about facts.
This 1s typically how time 1s represented (see below) but
could also include knowledge about when the fact was added
to the knowledge base, what person or entity added 1t or any
of a large number of other possible assertions. The naming
also gives a source that “owns” the fact enabling all sorts of
possibilities relating to maintaining and verifying the fact
over a network.

Any knowledge representation method that uses more
complicated syntax for representing knowledge will fail to
have these advantages.

Note also that by placing the relation object in the middle of
the two other objects, the facts “read” like natural language
making it very easy to understand by humans.

Knowledge stored in this manner can also be used to
supplement knowledge stored using other strategies.

2.4 Time

The final core concept to the human perception of the
universe 1s that of time. Time 1s so core to our understanding,
of the universe that 1t 1s almost impossible to state anything 1in
natural language 1n a time neutral way. Every verb has a tense
associated with 1t.

In natural language things are expressed relative to the
present. This makes perfect sense for natural language as it
evolved 1n the spoken form and thus every communication 1s
both transient and communicated at a known moment of time.
The present 1s thus the most convenient anchor to which to
relate time information.

However, when natural language i1s in written form the
reader needs to adjust what 1s being said with his or her
knowledge of when the text in question was written. For
example, when reading an old newspaper, facts expressed 1n
the present tense actually relate to the date the newspaper
published and may well be expressed in the past tense it
communicated at the date of reading. The reader therefore has
to adjust his or her understanding of what 1s being read with
the knowledge that 1t was written in the past.

As the main purpose of the present invention 1s to allow
long-term storage of knowledge and processing by a com-
puter, 1t makes sense for time to be expressed 1n the preferred
embodiment in-absolute terms. 1.e. we assert things are true
for periods or moments of time expressed as a date/time-oi-
day and not relative to the moment when they are expressed.
Alternative methods are possible but doing this avoids the
complexity of having to adjust the meaning of facts from
moment to moment as time goes by.

A simple fact has no mformation about time in 1t. For
example:

[fact.4(@semscript.com]: [London] [1s the capital of] [En-
gland]

10

15

20

25

30

35

40

45

50

55

60

65

10

simply asserts that the relationship [1s the capital of] was/
1s/will be true for at least one moment 1n the time line. It may
be true for all of 1t, it may have been true only for an 1nstant in
16358.

To get around this problem each fact expressing a relation-
ship that can change must be accompanied by one or more
temporal partners. Temporal partners are facts that reference
other facts and make assertions about when another fact is
valid.

e.g.

[fact.1(@semscript.com]: [William Jeiferson Clinton] [is
married to] [Hillary Rodham Clinton]

[fact.2@semscript.com]: [fact.1 @semscript.com] [applies
for timeperiod] [timeperiod: [timepoint: “19757]; [1aiter]]

[fact.2@semscript.com] makes an assertion about
[fact.1(@semscript.com] namely that they are/have been mar-
ried continuously since 1975 until the indefinite future. Note
this pair of facts says nothing about whether or not they were
married before 1975.

Many facts are true for all time and 1t 1s often possible to
infer this from attributes of the relation 1n the fact. e.g. the
relation [1s true at timepoint] 1s a permanent relationship:
Although our knowledge of history may change or be updated
as time progresses, the past 1s immutable. This practice of
making an assertion without temporal partners 1s usually
reserved for facts that absolutely cannot change from moment
to moment—if they were true once they are always true.
Generators (see below) can then infer the temporal partners
(1f needed) asserting they are true for the whole time line.

The other way of dealing with time 1s for the knowledge
base to only store information about the present (and not store
information about things that were true 1n the past and not true
now) and to update the knowledge base when things change,
replacing the facts that are no longer true. Such a fact simply
asserts something about the moment 1n time when the access
of the knowledge base was made and 1t 1s not necessarily true
at any other time. In other words the ability to assert knowl-
edge about the past 1s sacrificed 1n exchange for benefits of
convenience and efficiency.

In the preferred embodiment, this method 1s used for facts
used for translating to and from natural language. The reason
being partly that their use 1s in translating questions and
statements that happen in the present and thus old versions of
these facts are not very useful, partly because they would
almost never be used and partly because they change very
infrequently. Temporal partners could be included but 1t
would needlessly complicate the translation process. Another
common situation where this method is (has to be) used 1s
when querying the system for the current time. Naturally, a
temporal partner for such a fact would be pointless.

One should note that some facts need to be updated and
changed from time to time anyway. For example a temporal
partner using the object [timeperiod: [timepoint: [“19877]];
[1after]] asserts the time period from 1987 until the indefinite
future. At some point after the fact was added to the knowl-
edge base, the fact may cease to be true. At this point the time
period object needs to be replaced with one incorporating the
end date. The same applies when facts 1n the knowledge base
are found to be wrong and need to be corrected.

The [timeperiod] class 1s a class of parametered objects
where the two descriptive objects are the point 1n time when
the period of time commenced and the point 1n time when 1t
fimshed. However, to cover infinite or indefinite periods of
time there are three special time point objects 1n the preferred
embodiment. The first 1s [1after] which indicates an unknown
point in the future. It 1s used for things that are true 1n the
present but which are not guaranteed to be always true. The

US 7,707,160 B2

11

second and third are [time zero] and [forever]| which indicate
respectively a point 1n time infimitely long ago and a point in
time 1n the mfinite future. They are used to indicate infinite
periods of time, for example the object [timeperiod: [time
zero|; [forever]] indicates the entire time line and would be
used for example 1n a temporal partner for facts that are true
by definition.

2.5 Negative facts

It 15 also possible to assert that a relationship 1s not true. In
the preferred embodiment this 1s done by putting the tilde
(“~") character before the relation object. e.g.

[fact.3(@semscript.com]: [London]~[1s the capital of] [En-
gland]

[fact.4(@semscript.com]: [fact.3(@semscript.com] [applies
for timeperiod] [timeperiod: [time zero]; [timepoint:
“1066]]

These two facts together assert that London was not the
capital of England before some point 1n 1066.

When storing facts 1n a relational database whether the fact
1s positive or negative can be indicated by having a Boolean
field 1n addition to the four string fields containing the names
of the objects.

2.6 The Golden Rule

The golden rule 1s that a relationship cannot both exist and
not exist between the same pair of objects at the same moment
in time. Contradictions or inconsistencies 1 knowledge rep-
resented by facts are produced by finding or logically gener-
ating breaches of this rule.

Note that the representation of a timepoint 1s imprecise no
matter how accurately it 1s specified. In order to create a
contradiction we have to show a relationship between the
same pair of objects both existed and did not exist for two
overlapping periods of time 1mplied by the accuracy of the
timepoint. For example the British Queen Victoria was both
alive and dead (not alive) 1n 1901: she was alive 1n the part of
1901 belore her death and dead 1n the rest of 1t. If someone
remarries an hour after their divorce goes through they are
married to two different people on the same day but without
being married bigamously. If, however, you can show that
someone was alive for one timeperiod and dead for another
and show that the two time periods overlap only then have you
found a contradiction.

2.7 Summary

In the preferred embodiment of the invention the universe
1s modeled as a huge array of objects and relationships
between pairs ol objects. As the time clock ticks named
relationships between pairs of objects spring 1 and out of
existence.

The process of representing knowledge with facts 1s 1llus-
trated 1 FIG. 10. Step 1002 1s to think of the knowledge as
relationships between objects and time periods that these
relationships hold. The next step 1s to 1dentity all the required
objects and relationships (step 1004). Steps 1006, 1008 and
1010 then implement a loop where each of these objects and
relationships are considered in turn. The first thing 1s to see
whether each object 1s already 1dentified in the knowledge
base (step 1012). It 1t 1s a record 1s made of its object name
(step 1014). If not a name 1s created for this object (step 1016)
and information 1s added to the knowledge base to record 1ts
presence and basic properties (step 1018).

Once this process has been done for all the objects and
relationships the next step 1s to represent our knowledge using,
four object facts (step 1020) and to msert these facts into the
knowledge base (1022).

All possible objects “exist” in the knowledge base for all
time. Existence of physical objects (and other objects such as
legal entities which only have life for a given period of time)

10

15

20

25

30

35

40

45

50

55

60

65

12

1s expressed by the presence of a relationship with an attribute
for the time they are around 1n the real world. e.g.

[fact.1356(@semscript.com]: [alive] [applies to] [queen
victorial

[fact. 1357 @semscript.com]: [fact.1356(@semscript.com]
[applies for timeperiod] [timeperiod: [timepoint: [“18107]];
[timepoint: [“19017]]]

[fact.1338(@semscript.com]: [alive]~[applies to] [queen
victoria]

[fact.13539@semscript.com]: [fact.1358@semscript.com]
|[applies for timeperiod] [timeperiod: [timepoint: [“19017]];
[foreverl]]

It should be noted that relationships can exist between
physical objects even when one 1s not present in the physical
world any more. e.g. a modern day book can be about Isaac
Newton even though he died hundreds of years ago. The book
and the person are both physical objects with a relationship
between them existing in the present yet there 1s no shared
moment 1 time when they both existed.

2.9 Queries

Queries are the internal representation of a question. Que-
ries look very much like a series of facts but the purpose is to
see whether they can be justified from knowledge found 1n or
inferred from the knowledge base rather than to assert infor-
mation. Variables can also replace objects 1n the facts (1includ-
ing objects within parametered objects). For example:

query

: [William Jefferson Clinton] [1s married to] [hillary Clin-
ton|

t [applies at timepoint] [timepoint: [“1999/6/37]]

asks the question “Was Bill Clinton married to Hillary
Clinton on the 3™ of June 1999?”

Notice how the name of the first fact 1s given a variable I
rather than a name. In processing the query the engine will
solve for T with every possible fact name that asserts that
relationship between Bill and Hillary Clinton and then try to
satisly the second line using 1t. Provided both lines can be
satisfied with at least one value of 1 the query will answer
“Yes™

In queries the name of a fact can be dropped when the name
1s unimportant 1.e. when 1t 1s not needed for a later part of the
query and when 1t 1s not wanted by the user. This 1s effectively
the same as expressing the fact name as a variable and then not
referencing the variable again. Such lines thus have only three
objects listed.

Variables can also be used 1n place of other objects in the
facts. For example:

query a

1: a [1s married to] [hillary Clinton]

t [applies at timepoint] [timepoint: [“1999/6/37]]

asks the question “Who was married to Hillary Clinton on
the 3" of June 1999?”

I1 the query 1s requesting objects as the answer, one or more
variables that represent the desired objects follow the “query™
statement. If the query 1s just trying to determine the truth of
the query we term 1t a truth query and 1t has no variables after
the “query” statement. Queries whose purpose 1s to produce
one or more named objects as answers are termed object
queries. The above query with the a missing from the query
statement would ask the question “Was anyone married to
Hillary Clinton on the 3" of June 1999?”

The process of creating a query 1s illustrated 1n FIG. 13.
Step 1302 15 a test to see whether the question being asked 1s
expecting a yes or no as the answer or something else (rep-
resented as objects). I 1t 1s a yes/no question step 1304 1s
done. This step starts the query with a “query” statement and
no variables. If one or more objects are expected as the

US 7,707,160 B2

13

answer, step 1306 1s done where variables are given to the
various objects of which the answer 1s composed and then the
query starts with the text “query” and a list of these variables
separated by commas (step 1308).

The next step 1s to create the body of the query (step 1310).
This 1involves creating a series of lines using variables and
named objects which the knowledge representation has to
satisfy to answer the query. These lines can look like four
object facts or can omit the fact name 111t 1s not needed. If the
query statement contains variables these variables must be
used within the lines.

A more complicated query 1s the following:

query a

a [1s an mstance of] [nation state]

t: a [1s geographically located within] [the continent of
Europe]

t [applies at timepoint] [timepoint: [*“19997]]

t1: 1 [1s the capital of] t

t1 [applies at timepoint] [timepoint: [*“19997]]

f [commonly translates as] d

¢ [1s the first letter of] d

¢ [equals] [“p”]

which translates as “Which continental European countries
have capital cities whose names start with a ‘p” 1n 19997~

The first line will generate a list of several hundred possible
values for a (current and former countries) which will be
whittled down by the tests in the next few lines for location
within Europe. The capital cities are looked up, translated into
strings which are their usual English names and the first letter
1s checked to be a “p”. Any values of a remaining after the last
line 1s checked are returned by the query.

Essentially lines 1n the query can be regarded as filters 1t
they reference variables that have been mentioned 1n earlier
lines. Such lines reduce the possible values for that variable
by doing tests on it, substituting 1n all previously found values
one by one and seeing 1f the resulting fact can be found
(directly or after inference) in the knowledge base. If the line
uses a variable for the first time 1t can be regarded as a
generator—{inding all possible values for the variable that are
passed downwards. IT any values (or combinations of values)
survive the generators and filters to the end of the query they
result 1n a “Yes” answer for a truth query and a list of objects
for object queries.

This query processing 1s implemented in the preferred
embodiment by searching the knowledge base for solutions to
the first line of the query giving a list of possible substitutions
tor the variables and then creating new queries composed of
all subsequent lines of the query (it there are any) with refer-
ences to the first-line vanables replaced for the solved objects.
These new queries are then recursively solved and any results
combined with the results from the first line.

The recursive calls are guaranteed to terminate because
cach depth of recursion corresponds to a query that is one line
shorter than before and the 1initial query had a finite number of
lines. If any call cannot produce any facts to satisty the first
line of 1ts query then 1t returns with no result and does no
turther recursive calls. If the first line contains no variables
(either because 1t never did or because earlier recursive calls
have substituted the varniables for objects), the routine just
checks to see 1f any facts are 1n the knowledge base that match
the current line and either continues with the next line or
simply recurses again on the query made up of all subsequent
lines (both methods are equivalent).

The recursive calls pass back down the variable substitu-
tions they have discovered which survive future recursive
calls. If there are no future recursive calls then the substitu-

10

15

20

25

30

35

40

45

50

55

60

65

14

tions that are passed back are simply the ones that are gener-
ated by processing the last line of the original query.

The alternative non-recursive method using a stack instead
of recursive calls will be obvious to anyone skilled in the art
of computer programming.

QQueries can be run 1n a number of modes. Establish mode
simply checks whether values can be found 1n the knowledge
base that confirm the facts: “No” and “unknown’ are thus the

same result for truth queries.

Full mode attempts to distinguish between No and
Unknown for truth queries by seeing whether 1t can establish
a breach of the golden rule for any part of the query using facts
in the knowledge base by assuming the lines 1n the query are
true. This test 1s done if 1t fails to answer the query with 1ts first
attempt. I1 1t can establish a contradiction the answer to the
query 1s “No” as we can assume that the golden rule 1s true. If
not, the answer 1s “unknown”.

This 1s done 1n the above query answering algorithm by
adding a test after the first line of a query has failed to produce
an answer. The test 1s designed to see whether the failure may
simply be due to the knowledge base not containing the
answer (an “I do not know™ answer to the yes-no question) or
because 1t 1s wrong and contradicted by other knowledge in
the knowledge base (a “no” answer to the yes-no question).

The test involves searching for a temporal partner for the
first line 11 one exists and then creating a reverse query coms-
posed of the first line with the relation made negative 11 1t 1s
positive and positive 11 1t 1s negative and the temporal partner
replaced with one which would create a breach of the golden
rule 1f applied to this reversed fact and 11 both sets were true.
1.¢. the [applies at timepoint] relation 1s replaced by [applies
for all of timepoint] relation and the [applies for time period]
relation 1s replaced by [applies for some of timeperiod] and
vice versa. €.g. Although 1t might be possible for both the facts
“John 1s married to Sarah 1n 1999 and “John 1s not married to
Sarah 1 1999 to be true (1 they divorced in that same year)
it would not be possible for both to be true 11 the second
statement was 1nstead “John 1s not married to Sarah for all of
1999”” and 1n this case one statement being true implies that
the other 1s false.

In the case where there 1s no temporal partner (implying
either a permanently true relation or one that 1s true at the
present) the reverse query 1s simply the fact with a positive
relation made negative or a negative relation made positive.

By running this reverse query and getting a “yes” answer
the routine can answer the original query with a “no”.

The 1ssue of completeness of the results for object queries
(1.e. have all objects been returned?) 1s also dealt with below
(1t 15 also tested for 1in full mode). To do this requires infor-
mation 1n the knowledge base about the number of objects
that have a particular relationship which can then be matched
with the number of objects actually found.

The preferred embodiment also contains certain param-
cters that can be added to lines 1n a query for efliciency
reasons. These include:

/S

means that the current line should only be processed using
static knowledge. There 1s no need to use inference to find this
out. A typical situation for this 1s to see whether a common
attribute applies. If the attribute 1s a fundamental property that
can be assumed to be always stored statically if it applies, then
there 1s no point 1n doing anything more complicated to find
it. €.g. a line 1n a query might be:

[symmetric] [applies to] r /s
where r 1s a relation.

US 7,707,160 B2

15

If arelation 1s used, 1ts core properties are always stored so
we can assume that [symmetric] either applies or not from a
static search and do not need to waste time trying to use
inference to see 11 1t holds.

/1

means that only one answer need be found for this line (1.¢.
one substitution for the variables). Two possibilities for using
this are eirther that the semantics of what 1s being asked
implies there 1s only one answer or because only one answer
1s needed. This increases the efficiency of the engine as the
search can stop aiter the first object 1s found.

2.9 Generators

Far more facts exist than can be stored statically. For this
reason inference 1s an important feature of the preferred
embodiment.

Reasoning 1n the present invention 1s done with dumb and
smart generators. Generators are just that: things that generate
facts from other facts or combinations of facts. In the pre-
terred embodiment generators are specified in three parts: a
title line 1dentifying 1t as a generator and listing variables; a
header query that must be run to see 1f the generator applies
(and possibly to generate values —the list of vaniables after
the generator line) and a footer which 1s a number of facts
which can potentially be generated by the generator. In the
preferred embodiment lines starting with “!” are used for
comments and are 1gnored by the engine.

2.9.1 Dumb Generators

A simple example of a dumb generator 1s the following:

generator a%,b%.tp

f: a% [1s married to] b%

{ [applies for timeperiod] tp

=

t: b% [1s married to] a% *

t [applies for timeperiod] tp

This asserts that if person o 1s married to person b for a
given time period then person b 1s also married to person ¢ for
that same time period. This might be obvious for marriage but
it would not be true for example with the relation [1s a parent
o]

This example 1s 1llustrative. In the preferred embodiment
the above example 1s done by looking for the attribute [sym-
metric] to the relation and having a slightly more complicated
generator that only switches the two objects around 1if the
attribute applies. This saves having to have a similar generator
for every relation with this property.

Dumb generators express inferences about how, for
example, the existence of a relationship implies the existence
of other relationships or how the existence of an attribute can
be used to infer other facts.

For efficiency reasons 1t 1s clearly not practical to run every
generator that exists at every opportunity so when answering
a line of a query, the query answering system first checks
information stored statically and then goes on to look at
generators later by matching the line of the query it 1s cur-
rently on with lines 1n the footer of the generator (1.¢. 1t works
backwards). Only the lines marked with an asterisk can be
matched. I the line matches, the top of the generator 1s run as
a query (perhaps with values substituted for variables) to see
whether the bottom lines can be considered as facts. I they
are, the footer facts are generated and the generated facts are
added to a cache. Any objects that match varnables are
included in the answering of the query.

In the preferred embodiment, the character that ends a
variable name 1ndicates rules on what can be matched with
them. Sometimes when comparing the current line of a query
with the asterisked footer line, a variable will match a vari-
able, sometimes a named object will match a vaniable and

10

15

20

25

30

35

40

45

50

55

60

65

16

sometimes a variable will match a named object. Such
matches can happen within parametered objects as well as at
the top level.

The percent sign after the variables 1n the matched line says
that the variable can be either left as a variable (1.e. matched
with a variable 1n the query line and filled by the query 1n the
top half of he generator) or textually substituted for a name. I
substituted the variable 1s removed from the query statement
at the top and the object name 1s substituted into the header
query wherever the footer variable appears.

¢.g. If matching [Hillary Clinton] [1s married to] [William
Jefferson Clinton] the above generator would be run and the
top half would be a query getting all the timeperiods on file for
when they were married. Facts would then be generated
asserting that they married the other way around for the same
time periods.

A dollar sign following the variable says that the variable
must be replaced and textually substituted for a real object
name from the query line being looked at—matching with
other variables 1s not permitted and the generator will not be
used 11 that 1s the kind of match found. If the vaniable has no
percent or dollar sign 1t must correspond to a variable 1n the
query line. By ‘must” we mean that we cannot use the gen-
erator 11 the correct match 1s not present.

The unique fact names for the results of a generator are
created automatically by the inference engine and are
assigned to variables if they are needed for temporal partners
(like with the above example). Facts generated by generators
are also 1nserted 1into a temporary cache by the engine so they
can be quickly found for use in subsequent processing of the
query. This cache 1s checked by the engine even belore
searching statically-stored local facts. The cache enables
facts generated 1n earlier parts of the query to be accessed
without running the generator a second time with the same
objects. By keeping a record of what generators with what
parameters generated 1tems in the cache the engine can avoid
doing the same operation twice simply by using the cache
items.

2.9.2 Smart Generators

Smart generators are like dumb generators but where the
footer cannot be generated simply by rewriting the results of
a query: Some computer code needs to be executed (run
directly or interpreted) to produce the results. For example a
very commonly executed smart generator 1s the following:

generator tr

a$ [applies for timeperiod] tr

=>timeperiod_to_timepoint@local

a$ [applies at timepoint] tp$ *

which says that a relationship 1s true at a timepoint if the
timepoint lies within a timeperiod when the relationship 1s
true. This generator 1s vital as 1t simply 1s not practical to list,
say, every mstant in the last twenty years that Bill and Hillary
Clinton were married as there are an infinite number of
instants 1n any time period. We 1instead statically store a
period of time and 1 a query asks whether they are married at
a given instant the above smart generator 1s put 1nto action.
First all the timeperiods are gathered using the query at the top
and the results passed to the timeperiod_to_timepoint tool
(essentially an executable function) with the timepoint and
timeperiod 1n question passed as parameters. If the tool deter-
mines that the time point lies within the timeperiod it gener-
ates the footer with an appropriate name for the newly-gen-
erated fact otherwise 1t does not. Note that 1t 1s not possible to
do this using a dumb generator as calculation 1s needed to
determine whether one point in time lies within a named time
period.

US 7,707,160 B2

17

Note also that the dollar character at the end of the tp$
variable implies that it must be matched with a named
object—a named timepoint. There are an infinite number of
timepoints 1n any timeperiod so it 1s only possible to check a
given timepoint, not to generate all the possible answers.

Another commonly-used smart generator 1s the following:
generator

=>now(local

[current time] [applies to] n *

which works out which time point 1s the current time. This
smart generator does not need a query at the top (the query 1s
null and can be thought of as always returning “yes”). The
reason 1s that we can always be sure that there 1s a timepoint
which 1s the current time. The generator just generates the
footer with the system date and time as the time point when-
ever 1t 1s called. Naturally the current time cannot be looked
up statically.

Far more sophisticated smart generators can be written and
we can potentially incorporate all the algorithmic achieve-
ments of the planet into the GKB for use in a very wide variety
ol contexts.

The computer code (“tool”) that provides the intelligence
to the smart generator 1s named 1n the preferred embodiment
by name@machine.on.internet

The machine.on.internet 1s a named machine which owns
the tool and where the code can possibly be executed
remotely. “local” means the code can be found on the local
machine and/or 1s part of the local knowledge processing
engine.

A wide variety of ways ol implementing the tools and
execution of the tools should be obvious to anyone skilled 1n
the art. These include hard-coding of some of the more com-
mon tools within the engine; remote execution of code
through network protocols (passing the parameters over the
network and recerving the results); text scripting languages
that can be downloaded from a remote machine and executed
locally; other kinds of downloadable languages including
those that are then executed directly on the local machine eftc.
As all these techniques have potential value, the preferred
embodiment 1s to implement a mixture of techniques with
information about the technique used looked up from the tool
name. The implementation listed as an appendix contains
only hard-coded examples.

The process of creating a generator 1s 1llustrated in FI1G. 14.
Step 1402 1s the act of writing the footer lines which are the
possible knowledge that our generator can assert. Lines are
labeled and categories of matching of variables are also cho-
sen at this step as described above. Step 1404 1s where the
header query 1s written as a first step to assert the knowledge.
A branch (step 1406) 1s then done by testing whether the
results of the query are suilficient to assert the knowledge or
not. If they are then step 1408 1s done making the generator a
dumb generator: the header and footer and just linked. I not,
step 1410 1s done: this step involves providing a tool that can
be executed to do additional checks before asserting the
knowledge and including a link to that tool within the descrip-
tion of the generator. If step 1410 1s done then the generator 1s
a smart generator.

3. Translation

Translation 1s the art of transtforming knowledge encoded
within the present invention into natural language and vice
versa. As natural language 1s the knowledge representation
method that humans use and as human beings are those to
whom the benefits of the mnvention are aimed, this process 1s
desirable within various embodiments.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

3.1 Translation from Natural Language

Translation of natural language questions 1into queries 1s
readily achieved by the use of templates. This technique
translates questions 1to queries resolving some ambiguity
and type 1ssues at the same time.

As used herein, the term “question” refers to any sequence
of words 1n natural language the purpose of which 1s to solicit
knowledge from the system. It need not necessarily conform
to the classic grammatical definition of a question. For
example, 1t could be 1n imperative form such as “Tell me what
the capital of France 15 or the meaning could be implied: For
example, in some embodiments entering just “William Jet-
ferson Clinton” could be an abbreviation for “Show me a
general information summary about William Jetferson Clin-
ton”. (Generation of general information screens are dis-
cussed below.)

A translation template contains a sequence of known and
unknown strings; a header query which generates results for
the translation and does other consistency checks on the
strings and a footer which 1s a query and the translation of the
natural language text.

For example:

“Whati1s” a b

query c,d
a [function] ¢

b [ns] d

query €
[current time] [applies to] now
frecd

{ [applies at timepoint] now

The top line 1s the template. Any sequence of three recog-
nized strings where the first1s “What 1s” will be matched with
this line and the query at the top run to see if 1t produces
results.

The templates are indexed by facts 1n the form [<string>]
[1s part of the translation] [<template name>]

When analyzing the string, we thus only need to look at a
small number of templates which may match—we do not
need to scan them all.

c.g. If “What 1s the capital of France?” 1s asked as a ques-
tion the engine will first attempt to break this up into a
sequence of recognized strings (implemented using the
breakup_word() routine in the source code listing 1n the
enclosed appendix) one of which will be:

“What 1s” “the capital of” “France”

“the capital of” will then be textually substituted 1nto the
header query for a and “France” will then be textually sub-
stituted 1nto the query for b.

The top query will then read:

query c,d
[“the capital of’] [function] ¢

[“France”] [ns] d

which when run will return the results ¢=[1s the capital city
oi] and d=[the nation state France]

[function]| 1s a translation relation that describes how
English phrases can express a relation 1n a function sort of
way. For example “the spouse o1, “the mother of”, “a child
of” etc. [ns] 1s the translation relation that relates singular
nouns (or noun phrases) to an object name within the knowl-
edge representation system.

The query 1s then run and the results will then be substi-
tuted 1nto the bottom query as the correct translation of the
question. 1.€.

query ¢
[current time] [applies to] now
{: e [1s the capital city of] [the nation state France]

{ [applies at timepoint] now

US 7,707,160 B2

19

This query 1s the correct (and only) translation of the natu-
ral language question.

This query 1s then executed as follows:

The first line will result in a smart generator call to a tool
which will give a single value to the variable now. 5
The second line will be found 1n the static database with e
given the value [the French city of Paris] and 1 given its fact

name.

The final line will finally be verified by using the smart
generator which infers the truth of [applies at timepoint] 1©
statements from [applies for timeperiod] statement found 1n
the static database. The final line will be verified as true 1f the
current time lies within 1t (or at least one of them 1f more than
one timeperiod 1s found).

The engine will then answer the natural language question
with the answer “The French city of Paris™!

The process of creating a translation query 1s 1llustrated in
FIG. 15 and the process of using one or more translation

queries to translate natural language questions 1s 1llustrated 1n
FIG. 16. <

Step 1502 1s the act of creating the sequence of known and
unknown strings that define the class of questions the tem-
plate 1s for. Variables are used 1n place of the unknown strings.
Step 1504 1s then done which 1s to create a header query using
these variables to check whether the translation should be
taken further and to generate values for use in the translation.
Step 1506 1s to specily the translation query. This 1s a query
but can also contain variables from the results of the header
query. When a translation 1s made using this template these
variables will be textually substituted from results taken from
the header query.

Step 1602 1s to break the natural language question nto
sequences of recognized substrings. Step 1604 checks to see
whether there are any unprocessed sequences left and ends
the process 11 there are no more (or none to start with). I there
are sequences still to be examined, the next one 1s selected
(step 1606) and all translation templates that might translate
this sequence are then looked up (step 1608).

Step 1610 checks to see whether any of these possible ,,
translation templates remain and returns to step 1604 11 not,
otherwise 1t proceeds to step 1612 where the next unproc-
essed translation template 1s selected. Next the current trans-
lation template 1s compared with the current sequence of
strings (step 1614) and 1f they do not match then control 1s 5
passed back to step 1610. (These steps ensure that every
sequence 1s matched with every possible translation template
that might match.) If the do match step 1616 1s then done and
substitutions are created between the variables 1n the template
representing unspecified strings and the strings that actually .,
appear 1n the sequence. These string objects are substituted
for those variables 1n the header query. Step 1618 which
executes the query 1s then done. Step 1620 sees whether any
results from this query are still to be processed and 11 so 1t
selects the next set (step 1622) and substitutes the results into ..
the translation query to produce a possible translation (step
1624). I not, it returns control to step 1610.

3.1.1 Resolving Ambiguity

Ambiguity 1s where the translation process produces more
than one result. Ambiguity can sometimes be resolved from 40
other information 1n the knowledge base. In the above “what

1s the capital of france” example the imtial query only
returned one pair of results and the question could not be

made to match any other translation template.

However i1 the mnitial query had produced several results: 65
for example 11 “France™ could be resolved to the name of a
person the translation can be rejected by using facts about the

15

25

30

35

20

class that the nght object of [1s the capital city of] has. e.g. 1n
the knowledge base 1s the following fact (shown without a
name):

| geographical area] [1s the right class of] [1s the capital of]

All the queries generated by the translation process can be
subjected to type checks using such knowledge. Any line with
the relation [1s the capital of] would then be subjected to
checks on 1ts right object. It it turned out that 1t was not an
instance of [geographical area] the translation would be
rejected.

If more than one translation remains then the engine can
resolve ambiguity as a last resort by asking the user for more
information. It does this by translating the queries back nto
English and listing them on the screen. The user then selects
the query that he or she intended to ask. Although individual
words and phrases translating into multiple objects are a
common cause of ambiguity, different translations may also
come from different translation templates.

[1s the right class of] and [1s the left class of] are permanent
relations. Furthermore, in the preferred embodiment the
classes they indicate are always permanent classes. This sim-
plifies the ambiguity resolution as there 1s no need for tem-
poral partners.

FIG. 18 shows the process of testing a single translation to
see whether 1t can be rejected. Step 1802 sees whether there
are any remaining lines in the current translation that have not
yet been tested. If not, the translation 1s declared OK (step
1804) and the process ends.

If there are remaining lines, the next unchecked line 1s
selected (step 1806) and a check 1s made to see whether the
relation 1n the line 1s a variable or a known object (step 1808).
If 1t 1s a variable, control 1s passed back to step 1802 otherwise
a check 1s made to see whether the leit object 1s named (step
1810). IT yes, the knowledge base 1s consulted to see whether
the allowed classes of the relation determined by [1s the left
class of] facts contradict the actual class of the left object (step
1812). If they do the translation 1s rejected (step 1814) and the
process ends. I the information 1s not there or the class 1s OK
control passes to step 1818. Control also passes to step 1818
il step 1810 determines that the left object 1s not named (it 1s
a variable). Step 1818 checks to see whether the right object
1s named. If not, control returns to step 1802 otherwise step
1816 1s done which checks the knowledge base to see whether
the allowed classes of the relation determined by [1s the right
class of] facts contradict the class of the right object. If they
do, as before, the translation 1s rejected (step 1814) and the
process ends, otherwise control 1s passed back to step 1802.

The process of dealing with the results of translation,
including rejecting ones that can be rejected, presenting pos-
sibilities on the display and using a fall-back strategy (below)
1s 1llustrated in FIG. 17. Step 1702 obtains a list of possible
translation queries (possibly using the process 1llustrated in
FIG. 16 described above). Step 1704 tests to see whether there
are any remaining translations and 1t there are not 1t advances
to step 1712. I there are, the next one 1s selected (step 1706)
and 1t 1s tested to see whether 1t can be rejected (step 1708).
This step perhaps uses the process described in FIG. 18 as
explained above. It it can be rejected 1t 1s deleted (step 1710)
and control returns to step 1704.

Once all the translations have been examined 1t proceeds to
step 1712 which tests to see how many translations remain. If
more than one translation remains step 1714 1s done and all
the remaining translations are displayed on screen and the
user 1s requested to select the intended one (an example being
illustrated 1n FI1G. 4 and described 1n more detail below). If
exactly one translation remains 1t 1s assumed to be correct and
presented as the answer (step 1716). (FIG. 3 illustrates an

US 7,707,160 B2

21

example where this step 1s executed and 1s described 1in more
detail below). If no translations remain step 1718 1s done
where the system confesses 1t was unable to translate the
question and uses a fall-back strategy. An example of this
tall-back strategy being used 1s shown 1n FIG. 6 and described 5
in more detail below.

As an example, FI1G. 4 1llustrates how the question “When
was Paris released?” would be dealt with.

The system found eight translations for the string “paris™
and created queries for seven of them. The one involving the 10
city 1in France was then rejected by the translation template
because the initial query asked for the translation to be a
[animated visual medium] (but it might also have been
rejected later by checks saying that the left class for [was
published at timepoint] had to be a [animated visual 1°
medium]). Because more than one possible translation
remained, the possible results were translated back into
English and presented to the user to select from (screen 402).

The link under each possible question number shown in
screen 402 1s an encoding of the query that corresponds to
cach translation. This 1s done by recoding the query nto a
pseudo-URL starting “ktp:” and implementing a protocol
handling method to catch such URLSs, convert them back into
real queries and execute them.

For example the link under 3 1s:

ktp:query:query t|[[The 1936 movie paris] [was published
at timepoint] t||

1.€.

query t 30
[The 1936 movie paris] [was published at timepoint] t

(The “|” character replaces the new line characters so the
query can be encoded 1nto a single line.)

Clicking on “3” produces screen 404 showing the answer
to the intended question. 35

The process of forming one of these 1s 1llustrated in FIG.
21. Step 2102 1s to recode the query 1nto a single line. If any
forbidden characters are present they are translated by sub-
stituting them with unique sequences of allowed characters
which can be substituted back later (step 2104). “ktp:” 1s then 40
placed 1n front of the string (step 2106) to form a URL-like
link and this link 1s then used within web pages (step 2108).

In contrast, with the question “Is Paris the capital of
France?” illustrated in FIG. §, things are different. Again
many interpretations of the string “paris” are tried and this 4
time the translation template does not reject any of them
because 1t 1s very general and works for all relations. How-
ever, this time all the non-geographical interpretations are

rejected by analyzing the queries using the [1s the right class]
and [is the left class] fact. Here all queries containing lines >©
similar to:

t: [the 1997 movie Paris] [1s the capital of] [{france]

are rejected because the engine finds that:

[geographical area] [1s the lett class of] [1s the capital of]
and proves that:

[the 1997 movie Paris|~[1s an instance of]| [geographical
area|

20

25

55

The one remaining query 1s the one asking whether Paris
the city 1s the capital of France and this one 1s not rejected so ¢
the query can run mstantly without prompting the user as only
one interpretation remains. As a result the system instantly
answers the question and displays the result (screen 502).
This 1instant response to the question 1s also step 1716 1in FIG.

17 (described 1n more detail above). 65

As before 1f the user clicks on the “explain” link the system
produces a natural language explanation (screen 504).

22

3.1.2 Natural Language translation Fall-back strategy

If the engine fails to translate the natural language text
entered by the user 1t can do better than simply say “Sorry”. In
the preferred embodiment (and implemented 1n the source
code listing as an appendix), the program lists all the sub-
strings of the question that 1t has recogmized. This information
gives feedback to the user about how close the system came to
understanding the question and what bits were not under-
stood.

Clicking on any of the strings that were recognized gives a
proflle screen for the string object. This profile screen
includes any objects that are denoted by the string. Clicking
on those gives a profile screen for the object. It1s possible that
a standard profile for a recognized object will answer the
question that the user asked even though the question was not
tully understood. (Profile screens are discussed in more detail
below.)

FIG. 6 1llustrates an example where the question “How tall
1s Tony Blair?” was entered.

The system first confessed to not understanding the ques-
tion and listed the parts of the question 1t recognized (screen
602). Clicking on “Tony Blair” executed the ktp command
ktp:profile:[$Tony Blair$]

which produces a profile screen of the object [“tony blair”]
(dollar characters replace the double quote character in order
to overcome problems with putting links 1n the HITML). Note
that this 1s the string object not the person. The results of
profiling this string are shown 1n screen 604.

Clicking on the link at the bottom of the string profile
executed the ktp command ktp:profile: [Anthony Charles
Lynton Blair| which 1s the object denoting the person) This
produced screen 606.

Clearly this profile could include a great deal more infor-
mation than shown including photographs, date of birth,
occupation etc.

3.2 Translation to Natural Language

The translation to English (or any other natural language) 1s
done using a variety of techniques. Some of the basic relations
used for translating this way around are:

[commonly translates as] which relates an object name to a
string giving the usual English term. However, several differ-
ent objects may also translate to this string so 1t does not
necessarily uniquely 1dentify the object. The advantage of
this relation 1s that it keeps the translations short.

[uniquely translates as| which gives a long (potentially
pedantic) translation which 1s hoped to be unique. The virtue
of this version 1s that it uniquely 1dentifies the object in plain
English with little chance of ambiguity but 1t contributes to
highly wordy translations when used.

For example, the following two facts give translation infor-
mation for Bill Clinton.

[fact.00014"7 (@semscript.com]: [willlam jefferson Clin-
ton] [commonly translates as] [“Bill Clinton™]

[fact.000148(@semscript.com]: [willlam jefferson Clin-
ton] [uniquely translates as] [*“William Jetferson Clinton, the
42nd President of the United States™]

If the engine wants to informally translate the object [Wil-
liam Jetlerson Clinton] 1t displays “Bill Clinton™ which 1n
most situations 1s suilicient even though there are probably
other Bill Clintons 1n existence. If it wants to be absolutely
sure to 1dentily the correct person, 1t displays “William Jel-
ferson Clinton, the 42”¢ President of the United States” which
guarantees to denote a single individual. For other individu-
als, date and place of birth could be included 1n the unique
translation or any other information which might distinguish
that person from people with the same name.

US 7,707,160 B2

23

Relations are provisionally translated 1nto a present-tense
verb phrase. This can be modified to a negative or to an
alternative tense using the rules of English grammar.

One of the important things involving translation that the
preferred embodiment does 1s to generate a justification for its
answer to a query. This 1s essentially all the facts and genera-
tors that 1t used to find the answer listed into a proof that reads
in plain English. Such proofs are important because they
demonstrate where the answer “magically” produced on the
computer screen came from thus greatly improving the con-
fidence the user has 1n the result. Moreover, although the
results may have come from a computer, a human being
ultimately has to use that knowledge and take responsibility
for 1ts accuracy.

The way that this 1s implemented 1n the preferred embodi-
ment 1s by use of a data structure which 1s essentially a linked
list of 1tems where each 1tem can eirther be a string containing
a line of natural language (typically describing an event in the
processing of a query), or a fact. This data structure can either
hold the entire explanation or the explanation for some part of
answering ol the query.

During the processing of a query, many smaller queries are
executed because many of the lines 1n the query mvolve the
use or possible use of generators and the header queries 1n the
generators need to be run. Some of these generator queries
succeed and some faill—when they succeed, the explanation
for those queries forms part of the complete explanation. To
complicate matters further, some of these generator runs pro-
duce facts which go 1nto the cache and the fact 1s then subse-
quently found 1n the cache rather than from running the gen-
crator again. It 1s important that when this happens, the
original explanation for how the fact was generated before
being placed in the cache forms part of the final explanation
and 11 the fact has already been justified, it 1s not explained
twice 1n the final explanation.

The way this 1s done 1s to store a full explanation with every
fact placed 1n the cache. When a successiul search of the
cache 1s made and the fact pulled out, a check 1s made to see
whether this fact has been previously used (and therefore
justified) 1n the explanation of the lines of the current query
done so far. If so, we just add a line saying something like “We
already know that:”; if not we 1nsert the entire explanation for
the cached fact into the parent explanation.

This same process of adding the lines of an explanation into
the parent explanation happens when we successiully gener-
ate facts from a generator. (The same query processing rou-
tine 1s called for the query header.) When 1t returns we take
that explanation and insert it mto the explanation for the
current query with text lines to help understand how the facts
were created. For example, we can insert a line like “There-
fore:” along with (optionally) the name of the generator
between the explanation for the header query and the footer
lines of a generator. As generators are also called during the
processing ol queries in the headers of other generators, lines
from explanation can end up being generated several levels of
query-processing deep.

The final step 1s to translate our data structure into English.
The lines of English text are already translated but we still
need to translate the facts 1n the explanation. The fact names
do not mean much to the user and furthermore, we only need
to translate the fact names 1f the fact 1s referred to later on. For
this reason, we make an 1nitial pass through the data structure
to label fact names that form part of other facts. We then make
a second pass, translating these referenced fact names into
something simpler than their real names such as “fact 17, “fact
2”7 and creating a lookup table from the real name to the
simplified name. Armed with these translations we can then

10

15

20

25

30

35

40

45

50

55

60

65

24

g0 through and translate all the facts using these simple names
for facts and the [commonly translates as] strings for other
objects and relations.

3.3 Adding a new object to the Knowledge Base

The translation information mentioned above i1s a very
important part of the knowledge that should be added when
making the Knowledge Base aware of a new object. If that
information 1s not mcluded it will be more difficult to com-
municate knowledge about the new object to a human user
and 1t may be difficult for future users to discover whether a
name already exists for this object.

FIG. 11 shows the steps involved 1n adding a new object to
the knowledge base using the example of (the person) Bill
Clinton. First the object to be added 1s 1dentified (step 1102)
and the ontology of the knowledge base 1s consulted to find
the name of a permanent class for the object (step 1104). The
next step 1s to create a unique name for the object (step 1106).
In the preferred embodiment this might be a standard name
creating by identifying an English noun phrase that uniquely
identifies the object or alternatively a parametered name
might be appropriate.

Next a long output translation string 1s identified as
described above to uniquely identily the object to a human
operator (step 1108) and optionally a short output translation
string 1s 1dentified (step 1110).

The next step 1s to find a list of terms that might denote the
object 1n natural language. These can be used for translating

natural language (e.g. natural language questions) into a form
compatible with the mnvention. This step 1s step 1112.

Step 1114 1s the act of recording the principal class of the
object 1n the knowledge base. If the class can be inferred
directly from the name (e.g. a parametered object in the

preferred embodiment) then this step 1s not necessary and can
be missed.

Step 1116 1s to record the long output translation of the
object 1n the knowledge base and step 1118 1s to record the
short output translation string 11 we have chosen to include
one.

Steps 1120, 1122, 1124 and 1126 implement a loop where
the list of terms for the object are recorded 1n the knowledge
base.

4. Distributed Use of the Invention

The present mvention can be implemented on a machine
which where all the knowledge 1s stored locally. This machine
does notneed to be networked. This embodiment 1s 1llustrated
in FIG. 8. The machine 802 includes a user interface 804
which 1s a web browser 1n the preferred embodiment and can
be used to enter natural language commands. It also contains
a query processing system 806 which answers queries 1n
internal format using knowledge stored i the knowledge
base 808 and also knowledge inferred by the knowledge
inference system 810. The knowledge inference system infers
new knowledge with the help of a store of generators 812.
This stand-alone embodiment also includes a natural lan-
guage translation system 814 which translates natural lan-
guage by referring to a store of translation templates 816.

Another embodiment of the invention 1s for 1t to be used 1n
a distributed manner with knowledge stored 1n a number of
locations and knowledge transmitted over a network such as
the internet. A very simple implementation i1s for the
machines to simply access the static knowledge, generators
and translation templates stored on a huge master machine
somewhere on the internet or even to run an implementation
of the present invention directly on a central machine via a
web interface. This embodiment 1s practical, especially as this

US 7,707,160 B2

25

master “machine” can be mirrored on any number of servers
and the clients divided up amongst the server machines to
reduce the load.

However, a more distributed approach can be achieved by
using a combination of facts about various machines (e.g.
“semscript.umdb.com knows about movies™) and a protocol
similar to SMTP or HITP for communicating between
machines. This embodiment consists of server machines
incorporating knowledge bases being interrogated over the
internet for knowledge contained 1n their knowledge bases
which are not present 1n the knowledge bases local to the
client machines.

This embodiment i1s illustrated in FIG. 9. The client
machines 902 contain a local system for processing queries
904 which refers to a local knowledge base 906 and knowl-
edge inference system 908. They also contain a natural lan-
guage translation system 910 for converting natural language
to and from the internal representation. However, they can
also consult with server machines 912 over the internet and
gain access to knowledge stored on these machines which 1s
not present in the client machines. These server machines use
a query processing system 914, knowledge base 916 and
knowledge inference system 918 of their own.

4.1 Expertise Facts

Expertise facts are facts about which machines on the
internet know about various things. e.g.

[internet node: [“semscript.whitehouse.gov”]] [knows
about] [William Jefferson Clinton]

states that the (presently hypothetical) White House
knowledge base should be on the list of machines to be
consulted about Bill Clinton.

Some knowledge bases contain expertise on a class of
objects. e.g. the people maintaining the internet movie data-
base may create a server and semscript.imdb.com would then
know about objects 1n the class [animated visual medium]
which includes movies, TV series etc.

The preferred embodiment 1s that a client wall first try to
answer any query from locally stored facts. If that fails, 1t will
look for locally stored expertise facts and start a search on
those machines. If both the local attempt to answer the query
and a search for expertise facts fails, the client will go to the
master machine. This 1s a central machine (or mirrored net-
work of machines) on the internet which can be regarded as
the center of the GKB. That machine will either provide facts
that will enable the client to answer the query or will refer the
machine to one or more alternative machines and the process
repeats. A record of tried machines needs to be maintained to
avoild looping.

All facts communicated over the internet will be stored
locally once recerved so that they can be used again without
having to make another remote query. However, to avoid the
problem where stale information 1s stored long-term, all such
facts gathered this way are made to expire after a pre-deter-
mined interval. A routine housekeeping operation for the
local client 1s to either purge such facts from the local knowl-
edge base or to query the machine that owns the fact (refer-
enced 1n the fact name) and ask it to verily whether the fact 1s
valid 1s not. This can be done with a simple query:

query 1

t: [object 1] [object 2] [object 3]

where [object 1], [object 2] and [object 3] are the three
objects after the name 1n the fact being checked. If I matches
the name, the fact1s kept (a new expiry date 1s added for a date
later 1n the future) otherwise the original fact 1s erased from
the local knowledge base.

10

15

20

25

30

35

40

45

50

55

60

65

26

Essentially a combination of expertise facts and referrals to
other machines implement a distributed protocol where much
of the world’s knowledge can be stored 1n a distributed fash-
101N

Another desirable part of the process 1s that remote
machines can answer with more facts than are strictly neces-
sary to answer the query. These facts can be information that
a commercial entity wants spread—ior example information
about 1ts products. The ability to pass on commercially valu-
able information when providing a useful service for another
machine gives an incentive for providers of information to be
useful. Providers of information could even be paid for
spreading commercial knowledge relating to third parties.

4.2 Knowledge Transier Protocol

Knowledge Transfer Protocol (K'TP) 1s part of various
embodiments of the present invention and a way machines
can communicate knowledge over the internet and implement
the above ways of retrieving knowledge 1n a distributed man-
ner. It 1s designed to be an asymmetric text based request/
reply protocol like many of other main TCP protocols (e.g.
HTTP, SMTP etc.) for which the source code to many clients
and servers are Ireely available. Anyone familiar 1n the art of
implementing these protocols should thus have no difficulty
implementing a new one from a list of commands and a port
number. A knowledge server (a machine publishing facts on a
network) listens on an allocated port and clients make
requests to the port to retrieve facts and other services from
the machine.

Many possible embodiments are possible and will be obvi-
ous after reading the description that follows. The preferred
embodiment 1s the following:

4.2.1 KTP Commands:

IAM [object]

This 1s the start to any session and says that the entity
making this request 1s [object]—this object will probably be
an 1nstance of [human being].[legal entity] or [computer].
This information might be usetul for billing or payment pro-
tocols or to allow the server to only service certain people or
businesses (after the addition of authentication protocols) or
to prioritize between businesses. Adding payment or authen-
tication protocols 1s a matter of selecting an appropriate
method from the wide variety of payment and/or authentica-
tion methods that exist and implementing this communica-
tion using additional commands.

RUNQUERY ESTABLISH

“Please run the following query on your machine in estab-
lish mode”™

RUNQUERY FULL

“Please run the following query on yvour machine 1n full
mode”

Both the above commands are then followed by the query
itself.

The server responses to the query are either:
YES
A definitive aflirmative answer to a truth query.

NO
A definitive negative answer to a truth query.

NO/UNKNOWN
A negative response to a truth query 1n establish mode.

UNKNOWN

Cannot answer this query which was run 1n full mode.

COMPLETE <n>

Where n 1s a number says “There are n answers to this
query.”

FOUND <n>

“I know n answers to this query”

INCOMPLETE <n>

“Here 1s an mncomplete list of n answers.”

US 7,707,160 B2

27

These are followed by a list of answer 1n the following
syntax:

<variable>=| object name]

Each are grouped together 11 there 1s more than one variable
in the query. e.g.

a=|France]

b=[Paris]

a=[United States of Americal

b=[Washington DC]

If the query had two query variables a and b and there were
twO answers.

Another response to a query request 1s:
REFUSE <optional explanation>

Which means that the server won’t answer. The REFUS
keyword 1s followed by an optional natural language expla-
nation of why not. e.g.
REFUSE Server too busy.

Another response from the server which can optionally be
appended to any unknown or incomplete answer 1s:

TRY

Followed by a list of internet machine names containing a
K'TP server to try. e.g.

TRY

semscript.umdb.com

semscript.abcinc.com

RUN <tool name=>

1s a command from the client to the server asking for the
named tool to be executed and the facts returned. Any param-
cters are sent on subsequent lines. e.g.

RUN firstletterof(@semscript.com

s$=[“Paris’’]

STRINGHELP <string>

asks the remote server to provide facts that might help with
the translation of a string. The server responds either with the
REFUSE command (as above) or by trying to break the string
up into recognizable sub-strings and providing all the trans-
lation facts 1t knows about for those strings. e.g.

->STRINGHELP “Demolition Man™

<-[fact.umdba291773(@semscript.com]:
Man”’] [ns] [The 1993 movie Demolition Man]

Armed with the translation facts, the client machine can
then try to translate the string again, this time with a higher
chance of success.

OBJECTHELP <object>

asks the remote server for help with a named object. The
server responds with REFUSE or with all the core facts relat-
ing to that object. For a relation this 1s 1ts core attributes and
translation facts. For other objects this the classes 1t belongs to
and other core attributes. e.g.

->0OBJECTHELP [The 1993 movie Demolition Man]
<-[fact.umdba291770@semscript.com]: [The 1993 movie
Demolition Man] [1s an 1nstance of] [big screen movie]
<-[fact.umdba291771@semscript.com]: [The 1993 movie
Demolition Man] [uniquely translates as] [*“The 1993 action
comedy sci1-11 movie Demolition Man™]
<-[fact.imdba291772@semscript.com]: [The 1993 movie
Demolition Man] [commonly translates as] [“Demolition
Man”|
<-[fact.aumdba291774(@semscript.com]: [avm attribute
action] [applies to] [The 1993 movie Demolition Man]
<-[fact.amdba291775@semscript.com]: [avm attribute
comedy] [applies to] [The 1993 movie Demolition Man]
<-[fact.umdba291776(@semscript.com]: [avm attribute
sci-11] [applies to] [The 1993 movie Demolition Man]
<-[fact.amdba291777(@semscript.com]: [The 1993 movie
Demolition Man] [was published at timepoint][timepoint:

(<1993”]]

(L]

[“Demolition

5

10

15

20

25

30

35

40

45

50

55

60

65

28

If a server has been useful, 1t can also send the client the
following command:

FACTS

followed by a series of unrequested facts. By protocol, 1f
the server has been usetul the client must store a reasonable
number of additional facts that are sent this way. These addi-
tional facts may include commercial information which the
owners of the server are being paid to spread or 1t may be
commercial information that the owners of the server wish to
spread 1n their own right.

5. Other details

This section describes various 1ssues and techniques that
do not readily fit into any previous section.

5.1 Common Properties of Relationships

Attribute objects are objects which semantically are prop-
erties of other objects. They are linked to other objects using
the [applies to] relation.

Attributes are key to generators making useful inferences.
For example, 11 we know that a relationship 1s symmetric we
can generate facts with the two objects being related switched
around. We only need one generator for this and when we
create a new relation that has this attribute, the old generator
will take account of the consequences of this property.

Common ones that apply to relations used in the preferred
embodiment are:

5.1.1 [Transitive]

[transitive | means that 1f arelates to b and b relates to ¢ then
a relates to ¢ for the time period that both over lap. e.g. [is
geographically located within] 1s a transitive relationship.
MIT being 1n Massachusetts and Massachusetts being 1n the

USA 1mplies that MIT 1s 1n the USA.

5.1.2 [Left Unique]

[left umique] means that 11 a 1s related to b and ¢ 1s not a then
¢ 1s not related to b for the time periods that a 1s related to b.
[1s married to] or [1s the capital of] are examples. In natural
language expressing a relationship with the definite article
(“the” in English) often implies this: “1s the husband of”, “1s
the capital of”, “1s the father of” etc. Use of the indefinite
article (*a”) implies 1t 1s not [left umique] e.g. “1s a child of”,
“1s a parent of”

5.1.3 [Right Unique]

This 1s just like the [left unique] attribute but the it 1s the
right object 1s the only one. Any relation that 1s [right unique]
and [symmetric] 1s also [left unique]| of course. However,
some relations are [left unique] but not [right unique] and vice
versa. For example, [1s the genetic father of] 1s [lelt unique]
but not [right unique] it 1s possible to father more than one
chuld but 1t 1s not possible for a child to have more than one
(genetic) father.

5.1.4 [Permanent Relation]

I1 the relationship 1s true for any moment in the time line it
1s true for all of 1t. This means that we can miss out the
temporal partners for facts using such relations as they can be
generated automatically 1f needed.

N.B. [1s an instance of] 1s not [permanent relation] as 1t 1s
possible for objects to cease being members of some classes.
¢.g. [John Smith 2] [1s an instance of] [police officer| only
applies for some of his life.

For [1s an 1nstance of] we can derive permanence of a fact
from an attribute of the class. e.g. [permanent membership]
[applies to] [human being] means that 11 [William Jeiferson
Clinton] [1s an instance of] [human being] at any point then 1t
will be for all time. [permanent membership|~[applies to]
[police officer]

5.2 Permanent Classes—Successor Objects

Every object 1s a member of at least one permanent class. It
1s useful to make that explicit and when you do so 1t is

US 7,707,160 B2

29

important to consider the concept of successor objects. Suc-
cessor objects are completely new objects that replace
another object when it 1s changed 1n such a fundamental way
that 1t no longer can be considered a member of its main
permanent class. 1.¢. instead of considering it to be the same
object that has changed, we consider it to be anew object with
a new name that has replaced the old object.

A morbid example of a successor object 1s that of a human
corpse. A human corpse 1s not an instance of [human being]—
many properties of instances of [human being] simply do not
apply any more when someone 1s dead. However, 1f we gave
someone’s corpse the same object name as the living version
of them, [human being] would cease to be a permanent class
and every assertion about someone being a [human being]
would have to be accompanied by explicitly stated temporal
partners.

A better method therefore 1s to make [human being] a
permanent class and have a completely new object for some-
one’s dead body. As there 1s a fundamental link between a
person and their corpse, a parametered object where the first
parameter 1s the name for the living version of them 1s appro-
priate. The human being and the dead body are then regarded
as separate objects within the universe and attributes, genera-
tors and facts can be used to assert information about when
cach object 1s present 1n the real world and how the time of
death relates the two objects. Again existence of physical
objects 1n the real world 1s different from existence 1n the
knowledge base: the word “successor” 1n the phrase ““succes-
sor’” object refers to existence 1n the real world and the time
line, not the object’s presence 1n the knowledge base.

5.3 Completeness

Completeness 1s the 1ssue of knowing whether the answers
that have been given by an object query are a complete list of
all possible answers: there may or may not be answers which
are not 1n the knowledge base. It 1s checked for when a query
1s run 1n full mode.

The way 1t 1s done 1s by storing facts about how many
objects exist for a template line 1n a query. If that number of
objects 1s found and all subsequent filtering of them by suc-
cessive lines 1n the query produces a definitive yes or no result
we can be sure that the objects that emerge at the end of the
query are a complete list.

We store information about number by the use of queryline
objects.

Queryline objects are parametered objects that represent a
possible line 1n a query (excluding the fact name). Fach
queryline object, therefore, has exactly three parameters.
These parameters are either the special object [queryline
unknown] which represents a variable or they are the names
ol specific objects. For example, the possible line of a query:

n [1s a child of] [president james monroe]

and all similar lines with another variable are represented
by the single queryline object:

[queryline: [queryline unknownl]; [1s a child of]; [president
james monroe] |

To say that President James Monroe has (has ever had)
three children we then include the following fact in our
knowledge base:

[1act.000269@semscript.com]: [queryline: [queryline
unknown]; [1s a child of]; [president james monroe]] [has
order] [1nteger: [“3”]]

If the engine 1s asked to gives completeness information to
an object query (1.¢. 1t 1s run 1n full mode), it starts by setting
a tlag indicating the completeness of the results to complete.
This completeness tlag can have three values meaning that the
results are complete, incomplete or the completeness status 1s

unknown.

10

15

20

25

30

35

40

45

50

55

60

65

30

For as long as this flag remains complete, the engine does
extra work to determine whether the results 1t has found so far
continue to be complete.

When 1t comes across an object generating line of the
query. 1.€. a line containing a variable that hasn’t been used
before, it first converts it to a queryline object and runs a
second query to see whether there 1s a [has order] fact in the
knowledge base. If there 1s not, the completeness flag 1s set to
unknown and stays unknown for the remainder of the query.
If there 1s, 1t compares the number of results found after
executing the line with the number of objects known to exist
as asserted by the queryline fact. If they match, the complete-
ness status 1s preserved as complete. If the number of objects
found 1s smaller than the number indicated the flag 1s set to
incomplete. (If larger, there 1s an inconsistency 1n the knowl-
edge base.)

Subsequent lines 1n the query may filter the objects found.
1.€. the line may include only a variable used to generate the
objects on a previous line so when reached 1t 1s tried as a mini
truth query with each object substituted in. If the complete-
ness tlag 1s set to complete 1t then becomes important to do
extra work if the object fails to pass through that line. I1 the
answer can be shown as a “no” then the completeness status
of the query so far 1s unchanged. If, however, 1t 1s unknown
the completeness tlag has to be changed to unknown as well.
The method used to determine between no and unknown 1s
exactly the same as the one used to answer a truth query with
“no” described above: essentially the relation in the query line
1s made negative and any temporal partner 1s added to cover
all the timeperiod specified—if this new query 1s found to be
true we can answer “no” to the original mini-query and pre-
serve the status so far as complete. If the completeness status
going 1nto a filtering line 1s mcomplete, the completeness
status changes to unknown afterwards no matter what the
result: 1t 1s 1impossible to know whether the missing objects
would have passed through the filter or not without knowing
what they are.

The prototype system (the source code of which 1s listed as
an appendix) implements this. For an example see F1G. 7. The
answers 1n screen 702 are introduced with the text “There are
three answers to this question. Here 1s a complete list.”” With
out the completeness check it could only introduce the list
with “Here are the answers I found.”

5.4 Unknown Objects

Sometimes it 1s important to write information about facts
where the objects are unknown. This happens for example
when data from an old database 1s automatically converted for
use with the present ivention or a knowledge “layer” 1s
placed on top of an old database.

I1 the data includes people then the official object names for
them (1f they exist) are not stored 1n the database because they
may not be known. Instead we just may have a text version of
their name or another identifier (for example a social security
number). Searching for and then assigning the object names
to these people 1s the best way to do 1t but doing this com-
pletely automatically may be impossible: 1n the case of names
there may be several people with the same name to choose
from. To accommodate this a temporary object name can be
assigned as described below.

In the preferred embodiment, if a name 1s 1n the form
[unassigned.xxx.yyy(@machine.on.internet] 1t 1s only guar-
anteed to be diflerent from unassigned names owned by the
same 1nternet machine with the same group i1dentifier (yyy).
For example:

[unassigned.customerl.groupl@smallco.com] 1s guaran-
teed to be a different person {from [unassigned.
customer2.groupl @smallco.com] but may be the same per-

US 7,707,160 B2

31

son as [William Jefferson Clinton] or even the same person as
[unassigned.personl.group2{@smallco.com]

Having assigned these temporary names, facts to aid trans-
lation etc. can be entered 1n the database and the little infor-
mation we do have also needs to be added.

If we subsequently discover the 1dentity of an unassigned
object or a real object name 1s assigned to 1t we can then
replace all facts relating to 1t with ones where the name 1s
specified. The important thing 1s that a mixture of real names
and the temporary ones described will still work.

5.5 Data/Document Objects

Some very important objects are essentially data.
Examples include pictures, HITML pages, longer blocks of
text or other documents. It 1s impractical to name these
objects using the data itself so 1n the preferred embodiment
we give the data an object name. Having done that the internet
already has a well-established way of retrieving the contents
of such a file: URLs. URLSs are named within the invention by
using a parametered class [url] with a single string object
parameter. e.g. [url: [“http://www.semscript.com/”’]]. The
relation [1s the url of] relates the object name for a document
to a URL which contains the document’s data.

Document objects will often get “translated” by simply
displaying their contents.

5.6 Integrating with the Web

Integrating the present invention with the web can be done
by implementing the knowledge engine within a web
browser. Text entered 1n the URL line 1s first checked to see
whether 1t 1s a URL or URL abbreviation (e.g. “www.sem-
script.com” instead of “http://www.semscript.com”). I1 1t 1s,
the page 1s looked up as normal. If not, 1t 1s processed by the
translation engine. (For an example, see FIG. 1 described in
more detail below) This process allows the web browser to be
used as normal but yet still incorporate the present mnvention.
A new user can type a natural language question into the URL
line of their web browser and have 1t answered by the tech-
nology described here yet also be able to use the application
exactly like the web browser they are already experienced
with. Similarly links clicked on by the user are also subject to
checks. Lines starting ktp: are captured and processed by the
knowledge engine within the browser, other lines are linked to
as normal.

The prototype system (an embodiment whose source 1s
listed here as an appendix) 1s actually a complete web
browser. However, 1t 1s also be possible to integrate the inven-
tion into another browser by the use of “plug-ins™ and support
for alternative network protocols. A knowledge engine could
also sit directly behind a standard web page, taking and
answering questions from a standard web form.

In the preferred embodiment the output from the question
1s in HTML and various further actions relating to the present
invention are encoded within a hyperlink starting ktp:. A
single line encoding of queries 1s included 1n this syntax as 1s
a way ol profiling objects (described below).

5.7 Object Information (Profile) Screens

The client can display a page of the most basic information
about any object 1n the knowledge base. The actual contents
of this page will be determined by the smallest class of which
the object 1s a member and for which a profiling method
exists.

One way of generating such a profile screen 1s illustrated in
FIG. 20. Step 2002 1s to retrieve the classes of which the
profiled object 1s a member. Each class 1s then tested to see
whether there 1s an associated display template and rejected 1f
not (step 2004) and the most specific of the remainming classes

10

15

20

25

30

35

40

45

50

55

60

65

32

1s 1dentified (step 2006). Finally the template of the most
specific class 1s used to generate the information screen (step
2008).

In the preferred embodiment, the profile template 1s a mix-
ture of HITML and other sections containing queries, the
results from which are converted into HIML and inserted to
form a final HTML page. The quernies reference the object
being profiled enabling a complete HIML page to be pro-
duced giving usetul information about that particular object.
The page could also include normal internet links for further
information or links which generate other profile screens.

For example, a profile of a person could include age,
height, names of family members and a recent photograph.

In the preferred embodiment the object information
screens are processed by use of the parametered relation: [1s
the html profile of: <timepoint>]. This relation gives the name
of an HTML document which profiles the object at time
<timepoint>. The URL for the object can then be found using
the relation [1s the url of] and the profile displayed on screen.

The prototype system links to such profile pages every time
an object 1s referenced elsewhere. The link 1s implemented
with the ktp command profile which names the object to be
profiled. To implement 1t the engine creates a query to find the
html profile URL and 1t then displays it. Naturally such an
object 1s unlikely to pre-exist—the creation of the document
and URL 1s done using a smart generator. In the prototype
system the tools powering these smart generators are hard-
coded but they can also easily be implemented separately.

¢.g. When the user clicks on the URL ktp:profile: [Anthony
Charles Lynton Blair] the system immediately executes the
following query:

query u

[current time] [applies to] now

p [1s the html profile of: now] [anthony charles lynton
blair] /1

u [1s the url of] p/1

The generator that the engine calls to get the second (and
third via the cache) lines answered 1s the following;:

generator

=>profile@]local
X [1s the html profile of: y$] 0$*

q [1s the url of] x

The profile(@local tool analyses the object and creates the
HTML document—the URL 1s a local file. Notice how this
tool does not have a query at the top—any object can be
profiled so it 1s not necessary. When this document 1s run for
the second line of the above query, the line specitying the
URL 1s also generated and placed in the cache. The third line
of the query 1s answered from there.

When the URL 1s returned, the system displays the HTML
document on the screen.

6. Example Runs Using Prototype System

These examples are here to further illustrate and explain
how the mvention works and to show the capabilities of the
prototype system and thus the benefits of the invention as a
technology. The source code for the prototype system and
sample data 1s included as an appendix.

The prototype implementation implements an embodi-
ment that compiles mto a web browser.

6.1 Web Browser Integration

FIG. 1 shows a web browser displaying a URL 1n response
to a command in the URL line as normal and then answering
a simple question entered in natural language. Screen 102
shows the web browser when first opened atfter the user has
entered a URL 1nto the URL line 103. Screen 104 shows the
web browser aifter it has correctly responded to the entering of
the URL and retrieved and displayed the web page indicated

US 7,707,160 B2

33

by the URL. The web page 1s displayed 1n the browser win-
dow 105. Screen 106 shows the web browser after the user has
then entered a natural language question into the URL line
and screen 108 shows the web browser atter the user’s input
has correctly been interpreted as a natural language question
and been translated 1nto a query, answered and the answer
displayed.

The process that the web browser uses to route commands
from the user 1s illustrated 1n FI1G. 19. Step 1902 1s the action
of taking the text that the user as entered from the URL line.
This text 1s then analyzed to place 1t into categories using
syntactic features of the string (step 1904). Step 1906 1s a
branch depending on what category the text has been placed
in. I the text 1s determined to be a URL or an equivalent 1t 1s
used to retrieve the corresponding web page (step 1908). The
web page 1s then displayed 1n the browser window (1910). IT
the text 1s categorized as something other than a URL 1t 1s
passed to the natural language subsystem for processing (step
1912). In the preferred embodiment this involves translating
the text into a query, resolving ambiguity and then executing,
the query as described above. The results of execution of this
query are then displayed in the browser window (step 1914).

6.2 “Is MIT 1n the US?”

The results of entering this question 1s 1llustrated in FIG. 2.

The string 1s retrieved from the URL line and the sequence
“18” “MIT” “in” *“the US” 1s found to match the following

translation template:
“1s”ab c

query 11,12,r
a [ns] {1
b [function] r
¢ [ns] 12

query

[current time] [applies to] now

f: 11 r 12

{ [applies at timepoint] now

After substituting the matched strings 1nto the header we
get the query:

query 11,12.r

[“MIT™’] [ns] 11

[“1n”’] [function] r

[“the US”] [ns] 12

which 1s run giving values for 11,12 and r corresponding to

the physical embodiment of MIT, the relation indicating geo-
graphical location and The USA respectively.

These values are then substituted into the final query:

query

[current time] [applies to] now

{: [mat physical] [1s geographically located within][united
states ol Americal

f [applies at timepoint] now

which 1s checked for validity and then executed. It pro-
duces the answer “Yes” and an “explain” link which are
displayed in the browser window (screen 202).

The “explain™ link is ktp:command:$explain$ which is
intercepted 11 clicked on and the explanation translated and
printed 1n the browser window. The results of the user clicking
on the explain link are shown 1n screen 204. As the explana-
tion1s too long to be displayed 1n entirety the user has to scroll

down to see the end of the explanation and the results of doing
this are shown 1n screen 206.

Notice how the explanation first involves a retranslation of
the query back to English to prove that the original question

5

10

15

20

25

30

35

40

45

50

55

60

65

34

was translated correctly. (In this case the original five-word
question turns nto an incredibly detailed 26-word equiva-
lent.)

The precise reasoning path listing all the inference steps 1s
also produced. When the step involves a (smart or dumb)
generator, 1ts name also appears.

All objects that appear in the translation and the explana-
tion are hyperlinked using the ktp format. Clicking on one
them produces a profile screen of the object being mentioned
including the long translation. (For convenience only the
short translation i1s included in the explanation. The long
translation 1s used in the translation of the query back to
English.)

For example, clicking on “America’ in screen 206 executes
the command: ktp:profile:[united states of America]

The results of this are shown in screen 208. The template
used 1s for the entire class of objects (the largest class 1n the
ontology). Had a template existed for a more specific class of
which [united states of America] was a member, that would
have been used instead.

6.3 “Is Hillary Clinton married to Tony Blair?”

FIG. 3 illustrates this question. Screen 302 shows the
response to the user entering the question and screen 304
shows the response to the user then subsequently clicking on
the “explain™ link. This example 1s how a “No” can be deter-
mined for a truth query. Clearly there 1s no specific knowledge
answering this question 1n the database—there are billions of
people who Hillary Clinton 1s not married to. The negative 1s
inferred from other information and the engine’s ability to
create a breach of the golden rule from that information 1f one
assumes that the answer to the question 1s “Yes”.

Essentially, the translation of the question using templates
1S:

query

[current time] [applies to] now

t: [hillary Clinton] [1s married to] [Anthony Charles Lynton
Blair]

t [applies at timepoint] now

The query 1s run 1n full mode and the engine mitially 1s
unable to justity the query meaning the answer 1s etther “no”
or “unknown”. In order to distinguish between the two 1t takes
the second line of the query (with the calculated value for now
inserted) and 1ts temporal partner and translates them to the
following;:

t: [hillary Clinton]~[1s married to] [Anthony charles Lyn-
ton blair]

t [applies for all of timepoint] [timepoint: [“2000/11/11/4/
0]

essentially “Is Hillary Clinton not married to Tony Blair for
all moments of time that lie within the description of the
current time to the accuracy that the current time 1s speci-
fied?”. As the engine 1s able to answer that 1n the affirmative
(by using the property of marriage being [Left Unique] and
knowing that she 1s married to Bill Clinton for all of this time
point), 1t 1s able to answer a definitive “No” to the original
query: IT*Yes” was the answer to both queries then the golden
rule would have been breached—a relation would exist and
not exist between the same two objects for overlapping peri-
ods of time. Thus, the only possibility, 1s that the answer to the
original query 1s “no”. A more detailed description of this
process 1s described above (2.8).

While the mvention has been particularly shown and
described with reference to specific embodiments thereof, 1t
will be understood by those skilled 1n the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the inven-
tion. In addition, although various advantages, aspects, and

US 7,707,160 B2

35

objects of the present mvention have been discussed herein
with reference to various embodiments, 1t will be understood
that the scope of the invention should not be limited by ret-
erence to such advantages, aspects, and objects. Rather, the
scope ol the mnvention should be determined with reference to
the appended claims.

What is claimed 1s:

1. A computer system comprising:

a plurality of computers linked by a network;

a knowledge base stored 1n at least one of the computers in
which representations of factual knowledge are charac-
terized by named relationships between named objects;

a knowledge miterence module on at least one of the com-
puters operable to infer new knowledge from the factual
knowledge;

a query answering module on at least one of the computers
operable to recerve a query 1n a pre-determined format
and respond to the query using at least the representa-
tions of the factual knowledge; and

a natural language translation module operable to translate
a natural language question entered by a human operator
into the predetermined format of the query by compar-
ing the natural language question to pre-determined
templates comprising sequences of known and unknown
strings, the natural language translation module being
further operable to use template queries to generate the
query by substituting portions of the factual knowledge
provided by the query answering module into at least
one of the template queries, the natural language trans-
lation module being further operable to reject the query
as 1nvalid with reference to relationships between
objects associated with the query where no classes of
which the objects are members match any permitted
classes associated with the relationships.

2. The computer system of claim 1 wherein the query
answering module 1s operable to facilitate transmission of the
factual knowledge 1n response to a request transmitted from a
first one of the computers to a second one of the computers.

3. The computer system of claim 2 wherein the query
answering module 1s operable to transmit more of the factual
knowledge than requested thereby transmitting commercially
valuable information 1n the network.

4. The computer system of claim 2 wherein the knowledge
base includes server knowledge identifying which of the
computers include specific portions of the factual knowledge
thereby facilitating selection of the second computer by the
first computer.

5. The computer system of claim 4 wherein the second
computer 1s operable to employ the server knowledge to
identify at least one alternate computer in response to the
request from the first computer.

6. The computer system of claim 2 wherein the network 1s
the 1internet.

7. The computer system of claim 6 further comprising at
least one web browser operable to display the factual knowl-
edge and the new knowledge.

8. The computer system of claim 7 wherein the web
browser 1s operable to display a summary information screen
providing general information on a named object using a
portion of the factual knowledge retrieved from the knowl-
edge base.

9. The computer system of claim 8 wherein the summary
information screen includes a link corresponding to each
named object which generate further summary information
screens when the link 1s activated.

10. The computer system of claim 6 wherein online docu-
ments correspond to unique names and wherein the factual

10

15

20

25

30

35

40

45

50

55

60

65

36

knowledge associates URLs for downloading the online
documents with the unique names in the knowledge base.

11. A computer system comprising:
a plurality of computers linked by a network;

a knowledge base stored 1n at least one of the computers 1n
which representations of factual knowledge are charac-
terized by named relationships between named objects,
wherein the factual knowledge includes temporal
knowledge regarding when the relationships between
named objects are true;

a knowledge inference module on at least one of the com-
puters operable to infer new knowledge trom the factual
knowledge;

a query answering module on at least one of the computers
operable to receive a query 1n a pre-determined format
and respond to the query using at least the representa-
tions of the factual knowledge, wheremn the query
answering module 1s further operable to respond to the
query when the query corresponds to a question requir-
ing a human being to answer either yes or no, a no
answer indicating that a reverse relationship co-existed
for an overlapping period of time with a specific rela-
tionship represented in the query.

12. A computer system comprising:
a plurality of computers linked by a network;

a knowledge base stored 1n at least one of the computers 1n
which representations of factual knowledge are charac-
terized by named relationships between named objects;

knowledge inference module on at least one of the com-
puters operable to infer new knowledge from the factual
knowledge;

a query answering module on at least one of the computers
operable to recerve a query 1n a pre-determined format
and respond to the query using at least the representa-
tions of the factual knowledge, wherein the query
requests a list of a subset of the objects, and the factual
knowledge includes count knowledge representing a
number of the objects that have a given relationship to a
particular object, and wherein the query answering mod-
ule 1s operable to use the count knowledge to indicate
whether a response to the query 1s complete.

13. The computer system of claim 11 wherein the query
requests a list of a subset of the objects, and the factual
knowledge includes count knowledge representing a number
of the objects that have a given relationship to a particular
object, and wherein the query answering module 1s operable
to use the count knowledge to indicate whether a response to
the query 1s complete.

14. A computer system comprising:
a plurality of computers linked by a network;

a knowledge base stored 1n at least one of the computers 1n
which representations of factual knowledge are charac-
terized by named relationships between named objects,
wherein the named objects correspond to object names
which include a local 1dentifier and a local group, and
wherein each object name can only be assumed to be
distinct from other object names 1n a same group where
the local 1dentifier 1s different;

a knowledge inference module on at least one of the com-
puters operable to infer new knowledge from the factual
knowledge;

a query answering module on at least one of the computers
operable to recerve a query 1n a pre-determined format
and respond to the query using at least the representa-
tions of the factual knowledge; and

US 7,707,160 B2

37

a knowledge base management module operable to icor-
porate additional knowledge into the knowledge base
without first having to 1dentity every additional object.

15. The computer system of claim 11 wherein the query
answering module 1s operable to facilitate transmission of the
factual knowledge 1n response to a request transmitted from a
first one of the computers to a second one of the computers.

16. The computer system of claim 135 wherein the query
answering module 1s operable to transmit more of the factual
knowledge than requested thereby transmitting commercially
valuable information 1n the network.

17. The computer system of claim 15 wherein the knowl-
edge base includes server knowledge 1dentitying which of the
computers include specific portions of the factual knowledge
thereby facilitating selection of the second computer by the
first computer.

18. The computer system of claim 17 wherein the second
computer 1s operable to employ the server knowledge to
identify at least one alternate computer in response to the
request from the first computer.

19. The computer system of claim 15 wherein the network
1s the internet.

20. The computer system of claim 19 further comprising at
least one web browser operable to display the factual knowl-
edge and the new knowledge.

21. The computer system of claim 20 wherein the web
browser 1s operable to display a summary information screen
providing general information on a named object using a
portion of the factual knowledge retrieved from the knowl-
edge base.

22. The computer system of claim 21 wherein the summary
information screen includes a link corresponding to each
named object which generate further summary information
screens when the link 1s activated.

23. The computer system of claim 19 wherein online docu-
ments correspond to unique names and wherein the factual
knowledge associates URLs for downloading the online
documents with the unique names in the knowledge base.

24. The computer system of claim 12 wherein the query
answering module 1s operable to facilitate transmission of the
factual knowledge 1n response to a request transmitted from a
first one of the computers to a second one of the computers.

25. The computer system of claim 24 wherein the query
answering module 1s operable to transmit more of the factual
knowledge than requested thereby transmitting commercially
valuable information in the network.

26. The computer system of claim 24 wherein the knowl-
edge base includes server knowledge 1identifying which of the
computers include specific portions of the factual knowledge
thereby facilitating selection of the second computer by the
first computer.

277. The computer system of claim 26 wherein the second
computer 1s operable to employ the server knowledge to
identify at least one alternate computer in response to the
request from the first computer.

10

15

20

25

30

35

40

45

50

38

28. The computer system of claim 24 wherein the network
1s the 1nternet.

29. The computer system of claim 28 further comprising at
least one web browser operable to display the factual knowl-
edge and the new knowledge.

30. The computer system of claim 29 wherein the web
browser 1s operable to display a summary information screen
providing general information on a named object using a
portion of the factual knowledge retrieved from the knowl-
edge base.

31.The computer system of claim 30 wherein the summary
information screen includes a link corresponding to each
named object which generate further summary information
screens when the link 1s activated.

32. The computer system of claim 28 wherein online docu-
ments correspond to unique names and wherein the factual
knowledge associates URLs for downloading the online
documents with the unique names in the knowledge base.

33. The computer system of claim 14 wherein the query
answering module 1s operable to facilitate transmission of the
factual knowledge 1n response to a request transmitted from a
first one of the computers to a second one of the computers.

34. The computer system of claim 33 wherein the query
answering module 1s operable to transmit more of the factual
knowledge than requested thereby transmitting commercially
valuable information 1n the network.

35. The computer system of claim 33 wherein the knowl-
edge base includes server knowledge 1dentitying which of the
computers include specific portions of the factual knowledge
thereby facilitating selection of the second computer by the
first computer.

36. The computer system of claim 35 wherein the second
computer 1s operable to employ the server knowledge to
identify at least one alternate computer in response to the
request from the first computer.

377. The computer system of claim 33 wherein the network
1s the 1nternet.

38. The computer system of claim 37 further comprising at
least one web browser operable to display the factual knowl-
edge and the new knowledge.

39. The computer system of claam 38 wherein the web
browser 1s operable to display a summary information screen
providing general information on a named object using a
portion of the factual knowledge retrieved from the knowl-
edge base.

40. The computer system of claim 39 wherein the summary
information screen includes a link corresponding to each
named object which generate further summary information
screens when the link 1s activated.

41. The computer system of claim 37 wherein online docu-
ments correspond to unique names and wherein the factual
knowledge associates URLs for downloading the online
documents with the unique names in the knowledge base.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

