United States Patent

US007701973B2

(12) (10) Patent No.: US 7,701,973 B2
Colman et al. 45) Date of Patent: Apr. 20, 2010
(54) PROCESSING RECEIVE PROTOCOL DATA 2002/0118703 Al1* 82002 O’Neill etal. 370/474
UNITS 2004/0093411 Al 5/2004 Elzur et al.
(75) Inventors: Nicholas A. Colman, Hillsboro, OR
(US); Ramesh S. Krishnan, Hillsboro,
OR (US); Anshuman Thakur, FOREIGN PATENT DOCUMENTS
Beaverton, OR (US); Robert Cone,
Portland, OR (US); Daniel A. Manseau, WO 03/084078 10/20073
Portland, OR (US)
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Culley, P., U. Elzur, R. Recio, S. Bailey, & J. Carrier, “Marker PDU
patent 1s extended or adjusted under 35 Aligned Framing for TCP Specification”, Internet Draft (drafi-ietf-
U.S.C. 154(b) by 1685 days. rddp-mpa-00.txt), Oct. 7, 2003, pp. 1-58.
Deyring, K. (Tech. Ed.), “Sernial ATA: High Speed Serialized AT
(21) Appl. No.: 10/879,770 Attachment”, Revision 1.0a, Jan. 7, 2003, pp. 1-310.
(22) Filed: Jun. 28, 2004 IllgEzE Computer Society, IEEE Standard 802.3', Mar. 8, 2002, pp.
(65) Prior Publication Data Information Sciences Institute, “Internet Protocol”, DARPA Internet
Program Protocol Specification, RFC: 791, Sep. 1981, pp. 1-45.
US 2005/0286560 Al Dec. 29, 2005 Information Sciences Institute, “Iransmission Control Protocol”,
DARPA Internet Program Protocol Specification, RFC: 793, Sep.
(51) Int. Cl. 1981, pp. 1-85.
HO04J 3/16 (2006.01)
(52) US.CL ...l 370/471; 370/474;, 370/4°76 (Continued)
) See application fle for complete seareh hisory, Primary ExaminerGregory B Sefcheck _
(74) Attorney, Agent, or Firm—Konrad Raynes & Victor
(56) References Cited LLP; Janaki K. Davda

U.S. PATENT DOCUMENTS

6,122,670 A * 9/2000 Bennettetal. 7009/236
6,675,200 Bl 1/2004 Cheriton et al.

6,742,016 B1* 5/2004 Bhojetal. 7009/207
6,882,654 B1* 4/2005 Nelson ...ccevevvinvennnnnn. 370/401
6,895,544 B1* 5/2005 Parketal. 714/776
6,993,027 B1* 1/2006 Kadambietal. 370/394
7,042,898 B2 5/2006 Blightman et al. 370/463
7,209,962 B2* 4/2007 Bodenc.ooeviniunnnnnn. 700/223
7,269,171 B2* 9/2007 Poonetal. 370/392
7483374 B2* 1/2009 Nilakantan et al. 370/235

(57) ABSTRACT

Provided are techniques for processing a data segment by
stripping a header from a transport layer segment, performing
protocol data umit detection to determine data for a protocol
segment that 1s part of the transport layer segment data, and
performing marker validation and stripping.

15 Claims, 15 Drawing Sheets

segment

600
Receive transpert layer >J\

| e

Strip header | 802 ; Perform
from each in- [Pe 4 atapuﬁttmm SJ marker SJ
ariler transport datection validation and
layer sagmant siripping
L l l
614
r 608

processing

Perfarm other

edeive pea
command? |

Yes

_\/\ Wait for requested data

g12

V\ Forward location of

andfcr actua! header

data of the detacted
protocal data unit to

pre-processing agent

US 7,701,973 B2
Page 2

OTHER PUBLICATIONS

Krueger, M., R. Haagens, C. Sapuntzakis, & M. Baake, “Small Com-
puter Systems Interface Protocol Over the Internet (1SCSI) Require-
ments and Design Considerations”, RFC. 3347, Jul. 2002, pp. 1-26.
PCT International Search Report and Written Opinion for Interna-
tional Application No. PCT/US2005/020551, dated Oct. 20, 2005.
Penokie, G.O. (Tech. Ed.), “Information Technology—SCSI Con-
troller Commands—2 (SCC-2)”, X37T10/1225D, Revision 4, Sep. 12,
1997, pp. 1-xv1 & 1-8.

RDMA Consortium, “Architectural Specifications for RDMA over
TCP/IP”, [online], 2005, [Retrieved on Dec. 22, 2005], retrieved
from the Internet at <URL: http:://www.rdmaconsortium.org/
home>.

Shanley, T. & D. Anderson, PCI System Architecture, Fouth Edition,
Aug. 2001, Addison-Wesley, Boston, pp. 1-xlu1 & 1-21.

Snively, R. (Tech. Ed.), “Information Systems—dpANS Fibre Chan-
nel Protocol for SCSI”, X3.269-199X, Revision 012, Dec. 4, 1995,
pp. 1-x & 1-63.

PCT International Preliminary Examination Report (IPRP), Jan. 11,
2007, for International Application No. PCT/US2005/020551.

Office Action 1, Feb. 4, 2009, for German Application No.
DE112005001364, 6 pp. [Translation Attached].

Office Action 1 (in Chinese with English translation), Nov. 13, 2009,
for Patent Application No. CN200580017333 4, 8 pp.

* cited by examiner

U.S. Patent Apr. 20, 2010 Sheet 1 of 15 US 7,701,973 B2

Computer 102

106
Memory 1o
110 o /
ym Operating System o Application Space
12
CPU(s) 120 - — 6
| Storage Application (_| Network
Driver(s)] Program(s) Driver(s)
L

4 Bus16:\ >

_
R

* Network Adapter(s) '
i
108
c 150 152
ot r
Storage Input Output
Device Device

Storage Subsystem 140

Storage Server 180

/0O Processor 182

FIG. 1

| l Parity Generator 184

!

Y
l Storage Device(s) 190

U.S. Patent Apr. 20, 2010 Sheet 2 of 15 US 7,701,973 B2

128

Network Adapter

'——————————-————————-—-—————-—-Il-—l--l-l--n--n--r--l---—--I---Hl--|------n----nnnn-&m-—rn--—“-nﬂ—w—ﬂ———--n-——-—--—--n--------—l

Pre-processing Agent 210

Registers 212

: Direct Memory Access

(DMA) Engine 220

; Segment

E Cyclic Redundancy Check (CRC) E Processing Engine 230

Engine
224

Cyclic Redundancy
Check (CRC) Data
; Structure(s) 226

; Cyclic Redundancy
i Check (CRC) Storage
Area 228

e — — — — —— e e e e E e e — e — e — A A e e A A A —— e e — A ——— —— —_— — — e — — A — — —_— —_——_——— ——_—— ———— — —a

/O Controller 240 Bus Controller 244

Physical Communications
Layer 242

FIG. 2

U.S. Patent Apr. 20, 2010 Sheet 3 of 15 US 7,701,973 B2

300
Digest Marker Digest
Header Payload
310 312 314 316 318

FIG. 3

U.S. Patent

Apr. 20, 2010 Sheet 4 of 15
Layer4
Header ’ ;
sacket layerdiheadeiin
#1
Layerd+ header
#1
Layer4
payload
packet
#1 l.ayerd+ Data #1
420 —
RUayerdineade g2
Layerd+ Data #1
Layer4
pa:;et Layer4+ header
#2
Layerd+ Data #2 I
430

Teyers heedard®

THE " e - ey

Layerd4+ Data #2

Layerd4+ header
#3

FIG. 4

J

US 7,701,973 B2

410

440

Layerd +
message -
header
plus
payload

L ayer4+
payload
- extends
across
| ayerd
payload
S

U.S. Patent Apr. 20, 2010 Sheet 5 of 15 US 7,701,973 B2

‘ Application Space 124

N

212 Direct Memory Access

(DMA) Engine 220

Pre-processing
Agent 210

incoming TCP
segments 502

I
I
I
I
|
|
l
: Ethermet/IP/TCP
Head
i
I
!
|

into processing
agent's registers; |

Relevant Data
from
Layer 4+ header

L S Ve -t P A i T LD
D R R aa i e R e A R e e A e e el

|

|

|

: across two TCP
l Ethernet/IP/TCP egments
: Header

|

|

|

|

|

0220 514

Segment Processing
| Engine 230 |

004

FIG. 5

U.S. Patent Apr. 20, 2010 Sheet 6 of 15 US 7,701,973 B2
. 600
Receive transport layer
segment
y 500 L o L 606
Strip headfar perform protocol Perform
from each in- r . marker
order transport data unit validation and

detection .

layer segment stripping

S

!

l

614

-

Perform other

processing

No

608

eceive peek

610

612

\/\ Forward location of

command?

Yes

h 4

Wait for requested data

v

FIG. 6

r

and/or actual header
data of the detected
protocol data unit to
pre-processing agent

U.S. Patent

Apr. 20, 2010 Sheet 7 of 15

Extract value from
offset of length field of
header of protocol data
unit ("O") for width of
length field ("W")

Determine final length of
protocol data unit, based on
the extracted value and

700

702

values of order of multiply/ \f\

add parameter ("D"), length |
field multiplier parameter

(“M™), and length field adder
parameter ('A")

Detect protocol data unit
based on a starting location
and the final length of

] protocol data unit

FIG. 7

704

US 7,701,973 B2

U.S. Patent Apr. 20, 2010 Sheet 8 of 15 US 7,701,973 B2

Extract marker length 800
parameter ("L") bytes
from initial offset (“S”)

802

Based on marker type that
can point to beginning and/or
end of protocol data unit,
validate the marker

804

Jump marker interval in
Incoming byte stream

FIG. 8

U.S. Patent

FIG. 9

Apr. 20, 2010

e ————— b.

Sheet 9 of 15

Receive location of or
actual header data for
protocol segment from
segment processing
engine

|

Interpret header portion of
received data to determine
location of next header
portion of next protocol data
unit

Y

Send peek command to

segment processing agent

for header portion of next
protocol data unit and
receive requested data

Y

Notify Direct Memory Access
(DMA) engine to store “n”
bytes of data following a
header for a protocol data
unit into application space

US 7,701,973 B2

900

802

904

906

U.S. Patent Apr. 20, 2010 Sheet 10 of 15 US 7,701,973 B2

1000
Opcode Flags Skip Length Addr/Len Addr/Len Addr/Len Addr/Len
1010 1012 1014 1016 1018 1020 1022

FIG. 10

U.S. Patent Apr. 20, 2010 Sheet 11 of 15 US 7,701,973 B2

226

32-bit
4 —— P

1110 — Partial CRC

Residual I . .
Count Residual Dgta

1114
1112

FIG. 11

U.S. Patent Apr. 20, 2010 Sheet 12 of 15 US 7,701,973 B2

data stream

Segment processing .
nent proce: - CRC Engine 230

partial CRC + residual
data

FIG. 12

U.S. Patent Apr. 20, 2010 Sheet 13 of 15 US 7,701,973 B2

1300 BEFORE ONE-BEHIND CACHE

delay
- -
Inbound data processing [___"_A_> _"" >
CRC Engine | e >
FIG. 13
1400 AFTER ONE-BEHIND CACHE

Inbound data processing | _>_ —>
CRC Engine f'>l - Jl>

FIG. 14

U.S. Patent

Receive transport layer
segment

1502

Received
partial CRC digest
and residual data with

Apr. 20, 2010

Sheet 14 of 15

1500

US 7,701,973 B2

NG Retrieve partial CRC digest

transport layer
segment’?

» and residual data from
storage area

Yes

Received complete

1506

No

1504

orotocol data unit?

Yes

Calculate complete CRC
digest for protocol data unit

alculated CRC diges

1508

Y

1510

Calculate new partial CRC
digest

1516

NoO

atch received CR
digest?

y

1518

Yes

Y

1512

—~

o

Notify application
program of
successfully

l received data

1514

v [

FIG.

Process error

15

Forward new partial CRC
digest and residual data to
segment processing engine

y

Store new partial CRC digest |

and residual data in CRC
storage area and CRC data
structure

1520

U.S. Patent

_ 1600
Receive current

transport layer
segment

1602

Partial
CRC digest and
residual data received
r last transport lay
segment?

No

Yes
et

Apr. 20, 2010

No

Sheet 15 of 15

Is current

ansport layer segme
on a same flow as last
transport layer

segment?

Y 1604

Forward current transport -
layer segment to CRC
engine with partial CRC
digest and residual data from
last transport layer segment

1606

Yes

US 7,701,973 B2

l
>

FIG. 16

Forward current
transport layer
segment to CRC
engine without partial |
CRC digest and
residual data from last
transport layer
segment

US 7,701,973 B2

1

PROCESSING RECEIVE PROTOCOL DATA
UNITS

BACKGROUND

Description of the Related Art

Open System Interconnection (OSI) 1s an International
Standards Organization (ISO) standard that defines a net-
working framework for implementing protocols in seven lay-
ers. The seven layers are: application, presentation, session,
transport, network, data link, and physical layer. The physical
layer connects to a physical link. When data 1s being trans-
mitted, the data 1s transferred from the application layer, via
the presentation layer, session layer, transport layer, network
layer, data link layer, and physical layer, to the physical link.
When data 1s being received from the physical link, the data
passes through the physical layer, the data link layer, network
layer, transport layer, session layer, presentation layer, to the
application layer. Thus, control 1s passed from one layer to the
next to transmit and recerve data.

The application layer (Layer 7) supports application and
end-user processes. The presentation layer (Layer 6) trans-
lates data from application to network format, and vice versa.
The session layer (Layer 5) establishes, manages and termi-
nates connections between applications. The transport layer
(Layer 4) provides transier of data. The network layer (Layer
3) provides switching and routing. The data link layer (Layer
2) encodes and decodes data packets 1nto bits. The physical
layer (Layer 1) conveys a bit stream through a physical net-
work.

Usage of networking protocols, such as OSI, in storage and
inter-process communication 1s becoming prevalent. This
convergence provides immense cost-advantages for Informa-
tion Technology (IT) infrastructure by eliminating a need for
a separate physical medium for carrying storage traffic. This
advantage comes at a cost to the end stations, which have to
run more complex protocols on the host processors.

Thus, there 1s a need 1n the art for improved protocol
processing.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates details of a computing environment in
which certain embodiments may be implemented.

FI1G. 2 1llustrates a block diagram of a network adapter in
accordance with certain embodiments.

FI1G. 3 illustrates a block diagram of a protocol data unit in
accordance with certain embodiments.

FIG. 4 1llustrates three Transmission Control Protocol
(TCP) segments 1n accordance with certain embodiments.

FIG. 3§ illustrates Transmission Control Protocol (TCP)
segment and protocol data unit processing in accordance with
certain embodiments.

FI1G. 6 1llustrates operations performed by a segment pro-
cessing engine in accordance with certain embodiments.

FI1G. 7 1llustrates operations performed by a segment pro-
cessing engine for protocol data unit detection in accordance
with certain embodiments.

FI1G. 8 1llustrates operations performed by a segment pro-
cessing engine for marker validation and stripping 1n accor-
dance with certain embodiments.

FI1G. 9 illustrates operations performed by a pre-processing,
agent 1n accordance with certain embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 illustrates a format of a Receive Builer instruction
in accordance with certain embodiments.

FIG. 11 1llustrates a format of a Cyclic Redundancy Check
(CRC) data structure in accordance with certain embodi-
ments.

FIG. 12 1llustrates an interaction of a segment processing,
engine and the Cyclic Redundancy Check (CRC) engine 1n
accordance with certain embodiments.

FIG. 13 illustrates a timeline of serialization 1n a
“BEFORE” scenario i accordance with certain embodi-
ments.

FIG. 14 illustrates a timeline of serialization in an
“AFTER” scenario in accordance with certain embodiments.

FIG. 15 illustrates operations performed by a Cyclic
Redundancy Check (CRC) engine 1n accordance with certain
embodiments.

FIG. 16 1llustrates operations performed by a segment pro-
cessing engine for cyclic redundancy checking 1n accordance
with certain embodiments.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings which form a part hereof and which
illustrate several embodiments. It 1s understood that other
embodiments may be utilized and structural and operational
changes may be made.

FIG. 1 illustrates details of a computing environment 1n
which certain embodiments may be implemented. A host
computer 102 includes one or more central processing units
(CPUs) 104, a volatile memory 106, non-volatile storage 108
(e.g., magnetic disk drives, optical disk drives, a tape drive,
etc.), an operating system 110, and one or more network
adapters 128. One or more storage drivers 120, one or more
application programs 122, and one or more network drivers
126 reside in memory 106 for execution by CPUs 104 and are
capable of transmitting and retrieving packets from remote
storage subsystem 140 over a network 176. Additionally, a
portion of memory 1s designated as application space 124,
which 1s accessible by the application programs 122.

The host computer 102 may comprise any computing
device known in the art, such as a mainframe, server, personal
computer, workstation, laptop, handheld computer, tele-
phony device, network appliance, virtualization device, stor-
age controller, etc. Any CPU 104 and operating system 110
known 1n the art may be used. Programs and data in memory
106 may be swapped into storage 108 as part of memory
management operations. The network 176 may comprise any
type of network, such as, for example, a Storage Area Net-
work (SAN), a Local Area Network (LAN), Wide Area Net-
work (WAN), the Internet, an Intranet, etc.

The storage subsystem 140 includes a storage server 180
(1.e., a type of computing device) connected to one or more
storage devices 190. The storage devices 190 may each com-
prise a storage device or an array of storage devices, such as
Direct Access Storage Devices (DASDs), Just a Bunch of
Disks (JBOD), Redundant Array of Independent Disks
(RAID), virtualization device, etc. The storage server 180
includes an I/O processor 182, which includes a parity gen-
crator 184. The parity generator 184 1s capable of generating
parity information in accordance with embodiments.

Each network adapter 128 includes various components
implemented in the hardware of the network adapter 128.
Each network adapter 128 1s capable of transmitting and
receiving packets of data over network 176.

Each network driver 126 includes network adapter 128
specific commands to communicate with each network

US 7,701,973 B2

3

adapter 128 and interface between the operating system 110,
cach storage driver 120, and each network adapter 128. Each
network adapter 128 or network driver 126 implements logic
to process the packets, such as a transport protocol layer to
process the content ol messages included 1n the packets that

are wrapped 1n a communication protocol, such as Transmis-
sion Control Protocol (TCP) (IETF RFC 793, published Sep-

tember 1981) and/or Internet Protocol (IP) (IETF RFC 791,
published September 1981), the Internet Small Computer
System Interface 1SCSI) (IETF RFC 3347, published Feb-
ruary 2003), Fibre Channel (American National Standards
Institute (ANSI) X3.269-199X, Revision 012, Dec. 4, 1995),
or any other communication protocol known 1n the art. The
transport protocol layer unpacks a payload from the received
Transmission Control Protocol/Internet Protocol (TCP/IP)
packet and transfers the data to a network driver 126 to return
to an application program 122. Further, an application pro-
gram 122 transmitting data transmits the data to a network
driver 126, which then sends the data to the transport protocol
layer to package in a TCP/IP packet before transmitting over
the network 176.

The storage 108 may comprise an internal storage device or
an attached or network accessible storage. Programs 1n the
storage 108 may be loaded 1nto the memory 106 and executed
by the CPU 104. An mput device 150 1s used to provide user
input to the CPU 104, and may include a keyboard, mouse,
pen-stylus, microphone, touch sensitive display screen, or
any other activation or input mechanism known 1n the art. An
output device 152 1s capable of rendering information trans-
ferred from the CPU 104, or other component, such as a
display monitor, printer, storage, etc.

Various structures and/or butiers (not shown) may reside in
memory 106 or may be located 1n a storage unit separate from
the memory 106 1n certain embodiments.

FI1G. 2 illustrates a block diagram of a network adapter 128
in accordance with certain embodiments. The network

adapter includes a pre-processing agent 210 that uses regis-
ters 212, a Direct Memory Access (DMA) engine 220 that

includes a Cyclic Redundancy Check (CRC) engine 224, a
segment processing engine 230, an Input/Output (I/O) pro-
cessor 240, a physical communications layer 242, and a bus
controller 244. The CRC engine 224 includes one or more
Cyclic Redundancy Check (CRC) data structures 226 and a
Cyclic Redundancy Check (CRC) storage area 228. In certain
embodiments, the pre-processing agent 210 pre-processes
data segments conforming to Layer 4+ protocols, which will
be referred to as protocol segments for ease of reference. For
case of reference, the term “Layer 4+ protocols™ will be used
herein to describe emerging protocols, such as 1SCSI and

RDMA (RDMA Consortium, RDMA Protocol Over TCP/IP
Networks, Version 1.0, October 2002). Although 1SCSI and
RDMA protocols may be described as higher level protocols
(e.g., Layer 3 or higher level protocols), embodiments refer to
the 1SCSI and RDMA protocols as Layer 4+ protocols
because they are closely tied to the processing of Layer 4
protocols. Certain of the protocols (e.g., RDMA) may be tied
with the transport layer (1.e., Layer 4) protocol (e.g., TCP). In
certain embodiments, the segment processing engine 230
processes data segments (e.g., TCP segments), which will be
referred to as “transport layer segments” for ease of reference.
A protocol data unit may be described as a unit of transier for
the Layer 4+ protocols. A protocol segment may be described
as a portion or all of a protocol data unit (1.e., a protocol data
unit may form one or more protocol segments).

In certain embodiments, the preprocessing agent 210 may
be described as a dedicated processor that has a context sen-
sitive register space (registers 212) and may be used in con-

10

15

20

25

30

35

40

45

50

55

60

65

4

junction with the segment processing engine 230 to achieve
elfective and programmable receive processing.

A bus controller 244 enables each network adapter 128 to
communicate on a computer bus 160, which may comprise
any bus interface known in the art, such as any type of Periph-
cral Component Interconnect (PCI) bus (e.g., a PCI bus (PCI
Special Interest Group, PCI Local Bus Specification, Rev 2.3,
published March 2002), a PCI-X bus (PCI Special Interest
Group, PCI-X 2.0a Protocol Specification, published 2002),
or a PCI Express bus (PCI Special Interest Group, PCI
Express Base Specification 1.0a, published 2002), Small
Computer System Interface (SCSI) (American National Stan-
dards Institute (ANSI) SCSI Controller Commands-2 (SCC-
2)NCITS.318:1998), Serial ATA ((SATA 1.0a Specification,
published Feb. 4, 2003), etc.

The network adapter 128 includes a network protocol for
implementing a physical communication layer 242 to send
and receive network packets to and from remote data storages
over a network 176. In certain embodiments, the network

adapter 128 may implement the Ethernet protocol (IEEE std.
802.3, published Mar. 8, 2002), Fibre Channel protocol

(American National Standards Institute (ANSI) X3.269-
199X, Revision 012, Dec. 4, 1993) or any other network
communication protocol known in the art.

The network adapter 128 includes an Input/Output (1/0O)
controller 240. In certain embodiments, the I/O controller 240
may comprise Internet Small Computer System Interface
(1SCSI controllers), and 1t 1s understood that other types of
network controllers, such as an Fthernet Media Access Con-
troller (MAC), or cards may be used.

To relieve the burden of running more complex protocols
on host processors, certain embodiments offload protocol
processing, as well as data placement, from the host proces-
sor. In certain embodiments, the offload protocol processing
may be provided with dedicated hardware. In certain embodi-
ments, the network adapter 128 may implement a transport
layer offload engine (TOE) to implement the transport proto-
col layer 1n the network adapter to reduce host computer
processing burdens. Oftloading of protocol processing leads
to effective processing and placement of recerved data.
Embodiments provide receitve path processing. In certain
embodiments, the receive path processing 1s for Layer 4+
(1SCSI, RDMA) protocol data units.

Embodiments improve Layer 4+ Protocol Data Unit
(PDU) detection, marker validation and stripping, Layer 4+
header processing (including those headers split across Layer
4 boundaries), direct data transier into application space, and
Cyclic Redundancy Check (CRC) digest calculation.

Cyclic redundancy check may be described as a technique
for detecting data transmission errors. For example, with a
cyclic redundancy check technique, a message may be
divided into predetermined lengths that are divided by a fixed
divisor, and the remainder number 1s appended to the mes-
sage. When the message 1s received with the appended
remainder, the recerving computing device recalculates the
remainder and compares the recomputed remainder to the
appended remainder. If the remainders do not match, an error
1s detected.

FIG. 3 illustrates a block diagram of a protocol data unit
300 1n accordance with certain embodiments. The protocol
dataunit 300 includes several fields, such as a header 310, one
ortwo digests 312, 318, amarker 314, and a payload 316. The
header 310 includes the length of the entire protocol data unat,
along with other information. The digest 312, 318 may be
derived using a cyclic redundancy check (e.g., a CRC-32C
technique) over the data covered. The 1SCSI protocol has two
digests, one for the header and one for the payload. The

US 7,701,973 B2

S

RDMA protocol has a single digest for the entire protocol
data unit. The marker 314 1s a field that 1s present 1n a TCP
stream. Each marker 314 1s a pointer to the start or the end of
the protocol data unit or both. The payload 316 1s data.

Layer 4+ protocol data units are first constructed and then
handed over for TCP processing as a byte stream. The TCP
processing may re-segment each protocol segment into mul-
tiple transport layer segments so that each transport layer
segment that 1s sent out does not exceed an eflective maxi-
mum data segment size. FI1G. 4 1llustrates three transport layer
segments 410, 420, 430 1n accordance with certain embodi-
ments. Each transport layer segment 410, 420, 430 includes a
Layer 4 header #1, #2, #3, respectively. Also, a transport layer
segment (e.g., 410) payload may include Layer 4+ header and
data.

In some cases, a protocol data unit for a Layer 4+ protocol
1s not fully contained 1n a transport layer segment. For
example, a single protocol data unit #1 440 has a header
portion and two data portions, with transport layer segment
410 including the Layer 4+ header #1 and Layer 4+ data #1
(1.e., a portion of data for protocol data unit #1) and transport
layer segment 420 including Layer 4+ data #1 (1.e., additional
data for protocol unit #1). Thus, a protocol data unit may be
contained 1n a single transport layer segment, a protocol data

unit may be segmented across transport layer segments, a
transport layer segment may contain multiple protocol data
units or a combination of these.

FI1G. S1llustrates transport layer segment and protocol data
unit processing i accordance with certain embodiments. As
transport layer segments 502, 504 arrive and protocol data
units for Layer 4+ are detected by the segment processing,
engine 230, a copy of N bytes of relevant data from a Layer 4+
header 520 1s directly placed into the register space 212 of the
pre-processing agent 210 and the context 1s loaded. Context
may be described as information related to a particular TCP
connection. In certain embodiments, one TCP connection has
one context. In certain other embodiments, one TCP connec-
tion may have one or more contexts. In this example, the
relevant data from the Layer 4+ header 520 includes two
portions 512 and 514 that were located 1n two transport layer
segments 512, 514. In line processing of Layer 4+ header
bytes reduces the processing latency by eliminating the store
and forward architectural paradigm used 1n conventional sys-
tems. Additionally, mncoming data may be retrieved by the
Direct Memory Access (DMA) engine 220 for placement into
the application space 124 upon the pre-processing agent 210
1ssuing a command to the DMA engine 220.

FIG. 6 1illustrates operations performed by the segment
processing engine 230 1 accordance with certain embodi-
ments. Control begins at block 600 with the segment process-
ing engine 230 receiving a transport layer segment. In certain
embodiments, the segment processing engine 230 strips a
header from an in-order transport layer segment (block 602),
performs protocol data unit detection (block 604), performs
marker validation and stripping (block 606), and processes a
peck command 1f one 1s received (blocks 608-614) in parallel.
In certain alternative embodiments, the processing of blocks
602, 604, 606, and 608 may be performed senally or with
some processing being performed 1n parallel while other pro-
cessing 1s performed serially. The processing of block 602 1s
performed for the processing of blocks 604 and 606 in certain
embodiments. Also, 1n certain embodiments, if a transport
layer segment 1s received out of order, embodiments will wait
for the missing transport layer segments and place the trans-
port layer segments in order before processing them.

10

15

20

25

30

35

40

45

50

55

60

65

6

In block 604, protocol data unit detection identifies a loca-
tion of a Layer 4+ header. From blocks 602, 604, and 606,
processing loops back to block 600.

In block 608, the segment processing engine 230 deter-
mines whether a peek command has been recerved. It so,
processing continues to block 610, otherwise, processing
continues to block 614. A peek command 1s a command
requesting that the segment processing engine 230 “look
ahead” 1nto incoming transport layer segments and locate
particular data. In block 610, the segment processing engine
230 waits for the requested data. Once the requested data 1s
received, processing continues from block 610 to block 612.
In block 612, the segment processing engine 230 forwards an
indication of the location of a Layer 4+ header and/or for-
wards the actual Layer 4+ header of the detected protocol data
unit to the pre-processing agent 210. In certain embodiments,
the mdication of the location 1s provided by sending pointers
to a starting location and an ending location of the protocol
data unit. From block 612, processing loops back to block
600. In block 614, other processing may be performed before
looping back to block 600. Although the segment processing
engine 230 1s 1llustrated as checking for a peek command 1n
block 608, other processing may occur prior to the processing
of block 608. The other processing may include processing
additional incoming transport layer segments.

For receive protocol data units, embodiments provide a
configurable Marker Processing Agent (MPA) and protocol
data unit detection; direct peek of data for pre-processing
agent 210 registers 212; data placement into application
space 124 (i.e., placement of data into memory for access by
an application rather than into a general memory area from
which the data 1s moved into the memory accessed by the
application); and cyclic redundancy check (e.g., CRC-32C
technique) validation.

In certain embodiments, the Marker Processing Agent
(MPA) may be part of segment processing engine 230. As for
the configurable MPA and protocol data unit detection,
embodiments provide a configuration mechanism for each
TCP connection that enables marker stripping/validation and
protocol data unit detection. In particular, a computer has
different connections with different computers (e.g., a
browser at a first computer connected to an email account at
a second computer has a connection with that second com-
puter). In certain embodiments, the TCP connection may be
set up for the duration of data being transmitted.

Embodiments set the following new parameters for each
Layer 4+ TCP connection:

(a) Offset of length field in Layer 4+ header (also referred

to as “0O”)
(b) Width of length field in Layer 4+ header (also referred
to as “W)

(c) Length field multiplier (also referred to as “M”)

(d) Length field adder (also referred to as “A™)

(¢) Order of multiply/add (also referred to as “D”)

(1) Marker interval (also referred to as “I7)

(g) Initial offset (also referred to as “S”)

(h) Marker length (also referred to as “L”)

(1) Marker type (also referred to as “17)

Among the new TCP connection parameters, the length
field multiplier parameter (M) and the length field adder
parameter (A) are negotiated at the time of a Layer 4+ con-
nection. The order of multiply/add parameter (D) 1s a constant
for a given TCP connection that 1s negotiated by the two
computing devices for which the connection was created, and
this parameter determines how to calculate a final length of
data for a protocol data unit as this information 1s not provided
by the Layer 4+ protocol.

US 7,701,973 B2

7

The new TCP connection parameters may be set as soon as
a connection 1s created and before any data 1s transferred.
These fields are used with 1n-order transport layer segments to
detect protocol data unit boundaries, validate markers, and
delete (strip) markers.

FIG. 7 illustrates operations performed by the segment
processing engine 230 for protocol data unit detection (block
604) 1n accordance with certain embodiments. Control begins
at block 700 with the segment processing engine 230 extract-
ing a value from an offset of the length field in the header of
a protocol data unit (parameter “O”’) for the width of the
length field in the header (parameter “W”). For example, if
the length field starts at an oifset of four bytes and has a width
of five bytes, then the value 1s extracted from bytes four, five,
s1X, seven, and eight. In block 702, the segment processing
engine 230 determines a final length of a protocol data unit
based on the extracted value (from block 700) and the values
of an order of multiply/add parameter (“D”), a length field
multiplier parameter (“M”), and a length field adder param-
cter (“A”).

In certain embodiments, the segment processing engine
230 uses the following pseudocode for determining the final
length, where the (Value at [O . . . O+W]) 1s the extracted
value from the processing of block 700:

If (D==0) begin
final_length = ((Value at [O..0+W]) x M) + A
clse

final_length = ((Value at [O..0+W])+ A)x M

That 1s, 11 the value of the order of multiply/add parameter
(“D”) 1s zero, then the final length 1s determined by taking the
value starting at the value of the offset of the length field 1n the
Layer 4+ header parameter (“O”) through the value of the
offset parameter (“O”’) plus the value of the width of the
length field 1n the Layer 4+ header parameter (“W”). This
value 1s multiplied by the value of the length field multiplier
(“M”), and then the result 1s added to the value of the length
field adder parameter (“A”).

On the other hand, 11 the value of the order of multiply/add
parameter (“D”) 1s not zero, then the final length 1s deter-
mined by taking the value starting at the value of the ofiset of
the length field 1n the Layer 4+ header parameter (“O)
through the value of the offset parameter (“O”) plus the value
of the width of the length field in the Layer 4+ header param-
eter (“W”). This value 1s added to the value of the length field
adder (*A”), and then the result 1s multiplied by the value of
the length field multiplier (*M™).

In block 704, the segment processing engine 230 detects
the protocol data unit based on a starting location and a final
length of the protocol data unit. In certain embodiments, the
protocol data unit is detected from a starting location (““Start™)
to the starting location plus the determined final length
(“Start”+final_length). In certain embodiments, “Start” may
be described as the start of the data of a protocol data unat.

FIG. 8 illustrates operations performed by the segment
processing engine 230 for marker validation and stripping
(block 606) 1n accordance with certain embodiments. Control
begins at block 800 with the segment processing engine 230
extracting marker length parameter (L) bytes from an mnitial
offset. In certain embodiments, the 1nitial offset 1s the start of
a protocol segment or the start of a protocol data unit and may
be designated as parameter “S”, which 1s variable. In block
802, the segment processing engine 230 performs marker
validation based on a marker type that can point to a begin-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

ning and/or end of a protocol data unit. In certain embodi-
ments, the segment processing engine 230 validates the
marker with the following psuedocode:

If (I'==Beginning)
Check whether marker points to the beginning found by
protocol data unit detection
else if (I'==Ending)
Check whether end
else if (T==Both)
Split marker field into two portions and
check whether one portion points to the beginning and the
other portion points to the end

That 1s, for marker validation, the segment processing
engine 230 determines whether the value of the marker type
parameter (“I”) 1s set to beginming. If so, the segment pro-
cessing engine 230 checks whether the marker points to the
beginning of a protocol data umt (1.e., the “Start” found by
protocol data unit detection processing 1n FIG. 7). If the value
of the marker type parameter (“I”) 1s set to end, the segment
processing engine 230 checks whether the marker points to
the end of a protocol data unit. If the value of the marker type
parameter (““17°) 1s set to both, the segment processing engine
230 splits the marker field ito two portions and checks
whether one portion of the marker points to the beginning and
the other portion of the marker points to the end.

Once the marker 1s validated, 1n block 804, the segment
processing engine 230 jumps a marker interval 1n the incom-
ing byte stream.

FIG. 9 illustrates operations performed by the pre-process-
ing agent 210 in accordance with certain embodiments.
Receive processing of a layer 4+ protocol data unit includes
ispecting a header and processing the header. In certain
embodiments, the header processing 1s performed before the
data of a previous message has been completely transterred to
the host computer 102. Since these Layer 4+ protocols are
used for application programs 122 such as disk access and
inter-process communication, low processing latencies are
desired. In certain embodiments, hard-coding header pro-
cessing 1n silicon 1s avoided as it provides a less flexible
solution for header processing.

Embodiments perform header processing i a flexible
manner by utilizing a pre-processing agent 210 that has con-
text sensitive register space 212 (e.g., a microengine).

Control begins at block 900 with the pre-processing agent
210 receiving an indication of the location of or actual header
data for a protocol segment from the segment processing
engine 230. In block 902, the pre-processing agent 210 inter-
prets the header portion of the received data to determine a
location of a next header portion of a next data portion for a
protocol data unit. In block 904, the pre-processing agent 210
sends a peek command to the segment processing engine 230
for a header portion of the next protocol data unit and receives
the requested data from the 1ssued peek command. In certain
embodiments, the receitved data 1s an indication of the loca-
tion of a Layer 4+ header and/or the actual Layer 4+ header of
a protocol data umit. Although the receipt of data from the
1ssued peek command 1s illustrated as following 1ssuance of
the peek command, the receipt of data may occur at any time
alter the peek command 1s 1ssued (e.g., after the processing of
block 906). By use of the peek command, certain embodi-
ments provide direct peek results into the pre-processing
agent 210 registers 212.

Certain embodiments also provide placement of received
data into application space 124. In block 906, the pre-pro-

US 7,701,973 B2

9

cessing agent 210 notifies the Direct Memory Access (DMA)
engine 220 to store “n” (where “n” represents a positive
integer value) bytes of data for a protocol data unit into
application space 124. In certain embodiments, the pre-pro-
cessing, agent 210 1ssues a Recerve Buill

er instruction to the
DMA engine 220. FIG. 10 illustrates a format of a Receive
Bufter instruction 1000 1n accordance with certain embodi-

ments. The Receive Buiifer instruction 1000 includes an

opcode 1010, flags 1012, a skip length 1014, and a list of
address/length pairs 1016, 1018, 1020, . . . 1022. Although
tour address/length pairs are 1llustrated, any number may be
included 1n the Recerve Butfer mstruction. The opcode 1010
provides an instruction type, which in this case 1s the
“Receive Buller” type of instruction.

The opcode 1010 1s followed by flags 1012 that are relevant
to the transfer of data to application space 124. Some of the
flags that are provided with the instruction are: C for calcu-
lating a CRC digest over the transifer amount (e.g., with a
CRC32-Ctechnique) and P that represents strip pad bytes that
are to be removed from the payload that 1s being transferred.

The flags 1012 are followed by a skip length 1014 that 1s to
be skipped when transierring data. The skip length 1014 1s
usetul 1 skipping Layer 4+ headers so that data 1s stored in
the application space 124. The skip length 1014 1s followed
by a scatter list of address/length pairs 1016 . . . 1024. An
address/length pair 1016 . . . 1024 provides an address 1n
application space 124 and an associated length so that data
may be stored at that address for the specified length.

Once the Recerve Bulfer instruction i1s scheduled with the
DMA engine 220, the Recerve Buller instruction 1s applied to
the incoming transport layer segments. The Receive Buller
istruction strips the TCP payload for a protocol data unit
from a transport layer segment, completes the transier of the
payload to the destination application space 124, and updates
the address/length parameters to retlect the current transfer.
This process eliminates the requirement for temporary buil-
ering of m-order transport layer segments.

Embodiments calculate a cyclic redundancy check (e.g.,
CRC-32C) digest while the data 1s being transferred to the
application butfer. Calculating the CRC-32C digest 1s diffi-
cult when payload for a protocol data umt associated with
cach transport layer segment 1s transierred as soon as the
transport layer segment arrives. Also, 1n certain embodi-
ments, the cyclic redundancy check digest may be calculated
at a granularity of 4-bytes, however, transport layer segments
may be at any byte granularity. Embodiments perform the
cyclic redundancy check 1n a manner that is efficient on
storage usage as well as performance.

On each TCP connection, a CRC data structure 226 1s
maintained to calculate a cyclic redundancy check digest
across a transport layer segment. FIG. 11 1llustrates a format
of a CRC data structure 226 1n accordance with certain
embodiments. The CRC data structure 226 includes a partial
CRC digest field 1110, a residual count 1112, and residual
data 1114. The partial CRC digest field 1110 maintains a
cyclic redundancy check (e.g., CRC-32C) digest calculated
for a certain number (e.g., [floor(N/4)x4], where N 1s the
number of bytes over which the CRC 1s calculated) bytes of
the preceding transport layer segment. The residual data field
1112 maintains the remnant bytes from the preceding trans-
port layer segment. In certain embodiments, the number of
residual data bytes={N-[floor (N/4)x4]} (where N is the
number of bytes over which the CRC 1s calculated). The
residual count field 1114 maintains a number of bytes that are
valid 1n the residual data field.

With every new transport layer segment, the CRC engine
224 15 provided with the partial CRC digest from the preced-

10

15

20

25

30

35

40

45

50

55

60

65

10

ing transport layer segment, which it uses as an 1nitial CRC.
The “residual data” 1s also provided to calculate the subse-
quent CRC digest. Once a protocol data unit 1s transferred, the
final CRC digest 1s compared with the digest recerved. If a
match 1s found, an application program 122 1s notified of the
received data (e.g., with a tlag set by the CRC engine 224 to
notily the pre-processing agent 210), otherwise an error 1s
detected. In certain embodiments, when an error 1s detected,
a network driver 126 1s notified of the error.

FIG. 12 1llustrates an interaction of a segment processing,
engine 230 and the CRC engine 224 in accordance with
certain embodiments. The segment processing engine 230 1s
responsible for pushing the next transport layer segment to
the CRC engine 224 for CRC digest calculation. With every
new transport layer segment, the segment processing engine
230 provides the partial CRC digest from the previous trans-
port layer segment along with the next transport layer seg-
ment. This partial CRC digest 1s used as an mitial CRC digest
for the next transport layer segment. Thus, this process seri-

alizes back-to-back transport layer segment processing onthe
same flow.

FIG. 13 illustrates a timeline 1300 of senalization 1n a
“BEFORE” scenario i accordance with certain embodi-
ments. Since network traffic has been shown to come in
bursts, the serialization illustrated by timeline 1300 may
impact performance. Embodiments address this by introduc-
ing a “one-behind” storage area 228 (e.g., a cache) for the
CRC data structure 226 inside of the CRC engine 224. The
storage arca 228 stores a partial CRC digest. The segment
processing engine 230 determines whether a current transport
layer segment 1s on the same flow as the last one, and, 11 so, the
segment processmg engine 230 starts transierring data to the
CRC engine 224 without waiting for the partlal CRC digest
and residual data exchange. The CRC engine 224 1s also
cognizant of such a situation and uses the cached version of
the partial CRC digest. FI1G. 14 illustrates a timeline 1400 of
serialization 1n an “AFTER” scenario 1n accordance with
certain embodiments. In FIG. 14, the timeline 1400 shows
that the “delay” 1n the BEFORE scenario of FIG. 13 disap-
pears 1n the “AFTER” case.

FIG. 15 illustrates operations performed by the CRC
engine 224 1n accordance with certain embodiments. Control
begins at block 1500 with the CRC engine 224 receiving a
transport layer segment. In block 1502, the CRC engine 224
determines whether a partial CRC digest and residual data
were recerved with the transport layer segment. I so, process-
ing continues to block 1506, otherwise, processing continues
to block 1504. In block 1504, the CRC engine 224 retrieves a
partial CRC digest and residual data for a previous transport
layer segment from a CRC storage area 228.

In block 1506, the CRC engine 224 determines whether a
complete protocol data unit has been received with the receipt
of this transport layer segment. That 1s, since a protocol data
unit may have multiple protocol segments embedded within
multiple transport layer segments, the CRC engine 224 deter-
mines whether 1t now has received a complete protocol data
umt. It so, processing continues to block 1508, otherwise,
processing continues to block 1516.

In block 1508, the CRC engine 224 calculates a complete
CRC digest for the protocol data unit using the received or
retrieved partial CRC digest and residual data. For example, a
state machine and associated registers may be used to calcu-
late the complete CRC digest, and the partial CRC digest and
residual data may be used to save the state of the registers
betore all data for the protocol data unit 1s recerved. In block
1510, the CRC engine 224 determines whether the calculated
CRC digest matches a received CRC digest. 11 so, processing

US 7,701,973 B2

11

continues to block 1512, otherwise, processing continues to
block 1514. In block 1512, the CRC engine 224 notifies an
application program 122 of the successtully received data. In
block 1514, the CRC engine 224 processes an error.

In block 1516, the CRC engine 224 calculates a new partial
CRC digest using the recerved or retrieved partial CRC digest
and residual data. In block 1518, the received or retrieved
partial CRC digest and residual data forwards the new partial
CRC digest and residual data to the segment processing
engine 230. In block 1520, the recerved or retrieved partial
CRC digest and residual data stores the new partial CRC
digest and residual data in a CRC data structure 226 and 1n a
CRC storage area 228. Then, processing loops back to block
1500.

FIG. 16 illustrates operations performed by the segment
processing engine 230 for cyclic redundancy checking in
accordance with certain embodiments. Control begins at
block 1600 with the segment processing engine 230 recerving,
a current transport layer segment. In block 1602, the segment
processing engine 230 determines whether a partial CRC
digest and residual data were recerved for a last transport layer
segment. If so, processing continues to block 1604, other-
wise, processing continues to block 1606. In block 1604, the
segment processing engine 230 forwards the current transport
layer segment to the CRC engine 224 with the partial CRC
digest and the residual data for the last transport layer seg-
ment.

In block 1606, the segment processing engine 230 deter-
mines whether the current transport layer segment 1s on a
same flow as the last transport layer segment. The current
transport layer segment may be determined to be on the same
flow as the last transport layer segment 11 both have the same
TCP connection and are received in correct order. If so, pro-
cessing continues to block 1608, otherwise, processing loops
back to block 1604. In block 1608, the segment processing
engine 230 forwards the current transport layer segment to the
CRC engine 224 without the partial CRC digest and the
residual data for the last transport layer segment.

Thus, embodiments solve a practical problem for Layer 4+
protocol data unit reception and data placement. An effective
and complete solution 1s provided for each critical stage for
processing received transport layer segments whose data por-
tions may contain protocol segments.

Embodiments provide a solution for Layer 4+ protocol
data unit detection, marker validation and stripping, Layer 4+
direct header 1nspection using a pre-processing agent 210,
and CRC calculation of protocol data unit payload that could
span multiple byte aligned transport layer segments. Stream-
lined processing of receive tratlic 1s provided for processing
Layer 4+ traflic. Effective handling of receive traific in turn
improves overall system performance.

Thus, certain embodiments process receive protocol data
units for upper layer protocols, such as 1SCSI and RDMA.

Additional Embodiment Details

The described embodiments may be implemented as a
method, apparatus or article of manufacture using program-
ming and/or engineering techniques to produce software,
firmware, hardware, or any combination thereof. The terms
“article of manufacture” and “circuitry” as used herein refer
to a state machine, code or logic implemented 1n hardware
logic (e.g., an integrated circuit chip, Programmable Gate
Array (PGA), Application Specific Integrated Circuit
(ASIC), etc.) or a computer readable medium, such as mag-
netic storage medium (e.g., hard disk drives, floppy disks,
tape, etc.), optical storage (CD-ROMs, optical disks, etc.),

10

15

20

25

30

35

40

45

50

55

60

65

12

volatile and non-volatile memory devices (e.g., EEPROMs,
ROMs, PROMs, RAMs, DRAMs, SRAMSs, firmware, pro-
grammable logic, etc.). Code 1 the computer readable
medium 1s accessed and executed by a processor. When the
code or logic 1s executed by a processor, the circuitry may
include the medium including the code or logic as well as the
processor that executes the code loaded from the medium.
The code 1n which embodiments are implemented may fur-
ther be accessible through a transmaission media or from a file
server over a network. In such cases, the article of manufac-
ture 1n which the code 1s implemented may comprise a trans-
mission media, such as a network transmission line, wireless
transmission media, signals propagating through space, radio
waves, infrared signals, etc. Thus, the “article of manufac-
ture” may comprise the medium 1n which the code 1s embod-
ied. Additionally, the “article of manufacture” may comprise
a combination ol hardware and software components 1n
which the code 1s embodied, processed, and executed. Of
course, those skilled in the art will recognize that many modi-
fications may be made to this configuration, and that the
article of manufacture may comprise any information bearing
medium known 1n the art. Additionally, the devices, adapters,
etc., may be implemented 1n one or more ntegrated circuits
on the adapter or on a motherboard.

The 1llustrated operations of FIGS. 6, 7, 8, 9, 15, and 16
show certain events occurring 1n a certain order. In alternative
embodiments, certain operations may be performed 1n a dii-
terent order, modified or removed. Moreover, operations may
be added to the above described logic and still conform to the
described embodiments. Further, operations described herein
may occur sequentially or certain operations may be pro-
cessed 1n parallel. Yet turther, operations may be performed
by a single processing unmit or by distributed processing units.

The foregoing description of various embodiments has
been presented for the purposes of illustration and descrip-
tion. It 1s not intended to be exhaustive or limiting. Many
modifications and variations are possible 1in light of the above
teachings.

What 1s claimed 1s:
1. A method for processing a data segment, comprising:
stripping, with a computer including a network adapter and
a central processing unit, a header from a transport layer
segment;
performing protocol data unit detection to determine data
for a protocol segment that 1s part of data of the transport
layer segment by:
extracting a value from an offset of a length field of a
header of a protocol data unit for a width of the length
field of the header;
determining a final length of the protocol data unit based
on the extracted value and values of an order of mul-
tiply/add parameter, a length field multiplier param-
eter, and a length field adder parameter; and
detecting a protocol data unit based on a starting location
and the final length of the protocol data unit; and
performing marker validation and stripping.

2. The method of claim 1, wherein performing marker
validation and stripping further comprises:

extracting a marker length number of bytes from an 1nitial
offset;

validating the marker based on a marker type; and
jumping a marker interval in an incoming byte stream.
3. The method of claim 1, further comprising:

recerving a peek command requesting a header portion of a
next protocol data unit;

waiting for the requested data; and

US 7,701,973 B2

13

returning the requested data in response to the peek com-

mand.

4. The method of claim 3, wherein returning the requested
data further comprises:

providing a location of a header of the protocol data unit to

a pre-processing agent.

5. The method of claim 3, wherein returning the requested
data further comprises:

providing a header of the protocol data unit to a pre-pro-

cessing agent.

6. An article of manufacture for processing a data segment,
wherein the article of manufacture comprises a computer
readable medium storing instructions, and wherein the
instructions, when executed by a processor of a computer, are
operable to:

strip a header from a transport layer segment;

perform protocol data unit detection to determine data for

a protocol segment that 1s part of data of the transport
layer segment by:
extracting a value from an offset of a length field of a
header of a protocol data unit for a width of the length
field of the header:
determining a final length of the protocol data unit based
on the extracted value and values of an order of mul-
tiply/add parameter, a length field multiplier param-
eter, and a length field adder parameter; and
detecting a protocol data unit based on a starting location
and the final length of the protocol data unit; and
perform marker validation and stripping.

7. The article of manufacture of claim 6, wherein when
performing marker validation and stripping, the instructions,
when executed by the processor of the computer, are operable
to:

extract a marker length number of bytes from an 1nitial

offset:;

validate the marker based on a marker type; and

jump a marker interval in an incoming byte stream.

8. The article of manufacture of claim 6, wherein the
instructions, when executed by the processor of the computer,
are operable to:

receive a peek command requesting a header portion of a

next protocol data unit;

wait for the requested data; and

return the requested data 1n response to the peek command.

9. The article of manutacture of claim 8, wherein when
returning the requested data, the istructions, when executed
by the processor of the computer, are operable to:

5

10

15

20

25

30

35

40

45

14

provide a location of a header of the protocol data unit to a

pre-processing agent.

10. The article of manufacture of claim 8, wherein when
returning the requested data, the mstructions, when executed
by the processor of the computer, are operable to:

provide a header of the protocol data unit to a pre-process-

ing agent.

11. A system for processing a data segment, comprising;

a network adapter coupled to a Peripheral Component

Interconnect (PCI) bus; and
hardware logic at the network adapter operable to:
strip a header from a transport layer segment;
perform protocol data unit detection to determine data for
a protocol segment that 1s part of data of the transport
layer segment by:
extracting a value from an offset of a length field of a
header of a protocol data unit for a width of the length
field of the header:;
determining a final length of the protocol data unit based
on the extracted value and values of an order of mul-
tiply/add parameter, a length field multiplier param-
eter, and a length field adder parameter; and
detecting a protocol data unit based on a starting location
and the final length of the protocol data unit; and
perform marker validation and stripping.

12. The system of claim 11, wherein when performing
marker validation and stripping, the hardware logic 1s oper-
able to:

extract a marker length number of bytes from an 1nitial

offset:

validate the marker based on a marker type; and

jump a marker mterval in an incoming byte stream.

13. The system of claim 11, wherein the hardware logic 1s
operable to:

recerve a peek command requesting a header portion of a

next protocol data unit;

wait for the requested data; and

return the requested data 1n response to the peek command.

14. The system of claim 13, wherein when returning the
requested data, the hardware logic 1s operable to:

provide a location of a header of the protocol data unit to a

pre-processing agent.

15. The system of claim 13, wherein when returning the
requested data, the hardware logic 1s operable to:

provide a header of the protocol data unit to a pre-process-

ing agent.

	Front Page
	Drawings
	Specification
	Claims

