US007698686B2
a2y United States Patent (10) Patent No.: US 7,698,686 B2
Carroll et al. 45) Date of Patent: Apr. 13,2010
(54) METHOD AND APPARATUS FOR 2007/0022407 Al1* 1/2007 Givonietal. 717/124
PERFORMANCE ANALYSIS ON A
SOFTWARE PROGRAM
(75) Inventors: Steven M. Carroll, Sammamish, WA OTHER PUBLICATIONS
(US); Eric C. Lee, Seattle, WA (US);
Simon Meacham, Farnham (GB) Kranzlmuller, D., Grabner, S., and Volkert, J. 1996. Event graph
visualization for debugging large applications. In Proceedings of the
(73) Assignee: Microsoft Corporation, Redmond, WA SIGMETRICS Symposium on Parallel and Distributed Tools (Phila-
(US) delphia, Pennsylvania, United States, May 22-23, 1996). SPDT ’96.

ACM Press, New York, NY, 108-117. DOI=http://dor.acm.org/10.
(*) Notice: Subject to any disclaimer, the term of this 1145/238020.238054 *

patent 1s extended or adjusted under 35

Wu, P. and Narayan, P. 1998. Multithreaded performance analysis
U.S.C. 134(b) by 307 days.

with Sun WorkShop thread event analyzer. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools
(Welches, Oregon, United States, Aug. 3-4, 1998). SPDT '98. ACM
Press, New York, NY, 161. DOI=http://doi.acm.org/10.1145/281035.
281063.*

(21) Appl. No.: 11/107,464
(22) Filed: Apr. 15, 2005

(65) Prior Publication Data
US 2006/0248401 Al Nov. 2, 2006

(Continued)

Primary Examiner—James Rutten

(51) Int.Cl. (74) Attorney, Agent, or Firm—Woll, Greenfield & Sacks,
GO6l 9/44 (2006.01) P.C.
GO6I 3/048 (2006.01)

(52) US.CL ..., 717/125; °715/772 (57) ABSTRACT

(58) Field of Classification Search 717/125
See application file for complete search history.

_ A system for displaying performance test information for
(56) References Cited software. The system 1ncludes a graphical user interface that

U.S. PATENT DOCUMENTS displays information in a format to allow ready 1dentification
of performance problems and their causes. The interface

5862381 A * 1/1999 Advanietal. ...ocoo.o..... 717/125 . o B o e .
5.960,199 A * 9/1999 Brodsky et al. 717128 ‘ocludes atimeline view depicting activity levels during the
6,226,787 B1* 5/2001 Serractal. wovvvvvevon.. 717/125 ~ ©xecutionof a program under test. Bvents during a sub-range
6.275.956 B1* 82001 Onetal. w.o..ocoovvvvevon.. 717/125 ©ftimes during the program execution may be displayed with
6,611,276 B1* 82003 Muratori et al. v............ 715/772 1nformation revealing interactions of threads making up the
6,701,363 B1* 3/2004 Chiuetal.cvvvenn..... 709/224 program. Additional information may be displayed in a fur-
6,789,182 B1* 9/2004 Brothersetal. 712/30 ther display fields, including textual information. Much ofthe
7,131,113 B2* 10/2006 Changetal. 717/128 displayed information is represented graphically, allowing a

2002/0065948 Al1* 5/2002 Momsetal. 709/318 perfonnance engineer to quickly identify areas of the pro-

2003/0001854 AL* 1/2003 Jade etal. w.ooovverrrreee. 345/581 oram to investigate further.

2003/0159133 Al* 8/2003 Ferrietal. woovevevenn... 717/130

2004/0117768 Al* 6/2004 Changetal. 717/125

2005/0108689 Al* 5/2005 Hooperetal. 717/135 17 Claims, 5 Drawing Sheets

220
Al
230
23{ TIME 1 ‘:/
- TIME 2 =
TIME 3 o
TIME 4 =
TIME § o
TIME &
TIME 7
TIME 8
TIME &
TIME 10
TIME 11
TIME 12
TIME 13
TIME 14
TIME 1%
TIME 16
TIME 17
TIME 18
TIME 13
TIME 20
TIME 24
TIME 22
TIME 23
TIME 24
26:2] . /zan
\[[TIME 5 |->WRITE DATA o
TiME 10 {-=WAIT FOR DRJECT MARK - LSER EVENT
TIME 12 -» HUFFMAN ENCODE
TiME 23 —> _WCSLEN
TIME 28 -~> STRLEN
TIME 44 -+ _STRLEN
1 1

264, 284,

US 7,698,686 B2
Page 2

OTHER PUBLICATIONS

Taylor, D. J. and Coffin, M. H. 1994. Integrating real-time and partial-
order information in event-data displays. In Proceedings of the 1994
Conference of the Centre for Advanced Studies on Collaborative
Research (Toronto, Ontario, Canada, Oct. 31-Nov. 3, 1994), 9
pages.™

Carr, S., Mayo, I., and Shene, C. 2003. ThreadMentor: a pedagogical
tool for multithreaded programming. J. Educ. Resour. Comput. 3, 1
(Mar. 2003), 1. DOI=http://do1.acm.org/10.1145/958795.958796.*

From Trace Generation to Visualization: A Performance Framework
for Distributed Parallel Systems Wu, C.E.; Bolmarcich, A.; Snir, M.;

Wootton, D.; Parpia, F.; Chan, A.; Lusk, E.; Gropp, W. Supercomput-
ing, ACM/IEEE 2000 Conference, vol. Iss., Nov. 4-10, 2000, 18
pages.™

Jacobs et al., “OS/2 Database Manager Database Event Monitor”
Sep. 1991, IBM Technical Disclosure Bulletin, vol. 34, No. 4A, pp.
150-151.%

International Search Report from International Application PCT/
US2006/12176.

* cited by examiner

U.S. Patent Apr. 13, 2010 Sheet 1 of 5 US 7,698,686 B2

| 100
112,2 1122\ 1123: f

| i 1110 [
PROCESS
3 |

i PROCESS! |PROCESS!|
1 2

a¥aY=Y=) ﬂnuan anan P nnnn

OO0 atmYal

0 ﬂﬂﬂ ﬂﬂﬂ
ﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ ﬂﬂﬂ-D

mlsimYeYaYalalata aYalataYalal .t Eﬂﬂ

By
. ' e — m — Al e e W -~ mom - .--.- ' ol = il - .
s ot e
‘__, " il ¥ LI o g
y kot
] - - _.:a- Mg ok L
i oAy
F S NS
! ; . i Ay :
el ey wr
h i-_-|-||'|: r fl -;'
T .
Ly]

L

US 7,698,686 B2

210

Sheet 2 of S

Apr. 13, 2010

220
230
260

M.—...—.-u_.__-.-_*-.-_.-
 RA R EERLAEEENNE, []
BN E A EENENENEN]
n Al ddd Bl Hamim
NN ENENENYNNENNEIMN]
yF R ELLEFIFRR LD
P Tk A EY 2 omwmon

A hd s s mms TEer

R R I S

e

gl nE B F R
Tt rYRITHAERTA
FYREREEERERIEE RN
s Pt Tkt inhnrisn
ﬁt.!-ql-l.--_-
g kB R ddE Kkl Add i
FE N N NN NN NN NN N
iiiiiiiiiiiiii

S
&
&

RER PSSR REE
TEE IR .

¢¢¢¢¢¢¢¢¢¢¢¢¢¢
TR TR R R AR
TEEFFEER N XN NT I
s F I F YA S48 §FgEaRP

llllllllllllll

e Foral LT Y | ﬂ-:. ..
s i s S S mﬂﬁﬂh.ﬂ g

.n..l#f._..__ -..I _..-..._-..-1.

]
iiiiiiiiiiiiii

a FrF 4

L
ll-:'l I': -
ata
LI L
L] "
a'n
- -
e
L] L]
- -
et
1.‘]
* w =
- -
-
Fll u
e
Tt

Ll
llllllllllllll

llllll

llllllll
llllllllllllll
-

L
IIIIIIIIIII
llllllllllllll

TN)

7-1—1_1!.;-1---!-

"11._-.!I_-.-.-.!i.-.-.qill.-‘.-

Akl d ok 4k [3 m
L] LR |

e e e e
= 1n...-.._h.-_i.._._t.-.._h.._Il_.l._.-.-.l.-.l_.

A

Jl|ii1ﬂ“ﬁ“ LﬂﬂiJlr
2 .ﬂ._..m.
A
, ;

/\
S
&

©
o
&
NS

.. . _....h..r..# .__.1.... ._h._.___h...wﬂ..wﬂ. ﬂ__. .__.,__.. iﬁﬂ#ﬂ#
hI&FNM%#i .hJ
.!i?hrhwbll. Hm“mwmmw nﬂdﬁﬂu #MW”“MWT. | . ..

NS

i

> WCSLEN

4.‘._.-..__1.._ e ra, .
TR

LE]

R skﬂhnrhl______h-tu —_vﬂ. AT .. LA Y rh._.mr.___w.q,.It b ._..__:.._u__.r__,vnﬂ

MARK - USER EVENT
-> HUFFMAN ENCODE

\~,
&
Q\Q‘

>

S

h-_...r__r.___..l..:.___ a . [|

A

N

4

N
ek

O
&
&

e I o L oy R e s A R AT AR
; . METLS ; . i 2 .
« 4_._.. e “ [3 J& ‘a.—-l i ﬂ -
Y TE ST T o YL o o : i
. . | .”_._ .ﬂ , " . [' __.l..-n L 1 . .-. HF . : . - '] ol " ¥ .- 3] 1 g . -ul ¥ - e . ! H._.”J- i

>
O
ng

... ..nq..;fmrjm.
L n..... -

. . - e ..__. ' 3 _.. . |..1.. ! _.- -4 = .-L. ._. rL. - -
Hﬁ..ﬂh _...—.HEE.I_.HF ..-___—l.r“.rr -I........IM.!H.._.I___..-L_ ."ﬂl .J. " .. i ' ...-.._... . -HH ok il i....n. 7 ” .u.......-m.._.w.-.mrr“rl-l Lt I ._ L1

,Q?‘

N
(,39
«‘?“Q'

_> WAIT FOR OBJECT

R N e ﬁ%&ﬁ.

- .+ 4 .___. g ,. . n
...- .* .l..n._ﬂ..f.* .r-._.u. 1-|..n. .-.-MF ..‘.—. ._..-.11.. ﬂr._.l . 1 .u.ﬂ k.wn..."..l It .. S .*.r..._.—...n

s bt = = .-.1-"..“. ..rn.-..k..L..Fl. —— [AL .-_.1I_L.

) ¢

4

u)

IE‘;i‘J -"’L
d

-

e J

R e e “_._:_.. St ._.fwlﬂ P ,,ﬁ.ﬂ Lisig

Yk d)

fnfddFrdagrenyger
LI Bl B L B R R R O
F+ t T+ T thad d s i mE
dal I FFIFRAEARAN
r-.—-.I.I.-.-.-IEI-

-> WRITE DATA

llllllllllll

llllllllllllll

nr
llllllllllllll

lllllllllllllllllllllll

llllllllll
iiiiiii

2 F 1A E BRI bkamg
FE s YYYTYTYFTREANTY
I B IR I I B A N
AEEBEAN ENEEDRRENRENI]
A A N E NN NN
LN N N NN
llllllllllllll
m s PAFEN 0N R EE
e

TIME 5

TIME 10
TIME 12
TIME 23
TIME 28
TIME 44

212

U.S. Patent

264,

264,

FIG. 2

US 7,698,686 B2

Sheet 3 of 5

Apr. 13, 2010

U.S. Patent

» 210

E— L _—
..............
IIIJ ﬁ--i-!i.-n-'l
Lt ST LS L NE LN
rrpirTtrtt s memnEnm
' +- s s ma FEEFEEEJ AR
'ERE LR NN NN
& Ml p gl EE I EEEJSE§
i lnw+=0 kPR EFEEm bk m
vt *. _.*_-—.______1'--...-*_
. aiihtlininnaine
- 1 F it TLLELL .- - .
R 4 4 l..rq.-_-...---_.__
-7 YT R FEE FEEes
F- FFFFFFFFFF
s mabl="==rwrrrna

PR pETI PRI LSS
> + b s m g P Y E P PFhrsoww
LI IR -y oy wm q

! ’ e N N K
=1 ﬁ ||||||||||||||
“a " -—r - am g

: e prpnr g " FEFI RS 0
‘- [T rrEsw
! ._.J TR AL LR LS

. T Fraa " " **1AFF IR
T sand i nR A rEEE g
L

g add ddEl &g g

' qa . taaf A P ANFimi
. TI mm s g Tt Tk d s manw
o . T TS A E NN RN AN -
[y Fha g AN A NN IAL .-
.............. «
.1l
X F

rora e aB I BN ES AL
B UL -___....._.-._.

-
a I
ol sh =m

-

.... : ._.“ g 1 "
l-l+‘.-I.-. .-l - I“.-l- _ om-

-.-.i-.-.l-illill
1y 1« +FrEFRth

TAramlt31%82%4 bk 3
SR E AR R LEE R

. <
3

"N B B]
rppgitdrE A
Er g FTrFTIRFIAA
llllllllllll II._
Ik ag¥ mEA P aN
YRR A EENT NN |
me s qggridtasenidan
11111 Bl AR A] ams
llllll dd bk idce ==

-

232

l-..l...a‘[. ki

%y
. ..._.,_._.._. #__h

R b et ~h—
.—.11.1 . ..l. ._-.u.

rw-. .u“;...“.'._.rr-. 1.._...-..-" . .-..__-

¥ .,.”...... - - _Fum.l. ﬁ.ﬂj..*.-i o __.I.___-._ .Tu-...—_.I“-__.*l.__.. ...“.I....Hll...ﬂﬂ

3y b

ATkl Jk AP ﬁ.ir__.ﬁ,,_#..whmw.wr

.. “ﬂuH.h-hivJ‘fﬁE.tb I I .. -1
“.n_..ﬁ..e m_.f NE ﬁ: :

IR T

e .._r_“_.tﬁ Tttt B TYERE L R

r " .. B v
R ATy P ek E R b Sose il

AR

l._.._T..._.lu.a._.

.-...F...“.-Hu | 1T N h#ﬁ...,ﬂ-‘-hw .

uwj_n,y

f .1|rl__ i A

L il (PIRE l.:...._H. q..“..-__

i

TIME 7.5
TIME 7.6
TIME 7.7
TIME 7.8

TIME 7.9
TIME 8.0
TIME 8.1
TIME 8.2
TIME 8.3
TIME 8.4

TIME 8.5

TIME 8.6
TIME 8.7
TIME 8.8
TIME 8.8
TIME 9.0

TIME 9.1
' TIME 9.2

TIME 9.3
TIME G4
TIME 9.5

TIME 0.9

"TIME 1.9]
TIME 2.2

| TIME 0.7

TIME 6.3

----> _funci

I TIME 4.1

FIG. 3

US 7,698,686 B2

Sheet 4 of S

Apr. 13, 2010

U.S. Patent

)y 410

230
460

d
!.. [] 1
N b
‘ r
nrk |
oo
.--—.__ *
- ~
- P -
] _... '] .-..
L.__..__..- 4 :
g doat
.r.:”._._.ﬂ_ v
.-- 2! .
LE
" T
r:-
Pl
.-W . -l
x
..ﬂ.iH -
b | |
. _* T
r .
e m.
Ya *
[}

N
T
L o
h.“w.l___:m.u
RO A

g

[] bk ww dtdoddrdon
---.t-lil-ih
llllllllllllll
BNk &0 & FEAFEYPFAY
sl A rsprrddnars
dn kv hnrerraan L
LI BN L N BN I B N N B
wrm bk undadddden

¥ FF FFFAFEFEEFRE
llllllllllllll

llllllllllllll
FE 4 8 &4 8 &F F & F+F9
i hmad e e ki w

AN R R LA
llllllllllllll

Y E R R ESE R e A
-ii#i-'il‘i-lh
P& E &I RN FEN
ml ok ok ok ok ok A g d e
1 FF 22 FrFFAdSdn

iiiiiiiiiiiiii d

4k b vhwi gh - Fa
LE S BN I BN A
"k kA nrw kT
By & F FEEETFERTP
tad dndhxildwramsnr
* ¥ FEYFFERTRLEPF

LI R N B B B RN N R
.-.lnllli.-l.-l-l—
LA R L A L L R NN

llllllllllllll

-_
lllllllllll Fun
l. i!.iil -.-.- i.-.-.-.--_i.-.ia.i.._‘ *
1..-_.-_1111.-.‘.-_-_.-.._.-.-.-_1.-.-.-. '.__-.._.-_
lllllllllllllll ™

IIIII - - N
L B I Iii. .'lfi.l.i. "
------- i]

- = F &N
il.ili.-ill.‘-.-i-_i
dd & " m 33 m r ¥
lll.-lii-.l.-ilil
ad rxs vy vinsdunrrm

lllllllllllll T
iiili‘ii'iii#‘
llllllllll

lli

-

]

L]

* &
-I-‘-I

L

-

-

-_i

-

s

] L]
.

i

.

*

L

ll-

L]

e S

]
iiiiiiiiiiiiii

lll.llll.iii.-..‘l
.Iilfi#l iii.i..#- 'il}lii.l_l i

iiiiiiiiiiiiii
o e e s "
i'iiiiiil.iii
llllllllllllll

.._“___-_ T A .___-t
LSOO MO M W
o L e I,
Cre e s e e

tttttttt

lllll
L L]

I
l. .-....'.-I I“.-.i.._.- |] i.
= B E i FyEEEERN

IIIIIIIIIIIIII

lllllllllllll
llllllllllll
[]

.lll-_-.ll-.lil.i.lili-il-lli-iil
LI I L B B R A o
iiil-_lill_l-_l.-.l.-l l.-.ll-_.-_l.- L] .-_
ii-liiii-liiil

-_i___t.__.-..__.-.-..-..-.t.__
L]
-.-. .-_.-_i. l.-_.._i -ii.-.l.__..__l-.._
[B N BN]
LIC DL BN O N R N BN B
[B R LB B IO DA B O B]
PR ENEFE Ny NN
4 EaEan B FERE

4 1 & B § RN § 4N § B F §

* 1 F EE *dd4FS*Ed s
AN B EFEESFY A A
iiliil..i-li-.*
s d s gy E S
*rE FPd T R EFETEF R

[IR L I S I B

llllllllllllll
lllllllllllllllll i.-..-..I.-.._i.-.i-_
LT L N | LT] -i

i.-a.[-'i_-.l ‘l.-.i.i .-111 .' .i

LU L L I et DL
.i..I.I:IlI..-_.-.
LAk Fhd R d

*1F &% P8 &P A A0 FE
L L BN O B BN S B CE B B A
Fid s raddngigsn
LB I B B BN I BN B BN B BN I
*igag s angrrenan
L B N NN R NN NN
dd e hnwrridnnmwn
[IL BN BN BN B B A

el A B ol

¥ e
) wl . a w
wuace wfn u,.r.“..... _ﬁ.ﬂ q..,m..,.},. s .,.,} .r_,,_. LT ,ﬁu x:. &ﬁrﬂnw., ._E., OO : o
St 3O 1#1:., r.w ?T.. Y -ﬂf R T L AT !..: g - iy he
i - it
Nt .* 3 i ___-.Lu.
L r ol 4t ’ Y H
il =X b E
| h oy [-
L i
-

figieisa v igp

ﬂﬂﬁnnmrt A TR E AL N AT R 4
Lmn.g Nk F L ﬂv%mﬁﬁww._ﬂ *130m,m .ﬂrw::h
} HBIRLE LT SRR . .”, : BT R L g T :ﬁmﬁ o it

e & w "t .-.-..t..

.,L.#..J: ..n:Ha_..r_ _‘..,”..%ﬂw%.... 5 U MARBIET Y it ot ety T .nmmhvv.. I A

0.1356
2.7001

AT 3 L,W. Tt R e AT)

!_....!_. » __h ..
.-_.l. h -ﬁ i“ . Jﬁﬂ.ﬂ.\
... ur#_..,___.__.__..-ﬂ#r ._.m.-.. .._......-.v,r + .ﬂl _._w.ﬁnlm_._ ..b%u.r @.l _—_r*.._..H._ _.____.. ..,._:-.qu.-ui lmpa.ﬂ__... . ,...__... _r.— ..___r_!_ :ﬂ..f_
._-”... .._Lhﬁu .r P ﬁh-hm&hﬂm “_._“.. Huﬂ.ﬁ.u;. l, ﬂwﬁ E&._ﬂ!.- fm f!rquvm e kg b ; ..” oy oA ,Fu.m muuu...r .whrm{i

17
22

- m.-. = .-- .‘l.t-.i.lﬂ.l.t..l - ‘....-.i .I._jt.iﬂ...li..ﬂ.{' TR
i g e Tl Jﬂulu#inﬂ u Lt S d T ﬂﬂ_._. “

=Nk

Pl i o i Ll 5 Rk
Yl s e ¢TI

strien
wcslen

function1

430

Ity

TIME 40
TIME 41
TIME 42
TIME 43
EUNCTION

430

420,

420,

FIG. 4 2

US 7,698,686 B2

Sheet 5 of 5

Apr. 13, 2010

U.S. Patent

—y—r——

AR T b
PRt hrET AR A M N k rm }w-ﬂ_rﬂ.* ”H..M—?._f-. ”r#..:f.-....!*rpi n.rt

I BN S E RN EEET RN
I &b dd e b s nan il

lllll N EN R
F % b dhrd hm sm g ppowy

Y FE I EEJ]EFRE
FT 3R+ R LA Ay

= s wm gl WFETAENNY N
........... I
PEEA R dd dd 4 nn s J

14+ FFdmr kbranmf

R TN RN T HEREEENRE R
L E RN EERNENENRE.N

LR R A RN ENNNEENYN
I REhbkdtFduaid aryg
lllll L NN NN NNE
AR R EEE I ERERNENE
hFrld aFimmndmal
-l..lIlIIlIll-I_
f1 AR A FEE bR/
I IR d R dahs s e
NN EFEFIEENEE TR L

' fd 1 1 il crarrrrwrarw
r -y g . .
' L 1 -.E'] .-r-lr__-ili-.-!-hrl_.-hi_.-.
s .-..- Pl ll-ll__-.-.-_..-l ;_l.._.-l.- ot
m -. L
bl 3 D A A N N N N L

++++++

= =y = T oW T W omw

llllllll

iiiiiiiiiiii
iiiiiiiii

410

r
lllll
lllllll
iiiiiiii

llllllllllll

IIIIIIII

.1-.“.__ .- .|L.| ol A _uf.“l.
...l.._.,nr..f..u o

IIIIIIIIIII

lllllllllll

llllll
llllllllllll

r.. ; . .] . Sl [! . A0 . +*. .. #
x] [: . - 3 [T .-_ ' N ' ey - L - e . hai 2 l_l -
at H.Pn ﬂ" - Ll - e . - v 4 ' “ Ll .#._ .- r || ' L i - " E .“ |... ' ol ol L T i .|... e ﬁ‘u W I.T-v.t.'l.._.” l..-.h

-
n ...-....l“.
1Y - o ae e it B B i _._..?_.m..ﬁmn _.f..“.u"

212

"] L kr 1, .
s Lo B
e . .I.._._.h__. . Ltﬁi-ﬂﬂ.ﬁ‘?ﬂa 2 .._._.-....T._Hhi..-.-!..-_ bty . i .H - hr.r..r... __F.-_-._.l.

| I
' 4......Hp.m. ,_._ “...._....__.-.. - n.. ... i) -I.lﬂ W. l—..___...h.-..-.ﬂ iy, |iﬂJ HH-."} Hui.t._..._..ﬂ.l . .
uh b _u.—

[T} - ..
T KTy w. m T
BINJ LLEJJJL-R_R__. -

W ..._.._.. " o) s) “..__...I_.i_- . iy A ol H_ . 2 e e o TREE T i g e o I.l_ﬂ.m...u_uw:i ..._! -
.f-..-.- m. - -_.qm 1 iy LT “ __ HH ._-.—_.I..-ﬂ.w * 1b'l 1-.:.4- ? .H.-.. : ... > ..|.] et 1] Ao- 'ty b o = Ty . - - ...__ Ay - ..| ﬂrnﬂm_. -’.r_.“.. h.._Hm.ﬂ.._. .
.__n.- . ..r.-.- ' g . .. N .. , B . L . |.- ..| ; Y s - .-...-H. I I..-.._.H-..._.. -_l.“-__.

..E.h__n L _ BRI { et ¥ |15 e i%tnﬂﬁr%h!h *Eha

ik
) ;
it eyt
et L Le

b Y

qll'll'-ln:l_

Ty il Y
o e T e
R A
=¥

1rL,g T
a r‘: 1-
o r_—-f‘i
- ey a
| .
-
i

1
L]

-

. L]

+3 140y Sl
2

. .. oA Rl n1£;ﬂ¢ :.
L 1\ e B L .,ﬂ .L,w ﬁ“....L

hf..u.r L&.ﬁ:

E‘F{%{E .
; :"éi-' L

L "H!{"
e
Fapyd

=y
rs

A

LA S T

e . §iE

T o T B R R AT Y T S ST L e SV LR R)

ll-.._-ll..l.r |.l. :l.11

¥

x ._1.-
~y

S L Y Tk hisdgk
.—...I..E__..t._-_._..._.m.r.l!.:l "..Fn-.m"_.nu.....f_.l.l-r .__1._u.h._.1F_.____=.hF AV I..-A..._.,.fu..-.

L.

L -
'I--'* Il_
-

Iiﬁ;;;
LR
function

THREAD 1
- THREAD 2

L

——al

¥ THREAD 4
M THREAD 5

SELECT THREADS
I~ THREAD 3

gl db b bk bl s
[BL I NN I N A]
[BL N B I B BN BN BN BN R i
d k& s d hEE IR R
d I EE EF I N ELAE L
g A4+ d Fdunwppwy

A4 m s mEm erm PP EYER
n

e il o

TIME 20
TIME 21
TIME 22
TIME 23
TIME 24
TIME 25
TIME 26
TIME 27
TIME 28
TIME 25
TIME 30

FIG. 5

51

US 7,698,686 B2

1

METHOD AND APPARATUS FOR
PERFORMANCE ANALYSIS ON A
SOFTWARE PROGRAM

BACKGROUND OF INVENTION

1. Field of Invention

This invention relates generally to software program devel-
opment and more specifically to performance analysis of
soltware programs.

2. Discussion of Related Art

Software programs are generally tested during their devel-
opment. Testing has traditionally been used to verity that the
software program performs the functions as intended. As
soltware programs have become more complex, performance
testing has become a more significant component of the
development cycle. Performance testing supports “perfor-
mance engineering”’ activities during which portions of the
program that cause delay 1n program execution are 1dentified
and are rewritten to reduce the time required to execute the
program.

Performance testing 1s often performed by inserting
“probes” 1mnto a program under test. Probes are simple func-
tions that write data 1nto log files when executed. The data in
the log files may then be analyzed to determine the various
characteristic of the program operation.

Traditional performance analysis tools use data in the log
files to present an aggregated view of execution of the sofit-
ware program under test. For example, the data in the log files
may be used to determine the number of times each function
in the software program under test has been invoked. Such
information may, for example, reveal to a performance engi-
neer that a particular function 1s 1 a loop that 1s executed
more times than intended. Such an observation may for
example, indicate that performance of the program may be
improved by restructuring the program to reduce the number
of times that loop 1s executed.

An aggregated view of the data may also indicate the aver-
age amount of time 1n which each function executes. If the
average execution time for a function greatly exceeds the
expected execution time, a performance engineer may 1nves-
tigate whether some event blocks execution of that function.

Tools have been employed that present performance data
on a soitware program under test for a performance engineer
to review. Such tools have, for example, allowed a perfor-
mance engineer to select from multiple types of aggregated
data so that the performance engineer could examine different
aspects of a software program under test. Such tools have also
included timeline views, which allow the performance engi-
neer to see the activity level of the software program under
test.

SUMMARY OF INVENTION

The invention relates to a user interface for providing per-
formance data on a soltware program under test. The user
interface allows a performance engineer, or other user, to
manipulate the presentation of performance data to more
readily identily portions of a soitware program under test that
may be causing performance problems.

In one aspect, the invention relates to a method of display-
ing performance mformation concerning a software program
under test. The method involves displaying in a first display
area a representation of a time range during which the soft-
ware program under test executes. A user input indicating an
indicated portion of the time range displayed in the first
display area 1s received through the user interface device. A

10

15

20

25

30

35

40

45

50

55

60

65

2

plurality of graphical indicators are displayed in a second
display area. Each graphical indicator represents events in the
execution of one of the plurality of threads during a sub-range
of the time range. The sub-range includes the indicated por-
tion of the time range represented 1n the first display area.

In another aspect, the invention relates to a display device
having rendered thereon performance information for a plu-
rality of threads 1n a soitware program under test. The per-
formance information comprises, for each of the plurality of
threads, a thread area representing operation of the thread.
The thread area has at least one indicator, each indicator
representing an operating event of the thread, with the thread
areas for the plurality of threads positioned so that indicators
in the thread areas for the plurality of threads graphically
illustrate correlation 1n time of operating events 1n the plural-
ity of threads.

In another aspect, the invention relates to a computer-
readable medium having computer-executable components
for analyzing the performance of a software program under
test, the software program under test adapted to execute 1n a
plurality of threads. The computer-executable components
comprising a data collection component, adapted to collect
data on the execution of the plurality of threads in the software
program under test; an analysis component, adapted to ana-
lyze the collected data to dertve execution information about
the plurality of threads; and a reporting component, adapted
to display 1n human perceptible form the execution informa-
tion on at least a portion of the plurality of threads, the human
perceptible form including a graphical representation of
execution information as a function of time for each the
plurality of threads 1n the portion, with the graphical repre-
sentations of each of the plurality of threads in the portion
displayed 1n a format that allows correlation of time of events
in each of the plurality of threads 1n the portion.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn
to scale. In the drawings, each identical or nearly 1dentical
component that 1s 1llustrated in various figures is represented
by a like numeral. For purposes of clarity, not every compo-
nent may be labeled 1n every drawing. In the drawings:

FIG. 1 1s sketch illustrating a development environment;

FIG. 2 1s a sketch of a user 1nterface 1n development envi-
ronment of FIG. 1;

FIG. 3 1s a 1s a sketch of the user intertace of FIG. 2 in an
alternative operating state;

FIG. 4 1s an alternative embodiment of a user interface in
the development environment of FIG. 1; and

FIG. 5 1s a sketch of the user interface of FIG. 4 1n an
alternative operating state.

DETAILED DESCRIPTION

An 1mproved performance analysis tool 1s provided that
may be used for performance analysis. The tool presents
performance analysis information 1n multiple formats and
allows display areas presenting data in different formats to be
configured. Configurability allows a user, such as a perfor-
mance engineer, to identily points 1n a program under test at
which performance problems occur and also to “drill down™
to 1dentily the causes of performance problems.

FIG. 1 1illustrates in block diagram form a development
environment 100 1n which such a tool may be used. Devel-
opment environment 100 may, for example, be created 1n a

US 7,698,686 B2

3

computer work station or on a server, or on a group of net-
worked computers or on any other suitable platiorm capable
ol executing programs.

Program under test 110 1s here shown to be made up of
multiple processes. In the example of FI1G. 1, processes 112,
112,, and 112, are shown. The number of processes in pro-
gram under test 110 1s not a limitation of the invention.
However the invention may be most useful in analyzing the
performance of programs under test containing numerous
pProcesses.

Each process may execute a “thread.” A thread 1s a portion
ol a program which, 1n most cases, executes in a process. A
process and a thread are therefore closely related concepts.
Each thread has its own sequence of function calls and other
program events.

Separate processes may be executed on separate proces-
sors. However, separate processes may be created on a single
processor. The processor resources are shared between pro-
cesses, with all the threads active at any given time taking
turns consuming processor cycles. Multiple threads can be
“virtually” active on a single processor even though one pro-
cess 1s consuming processor cycles at a time.

In contrast, a thread may become “blocked” regardless of
the number of processors available. Multiprocess systems
include a mechanism for threads executing 1n separate pro-
cesses to exchange data. If a thread needs to exchange data
with another thread, the two threads may not be ready to
exchange data at the same time. Accordingly, one thread may
need to wait until the other thread executes to the point of
being read to exchange data. While a thread 1s waiting for
another thread to exchange data or perform some other func-
tion, the thread 1s said to be “blocked.” “Blocking™ of threads
in an 1mportant event that can impact the performance of a
program.

In the example 1llustrated 1n FIG. 1, each of the processes
112,, 112, and 112, 1s mstrumented with probe functions,
such as may be found 1n the prior art. As program under test
110 executes, the probe functions write data into data file 120.
In this embodiment, data file 120 1s organized as multiple
bufters 122,, 122,, . . . 122.. In this embodiment, one bufter
1s provided for each of the processes 1n program under test
110.

As program under test 110 executes, the probes embedded
within each of the processes 112,, 112,, and 112, are
executed. The probes 1n the separate processes write data
values 1nto a bulfer associated with the process. In this way,
each of the buffers 122, 122, and 122, contains an ordered
list of events that occurred within the process as 1t executed.
Because of the connection between threads and processes,
this information may also be used to 1dentity the thread with
which events are associated. In the illustrated embodiment,
cach event written into a buffer includes an indication of the
event as well as the time at which 1t occurred.

In the 1llustrated embodiment, the program under test 110
1s constructed such that calls through predetermined applica-
tion programming interfaces (API) cause events to be
recorded 1n a bufler. In the illustrated example a call through
a predetermined API 1s recorded 1n buiier 122,. Buiter 122,
stores mformation 1dentitying the portion of the API called,
the process from which the call was made and the time at
which the call was made.

Program under test 110 1s executing on a platform that
includes an operating system 114. In this embodiment, oper-
ating system 114 1s also configured to write various events to
data file 120. Predetermined events, such as an exception
condition or disk access, may be programmed within operat-
ing system 114 to write an indication of an event into data file

5

10

15

20

25

30

35

40

45

50

55

60

65

4

120. When such an event occurs, the indication 1s written 1into
the bufter 122.. The indication of the event may include an
identifier of the specific event that occurred, the time 1t
occurred and the process of thread that caused the event to
OCCUL.

FIG. 1 provides an example of the types of events that may
be captured during execution of the software program under
test. According to an embodiment of the mmvention, many
types ol events may be displayed for a human user 1n an easy
to use manner. For example, SQL events, OS kernel events,

web server events or any other desired type of event may be
captured 1n data file 120 for further analysis and display.

In the i1llustrated embodiment, the data stored 1n data file
120 1s analyzed after program 110 executes. The analysis 1s
performed by an analysis program 130. In the described
embodiment, analysis program 130 correlates the times of
events stored 1n each of the bufters 122,, . .. 122.. Various
methods are possible for correlating the time of events in each
of the buffers. In the described embodiment, an 1ndex 1s
created. The index indicates which entry 1n each buflfer cor-
responds to a specific time during execution of the program
under test 110. In this way, as the analyzed data 1s processed,
analysis program 130 may quickly access the data from each
ol the bulfers corresponding to a specific point in time during
execution of program under test 110. The index may be cre-
ated adaptively such that the index may represent estimates of
the locations 1n each buller corresponding to events occurring
at a specific time. As the data file 120 1s processed, these
estimates may be updated. However, any suitable manner of
forming an index may be used.

Indexing the data stored in data file 120 allows analysis
program 130 to rapidly format data for display on a user
interface 140 in a fashion that shows events within different
processes relative to a common time frame. For correlating
events 1 different processes or threads, time need not be
tracked relative to an absolute standard. Rather, time may be
tracked relative to the beginning of execution of the program
under test 110 or any another convenient point. Time may, for
example, be tracked 1n terms of ticks of a clock internal to the
processor on which program under test 110 executes.

In the illustrated embodiment, user interface 140 1s a por-
tion of a computer work station. However, any suitable user
interface device may be employed. In this example, user
interface 140 includes a display 142 that provides an output
mechanism. Display 142 may, for example, be a CRT or TFT
display that allows output to be provided to a human user.
Other forms of output devices may be used. For example,
graphical output may be printed or projected onto a screen.
Alternatively, the output may be passed to other programs or

systems for further analysis before use to provide information
to a user.

User mterface 140 also includes a user interface selection
device. The user interface selection device allows a user to
provide mput through user interface 140 that may control the
operation of analysis program 130. In the pictured embodi-
ment, user mterface 140 includes a mouse 146 that may be
used to supply user input through user interface 140. As with
a traditional desktop computer, the human user may manipu-
late the mouse to position a cursor on display 142 and operate
buttons on mouse 146 (1.¢., “click”) to select as mnput items on
the display 142. User interface 140 may mvoke a program
object based on the position at the time a button 1s pressed.

Keyboard 144 may also act, alone or in conjunction with
mouse 146, as a user interface selection device. A human user
may use keyboard 144 to enter commands, parameters or
other information appropriate to provide input through user

US 7,698,686 B2

S

interface 140. In the described embodiment, the user 1nput
controls analysis program 130 to provide a desirable display
on display 142.

FIG. 2 shows a sample user interface 210 that may be
created by analysis program 130 and appear on display 142 to
present the data gathered during execution of a soitware pro-
gram under test to a human user. In the embodiment of FIG.
2, user interface 210 contains multiple regions. In the
described embodiment, the regions are used to group logi-
cally related information. For example, menu bar 212 serves
as a region for locating commands that a user may access to
control the information or functionality of user interface 210.
Commands icluded in the menu bar 210 may be commands
as used 1n traditional graphical user interfaces, such as those
opening or closing a specific file. Commands may also con-
trol the information displayed in the rest of user interface 210
or may control operations specific to a user interface used to
display performance data gathered from execution of a sofit-
ware program under test.

In the embodiment pictured 1n FIG. 2, user interface 210
contains three regions in which different, through logically
related, types of information about the execution of software
program under test 110 are displayed. These regions include

timeline field 220, threadview field 230 and textview field
260.

Timeline field 220 includes a graphical representation of
the level of activity during execution of software program
under test 110. In this embodiment, the level of activity 1s
illustrated by shading within timeline field 220. For example,
region 222 has less shading than region 224. This shading
illustrates that less activity occurred during the time repre-
sented by region 222 as compared to region 224, indicating
less activity during the time represented by region 222.

In this example, the entire execution of soltware program
under test 110 1s represented by a timeline moving from left to
right. Any suitable form of representation of activity may be
used. For example, different colors may be used to signify
different levels of activity. Alternatively, the timeline repre-
sented by timeline field 220 may be presented as a histogram,
with the height of the display of the timeline indicating the
level of activity at any particular time during execution of
soltware program under test 110.

The level of activity may be measured 1n any suitable way.
Process monitors that track a percentage of CPU time con-
sumed by an executing program are known 1n the art and may,
for example, be employed to create the data to generate a
timeline field such as 220 indicating level of activity. In this
embodiment, timeline field 220 represents the aggregate
activity of all of the processes 112,, 112, and 112, executing
portions of software program under test 110. It does not, in
this example, include information about activity in processes
executing programs that are part of the operating system 114.

Timeline field 220 includes a time indicator 226. Time
indicator 226 1s a user operable control. For example, time
indicator 226 may be selected by a user operating mouse 146
(FIG. 1). The user may then manipulate mouse 146 to slide
time 1ndicator 226 to a desired point of interest on timeline
field 220 using drag and drop actions as are commonly used 1n
program interfaces. In this way, a user may specily a portion
of the data stored in data file 120 (FI1G. 1) for further exami-
nation. In particular, the data gathered for a sub-range of the
execution time specified by time 1ndicator 226 may be dis-
played 1n greater detail in the threadview field 230.

As 1llustrated, time indicator 226 specifies a single time.
Various embodiments are possible by which a user may
specily a range of times for display 1n threadview field 230. In
this example, threadview field 230 contains information

10

15

20

25

30

35

40

45

50

55

60

65

6

about the operation of software program under test 110 1n a
sub-range of times centered around the time indicated by time
indicator 226. However, any suitable convention may be used.
For example, timeline field 220 may include multiple 1ndica-
tors, one time indicator identifying the start of the interval to
be displayed in threadview field 230 and a second time 1ndi-
cator 1dentitying the ending time to be displayed 1n thread-
view lield 230.

Regardless of the specific mechanism used to identily a
sub-range of times to display 1n threadview field 230, thread-
view field 230 contains a graphical representation of events
within threads executing as part of software program under
test 110 during the selected interval. In the embodiment 1llus-
trated 1n FIG. 2, each thread 1s represented by an area, here
shown as trace bars 240, , 240, . .. 240,. Here, nine threads are
illustrated. The number of threads for which events are 1llus-
trated 1s not a limitation on the mvention.

Events within each thread are illustrated graphically within
the corresponding trace bar. Multiple types of events are
illustrated. The number and types of events 1s for illustration
only and any number or type of events may be displayed.

In the embodiment 1llustrated 1n FIG. 2, each of the trace
bars 240, 240, . . . 240, 1ndicates the time during which 1ts
corresponding thread exists. In operation of program under
test 110, threads may begin and end at various times, which
can be graphically represented in threadview field 230.

Additionally, even though a thread exists, 1t may be active
only a portion of the time that 1t exists. Any suitable measure
of a thread activity may be used. However, 1n the illustrated
embodiments, a thread 1s considered “active” when 1t has
operations to execute, even 1f not actively consuming CPU
cycles because of scheduling of multiple processes 1n a sys-
tem having a limited number of processors. In user iterface
210, tracebars 240,, 240, . . . 240, are made to visually
indicate time periods during which the corresponding thread
1s active or blocked. Any suitable method may be used to
identify active or blocked periods. In this example, an active
indicator, such as active indicator 242, 1s superimposed on a
tracebar to indicate times during which the corresponding
thread 1s active. Conversely, the absence of an active indica-
tor, such as 1n blocked interval 254, 1llustrates that the corre-
sponding thread 1s blocked during a specific interval.

Other events may also be indicated graphically 1n thread-
view field 230. In this example, user marks such as 244 are
illustrated. As described above 1n connection with FIG. 1,
events within software program under test 110 may be
recorded. In this example, each of the user marks 244 1s a
graphical indication that a call has been placed to a function
within an API of software program under test 110. System
mark 250 similarly indicates the occurrence of one of the
events tracked by operating system 114. In this example,
system mark 250 1s visually distinguishable from user mark
244. Color, shape or positioning may be used to differentiate
between types of marks. Multiple user marks are indicated in
FIG. 2. The user marks are all indicated by the same graphical
symbol, which may represent multiple occurrences of the
same event. Different types of user marks may be represented
by the same or different graphical symbols,

Threadview field 230 includes a time scale 232. Events
within each tracebar 240,, 240, . . . 240, are correlated to the
time scale 232. The events within the tracebars are therefore
correlated with each other. By reading from side to side across
threadview field 230, events occurring within the threads at
one time may be compared. By reading down the threadview
field 230, a sequence of events may be apparent.

Time scale 232 displays a sub-range of the times repre-
sented by timeline field 220. The specific sub-range displayed

US 7,698,686 B2

7

may be selected by a user manipulating time indicator 226.
Additionally, threadview field 230 includes a scrollbar 252.
The scrollbar provides an alternative mechamism to select a
sub-range of times for display. Scrollbar 252 may be a control
of the type now known or hereafter developed for use 1n
graphical user interfaces. By using scrollbar 252, a user may
translate the time sub-range displayed 1n threadview field 230
to an earlier time or a later time. In this embodiment, time
indicator 226 and scrollbar 252 are correlated controls, mean-
ing the adjustment of either time indicator 226 or scrollbar

252 adjust the center point of the sub-range of times displayed
in threadview field 230.

Being able to display events within threads 1n a correlated
tashion allows a human user to readily identily portions of
program 110 that may cause performance problems when
program under test 110 executes. For example, FIG. 2 1ndi-
cates that THREAD 3 1s active for a relatively short period of
time and then becomes inactive. During the period of inac-
tivity, THREAD 4 becomes active for a relatively long period
of time. THREAD 4 then becomes inactive and THREAD 3
becomes active again. Such a pattern may, for example, indi-
cate to a humanuser that THREAD 3 1s blocked while waiting
on THREAD 4. Such a pattern may indicate that overall
performance of the program may be improved by investigat-
ing the time required for THREAD 4 to execute or whether
THREAD 3 1s, 1n fact, blocked waiting for THREAD 4. Such
a scenario may not be apparent from viewing only aggregated
statistics. Aggregated statistics may reveal that THREAD 3
had a long execution time, but may not reveal the cause.

FIG. 2 shows that user interface 210 includes a textview
field 260 that allows additional mformation to be obtained
about the execution of the various threads. In the illustrated
embodiment, THREAD 3 and THREAD 4 have been high-
lighted 1n textview field 260. In the described embodiment,
the user selects which fields to be displayed 1n textview field
260, but any suitable method may be used to select the threads
to be displayed 1n textview field 260. For example, a user may
use a button on mouse 146 to access a properties menu for one
ol the threads 1llustrated in threadview field 220 and select 1n
that menu that the threads should be displayed in textview
ficld 260. As another example, a user could use mouse 146 to
drag and drop the trace bar representing the desired field
within the textview field 260.

Each thread selected for display in textview field 260 1s
represented by an event trace such as 264, or 264,. Each event
trace includes a listing of events within the thread depicted by
the event trace. In this example, the events listed 1n the event
traces 264, or 264, represent calls to functions made from the
thread and the mark events, such as a call to a specific API or
access ol an operating system utility, initiated by the thread.
However, any desired type of event may be displayed. For
example, SQL events, OS kernel events, web server events,

ctc. may be displayed instead of or in addition to the events
depicted 1n FIG. 2.

Textview field 260 includes a timescale 262. Timescale 262
indicates that the event traces depicted 1n textview field 260
describe events within a sub-range of the time over which
software program under test 110 execute. The sub-range of
times depicted 1n textview field 260 may be the same as the
sub-range depicted 1n threadview field 230. However, 1n the
example of FI1G. 2, textview field 260 includes a scrollbar 26
that may be manipulated by user input to adjust the center
point of the sub-range depicted 1n textview field 260.

Timescale 262 1s here shown to be discontinuous. In the
illustrated embodiment, an entry 1s made 1n textview field 260
only when an event 1s available for display at that time. In this

10

15

20

25

30

35

40

45

50

55

60

65

8

way, consecutive events are displayed adjacent to each other
regardless of any gaps in time between when those events
occurred.

In the example of FIG. 2, the threadview field 230 and
textview field 260 are displayed simultaneously but are of
different sizes. In this embodiment, the fields are 1mple-
mented as display areas as used 1n a conventional user inter-
face and may be resized 1n any suitable manner to increase or
decrease the amount of data shown 1n each window. Also, the
illustrated embodiment shows timeline field 220, textview
field 260 and traceview field 230 simultaneously on the dis-
play. Each could be displayed at separate times or these fields
may be displayed simultaneously 1n any desired combination.

Textview field 260 may facilitate analyzing the perfor-
mance of software program under test 110. In the example
pictured, the event trace 264, for THREAD 3 confirms that at
TIME 6, THREAD 3 1s waiting for another thread. The addi-
tional detail available m textview field 260 shows that
THREAD 3 1s waitting following a WRITE data function
executed at TIME 5. Event trace 264, indicates that THREAD
4 1s performing the various operations associated with writing
data. Event trace 264, indicates that starting at TIME 10,
THREAD 4 spends a significant time executing the
_STRLEN function. This information may allow a human
user to quickly identify a performance problem with program
under test 110.

By displaying both a thread view and an event trace of the
program execution, a performance engineer may quickly
identify the source of a problem. The graphical representation
may be used to 1dentily specific areas to investigate further
and details of those specific area may be provided in textural
form. Further, the ability to alter the sub-ranges of time values
shown 1n each of the fields further contributes to the ease with

which a performance engineer may 1dentify problems. For
example, THREADS 3 and 4 show a similar pattern at TIME

23, indicating that at TIME 23, THREAD 3 may also be
making a call to a function performed by THREAD 4. How-
ever, 1n the instance 1llustrated at TIME 23, THREAD 4 1s
active for a much shorter time than 1n the instance 1llustrated
at TIME 5. This pattern of performance data may indicate that
sometimes when THREAD 3 calls a WRITE data function,
the operation takes much longer than other times. Such a
performance pattern makes it difficult to identity from aggre-
gated data which function 1s the source of a particular pertor-
mance problem. However, by allowing a user to examine
events 1n different threads correlated 1n time over a selectable
sub-range, performance problems may be more readily 1den-
tified.

FIG. 3 shows a further feature of user interface 210. In the
example 1llustrated 1n FIG. 3, timescale 232 for threadview
field 230 has been expanded. In this illustration, the window
in which threadview field 230 1s displayed 1s the same size as
in FIG. 2, but the sub-range covered by timescale 232 1is
approximately 10” of that shown in connection with FIG. 2.
As a result, the events within the threads displayed 1n thread-
view field 230 are displayed with a higher resolution. The
resolution of timescale 232 may, for example, be adjusted
based on user input. A user may, for example, use mouse 146
(FI1G. 1) to position a cursor over timescale 232 and right click
on that field to open a properties dialogue box or other control
that allows the user to iput information speciiying the
desired resolution of the timescale 232. However, any suit-
able method of providing mput may be used to specity the
time scale.

FIG. 3 shows that timescale 262 associated with textview
field 260 also has a programmable resolution. In the example
of FIG. 3, the resolution of timescale 262 matches the reso-

US 7,698,686 B2

9

lution of timescale 232. However, any suitable means may be
used to set the resolution of timescale 262 and the resolution
timescale 262 need not match the resolution of the timescale
232.

FIG. 3 shows an advantage that may be achieved by chang-
ing the resolution of a timescale such as 232 or 262. At the
resolution pictured 1n FIG. 2, THREAD 4 appears to spend a
long period of time in the function _STRLEN. With the
resolution shown 1n FIG. 3, 1t can be seen that a portion of the
time that THREAD 4 spends within a function _STRLEN 1s
spent 1n calls to other functions such as _funcl.

FI1G. 3 also illustrates a further aspect of user interface 210.
By manipulating mouse 146 (FIG. 1) a cursor 312 may be
positioned above any of the graphical representations of an
event. Additional information about each of the events
depicted graphically 1n user interface 210 may be obtained. In
the example of FIG. 3, a user 1s positioning cursor 312 above
a mark 344. The user may provide input, such as right-click-
ing on mark 344 or by simple “hovering” the cursor above
mark 344. Inresponse to this user input, analysis program 130
may provide additional information on the mark 1n a textbox
310. The information appearing in the textbox 310 may
depend on the specific event represented by the graphical
object selected by the user and may provide information
about any desired event on the display, including SQL events,
OS kernel events or web server events.

FIG. 4 shows a user intertace 410 according to an alterna-
tive embodiment of the invention. In this embodiment, text-
view field 460 1s provided with multiple tabs such as 430,
430, and 430,. Each of the tabs may be selected through the
user interface by mampulating mouse 146 to position the
cursor above the tab and clicking on 1t. Each of the tabs, when
selected, may display a different kind of information within
textview lield 460. Tab 430, presents aggregate information
about the functions such as was sometimes presented by
performance analysis systems in the prior art. When selected,
tab 430, displays a column 420, listing functions called dur-
ing the execution of software program under test 110. Adja-
cent columns provide information about each of the functions
listed in column 420,. For example, column 420, indicates
the number of entries into that function recorded during
execution of software program under test 110. Column 420,
indicates the aggregate execution time within the function.
The information presented 1n this tab 1s aggregated or statis-
tical information, 1t does not show events with chronological
references.

Tab 430,, when selected, may display a call tree similar to
call trees displayed 1n prior art performance analysis systems.
Any other type of data that may be generated by a perfor-
mance analysis systems, whether now know or hereafter
developed, may be selectively displayed for a human user by
providing a tab that may be selected to access the data. Tab
430, may be activated to provide an event trace such as 1s
depicted 1n FIG. 3.

FIG. 4 shows an additional aspect of user imterface 410. In
this example, threadview field 230 1s showing a sub-range of
times that 1s after the sub-range of times depicted 1n FIG. 2.
Accordingly, time indicator 226 appears further to the right in
timeline field 220 than 1n FIG. 2.

FIG. 5 shows a further aspect of user interface 410. The
threads represented 1n thread view field 230 may be selected
based on user inputs. Allowing a user to select threads facili-
tates the process of identilying performance problems by
allowing the user to juxtapose graphical representations of
events 1n different traces. In this way, the user may 1dentily
dependencies between threads and identily performance
problems caused by these dependencies.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 5 gives an example of one mechamism that could be
used to allow a user to select threads for display. In this
example, user interface 410 includes a SELECT area 510 on
menu bar 212. SELECT area 510 may be implemented as
menu 1tem as 1s traditionally used in graphical user interfaces,
which, when selected, opens a list box 512.

List box 512 includes a list of the threads 1n program under
test 110, each with a check box next to it. Each check box 1s
in turn a control that, when selected, causes the corresponding
thread to be included 1n the list of threads displayed in thread
view window 230.

Other aspects of selection of threads may also be available
through controls 1n user interface 410. For example, controls
may allow a user to specily the ordering of threads 1n thread
view window 230.

The above described features allow the user the ability to
organize performance data on a program under test in a way
that facilitates ready understanding of the dynamic interac-
tions of a multi-threaded program. It provides multiple levels
of drill down, which allows a performance engineer or other
user to do performance engineering on programs with an
elfective process. In a typical scenario, the process may
include using timeline field 220 to 1dentily sub-regions dur-
ing the execution of the program worthy of further investiga-
tion. For example, sub-regions in which intense activity or
very little activity occurs may be identified and further inves-
tigated.

Once a sub-region for further study is selected, specific
threads 1n that sub region may be examined. The user may
adjust the time scale for the display in thread view field 230 to
better 1dentily points with a single thread or a point at which
combinations of interactions between threads slowed execu-
tion of the program. Visual indicators, such as markers and
activity bars, in thread view field 230 may guide the user 1n
identifying problem areas.

The user may then obtain more detailed information about
the specific interactions of certain threads by selecting those
threads for display 1n the text view window 460. Events may
be presented in a chronological format or aggregated data for
functions or other program elements may be presented.

The display areas, as 1s traditional 1n many graphical user
interfaces, may be opened, closed, minimized or repositioned
on the display screen so that a user may customize the appear-
ance of the display.

The controls 1n the user interface may be implemented 1n
any suitable way, whether now known or hereatter developed.
For example, software development environments oiten have
extensible interfaces that allow menu items to be incorporated
in graphical user interfaces to programs. Further, such devel-
opment environments also allow predefined controls, with
actions customized for the application, to be incorporated into
a graphical user interface. Controls such as scroll bars, text
boxes, and drop down lists are examples of currently known
controls used in graphical user interfaces and may, for
example, be implemented as Active-X objects.

In operation, the information displayed on the graphical
user 1nterface may be generated in any suitable way. As
described above, information on events 1s collected 1n bufters.
The butlers are indexed to allow for ready processing of the
information. Analysis program 130 may compute aggregated
data as 1s known 1n the art. Analysis program 130 may also use
the time ordered mformation in the buifers to 1dentity events
that signal the beginnings and ends of

Analysis program may be a program prepared 1n any suit-
able programming language, such as C++. It may be stored 1n
computer-readable media associated with any suitable pro-

US 7,698,686 B2

11

cessor, such as the processor associated with a work station
used by a performance engineer.

Having thus described several aspects of at least one
embodiment of this invention, it 1s to be appreciated that
various alterations, modifications, and improvements will
readily occur to those skilled 1n the art.

Such alterations, modifications, and improvements are
intended to be part of this disclosure, and are intended to be
within the spirit and scope of the mnvention. Accordingly, the
foregoing description and drawings are by way of example
only.

The above-described embodiments of the present mven-
tion can be mmplemented 1n any of numerous ways. For
example, the embodiments may be implemented using hard-
ware, soltware or a combination thereof. When implemented
in software, the software code can be executed on any suitable
processor or collection of processors, whether provided 1n a
single computer or distributed among multiple computers.

Also, the various methods or processes outlined herein
may be coded as software that 1s executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming lan-
guages and/or conventional programming or scripting tools,
and also may be compiled as executable machine language
code.

In this respect, the mvention may be embodied as a com-
puter readable medium (or multiple computer readable
media) (e.g., a computer memory, one or more tloppy discs,
compact discs, optical discs, magnetic tapes, etc.) encoded
with one or more programs that, when executed on one or
more computers or other processors, perform methods that
implement the various embodiments of the invention dis-
cussed above. The computer readable medium or media can
be transportable, such that the program or programs stored
thereon can be loaded onto one or more different computers
or other processors to implement various aspects of the
present invention as discussed above.

The term “program™ 1s used herein in a generic sense to
refer to any type ol computer code or set of instructions that
can be employed to program a computer or other processor to
implement various aspects of the present invention as dis-
cussed above. Additionally, it should be appreciated that
according to one aspect of this embodiment, one or more
computer programs that when executed perform methods of
the present invention need not reside on a single computer or
processor, but may be distributed 1 a modular fashion
amongst a number of diflerent computers or processors to
implement various aspects of the present mvention.

Various aspects of the present invention may be used alone,
in combination, or in a variety of arrangements not specifi-
cally discussed 1n the embodiments described 1n the forego-
ing and 1s therefore not limited 1n its application to the details
and arrangement ol components set forth in the foregoing
description or 1illustrated i the drawings. For example,
aspects described 1n one embodiment may be combined 1n
any manner with aspects described 1n other embodiment.

Use of ordinal terms such as “first,” “‘second,” “third,” etc.,
in the claims to modity a claim element does not by 1tself
connote any priority, precedence, or order of one claim ele-
ment over another or the temporal order 1n which acts of a
method are performed, but are used merely as labels to dis-
tinguish one claim element having a certain name from
another element having a same name (but for use of the
ordinal term) to distinguish the claim elements.

Also, the phraseology and terminology used herein 1s for
the purpose of description and should not be regarded as

10

15

20

25

30

35

40

45

50

55

60

65

12

limiting. The use of “including,” “comprising,” or “having,”
“containing,” “imnvolving,” and vanations thereof herein, 1s
meant to encompass the 1tems listed thereafter and equiva-
lents thereof as well as additional 1tems.

What 1s claimed 1s:

1. In a computer system having a graphical user interface
including a display and a user interface device, a method of
displaying performance mformation concerning a soltware
program under test, the software program under test executes
with a cumulative activity level, and the software program
under test adapted to execute in a plurality of threads, each
adapted to execute, the method comprising the steps of:

displaying 1n a first display area a representation of a time

range during which the software program under test
executes including a graphical representation of the
cumulative activity level of the execution of the software
program under test during the time range, further includ-
ing a graphical time position indicator indicating an
indicated portion of the time range;

displaying 1n a second display area a plurality of graphical

indicators, each graphical indicator representing events
in the execution of one of the plurality of threads during
a sub-range of the time range, the sub-range being
strictly smaller than the time range and including the
indicated portion of the time range represented in the
first display area;

recerving through the user interface device a user input to

move the graphical time position indicator in the first
display area to a different portion of the time range;

in response to the user mput, modilying the plurality of

graphical indicators 1n the second display to represent
events 1n the execution of the plurality of threads during
a different sub-range of the time range, the different
sub-range including the different portion of the time
range represented 1n the first display area; and
displaying 1 a third display area textual information
regarding events in the execution of one of the plurality
of threads represented by a graphical indicator 1n the
second display area, the textual information comprising,
descriptions of calls to functions made within the thread,
wherein the graphical representation of the first display area
provides a quantitative indication of the cumulative level of
activity of the plurality of threads.

2. The method of claim 1, wherein:

the user iterface device comprises a pointing device and

receiving a user mput to move the graphical time posi-
tion 1ndicator 1n the first display area to a difierent por-
tion of the time range comprises sensing that the user has
used the pointing device to drag the graphical time posi-
tion 1ndicator and dropped 1t on a different location of
the graphical representation of the time range.

3. The method of claim 1, additionally comprising recerv-
ing a user input mndicating a time scale for the second display
area and adjusting the sub-range 1n response to the user input
indicating the time scale.

4. The method of claim 3, wherein the second display area
additionally comprises a scroll bar and the method addition-
ally comprises receiving a user input thorough the user inter-
face device to move the scroll bar and adjusting the sub-range
displayed 1n the second display area in response to the user
input to move the scroll bar.

5. The method of claim 1, wherein the software program
under test comprises functions that are executed as the soft-
ware program under test executes and displaying in a third
display area additionally comprises:

a) recerving user mput specitying the nature of the textual

information to be displayed 1n the third display area; and

2T L

US 7,698,686 B2

13

b) displaying selectively inresponse to the user input speci-
tying the nature of the textual information aggregated
information characterizing the execution of functions
within the software program under test.

6. The method of claim 1, wherein:

a) the software program under test comprises an applica-
tion program executing on a platform comprising an
operating system; and

b) displaying a plurality of graphical indicators represent-
ing events comprises indicating execution of function
calls to either predetermined portions of the operating
system or predetermined portions of the software pro-
gram under test.

7. A display device having rendered thereon performance
information for a plurality of threads that operate during
execution of a software program under test such that operat-
ing events occur at times during execution of the software
program under test, the performance information comprising;:

for each of the plurality of threads, a thread area represent-
ing operation of the thread during a time interval, the
thread area having at least one 1ndicator, each indicator
representing an operating event of the thread, with the
thread area for each of the plurality of threads positioned
so that indicators in the thread areas for the plurality of
threads graphically illustrate correlation 1n time of oper-
ating events in the plurality of threads;

a text display area comprising a plurality of textual repre-
sentations, each textual representation including an indi-
cation of events 1n the execution of one of the plurality of
threads represented by a graphical indicator 1n the thread
area, the events comprising calls to functions made
within the thread;

a first user mput mechanism adapted to receive a user
indication of the nature of the textual information to be
displayed in the text display area;

a second user mput mechanism adapted to recetve user
mput specilying selected threads of the plurality of
threads, wherein the text display area 1s adapted to sepa-
rately display a textual representation of each of the
selected threads;

a timeline area representing a time range during which the
soltware program under test executes and indicating
graphically a cumulative activity level of the execution
ol the software program under test, the time range being
strictly larger than the time interval, the graphical rep-
resentation providing a quantitative indication of the
cumulative level of activity of the plurality of threads,
the timeline area further comprising a graphical time
position mdicator indicating graphically the time inter-
val within the time range; and

a third user input mechanism adapted to receive user input
to move the graphical time position indicator 1n the time
line area to a different time interval within the time
range, wherein, 1n response to the user input to move the
graphical time position indicator, the thread area corre-
sponding to each of the plurality of threads 1s modified to
represent operation of the thread during the different
time 1nterval.

8. The display device of claim 7, wherein each of the thread
areas comprises a region having more length than width on
the display screen and within at least a portion of the plurality
of thread areas an indicator represents a second time range
when the thread represented by the thread area 1s blocked
waiting for another thread.

9. The display device of claim 7, wherein each of the thread
areas comprises a region having more length than width on
the display screen and within at least a portion of the plurality

10

15

20

25

30

35

40

45

50

55

60

65

14

of thread areas an indicator represents a second time range
when the thread represented by the thread area 1s active.

10. The display device of claim 8, wherein at least one of
the thread areas comprises an indicator representing that a
predetermined function was accessed from within the thread
represented by the thread area.

11. The display device of claim 10, wherein the software
program under test 1s an application program running on an
operating system and the predetermined function comprises a
function within the application program.

12. The display device of claim 7, additionally comprising
a time scale area adjacent the thread area, the time scale area
correlated 1n time with the events 1n the plurality of threads
represented by indicators.

13. The display device of claim 7, additionally comprising
a text area, the text area comprising an ordered listing of
events during the operation of at least one thread, the ordered
listing of events comprising function entries.

14. A computer-readable medium having computer-ex-
ecutable components for analyzing the performance of a sofit-
ware program under test, the software program under test
adapted to execute in a plurality of threads, the computer-
executable components comprising:

(a) a data collection component, adapted to collect data on
the execution of the plurality of threads 1n the software
program under test;

(b) an analysis component, adapted to analyze the collected
data to dertve execution information about the plurality

of threads; and

(¢) a reporting component, adapted to:

display 1n human perceptible form, the execution infor-
mation of the plurality of threads, the human percep-
tible form including a graphical representation of
execution information as a function of time for each
the plurality of threads, with the graphical represen-
tations of each of the plurality of threads displayed 1n
a Tormat that allows correlation of time of events 1n
cach of the plurality of threads;

display, separate from the execution information of the
plurality of threads, a graphical representation of a
cumulative activity level of execution of the software
program under test, the graphical representation of
the cumulative activity level corresponding to a time
range;

display an indicator for specifying along the graphical
representation of the cumulative activity level an 1indi-
cated portion of the time range for display of the
plurality of threads, the indicated portion being
strictly smaller than the time range;

receive user mput to move the indicator to a different
portion of the time range;

in response to the user input to move the indicator,
modily the graphical representation of execution
information to represent the execution information of
the plurality of threads for the different portion of the
time range;
selectively display textual information regarding at least
some of the plurality of threads; and

allow a user to reversibly specily a nature of textual infor-
mation to be displayed.

15. The computer-readable medium of claim 14, wherein
the reporting component 1s adapted to display a graphical
representation of at least one of the plurality of threads, the
graphical representation comprising an indication of when at
least one thread 1s blocked while waiting for a response from
another thread 1n the plurality of threads.

US 7,698,686 B2

15

16. The computer-readable medium of claim 15, wherein
the software program under test 1s adapted to execute on a
platform comprising an operating system that may perform a
predetermined event and the reporting component 1s adapted
to display a graphical representation of at least one of the
plurality of threads including an indication of whether the
thread triggered the operating system to perform the prede-
termined event.

16

17. The computer-readable medium of claim 15, wherein
the software program under test comprises at least one API
and the data collection component 1s adapted to collect data
indicating that the API was accessed and the reporting com-
ponent 1s adapted to display a graphical representation of at
least one of the plurality of threads including an indication of
whether the API was accessed from within the thread.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

