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AUTOMATIC TRANSLATION OF SIMULINK
MODELS INTO THE INPUT LANGUAGE OF A
MODEL CHECKER

TECHNICAL FIELD

The technical field of the present application relates to
automated verification of design models.

BACKGROUND

Model Based Development (MBD) 1s a concept of soft-
ware development 1n which models are developed as work
products at every stage 1n the development life cycle. Models
are concise and understandable abstractions that capture criti-
cal decisions pertaining to a development task. Models have
semantics derived from the concepts and theories of a par-
ticular technical domain. Models supersede text and code as
primary work products in Model Based Development, and
most development activities are carried out by processing,
models with as much automation as possible.

Model Based Development 1s known to improve the qual-
ity of the product being developed. Formal models of design
are used to prove that the product design i1s correct with
respect to the product’s functional requirements, thereby
reducing defect leakage from the design. Automatic code and
test case generation helps to reduce both coding errors and
total development time.

It 1s well known that formal verification techniques like
theorem proving and model checking reduce design defects
by determining whether a design meets 1ts functional require-
ments. The presence of formal models 1n Model Based Devel-
opment permits analysis of a design using formal verification.
Both Model Based Development and formal verification put
emphasis on detecting design errors (high leakage rate) rather
than implementation errors (low leakage rate).

The DO-178B standard produced by Radio Technical
Commission for Aeronautics, Inc. defines guidelines for the
development of avionics software and 1s the accepted means
of certitying all new avionics software. However, the
DO-178B standard 1s obsolete with respect to the Model
Based Development process, but recognizes formal methods
as a way to prevent and eliminate requirements errors, design
errors, and code errors throughout the development life cycle.
The need for formal verification of models during the design
stage 1s also validated by its successtul use 1n various indus-
trial level examples.

In spite of all of the above advantages, formal verification
has not been successtully integrated into many development
processes. The main 1ssues arising from such successiul inte-
gration are related to making formal verification tools easy to
use by the system engineers. Formal verification tools typi-
cally do not support standard design modeling notations, but
they do have their own notations related to the theories of the
tool. The extra effort to learn the notations to use these tools
1s usually not welcome because this effort causes delays 1n
product development. Consequently, there 1s a need to auto-
mate the formal verification process as much as possible.

One possible step towards automation 1s to make formal
verification tools available 1n notations that system engineers
typically use. Model Based Development tools from Math-
works like Stmulink, Stateflow, etc. are extensively used by
the assignee of the present application for development. It
would be desirable for these notations to automatically link to
suitable model checking tools. The model can then be for-
mally verified to satisiy its functional requirements automati-
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2

cally using a model checker such as the NuSMV model
checker, thereby reducing defect leakage from the design.

As an example, a translator, that 1s described below 1n the
detailed description and that translates from a Simulink
model to a NuSMV model that can then be checked by a
NuSMYV model checker, can be devised. NuSMYV 1s a sym-
bolic model checker jointly developed by ITC-IRST, CMU,
University of Genova, and University of Trento. This trans-
lator would then be usable to take a Simulink model as an
input and to generate an equivalent NuSMV model.

Such a translator would support all of the basic blocks of
the Stmulink block library that constitute a finite state subset
of Simulink, 1.e., any model obtained by putting together
these blocks 1s merely a finite state machine. The NuSMV
model generated by the translator would then be formally
veriflied using the NuSMV model checker. The NuSMV
model checker supports specification of functional require-
ments as formulas of the formal language temporal logic. The
logic 1s capable of expressing typical functional requirements
like those of satety properties, avoiding deadlocks, race con-
ditions eftc.

Various mechanisms and tools have been developed for
formally veritying Simulink and Statetlow models. A tool
denoted si2SMYV 1s a research tool developed at CMU {for
converting Statetlow models into the model checking tool
SMYV, which 1s similar to NuSMYV. However, Statetflow con-
stitutes just one toolbox 1n Stmulink. Also, 1t would be better
i a translator would support Stmulink blocks 1n addition to
Statetlow blocks.

Checkmate 1s another research tool developed to translate
Simulink models mto hybrid automata notation so that mod-
els capturing both discrete and continuous properties can be
verified. Checkmate performs verification of Simulink mod-
cls using finite state approximations of hybrid automata
where the verification need not complete due to bad approxi-
mations. By contrast, verification of Stmulink models by the
NuSMYV model checker can be performed against temporal
logic properties such that the NuSMYV model checker sub-
stantially always terminates with a yes/no answer.

The SCADE design verifier that 1s combined with the
SCADE-Simulink gateway 1s available from Esterel Tech-
nologies, 1s a part of SCADE-Suite™, and can be used to
formally verity Stmulink models by translating them nto the
notation of SCADE. However, SCADE provides support for
verification of requirements specified as safety properties
only and not arbitrary temporal logic formulas (that are more
expressive) as 1s possible using NuSMV.

Embedded Validator from OSC Embedded Systems AG
provides a mechanism for formally verifying Simulink and
Stateflow models using the VIS and Prover Plug-in verifica-
tion engines 1n the background. However, the requirements
that the model can be verified against are fixed a priori,
whereas NuSMYV supports verification of arbitrary temporal
logic based functional requirements.

A proposal for model based safety analysis has been
olfered to verify the safety properties of Simulink models and
uses a two-step translation. In the first step, Simulink models
are translated into Lustre, which 1s the textual notation of
SCADE that 1s used to specity models. In the second step, the
Lustre model 1s translated into NuSMV. However, a direct
translation from Simulink models to NuSMYV 1s desirable and
would reduce the verification effort and time.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention, a
method for configuring a system model for formal verifica-
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tion comprises the following: receiving the source model as
an mput, wherein the source model has information about
source blocks constructing the source model; parsing each of
the source blocks to evaluate the information associated
therewith; and, translating the source model to an output
model by selecting verification functional characteristics for
the output model 1n accordance with the mformation about
the source blocks.

In accordance with another aspect of the present invention,
a method for configuring a source model for formal verifica-
tion comprises the following: recerving the source model as
an iput, wherein the source model has mnformation about
source blocks constructing the source model; parsing each of
the source blocks to select certain items of the information;
directly converting the source blocks to modules of an output
model; and, populating the modules with verification func-
tional characteristics corresponding to the selected 1tems of
information.

In accordance with still another aspect of the present inven-
tion, a method for configuring a Stmulink model for formal
verification comprises the following: recerving the Simulink
model as an mput, wherein the Stmulink model has informa-
tion about Stmulink blocks constructing the Simulink model;
parsing each of the Simulink blocks to select certain 1items of
the information including information on mput and output
ports of the Stmulink blocks; directly converting the Simulink
blocks to NuSMYV modules of an NuSMYV model in accor-
dance with the selected items of information; and, populating
the NuSMYV modules with verification functional character-
1stics corresponding to the selected 1items of information.

In accordance with yet another aspect of the present inven-
tion, a method for translating a source model to a checking
model that can be formally verified comprises the following;:
receiving the source model as an mput, wherein the source
model has information about source blocks constructing the
source model; parsing each of the source blocks to select
certain 1items of the information; populating a graph contain-
ing nodes with the items of information; and, writing a file
corresponding to the checking model based on the graph.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood when the
following detailed description 1s read with reference to the
accompanying drawings i which wherein:

FIG. 1a depicts a flow chart representing a translator that
converts a model simulating a design to be verified nto a
model suitable for checking by a model checker;

FIG. 15, depicts a flow chart for the PopulateSubsystem
sub-routine of FIG. 1aq;

FIGS. 1¢ and 1d depict flow chart for the PopulateBlock
sub-routine of FIG. 15;

FI1G. 2 1llustrates an example of an output of the routine of
a preprocessing step of one embodiment of a translation algo-
rithm disclosed herein by illustrating the relational basic
block of the logic and bit operations library of Simulink and
its equivalent NuSMYV code;

FIGS. 3a, 36, and 3¢ are an example of a Simulink model
for a triplex sensor voter typically used in avionics; and,

FI1G. 4 illustrates a model verification example procedure

using Simulink, a translator that translates a Simulink model
to a NuSMYV model, and the NuSMV model checker to verity

the NuSMV model; and,

FIG. 5 illustrates an example of one device, in this case a
computer, on which the translator of FIGS. 1a, 15, 1¢, and 1d
may be executed.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

Simulink 1s a computer aided design tool widely used 1n the
aerospace industry to design, simulate, and auto code soft-
ware for avionics equipment. A Simulink model of a system
1s a hierarchical representation of the design of the system
using a set of blocks that are interconnected by lines. Each
block of the Simulink model represents an elementary
dynamic system that produces an output either continuously
(continuous block) or at specific points 1 time (discrete
block). The lines of the Simulink model represent connec-
tions between block 1nputs and block outputs. Each block of
the Stmulink model 1s an mstance of a specific type of block,
usually from a library provided 1n Simulink. These blocks are
interconnected to build sub-systems which 1n turn can be put
together to form a system model. An arrangement of sub-
systems of interconnected blocks 1s also referred to as the
control flow diagram depicting the system model. Stmulink 1s
expressive enough to model many avionics systems and
offers extensive simulation capabilities for de-bugging.

NuSMYV 1s an open source symbolic model checker based
on Binary Decision Diagrams (BDD). It allows for the
description of systems as NuSMYV models in the form of finite
state machines, both synchronous and asynchronous. A sys-
tem model 1s described as a collection of modules, and each
module can be thought of as describing an elementary finite
state machine. Functional requirements of such a model
describe properties related to the behavior of the system.
Specifications of functional requirements regarding the sys-
tem model can be given as Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL) formulas. Model checking
algorithms 1n NuSMYV check to see if the system model meets
its specifications. In performing this check, NuSMYV uses
very efficient BDD-based and SAT-based model checking
techniques that are 1deally suited for veritying hardware and
system models with control flow similar to hardware. (SAT 1s
short for “Satisfiability”. SAT-based model checking tech-
niques are model checking algorithms based on Boolean sat-
isfiability procedures. The system model 1s represented as a
Boolean formula, and the model checking problem of the
system 1s reduced to that of determining whether the Boolean
formula has a satisiying assignment. )

The data flow block diagram of a Simulink model
resembles a hardware design even though Simulink models
are generally implemented in software. Because a Simulink
model resembles a hardware design, and because NuSMYV 1s
ideally suited for veritying hardware and system models with
control flow similar to hardware, NuSMV may be chosen as
the target formal verification tool to recerve the translation of
Simulink diagrams. Moreover, NuSMYV 1s open source. How-
ever, other verifiers are possible.

A translator 100 as shown in FIGS. 1a, 15, 1¢, and 1d
operates to receive an input 1n the form of a textual represen-
tation of a Simulink model and to provide an output 1n the
form of a NuSMYV model that 1s equivalent to the Simulink
model. Accordingly, the Simulink model may be referred to
as a source model of the translator 100, and the NuSMV
model may be referred to as an output model of the translator
100. Generally, there 1s a one-to-one correspondence between
the blocks 1n the source model and the blocks 1n the output
model. Although the translator 100 1s conveniently shown as
an algorithm, the translator 100 may be implemented 1n other
forms. The textual representation can be 1n any format that
captures the details of the given Stmulink model such as the
representations provided by Matlab (.mdl file, for example),
or representations like those of XML, etc.
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The translator 100 supports the basic blocks that constitute
a finite state subset of Simulink. That 1s, any Simulink model
obtained by putting together these blocks 1s nothing but a
conventional finite state machine. Blocks for signal routing,
tor logic and bit operations, for math operations (discrete), for
sources, for discontinuities, and for discrete libraries are sup-
ported with integer and Boolean data types for variables.
Appendix 1 at the end of this specification shows a detailed
Library-wise list of the various basic blocks that can be sup-
ported by the translator 100.

The translator 100 can be summarized as comprising an
input, an output, and an algorithm. The input 1s a textual
representation of a Simulink model. The output 1s a NuSMV
code equivalent to the Simulink model. The algorithm 1s

performed, for examples, in three steps 102, 104, and 106
(FIGS. 1a and 1b). The first step 102 includes blocks 108,

110, and 112 of FIGS. 1aq and 15, the second step 104 includes
blocks 114,116, 118,120, 122,124, and 126 of FIGS. 1a and
15, and the third step 106 includes blocks 128 and 130 of
FIGS. 1a and 15. The second step may be considered to be
subdivided into three sub-steps. In addition, there 1s a pre-
processing step.

In the preprocessing step, a set of routines are written to
translate each of the basic blocks in the Stmulink library listed
in Appendix 1 into their equivalent NuSMV modules. These
routines will be used by the translator 100 while generating,
the NuSMV models from the immput Simulink models. An
example of the output of this preprocessing step for a basic
block relational operator 200 (of the logic and bit operations
library of Simulink) of this Library 1s shown 1n FIG. 2. The
relational operator 200 1s <=(less than or equal to) and the
block has two 1nputs, the first one being a vector of length two
and the second one being a scalar. FIG. 2 illustrates the
functionality of these routines. These routines should be writ-
ten to be very specific to the kind of basic blocks 1n Simulink
and should be written 1n such a way that the resulting NuSMV
module does exactly what the Sitmulink basic block will do
tor the particular input type.

The translator 100 can be summarized as comprising an
input, an output, and an algorithm. The input 1s a textual
representation of a Simulink model. The output 1s a NuSMV
code equivalent to the Simulink model. The algorithm 1s
described 1n the pseudo code of Appendix 2. The algorithm
has four steps as given in FIG. 1a. The second step 106 1s a
sub-routine, details of which are shown 1n FIG. 154. In addi-
tion, there 1s a pre-processing step.

In the algorithm description, the term Type 1s used for the
input port signal, the output port signal, and block parameters.
The type of a signal or parameter tells whether 1t 1s a scalar or
a one dimensional vector of a particular size.

In the preprocessing step, a set of routines 1s written to
translate each of the basic blocks in the Stmulink library listed
in Appendix 1 into their equivalent NuSMV modules. These
routines will be used by the translator 100 at 110 while gen-
erating the NuSMYV models from the mnput Simulink models.
An example of the output of this preprocessing step for the
basic block corresponding to a relational operator 200 (of the
logic and bit operations library of Stmulink) of this Library 1s
shown 1n FIG. 2. The relational operator 200 1s <=(less than or
equal to) and the block has two inputs, the first one being a
vector of length two and the second one being a scalar. FIG. 2
illustrates the functionality of the routines in the preprocess-
ing step. These routines are written specific to a particular
type of block and, being provided with information regarding,
type of block, number of input ports, number of output ports,
type of ports, and block parameters (like for relational block
relational operator, for add block type of signs), they will
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6

generate a NuSMYV module equivalent to a basic Simulink
block. Pseudo code for a routine 1n the library that will gen-
erate NuSMYV code for Simulink basic block for relational
operator block as 1llustrated 1n FIG. 2 1s given 1in Appendix 3.
Developing such pseudo codes constitute the preprocessing
step of the algorithm.

In the first step 102, the Simulink model i1s parsed. In
parsing the model, the Stmulink model 1s read from its textual
representation, nformation irrelevant for the translator
involving the graphics of the model (like color, font size, etc.)
1s discarded, and information regarding blocks and sub-
systems, mput and output ports connections, block specific
parameters, inter-connection of blocks, etc. 1s extracted.

A graph like data structure 1s used to store information read
from the Simulink model 1n the first step 102 of algorithm. A
node of the graph represents a basic Simulink block and
contains mnformation extracted from the mput file. The par-
ents of a child node are all nodes whose output ports are
connected to the input ports of the child node. The children
nodes ol a parent node are all nodes whose 1put ports are
connected to the output ports of the parent node. If a node 1s
for a block of type Sub System, then this node will also
contain a list of nodes for all blocks present in the Sub System.

In the second step 106, the nodes of the graph are populated
with type information for their input and output ports. In order
to compute the type information for the input and output ports
of each subsystem, a sub-routine PopulateSubsystem 1s
executed starting with the outermost block. In PopulateSub-
system, a walk through the output of the parsing step 102 (the
first step described above) 1s performed such that the type
information of the mput ports of a block 1s made the same as
the output ports from the preceding block.

Output signal types for a block are determined from the
input ports type and block specific parameters (except for a
block 1n the source library for which the output signal type
can directly be inferred from the block parameters only). For
determining the output port signal type, the execution seman-
tics of Stmulink provide that a) the output signal type of a
block should be same as that of the input and block parameter
type and all vector type inputs and b) all vector input types and
parameters of a block should be of same size. So, while
populating blocks with type information, 1f any of the mputs
or the block parameters 1s of the type vector, then the output
type 1s concluded to be of the type vector of the same dimen-
s1on; otherwise, 11 all input and block parameters are scalar,
then the output type 1s concluded as being of the type scalar.

As shown 1n FIG. 15, the sub-routine 106 1s executed for a
sub-system block which 1s passed as a parameter (block-s) to
the routine at 114. Block 1 (inside of block-s) of the source
library 1s selected at 116. At 118, 11 type information of the
output ports of block 1 has not been determined and can be
determined, control 1s passed to 120; else, control 1s passed to
130. At 120, the type information for the output ports of block
11s determined which will be the input type for all input ports
connected to the output port of block 1. Now, the sub-routine
PopulateBlock (described 1 210) 1s called for all blocks
connected with the output port of block 1 1n the loop that
includes steps 122, 124, 126, and 128.

Once all blocks connected to block 1 are processed, control
1s transierred to 130. At 130, 1f any more unprocessed source
blocks remain to be processed, then control 1s passed to 132
where 1 1s incremented and flow returns to the block 116.

After all block 1’s have been processed, control 1s passed to
134. Now all the subsystems blocks inside block-s are pro-
cessed to check for any unpopulated source blocks. This
processing 1s done to check for any sub-systems which do not
have any input port, hence they will not be processed as they
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are not 1n the path of children nodes of any of the source
library blocks of the top-most system.

At134, block ks selected, which 1s a sub system block and
1s 1nsi1de block-s, and control 1s transterred to 138. At 138, 11
sub-system block k has any source blocks which are not yet
populated, then the PopulateSubsystem routine 106 1s
executed for sub-system block k at 140, and control 1s trans-
terred to 142 to determine whether there are any more sub-
system block k’s to process. If there are, then control 1s
transierred to 136 where k 1s imncremented and control 1s
returned to 134 to select the next sub-system block for pro-
cessing. If condition at 142 1s false, sub-routine 106 ends.

Sub-routine 210 as shown in FIGS. 1c and 1d 1s used by the
PopulateSubsystem routine 106 for populating the input ports
of a block and, if possible, to calculate the output port types
for a block. The sub-routine 210 will also populate the 1nput
and output ports of children blocks assuming that it 1s possible
to do so from the information acquired about the mnput ports.

The sub-routine 210 needs three parameters shown at 212
to be passed by the caller. These parameters are a) the block to
be populated, block-1, b) the Type of the mput port to be
assigned, n, and c¢) the port number of block which 1s to be
assigned with the type passed as parameter, X.

In first step o1 210, the input port x of block-1 1s assigned as
type n at 214 and control passes to 216. If block-j 1s of type
sub-system, then control 1s transferred to 242; otherwise,
control 1s transterred to 218. At 218, 1f any decision regarding
the output type of block-j can be made (given the 1nput port
types populated so far and block parameters), then control 1s
passed to 220. An example involving the decision related to
the output port type 1s the following: for the Add block, 11 the
input port which has been populated now 1s a vector, then the
output type will also be of the type vector of same size,
irrespective of the type of other ports; also, 11 all of the input
ports of the Add block have been populated and are found to
be scalar, then the output type will also be scalar. This pro-
cessing 1s according to Simulink execution semantics
described above.

At 220, the output port type of block-j 1s determined; this
output port type will be the same as the input type for block
input ports which are connected to block-1. If block-] 1s an
Outport, then control 1s passed to 232 of F1G. 1d; else, control
1s transferred to 224 so as to populate the input ports of the
blocks connected to block-j with type information and to also
determine the output ports type, if possible. At 224, block-k
connected to the output port of block-j 1s selected, and control
1s transierred to 228 where the PopulateBlock subroutine 106
1s executed for block-k, after which control 1s passed to 230.
At 230, 11 any more k blocks remain to be processed, control
1s passed to 226 which increments k and passes control back
to 224.

If at 222 control 1s passed to 232 then, at 232, a check 1s
made to determine 1f the sub-system which contains the
block- 1s the outermost block. If block-j 1s the outermost
block, then block-1 will not have any block connected to its
output port and the routine terminates; otherwise, control 1s
transferred to 234 where a block-1 connected to the output
port of the subsystem contaiming block-1 1s selected, and
block 1 1s connected to the port of sub-system which has the
same port number as block-1. Then control 1s transierred to
236 where the PopulateBlock 1s executed for block-1. All such
1 blocks are processed in the loop that includes 238, 240, 234,
and 236, after which the routines terminate.

It at 216, block-j 1s found to be a sub-system block, control
1s passed to 242. At 242, block-m, which 1s an mport having
the parameter port number ‘X’ (passed as a sub routine param-
eter), 1s selected and 1s made to be type ‘n’ after which control
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passes to 244 where, for all blocks connected to block m, the
sub-routine Populateblocks 1s called at 246. If not all blocks
connected to block m are processed as determined at 248, p 1s
incremented at 250 and control passes back to 244. When all
such blocks have been processed as determined at 248, the
sub-routine terminates.

It 1s to be noted that the second step 106 1s guaranteed to
terminate as the model has a fixed number of blocks.

After processing at 106, some of the input or output ports
may still remain unpopulated, which can happen 1n the case
where there 1s an mput port in the feedback path of a signal. In
this case, all graph nodes having any input ports or output
ports type unpopulated are made to be scalar at 108.

At 110, the final file containing the NuSMYV model 1is
written. More specifically, the routines from the pre-process-
ing step are used to write the NuSMYV model such that each
basic block 1s replaced by its equivalent modules(s). Here
again, sub-systems are translated first in order to respect the
hierarchy 1n the model. The NuSMYV model 1s output at 112.

In one embodiment, the translator 100 can be executed on
a computer 150 (FIG. 5) that includes a processor 152, a
memory 154, an mnput 156, and an output 158. The processor
152 executes the translator 100 which 1s stored 1n the memory
154 along with the data structure and the Simulink model.
The memory 154 may be a hard drive, a flash memory, a
floppy drive, a CD and/or DVD drive, and/or any other suit-
able memory device that stores data structure and the Sim-
ulink model. The mput 156 may be a mouse, a keyboard, a
disk drive and/or other device that can be used by a user to
input the Simulink model and to mnitiate execution of the
translator 100. The output 158 may be a display, a printer, a
disk drive and/or other device that can be used to provide the
NuSMYV as an output.

However, the translator 100 can be performed on other
devices such as an ASIP, programmable field arrays, dedi-
cated circuits, etc.

Pseudo code corresponding to the translator 100 1s given in
Appendix 2 which follows Appendix 1 at the end of this
specification. This pseudo code implements steps 1, 2, and 3
as described above.

The following 1s an example 1involving a typical avionics
triplex sensor voter. This example 1s explained more fully
below. Digital thight control systems utilize redundant hard-
ware to meet high reliability requirements. Use of redundant
hardware poses two problems: distinguishing between opera-
tional and failed units, and computing the “mean” value of the
data from various operational units for use by other compo-
nents. A key part of redundant systems focuses on managing
redundant sensors to provide high integrity measurement for
use by down-stream control calculations. The present
example considers a generic voter algorithm that manages
three redundant sensors. This class of algorithms 1s applicable
to a variety of sensors used in modern avionics, including rate
gyros, air data sensors, surface position sensors, etc.

Traditionally, performance of such algorithms 1s evaluated
using simulations and detailed design FMEASs by tuning vital
parameters that influence the performance. Instead, 1n accor-
dance with various embodiments of the present invention as
claimed below, the correctness of the avionics triplex sensor
voter design 1s formally verified by translating a Simulink
model of this avionics triplex sensor voter 1nto a correspond-

ing NuSMYV model and then checking the NuSMV model by
use of the NuSMYV model checker.

Accordingly, this avionics triplex sensor voter 1s first mod-
cled as a Stmulink model 300 using Simulink. The Simulink

model 300 of this typical avionics triplex sensor voter 1s
illustrated 1n FIG. 3a.
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Second, the Simulink model of this avionics triplex sensor
voter 1s translated by the translator 100 described above 1nto
a NuSMV model using the translation algorithm described
herein. Third, the NuSMV model checker 1s used to verily
this NuSMYV model, which effectively verifies the Simulink
model, which in turn effectively verifies the avionics triplex
sensor voter. This procedure 1s illustrated in FIG. 4.

As shown 1n FIG. 4, a Stmulink model 400 1s input to the
translator 100, and the translator 100 outputs a NuSMV
model 402 to a NUSMYV model checker 401. Both the
NuSMYV model 402 and CTL/LTL properties 404 of NuSMV
are mput to the NuSMV model checker 406. The NuSMV
model checker 406 returns a Yes 408 11 the design 1s verified
or otherwise returns a violating system run 410 indicating that
the design violates its requirements.

The NuSMYV model checker can execute on the computer
150 or on any other computer or on any other suitable device.

The avionics triplex sensor voter modeled as the Simulink
model 300 takes mputs from three sensors and produces a
single reliable sensor output. Each sensor produces a mea-
sured data value indicated as 1nput signals at 502 1n FIG. 3qa
and a self-check bit indicated as inputs valid at 504 in F1G. 3a.
The selif-check bits indicate whether or not the sensor con-
siders itself to be properly operational, 1.e., whether the sen-
sor output 1s valid.

In operation, all valid sensor data are combined by the
avionics triplex sensor voter modeled as a Simulink model
300 to produce a single output at 588. I three sensors are
available, a weighted average 1s used 1n which an outlying
sensor value 1s given less weight than those that are 1n closer
agreement. IT only two sensors are available, a simple average
1s used. If only one sensor 1s available, 1ts output becomes the
voter output. A faulty sensor value i1s not used in failure
comparisons or 1n the production of the output signal.

A Taulty sensor can be detected and eliminated by (1) not
using any sensor iput whose own self-check bit 1s false, (11)
next comparing all sensor values two at a time such that, 1f any
difference exceeds a “magnitude threshold”, a “magnitude
error’”’ for the corresponding sensors 1s set and such that, 11 the
“magnitude error” persists longer than the “magnitude
threshold™”, a “persistent miscompare” 1s set at 640, (111) flag-

ging sensor 2 as the source of a persistent sensor error 1f

sensors 1 and 2 have a “persistent miscompare™ and so do
sensors 2 and 3 and not using sensor 2, and (1v) outputting a
value dependent on the self check bit 1f only two sensors are
valid and they miscompare.

The steps described 1n (11) and (111) above cannot be per-
formed 1f only two sensors are valid because three valid
sensors are required for step (111). In step (1v), if only two
sensors are valid (1.e., their self-check bits are true) and their
values exceed the magmitude threshold, then a simple average
of their output values 1s provided as the voter output. In step
(1v), 11 only one sensor 1s valid (1.e., 1ts seli-check bit 1s true)
and 1ts value exceeds the magnitude threshold, then its output
value 1s provided as the voter output.

Some abstractions to the original sensor voter model can be
made to make 1t amenable to be fed as an 1nput to the trans-
lator 100. For example, data that sensors measure 1s assumed
to be mtegers and not floating point numbers as 1n the original
model. It may also be assumed that there cannot be a state in
which all three sensors have failed. Additionally, basic blocks
corresponding to a lag filter and other components that may
be needed to remove “noise” from signals are omitted as a
matter of convenience and, therefore, the input does not have
these parameters.

The Simulink model 300 1s not part of the invention
claimed herein. However, 1ts parts are described 1n the fol-
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lowing table. The reference number column contains the ret-

cerence numerals of FIG. 3a¢ and the block name column
contains the corresponding Simulink block names.

Reference
Number Block Name
502 Inport
504 Inport
506 Demux
508 Unit Delay
510 Unit Delay
512 Logical Operator
514 Logical Operator
516 Demux
518 Mux
520 Unit Delay
522 Logical Operator
524 Logical Operator
526 Demux
528 Logical Operator
530 Logical Operator
532 Demux
534 Sum
536 Constant
538 Relational
Operator
540 Logical Operator
542 Goto
544 Logical Operator
546 Outport
548 Goto
550 Inport
552 Inport
554 Sum
556 Product
558 Subsystem
560 Demux
562 Mux
564 Logical Operator
566 Demux
50% Mux
570 Logical Operator
572 Goto
574 Demux
576 Mux
578 Logical Operator
580 Logical Operator
582 Subsystem
584 Ground
586 Switch
588 Outport

The subsystem 358 1s shown 1n FIG. 35 and the following
table lists the parts of the subsystem 558. The reference num-
ber column contains the reference numerals of FIG. 35 and
the block name column contains the corresponding Simulink

block names.

Reference
Number Block Name

602 Inport

604 Absolute

606 Constant

60% Constant

610 Switch

612 (Gain

614 Sum

616 Unit Delay

618 Subsystem

620 (oto

622 Relational
Operator



-continued -continued
Reference Reference
Number Block Name 5 Number Block Name
624 Inport 660 Demux
626 Ground 662 Mux
628 Switch 664 Constant
630 Outport 666 SUI
632 Inport 668 Mux
634 Gain 10 670 Product
636 Ground 672 Switch
638 Logical Operator 674 Demux
640 Outport 676 Product
678 Demux
680 Sum
The subsystem 382 1s shown 1n FIG. 3¢ and the following 5 682 Sum
table lists the parts of the subsystem 582. The reference num- 684 Constant
ber column contains the reference numerals of FIG. 3¢ and 222 Pgm{t t
the block name column contains the corresponding Simulink 00 S;I::GEH
block names. 607 Product
20 694 Min max
696 Outport
Reference
Number Block Name The NuSMYV code corresponding to the full model is long
650 Inport 55 and hence only the code corresponding to the “Time magni-
652 Inport tude” sub-system 1s shown below. This code 1s automatically
222 EEHH;”X generated by the translator 100. Block and sub-system names
658 Demux as found in the Simulink model are provided (automatically

US 7,698,608 B2

by the translator 100) as comments to make 1t more readable.

rREE SUBSYSTEM NAME timeMagnitud g™ % ko sk sowssodkod ok ok s
MODULE timeMagnitude_ 33(Signal, persistenceThld, Valid)

VAR

Ground?2 : Ground1( );
Groundl : Ground1( );
GoodStep : Constantl (GoodStep_ CONSTANT);

BadStep : Constantl (BadStep_ CONSTANT);

Gain2 : Gainl(persistenceThld, Gain2_ GAIN);

abs : abs_ 34(Signal);

Switchl : SwitchMixed_ 4(Valid, Groundl.out, abs.out, Switchl THRESHOLD, 0);

Switch?2 : SwitchMixed_ 5(BadStep.out, GoodStep.out, abs.out,

Switch2 THRESHOLD, 0);

Gainl : Gain3(Switch2.out, Gainl__ GAIN);
sSuml : Add3_ Ip2(Gainl.out, UnitDelay.out, 0, 0);
varLim : varL.im_ 35(Gain2.out, Ground2.out, Suml.out);
UnitDelay : UnitDelay3__m32767__32767(varLim.out,
UnitDelay_ INITCONDITION);
RelationalOperator : RelationalMixed_ 2(persistenceThld, varLim.out, 3);
vectorAnd : vectorAnd_ 36(Valid, RelationalOperator.out);

DEFINE

GoodStep_ CONSTANT = -1;
BadStep_ CONSTANT = 1;

Gain2_ GAIN := 2;

Switchl THRESHO
Switchl_ THRESHO
Switchl_ THRESHO
Switch2  THRESHO
Switch2_ THRESHO
Switch2_ THRESHO
Gainl GAIN[0] := 1
Gainl__GAIN[1] :="
Gainl__GAIN[2] := 1;

UnitDelay INITCON:
UnitDelay  INITCON]
UnitDelay_ INITCONDITION[2] :=

outl[0] := Switchl.out[O];
outl[1] := Switchl.out[1];
outl[2] := Switchl.out[2];
out2[0] := vectorAnd.out[O];
out2|1] := vectorAnd.out
out2[2] := vectorAnd.out[2];

-2

LD[O] :
LD[
LD[
LD[
LD[

p

LD[

N = O N = O

1];

DITION[0] :=
DITION[1] :=
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-continued

out3[0] := varLim.out[0];
out3[1] := varLim.out[1];
out3[2] := varLim.out[2];
-- elRRsekeeesr® GROUND BLOCK WITH 1-COMPONENT OUTPUT

ockok ek dkkokRhckekokekoiek

MODULE Groundl
DEFINE
out :=0;
--FEE CONSTANT BLOCK WITH 1-COMPONENT CONSTANT VALUE ks
MODULE Constantl ( value )
DEFINE

out := value;
--#k BLOCK FOR GAIN OPERATOR WHERE BOTH INPUT AND GAIN ARE SCALAR

SRR R K

MODULE GamUnit ( inl, gain )
DEFINE
out ;= ml * gain;
--*% GAIN BLOCK WITH 1-COMPONENT INPUT *** gain ALSO HAS DIMENSION **
MODULE Gainl ( inl, gain )
VAR
gainl : GainUnit { inl, gain );
DEFINE
out := gainl.out;
ek BLOCK FOR ABS OPERATOR WHERE INPUT IS A SCALAR *#s##k
MODULE AbsUnit ( inl )
DEFINE
ouft := case
inl >= 0 :1nl;
1:0-1nl;
€Sac;
-k ABS BLOCK WITH 3-COMPONENT INPUT ##sermwss
MODULE Abs3 ( 1nl )
VAR
absl : AbsUnit ( in1[0] );
abs2 : AbsUnit ( 1n1[1] );
abs3 : AbsUnit ( inl1[2] );

DEFINE
out|0] := absl.out;
out|1] := abs2.out;
out|[2] := abs3.out;

——*****SUB_S;STEM NAME -y %% % sk ok s sk sk sk ook o
MODULE abs_ 34(_ 1)

VAR
Abs 1 :Abs3(_1);
DEFINE
out|0] := Abs__1.out[O];
out[l] :=Abs_ l.out[1];
out[Z] := Abs__1.out[2];

--*% SWITCH BLOCK FOR 2 INPUTS WITH 1 COMPONENT * %%k
Rk THREE CONDN ARE: GE =0, G =1, NEQZ = 2 ##¥¥*
MODULE SwitchUnit ( 1inl, 1n2, ctrl, thrshold, condn)
DEFINE
out := case
condn = 0 & ctrl >= thrshold : 1nl;
condn = 0 & !(ctrl >= thrshold) : 1n2;
condn =1 & ctrl > thrshold : 1nl;
condn =1 & !(ctrl > thrshold) : 1n2;
condn =2 & ctrl !=0 : 1nl;
condn =2 & !(ctrl '=0) : 1n2;
€Sac;
MODULE SwitchMixed_ 4( inl, in2, ctrl, threshold, condn)
VAR
Switchl : SwitchUnit{ in1[0], in2_ vector[0], ctrl[0], threshold[0], condn );
Switch2 : SwitchUnit( in1[1], in2_ vector[1], ctrl[1], threshold[1], condn );
Switch3 : SwitchUnit( in1[2], in2_ vector[2], ctrl[2], threshold[2], condn );

DEFINE
in2_ vector[0] = 1n2;
in2_ vector[1l] :=1n2;
in2_ vector[2] = 1m2;

out[0] := Sﬁfifcjll.ﬂut;
out[1] := Switch2.out;

out[2] := Switch3.out;

MODULE SwitchMixed_ 5( mnl, in2, ctrl, threshold, condn)
VAR
Switchl : SwitchUnit( in1_ vector[O], in2_ vector[0], ctrl[0], threshold[0], condn );
Switch2 : SwitchUnit( in1_ vector[1], n2_ vector[1], ctrl[1] 1], condn );

—t

nreshold
Switch3 : SwitchUnit( in1_ vector[2], in2_ vector[2], ctrl[2], threshold[2], condn );

[—
,

14
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-continued
DEFINE
inl_ vector[0] :=1nl;
inl_ vector[1l] :=1nl;
inl_ vector[2] :=1nl;
in2_ vector[0] = 1n2;
in2_ vector[l] :=1n2;
in2_ vector[2] = 1m2;

out[1] := Switch2.out;

out[2] := Switch3.out;

MODULE Gain3 ( inl, gain )
VAR
gainl : GainUnit ( in1[0], gain[0] );
gain?2 : GainUnit ( in1[1], gain[1] );
gain3 : GainUnit ( in1[2], gain[2] );
DEFINE
out[0] := gainl.out;

out[0] := Switch1 .out;
o

out[1] := gain2.out;
out[2] := gain3.out;
Rk ADD OPERATOR BLOCK FOR 2 SCALAR INPUT *** SIGNSAREO: +,1: -

ROk

MODULE AddUnit_ Ip2 ( inl, in2, signl, sign2 )

DEFINE
templ := case
signl =0 :1nl;
signl =1 :0 - 1nl;
€Sac;
temp2 := case
sign2 =0 : 1n2;
sign2 =1 :0 - mm2;
€sac;

out :=templ + temp?2 ;
--*2E ADD BLOCK FOR 2 VECTOR INPUT(S) EACH WITH DIMENSION 3 ##ss®kx
MODULE Add3__Ip2 ( inl, 1n2, signl, sign2 )
VAR
addl : AddUnit_ Ip2 (1mn1[0], in2[0], signl, sign2 );
add? : AddUnit_ Ip2 (mnl[1], 1in2[1], signl, sign2 );
add3 : AddUnit_ Ip2 (1nl[2], in2[2], signl, sign2 );
DEFINE
out|0] := addl.out;
out[1] := addZ.out;
out[Z] := add3.out;
-waeersmr MINMAX OPERATOR BLOCK FOR 2 SCALAR INPUT ##sssskrs
-waerERr OPERATORS ARE O :min, 1 : max % sskmss
MODULE MinMaxUnit_ Ip2 ( inl, in2, operator )
DEFINE
templ :=1nl;
temp2 := case
operator =0 & templ <1n2 : templ;
operator = 1 & templ > 1n2 : templ;
1:1n2;
€SAac;
out :=temp2;
-wEEer MINMAX BLOCK FOR 2 VECTOR INPUT(S) EACH WITH DIMENSION 1 ##%%=
MODULE MinMax1_ Ip2 ( inl, in2, operator )
VAR
minMax1 : MinMaxUnit__Ip2 ( 1nl, 1n2, operator );
DEFINE
out := minMax]1.out;
-reeRR T MINMAX OPERATOR BLOCK FOR MIXED INPUT *#%%
__$$$$$$$SIGNS ARE 0 . +, 1 - L i e
MODULE MinMaxMixed_ 1( inl, in2, operator)
VAR
minmax1 : MinMaxUmit_ Ip2( inl_ vector[0], in2[0], operator );
minmax2 : MinMaxUmit_ Ip2( inl_ vector[1l], n2[1], operator );
minmax3 : MinMaxUmit_ Ip2( inl_ vector[2], in2[2], operator );
DEFINE
inl_ vector[O] :=1nl;
inl_ vector[1l] :=1nl;
inl_ vector[2] :=1n1;

I

ek
|
I

ek

 —

out[0] := minmax1.out;
out[1] := minmax2.out;
out[2] := minmax3.out;

16
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-continued

--FERREMINMAX OPERATOR BLOCK FOR MIXED INPUT *** SIGNS ARE O : +, 1 ; —%%*
MODULE MinMaxMixed_ 2( inl, in2, operator)
VAR
minmaxl : MinMaxUnit_ Ip2( 1in1[0], in2_ vector[O], operator );
minmax2 : MinMaxUmit_ Ip2( mnl1[1], n2_ vector[1], operator );
minmax3 : MinMaxUnit_ Ip2( in1[2], in2_ vector[2], operator );

 —

DEFINE
in2_ vector[0] :=1n2;
in2_ vector[1l] :=1n2;

in2_ vector[2] :=1n2;
out[0] := minmax1.out;
out[1] := minmax2.out;
out[2] := minmax3.out;
MODULE varLim_ 35(_1,_ 2, 3)
VAR
protectl : MinMax1_ Ip2(__1,__2,0);
_ 5 :MinMaxMixed_ 1(protectl.out, _ 3, 1);
protect2 : MinMax1_ Ip2(_1,_ 2,1);
VarLim__ 1 : MinMaxMixed_ 2(_ 5.out, protect2.out, 0);
DEFINE
out[0] := VarLim__1.out[O];
out[l] := VarLim_ 1.out[1];
out[2] := VarLim__1.out[2];
--*E UNIT DELAY BLOCK FOR SCALAR INPUT
MODULE UnitDelayUnit._ m32767_ 32767 ( inl, initcondn )
VAR
out : =32767 .. 32767 ;
ASSIGN
init ( out ) := initcondn;
next ( out ) :=1nl;
-k UNIT DELAY BLOCK FOR VECTOR INPUT WITH DIMENSION 3
MODULE UnitDelay3__m32767_ 32767 ( inl, initcondn )
VAR
unitDelayl : UnitDelayUnit._m32767_ 32767 ( 1nl1[0], initcond
unitDelay?2 : UnitDelayUnit m32767_ 32767 (inl1[1], mitcond
unitDelay3 : UnitDelayUnit._ m32767_ 32767 ( 1nl1[2], initcond
DEFINE
out[0] := unitDelay1.out;
out[1] ;= unitDelay2.out;
out[2] := unitDelay3.out;
-kt RELATIONAL BLOCK WHERE INPUTS ARE SCALAR #F#®®E
MODULE RelationalUnit ( 1inl, in2, operator )

= =
—
M gt

=
=

DEFINE
out := case
operator =0 : inl = 1n2;
operator =1 :inl != 1n2;

operator =2 : il <in2;
operator =3 :inl <= 1n2;
operator =4 : inl >=in2;
operator =5 : mml >1n2;
€Sac;
--FREERLOGICAL OPERATOR BLOCK FOR MIXED INPUT ###*=*
MODULE RelationalMixed_ 2( inl, in2, operator)
VAR
relationall : RelationalUnit( inl_ vector[0O], in2[0], operator );
relational?2 : RelationalUnit( in1_ vector[1], in2[1], operator );
relational3 : RelationalUnit( inl_ vector|2], in2[2], operator );

DEFINE
inl_ vector[O] :=1nl;
inl_ vector[1l] :=1nl;
inl_ vector[2] :=1m1;

out[0] := relationall.out;
out[1] := relational2.out;

out[2] := relational3.out;
- LOGICAL OPERATOR BLOCK FOR 2 SCALAR INPUT

SRR R RR R R R KRR Rk Rk
#E SIX CONDN ARE 0 : AND, 1: OR, 2: NAND, 3 : NOR, 4: XOR, 5 : NOT **
MODULE LogicalUnit_ Ip2 ( inl, mn2, operator )
DEFINE
inl_ bool :=1nl = 0;
in2_ bool :=1m2 !=0;
out := case
operator =0 : inl__bool & 1n2_ bool ;
operator=1 :1nl_ bool | n2_ bool ;
operator =2 : ! (1nl__bool & 1n2__bool );
operator=3 :! (1mml_bool | in2_ bool );
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-continued

operator =4 : mml_ bool xor n2_ bool ;
operator =5 : ! inl__bool ;
€Sac;

20

-k LOGIC BLOCK FOR 2 VECTOR INPUT(S) EACH WITH DIMENSION 3

MODULE Logical3_ Ip2 ( inl, mn2, operator )
VAR

logl : LogicalUmit_ Ip2 ( in1[0], n2[0], operator );

log2 : LogicalUnit_ Ip2 (1nl[1], in2[1], operator );

log3 : LogicalUnit_ Ip2 ( in1[2], in2[2], operator );
DEFINE

out|0] :=logl.out;

out[1] :=log2.out;

out|2] :=log3.out;

_xeestSUBSYSTEM NAME :vectorAnd* s ssss s s exes
MODULE vectorAnd__36(__1, _2)

VAR
And_ 1 : Logical3__Ip2(__1,__2,0);
DEFINE
out[0] := And__l.out[0];
out[1] :=And_ l.out[1];
out[2] :=And_ l.out[2];

The execution semantics of Simulink 1s different {from that
of NuSMYV. It 1s assumed that one sample time 1n Simulink 1s
equivalent to one execution step (modeled by a transition
from one state to another) 1n the NuSMYV model so that the
translator 100 preserves the behavior of the given Simulink
model. Now, given a Simulink model along with mnputs of
certain types (scalar/vector of a particular dimension), there
ex1sts an equivalent NuSMV model, 1.e., the set of behaviors
of the Simulink model 1s the same as those of the NuSMV
model. In other words, for a given Simulink model, the
NuSMYV model generated by the translator 100 varies with the
input type. The main underlying reason 1s that Simulink
accepts mputs of various types for its basic blocks (type
matching and conversion 1s taken care of during simulation),
whereas NuSMV needs type imnformation to be specified in
the code 1tsell. For a particular basic block 1n Simulink, the
equivalent module 1n NuSMYV 1s written depending on the
type of input to the block. Consequently, the NuSMV model
1s different for different types of input even though the under-
lying structure (blocks, sub-systems and their inter-connec-
tions) 1s the same.

NuSMYV, like any other model checking tool, takes a sys-
tem model and a functional requirement as mputs and deter-
mines whether the system model satisfies the functional
requirement. The model checking tool of NuSMYV provides a
yes/no answer depending on whether the system satisfies the
requirement or not. This process 1s defined as associating
verification functional characteristics to the system model.

If the system model does not meet the specification,
NuSMYV model checker also outputs a system run violating,
the requirement. This can be used for de-bugging the system
design. Since this 1s output 1n NuSMYV notation, 1t would be
usetul to translate this run back into Simulink notation for
playback.

Theretfore, there can be provided a reverse translator 412
(FIG. 4) that takes the violating system run 410 produced by
NuSMYV and translates i1t back mto a textual notation 414
involving the sub-system and block names and structure
exactly as 1n the given Simulink model. This routine 1s a
scripting algorithm that re-writes the violating system run
410 1n NuSMYV notation mto Stmulink notation. This reverse
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translator 412 also works with respect to the execution
semantics mentioned in the previous section. The reverse
translator 1s a simple algorithm that takes the violating run as
provided by NuSMYV and replaces certain characters 1n that
run by those that are specific to Simulink. This process pro-
duces a run in the notation that 1s understandable by a Sim-
ulink user.

Certain modifications of the present invention have been
discussed above. Other modifications of the present invention
will occur to those practicing 1in the art of the present inven-
tion. For example, the translator 100 as described above
receives a textual representation of a Stmulink model as an
input and outputs 1ts equivalent NuSMYV model. However, the
translator 100 can be arranged to receive other simulation
models and to translate them as models suitable for checking

by other model checkers, such as SMV and SAL, whose
notation 1s similar in structure to that of NuSMV.

Accordingly, the description of the present invention 1s to
be construed as illustrative only and 1s for the purpose of
teaching those skilled 1n the art the best mode of carrying out
the invention. The details may be varied substantially without
departing from the spirit of the invention, and the exclusive
use ol all modifications which are within the scope of the
appended claims 1s reserved.

APPENDIX 1

List of basic blocks supported by the translator

Signal routing library
Demux and mux blocks
Switch block
Selector block
Multi-port switch, index vector blocks
Merge block
Logic and bit operations library
Relational block
Logical block
Interval test block
Interval test dynamic block
Compare to zero, compare to constant blocks
Math operations library
Sum, add, subtract and sum of elements blocks

Product, divide and product of elements blocks
Abs block
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APPENDIX 1-continued APPENDIX 3
List of basic blocks supported by the translator Pseudo code for preprocessing step for
Relational operator block
Unary minus block S
Sign block writeRelationalBlock{(int ip1, int 1p2, 1nt op, char operator[2])
Bias block write “module _ relational operator(inl, in2)”
Min-max block // write 1n new line
Gain block write “DEFINE”
Sources library for1 < 0 to op-1
Ground block 10 /fwrite 1n new line
Constant block write “out[* + 1+ 7]:="
In port block ifipl ==1
Uniform Random Number write “mml1[0]”
Step else
Counter Free Running write “inl[“+ 1+ 7]
Counter Limited 15 write operator
Read From File ifip2 ==1
Discontinuities library write “inl[0]”
Saturation block else
Saturation dynamic block write “ml[* +1+ 7]
Dead zone block write ;"
Dead zone dynamic block 50
Wrap to zero block
Coulomb and vicious function block
Discrete blocks library , , ,
Unit delay and integer delay blocks What 1s claimed 1s:
Ports and Subsystem 1. A method implemented by a computer for configuring a
| Subsystem block source model for formal verification comprising:
Sinks blocks Library 25 o . :
Out port Block recerving the source model as an input, wherein the source

model has information about source blocks constructing
the source model;

APPENDIX 2

Translator pseudo code

ConvertSimulink ToNuSMV/( )
Read Simulink .mdl file, extract relevant information.
PopulateSubSystem (ParentSystem)
if any input or output port for a block 1s undetermined
make all such ports type as scalar
WriteSubSystem(ParentSystem )
PopulateSubSystem( sub-system)
for 1 < 1 to numberOfBlocks
do if block—=type == SOURCE
then
for | < 1 to block—=numberOfConnected Blocks
do

// port number -- port in connected block to which block 1s connected
// numberOfComponents - number of components of block output port
PopulateBlock (Connectedblock, portNumber, numberOfComponents)
// to take care of sub-system which does not have any source block
// of type inport
if system != ParentSystem

then

1f check for any sub-system left with un-populated Source port
then PopulateSubSystem(sub-system)
PopulateBlock(block, portNumber, numberOfComponents)

Update input port type of block
If output type 1s not computed and can be computed from this mput port type or variables

of Block
then for 1 <= 1 to numberOfConnectedBlocks
do 1f block—type != sub-system
then PopulateBlock (Connectedblock, portNumber, numberOfComponents)
else PopulateSubSystem(sub-system)
WriteSubSystem(sub-system )
for 1 <= 1 to numberOiBlocks
do 1f block—=type != sub-system
then use written library to writeBlock
write block data 1n current subsystem part

else WriteSubSystem(sub-system)
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parsing each of the source blocks to select certain items of

the information;

directly converting the source blocks to modules of an

output model; and,

using the computer, populating the modules with verifica-

tion functional characteristics corresponding to the
selected items of information.

2. The method of claim 1 wherein the parsing of each of the
source blocks to select certain 1items of the information com-
prises discarding certain 1items of the information.

3. The method of claim 1, wherein the modules comprise
finite state modules.

4. The method of claim 1, wherein the directly converting,
ol the source blocks to modules of an output model comprises
preserving in the output module a hierarchy of the source
model.

5. The method of claim 1, wherein the output model 1s
characterized as being verifiable by a formal verification
method.

6. The method of claim 5, further comprising executing the
formal verification method to verily the output model and
hence the source model.

7. The method of claim 6, wherein the executing of the
tormal verification method comprises reporting violation of
functional requirements of the output model, wherein the
functional requirements are derived from the selected items
ol information.

8. The method of claim 7, further comprising reverse trans-
lating the reported violations into a control tlow.

9. The method of claim 6, wherein the executing of the
formal verification method comprises reporting compliance
of Tunctional requirements of the output model, wherein the
functional requirements are derived from the selected 1tems
ol information.

10. The method of claim 6, wherein the executing of the
formal verification method comprises executing the formal
verification method by using tools having a capability to
model and verity finite state machines.

11. The method of claim 1, wherein the receving of a
source model as an mput comprises receiving a Simulink
model as an 1nput.
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12. The method of claim 1, wherein the directly converting
ol the source blocks to modules of an output model comprises
directly converting the source blocks to modules of a NuSMV
model.

13. The method of claim 12, further comprising executing
a NuSMYV model checker to verity the NuSMV model.

14. The method of claim 1, wherein the recerving of a
source model as an 1nput comprises recerving a Simulink
model as an mput, and wherein the directly converting of the
source blocks to modules of an output model comprises
directly converting the source blocks to modules of a NuSMV
model.

15. The method of claim 14, further comprising executing
a NuSMV model checker to verity the NuSMV model.

16. A computer readable storage medium having program
code stored thereon such that the program code, when
executed by a computer, performs the following functions:

receving the Simulink model as an mmput, wherein the

Simulink model has information about Simulink blocks
constructing the Simulink model;

parsing each of the Stmulink blocks to select certain 1tems

of the information including information on mput and
output ports of the Simulink blocks;

directly converting the Simulink blocks to NuSMYV mod-

ules of an NuSMV model i accordance with the
selected 1items of information; and,

populating the NuSMV modules with verification func-

tional characteristics corresponding to the selected items
of information.

17. The computer readable storage medium of claim 16
wherein the parsing of each of the Stmulink blocks comprises
discarding certain other items of the information.

18. The computer readable storage medium of claim 16,
wherein the directly converting of the Simulink blocks com-
prises preserving in the output module a hierarchy of the
Simulink model.

19. The computer readable storage medium of claim 16,
further comprising verifying that the NuSMYV satisfies func-
tion requirements based on the information.
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