12 United States Patent

US007698476B2

(10) Patent No.: US 7.698.476 B2

Edirisooriya 45) Date of Patent: Apr. 13, 2010
(54) IMPLEMENTING BUFFERLESS DIRECT 5,659,669 A 8/1997 Narukawa et al.
MEMORY ACCESS (DMA) CONTROLLERS 5,918,070 A 6/1999 Moon et al.
USING SPLIT TRANSACTIONS 5,928,346 A 7/1999 Johnson et al.
6,748,479 B2 6/2004 Sano et al.
75 _ . o . 6,832,279 B1 12/2004 Potter et al.
(75) Inventor: ‘(Sglsn)antha J. Edirisoorivya, Tempe, AZ 7.447.810 B2 112008 Edirisooriya
FOREIGN PATENT DOCUMENTS
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) EP 0 525 860 2/1993
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35 PCT Search Report, mailed Apr. 21, 2006, for International Applica-
U.S.C. 154(b) by 0 days. tion No. PCT/US2005/039317; 11 pages.
Office Action received for Chinese Patent Application No.
(21) Appl. No.: 12/264,902 200580033165.8 mailed on May 8, 2009, 20 pages.
_—— Primary Examiner—Alan Chen
(22) Filed Nov. 4, 2008 (74) Attorney, Agent, or Firm—Grossman, Tucker, Perreault
(65) Prior Publication Data & Plleger, PLLC
US 2009/0063726 Al Mar. 5, 2009 (37) ABSTRACT
Related U.S. Application Data According to one embodiment a method for implementing
: : L butiterless DMA controllers using split transaction function-
(63) 8211‘[121181132‘[6%1; oisgpé;atll\?;l 17\124%08/? (7)5’803’ filed on ality 1s presented. One embodiment of the method comprises,
o ’ T generating a write command from a disk controller directed to
(51) Int.Cl. a destination unit, the write command including an 1dentifier,
GO6F 1328 (2006.01) generating a read command from the disk controller directed
GOGF 3/00 (2006.01) to a source unit, the read command including an 1dentifier
(52) U.S.Cl 710722 710/2%: 710/36 which matches the identifier in the write command, the source
58 F'- l-d f Cl """ ﬁt """ S """ b ’ ’ N unit transmitting read data on a split transaction bus, the read
(58) Sle 0 I ?.SS] gla 1fon earclt (o sompe hh t Ohe data including the identifier of the read command, and receiv-
~& dAppHCAHON HIE JOE COLIPICLE SEAtl HSTOLY. ing the read data at the destination unit via the split transaction
(56) References Cited bus 1f the 1dentifier of the read data matches the 1dentifier of

the write command.
U.S. PATENT DOCUMENTS

3/1993 Cadambi et al.

5,191,649 A 20 Claims, 5 Drawing Sheets

(START 505)
Y

CPU PROGRAMS THE DMA CONTROLLER 510

l

DMA CONTROLLER GENERATES WRITE COMMAND TO EXTERNAL
INTERFACE WITH UNIQUE IDENTIFIER (D), BYTE COUNT 520

|

DMA CONTROLLER GENERATES READ COMMAND TC EXTERNAL
INTERFACE WITH SAME INDENTIFIER, BYTE COUNT AS WRITE
COMMAND 530

¥

EXTERNAL INTERFACE CLAIMS READ COMMAND 540

|

EXTERNAL INTERFACE GENERATES READ COMMAND ON EXTERNAL
BUS 550

l

EXTERNAL INTERFACE RECEIVES READ DATA FROM HOST SYSTEM
260

|

EXTERNAL INTERFACE PLACES READ DATA ON SPLIT TRANSACTION
BUS 5§70

)
EXTERNAL INTERFACE ACCEPTS READ DATA ON SPLIT
TRANSACTION BUS THAT MATCHES ID, BYTE COUNT OF WRITE
COMMAND 580

|
C END 585)

U.S. Patent Apr. 13, 2010 Sheet 1 of 5 US 7,698,476 B2

SYSTEM
L OCALMEMORY 100

(DATA)
110
| INPFUT/OUTPUT
MEMORYCONTROLLER PROCESSOR 120
122

SPLITTRANSACTION

| BUS 124
ﬁ H CPU
126

DMA
EXTERNAL BUSINTERFACE CONTROLLER

130 128 |
ExternalBus
132

HOST
- H-
(DATA)
145 HOSTSYSTEM
140

FIGURE 1

U.S. Patent Apr. 13, 2010 Sheet 2 of 5 US 7,698,476 B2

([START _2__Q_5__>
K2

[~ CPUPROGRAMS THE DMA CONTROLLER 210 |
DMA CONTROLLER GENERATES WRITE COMMAND TO MEMORY
CONTROLLER WITH UNIQUE IDENTIFIER (ID), BYTE COUNT 220

I il A b

DMA CONTROLLER GENERATES READ COMMAND TO EXTERNAL
INTERFACE WITH SAME INDENTIFIER, BYTE COUNT AS WRITE
COMMAND 230

|

{ EXTERNAL INTERFACE CLAIMS READ COMMAND 240

|

| EXTERNAL INTERFACE GENERATES READ COMMAND ON EXTERNAL
BUS 250

|

EXTERNAL INTERFACE RECEIVES READ DATA FROM HOST SYSTEM
260

|

EXTERNAL INTERFACE PLACES READ DATA ON SPLIT TRANSACTION
BUS 270

|

MEMORY CONTROLLER ACCEPTS READ DATA ON SPLIT
TRANSACTION BUS THAT MATCHES ID, BYTE COUNT OF WRITE
COMMAND 280

|
(END 285)

FIGURE 2

U.S. Patent Apr. 13, 2010 Sheet 3 of 5 US 7,698,476 B2

(START 305 >

CPU PROGRAMS THE DMA CONTROLLER 310

-
e

) S AN ——
DMA CONTROLLER GENERATES WRITE COMMAND TO EXTERNAL

INTERFACE WITH UNIQUE IDENTIFIER (ID), BYTE COUNT 320

4
DMA CONTROLLER GENERATES READ COMMAND TO MEMORY
CONTROLLER WITH SAME INDENTIFIER, BYTE COUNT AS WRITE
COMMAND 330

A 4

| MEMORY CONTROLLER CLAIMS READ COMMAND 340

A 4

MEMORY CONTROLLER PROVIDES READ DATA ON SPLIT
TRANSACTION BUS 350

4
EXTERNAL INTERFACE ACCEPTS READ DATA ON SPLIT
TRANSACTION BUS THAT MATCHES ID, BYTE COUNT OF WRITE

COMMAND 360

) 4

C END 365)

FIGURE 3

U.S. Patent Apr. 13, 2010 Sheet 4 of 5 US 7,698,476 B2

| START 405 |

‘—‘ CPU PROGRAMS THE DMA CONTROLLER 410

A _ —
DMA CONTROLLER GENERATES WRITE COMMAND TO MEMORY

COTROLLER WITH UNIQUE IDENTIFIER (ID), BYTE COUNT 420

Y . -
' DMA CONTROLLER GENERATES READ COMMAND TO MEMORY
CONTROLLER WITH SAME INDENTIFIER, BYTE COUNT AS WRITE
COMMAND 430

. 2 PO

A 4

MEMORY CONTROLLER CLAIMS READ COMMAND 440

\ 4

MEMORY CONTROLLER PROVIDES READ DATA ON SPLIT
TRANSACTION BUS 450

4

MEMORY COTOLLE ACCEPTS READ DATA ON SPLIT TRANSACTION
BUS THAT MATCHES ID, BYTE COUNT OF WRITE COMMAND 460

(END 465 >

FIGURE 4

U.S. Patent Apr. 13,2010 Sheet 5 of 5 US 7,698,476 B2

C START 505 >
. 2

CPU PROGRAMS THE DMA CONTROLLER 510

l

DMA CONTROLLER GENERATES WRITE COMMAND TO EXTERNAL |
INTERFACE WITH UNIQUE IDENTIFIER (ID), BYTE COUNT 520 |

L

N h /
DMA CONTROLLER GENERATES READ COMMAND TO EXTERNAL
INTERFACE WITH SAME INDENTIFIER, BYTE COUNT AS WRITE
COMMAND 530

-

v .
EXTERNAL INTERFACE CLAIMS READ COMMAND 540

— Y
EXTERNAL INTERFACE GENERATES READ COMMAND ON EXTERNAL
BUS 550

4

EXTERNAL INTERFACE RECEIVES READ DATA FROM HOST SYSTEM
260

Y

EXTERNAL INTERFACE PLACES READ DATA ON SPLIT TRANSACTION
BUS 570

4
EXTERNAL INTERFACE ACCEPTS READ DATA ON SPLIT
TRANSACTION BUS THAT MATCHES ID, BYTE COUNT OF WRITE
COMMAND 580

\ 4

(END 585)

FIGURE 5

US 7,698,476 B2

1

IMPLEMENTING BUFFERLESS DIRECT
MEMORY ACCESS (DMA) CONTROLLERS
USING SPLIT TRANSACTIONS

CROSS REFERENCE TO RELATED PATENT
APPLICATION

The present application 1s a continuation of U.S. patent
application Ser. No. 10/975,803 filed on Oct. 28, 2004, now
U.S. Pat. No. 7,447,810, the contents of which are fully incor-

porated by reference herein in their entirety.

FIELD OF THE INVENTION

The present embodiments of the invention relate generally
to input/output (I/0) processors and, more specifically, relate
to direct memory access (DMA) controllers.

BACKGROUND

Many storage, networking, and embedded applications
require fast input/output (I/0) throughput for optimal perfor-
mance. I/O processors allow servers, workstations, and stor-
age subsystems to transier data faster, reduce communication
bottlenecks, and improve overall system performance by oif-
loading I/O processing functions from a host central process-
ing unit (CPU).

Typically, the CPU(s) 1n the I/O processors program direct
memory access (DMA) controller(s) to move data between
specified sources and destinations, such as between local
memory and host memory. Once the DMA controller 1s pro-
grammed, 1t will generate a read command to the source’s
interface or controller. This controller or iterface will gen-
erate the read command for the source, and once i1t obtains the
read data will place that data on the bus to the DMA control-
ler. Typical DMA controllers include butfers to temporarily
store data when the data 1s moved between sources and des-
tinations, such as between host and local memories. The
DMA controller will accept the read data and store it 1n the
DMA controller data bultfers. At this time, the DMA control-
ler will generate a write command to the destination’s 1nter-
tace or controller. The destination interface or controller will
accept this write command. Finally, the DMA controller pro-
vides the write data being stored 1n the DMA controller data
buflers to the destination interface or controller in order to be
written to the destination.

The use of DMA controller data butffers can lead to
increased area requirements, increased power requirements,
and added complexity to the I/O processor. The use of DMA
controller data builers also slows down performance and
increases costs for I/O processors.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accompa-
nying drawings ol various embodiments of the invention. The
drawings, however, should not be taken to limit the invention
to the specific embodiments, but are for explanation and
understanding only.

FI1G. 1 illustrates a block diagram of one embodiment of a
computer system;

FI1G. 2 illustrates a flow diagram of one embodiment for
implementing buiferless DMA controllers;

FIG. 3 illustrates a flow diagram of another embodiment
for implementing bufferless DMA controllers;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1llustrates a flow diagram of another embodiment
for implementing butierless DMA controllers; and

FIG. 5 illustrates a flow diagram of another embodiment
for implementing butierless DMA controllers.

DETAILED DESCRIPTION

A method and apparatus to implement buiferless direct
memory access (DMA) controllers using split transactions
are described. Reference in the specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment of the
invention. The appearances of the phrase “in one embodi-
ment” 1n various places 1n the specification are not necessarily
all referring to the same embodiment.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled 1n the art, that the
embodiments of the invention may be practiced without these
specific details. In other instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, 1n order to avoid obscuring the present invention.

FIG. 11s ablock diagram of one embodiment of a computer
system 100 to implement bufferless DMA controllers using
split transactions. The system 100 includes a local memory
110, an I/O processor 120, an external bus 132, a host system
140, and a host memory 145. Embodiments of the invention
are not limited to being implemented with local and host
memories, but may generally be implemented between any
source and destination units accessed by an I/0 processor.

The I/O processor 120 further includes a memory control-
ler 122, a split transaction bus 124, a CPU 126, a DMA
controller 128, and an external bus interface 130. Although
embodiments of the invention reference the use of DMA
controllers, alternatively other disk controllers may be used.
The 1I/O processor 120 provides for intelligent I/O with the
help of the CPU 126 and memory controller 122 coupled to
the split transaction bus 124. In one embodiment, CPU 126 1s
a processor 1 the Penttum® family of processors including
the Pentium® II processor family, Pentium® III processors,
and Pentium® IV processors available from Intel Corpora-
tion of Santa Clara, Calif. Alternatively, other CPUs may be
used.

The memory controller interfaces the local memory 110,
and that local memory 110 may include random access
memory (RAM) such as Synchronous Dynamic RAM
(SDRAM). The local memory 154 includes the instructions
and data for execution and use by the CPU 126.

The split transaction bus 124 1s a bus that 1s capable of
supporting explicit split transactions of both read and write
commands. In one embodiment, split transaction bus 124 1s a
XSI on-chip-bus. Alternatively, other split-transaction-ca-
pable buses may be used.

Generally, split transactions split the address and data
information phases of a data transter. Splitting these phases 1s
implemented by using an identifier, for example a Sequence
ID. The address and data phases of the split transaction are
coupled using the identifier. During the address phase, the
requesting unit provides an identifier with command and
attributes.

During the data transfer phase, the unit supplying data uses
the same 1dentifier in order to tie the commands together at
cach umt. During reads, the agent which claimed the read
command will supply data, while during writes the agent that
generated the write command provides data. Additionally, a
byte count may be used, along with the identifier, to couple
the address and data phases of a split transaction.

US 7,698,476 B2

3

In one embodiment, the DMA controller 128 moves data
from local memory 110 to host memory 145, or alternatively,
from hostmemory 145 to local memory 110. The data transfer
may take place without the use of data buffers in the DMA
controller.

For example, to perform a data transfer from the host
memory 145 to the local memory 110, the CPU 126 first
programs the DMA controller 128 to perform the data trans-
ter. The DMA controller 128 will then generate a write com-
mand to the memory controller 122. This write command
includes an Identifier (ID) and, in some embodiments, a Byte
Count. The DMA controller 128 then generates a read com-
mand to the external interface 130 with the same ID and Byte
Count information.

The external interface 130 will then claim the read com-
mand and generate the read command on the external bus 132.
Once the external interface 130 receives the read data from
host system 140, 1t places the read data, with the correspond-
ing ID and Byte Count, on the split transaction bus 124.
Finally, memory controller 122 will accept the read data
because the ID and Byte Count of the read data match the 1D
and Byte Count of the write command the memory controller
122 previously recetved from the DMA controller 128.

In another embodiment, to perform a data transier from the
local memory 110 to host memory 1435, the CPU 126 first
programs the DMA controller 128 to perform the data trans-
ter. The DMA controller 128 will then generate a write com-
mand to the external bus interface 130. This write command
includes an Identifier (ID) and, in some embodiments, a Byte
Count. The DMA controller 128 then generates a read com-
mand to the memory controller 122 with the same ID and
Byte Count information.

The memory controller 122 will then claim the read com-
mand and place the read data from local memory 110, with
corresponding ID and Byte Count, on to the split transaction
bus 124. Finally, external bus interface 130 accepts the read
data on the split transaction bus 124 because the ID and Byte
Count match the ID and Byte Count of the write command the
external bus intertace 130 previously recerved from the DMA
controller 128.

In another embodiment, to perform a data transfer from one
local memory location 110 to another local memory location
110, the CPU 126 first programs the DMA controller 128 to
perform the data transfer. The DMA controller 128 will then
generate a write command to the memory controller 122. This
write command includes an Identifier (ID) and, in some
embodiments, a Byte Count. The DMA controller 128 then
generates a read command to the memory controller 122 with
the same ID and Byte Count information.

The memory controller 122 will then claim the read com-
mand and place the read data from local memory 110, with
corresponding ID and Byte Count, on to the split transaction
bus 124. Finally, the memory controller 122 accepts the read
data on the split transaction bus 124 because the ID and Byte
Count match the ID and Byte Count of the write command the
memory controller 122 previously recerved from the DMA
controller 128.

In another embodiment, to perform a data transier from one

host memory location 145 to another host memory location
145, the CPU 126 first programs the DMA controller 128 to

perform the data transfer. The DMA controller 128 will then
generate a write command to the external bus interface 130.
This write command includes an Identifier (ID) and, 1n some
embodiments, a Byte Count. The DMA controller 128 then
generates a read command to the external bus interface 130
with the same ID and Byte Count information.

10

15

20

25

30

35

40

45

50

55

60

65

4

The external interface 130 will then claim the read com-
mand and generate the read command on the external bus 132.
Once the external intertace 130 receives the read data from
host system 140, 1t places the read data, with the correspond-
ing ID and Byte Count, on the split transaction bus 124.
Finally, external bus interface 130 accepts the read data on the
split transaction bus 124 because the ID and Byte Count
match the ID and Byte Count of the write command the
external bus interface 130 previously recerved from the DMA
controller 128.

FIG. 2 depicts a flow diagram of one embodiment of imple-
menting butferless DMA controllers using split transactions.
More specifically, the flow diagram depicts a data transier
from a host memory to a local memory, under one embodi-
ment of the mvention. At processing block 210, the CPU
programs the DMA controller to perform a data transifer.
Using the split transaction functionality of the bus the DMA
controller generates a write command to the memory control-
ler with a unique 1D and a Byte Count at processing block
220.

At processing block 230, the DMA controller generates a
read command to the external interface (using the source
address) with the same ID and Byte Count as the write com-
mand that was previously given to the memory controller. The
external interface claims the read command at processing
block 240 and generates the read command on the external
bus at processing block 250. Once the external interface
receives the read data from the host system at processing
block 260, it places this data on the split transaction bus at
processing block 270. Finally, at processing block 280, the
memory controller accepts the read data found on the split
transaction bus that matches the ID and Byte Count of the
write command earlier given to 1t by the DMA controller.

FIG. 3 depicts a flow diagram of one embodiment of imple-
menting butferless DMA controllers using split transactions.
More specifically, the flow diagram depicts a data transfer
from a local memory to a host memory, under one embodi-
ment of the mvention. At processing block 310, the CPU
programs the DMA controller to perform a data transfer. The
DMA then generates a write command (using the destination
address) to the external interface with a unique 1D and Byte
Count at processing block 320.

The DMA controller generates a read command (using the
source address) to the memory controller with the same 1D
and Byte Count found 1n the write command at processing
block 330. At processing block 340, the memory controller
claims the read command, and, at processing block 350,
returns the read data onto the split transaction bus. At pro-
cessing block 360, the external interface accepts the read data
found on the split transaction bus that matches the ID and
Byte Count of the write command 1t accepted previously.

FIG. 4 depicts a flow diagram of one embodiment of imple-
menting butferless DMA controllers using split transactions.
More specifically, the flow diagram depicts a data transfer
from one location in local memory to another location in local
memory, under one embodiment of the invention. At process-
ing block 410, the CPU programs the DMA controller to
perform a data transfer. Using the split transaction function-
ality of the bus, the DMA controller generates a write com-
mand to the memory controller with a unique ID and a Byte
Count at processing block 420.

The DMA controller then generates a read command to the
memory controller with the same ID and Byte Count found in
the write command at processing block 430. At processing
block 440, the memory controller claims the read command,
and, at processing block 450, returns the read data onto the
split transaction bus. At processing block 460, the memory

US 7,698,476 B2

S

controller accepts the read data found on the split transaction
bus that matches the ID and Byte Count of the write command
it accepted previously.

FIG. § depicts a flow diagram of one embodiment of imple-
menting bullerless DMA controllers using split transactions.
More specifically, the flow diagram depicts a data transfer
from one location 1n host memory to another location 1n host
memory, under one embodiment of the mnvention. At process-
ing block 510, the CPU programs the DMA controller to
perform a data transfer. Using the split transaction function-
ality of the bus, the DMA controller generates a write com-
mand to the external interface with a unique ID and a Byte
Count at processing block 520.

At processing block 530, the DMA controller generates a
read command to the external interface with the same ID and
Byte Count as the write command that was previously given
to the external interface. The external interface claims the
read command at processing block 540 and generates the read
command on the external bus at processing block 550. Once
the external interface receives the read data from the host
system at processing block 560, 1t places this data on the split
transaction bus at processing block 570. Finally, at processing,
block 580, the external interface accepts the read data found
on the split transaction bus that matches the ID and Byte
Count of the write command earlier given to it by the DMA
controller.

Although FIGS. 2 through 5 present implementing butlier-
less DM A controllers using split transactions 1n the context of
data transfers between and within host and local memories,
other embodiments may be implemented, such as transferring
data between a peripheral and the host memory. Generally the
apparatus and methods presented can be implemented
between any source and destination units between which an
I/0 processor transiers data.

Embodiments of the invention use split transaction func-
tionality provided by split-transaction-capable buses to
implement DMA controllers without data buffers. Removing
data butfers from the DMA controller may result in increased
performance and lower costs, as data 1s moved directly from
one memory to the other memory, mstead of being interme-
diately stored in the DMA data bufifer.

Whereas many alterations and modifications of the present
invention will no doubt become apparent to a person of ordi-
nary skill in the art after having read the foregoing descrip-
tion, 1t 1s to be understood that any particular embodiment
shown and described by way of illustration 1s 1n no way
intended to be considered limiting. Therefore, references to
details of various embodiments are not intended to limit the
scope of the claims, which in themselves recite only those
teatures regarded as the invention.

The mvention claimed 1s:

1. An apparatus, comprising:

an 1put/output processor comprising:

a disk controller to generate a write command and to
generate a read command directed to a source unit,
said write command including a write command 1den-
tifier and said read command including a read com-
mand 1dentifier that matches said write command
1dentifier;

a split-transaction bus to transfer read data, said read
data transmitted on said bus by said source unit in
response to said read command and including said
read command 1dentifier; and

a destination unit to receive said write command and to
remove said read data from said split transaction bus 1f
said write command 1dentifier and said read command
identifier match.

10

15

20

25

30

35

40

45

50

55

60

65

6

2. The apparatus of claim 1, wherein said destination unitis
local memory, and said source unit 1s host memory.

3. The apparatus of claim 1, wherein said destination unit s
host memory, and said source unit 1s local memory.

4. The apparatus of claim 1, wherein said destination unitis
one location 1n local memory, and said source unit 1s another
location 1n local memory.

5. The apparatus of claim 1, wherein said destination unitis
one location 1n host memory, and said source unit 1s another
location 1n host memory.

6. The apparatus of claim 1, wherein said mput/output
processor further comprises:

a central processing unit coupled to the split transaction

bus;

a memory controller coupled to the split transaction bus;

and

an external bus interface coupled to the split transaction

bus.

7. The apparatus of claim 1, wherein said disk controller
does not include butfers.

8. A system, comprising:

a memory; and

an input/output processor having:

a disk controller to generate a write command and to
generate a read command directed to a source unit,
said write command including a write command 1den-
tifier and said read command including a read com-
mand 1dentifier that matches said write command
identifier;

a split-transaction bus to transfer read data, said read
data transmitted on said bus by said source umit in
response to said read command and including said
read command 1dentifier; and

a destination unit to receive said write command and to
remove said read data from said split transaction bus 1f
said write command 1dentifier and said read command
identifier match.

9. The system of claim 8, wherein said disk controller does
not include butfers.

10. The system of claim 8, wherein said iput/output pro-
cessor further comprises:

a central processing unit coupled to said split transaction

bus;

a memory controller coupled to said split transaction bus;

and

an external bus interface coupled to said split transaction

bus.

11. The system of claim 8, wherein said destination unit 1s
local memory, and said source unit 1s host memory.

12. The system of claim 8, wherein said destination unit 1s
host memory, and said source unit 1s local memory.

13. The system of claim 8, wherein said destination unit 1s
one location 1n local memory, and said source unit 1s another
location 1n local memory.

14. The system of claim 8, wherein said destination unit 1s
one location 1n host memory, and said source unit 1s another
location 1n host memory.

15. The system of claim 8, wherein said disk controlleris a
direct memory access controller.

16. A method comprising:

generating, at a disk controller of an mput/output (1/0)

processor, a write command and a read command

directed to a source unit, said write command including

a write command 1dentifier and said read command

including a read command 1dentifier that matches said

write command 1dentifier:

US 7,698,476 B2

7

transmitting read data from said source unit on a split
transaction bus of said I/O processor 1n response to said
read command, said read data comprising said identifier
of said read command; and

receiving said write command at a destination umt of said
I/0O processor and removing said read data from said
split transaction bus, at said destination unit, 1f said write

command i1dentifier and said read command 1dentifier
match.

17. The method of claim 16, wherein said disk controller 10

does not include butters.

8

18. The method of claim 16, wherein said write and said
read commands each comprise a byte count.

19. The method of claim 18, wherein said destination unit
only accepts said read data 1f said byte count of said read
command matches the byte count of said write command.

20. The method of claim 16, wherein the destination unit
and said source unit each selected from the group consisting
of local memory and host memory.

	Front Page
	Drawings
	Specification
	Claims

