United States Patent

US007694181B2

(12) (10) Patent No.: US 7,694,181 B2
Noller et al. 45) Date of Patent: Apr. 6, 2010
(54) AUTOMATED SOFTWARE TESTING 6,269.457 B1* 7/2001 Lane ...cccoceeveveeenuenannnnnn 714/38
FRAMEWORK 6,301,701 Bl 10/2001 Walker et al.
6,542,841 B1* 4/2003 Snyderc.coceeevnnnn.. 702/104
(75) Inventors: Jesse A. Noller, Hudson, MA (US); gﬂ?géﬂg ég Ez) 13? 3882 E‘?Hlfr etta;j il
- 178, inkeretal. 1
E}’gfrt S. Mason, Jr., Uxbridge, MA 7428.663 B2* 9/2008 Morton et al. o...o.ooon... 714/36
7,526,681 B2* 4/2009 Anafietal. 714/38
: . 2003/0093716 A1* 5/2003 Farchietal. ..oovvvvvenn.n.... 714/34
(73) Assignee: Archivas, Inc., Waltham, MA (US) 2003/0233600 Al* 12/2003 Hartman et al. w.o........... 714/32
| | o | 2004/0015866 Al* 1/2004 Estep etal. ...oocoe...... 717/124
(*) Notice: Subject to any disclaimer, the term of this 2004/0054492 Al* 3/2004 Hagerottetal. 702/120
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 539 days. * cited by examiner
(21) Appl. No.: 11/299,572 Primary Examiner—Scott T Baderman

(22)

(65)

(51)

(52)
(58)

(56)

Filed: Dec. 12, 2005

Prior Publication Data

US 2007/0234293 Al Oct. 4, 2007

Int. Cl.
Go6l 11/00 (2006.01)
US. Clo 714/38
Field of Classification Search 714/32,
714/38; 717/124
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
5,021,997 A 6/1991 Archie et al.
5,357,452 A 10/1994 Pio-di-Savoia et al.
5,359,546 A 10/1994 Hayes et al.
5,490,249 A 2/1996 Miller
5,500,941 A 3/1996 @Gil
5,513,315 A 4/1996 Tierney et al.
5,542,043 A 7/1996 Cohen et al.
5,590,330 A 12/1996 Coskun et al.
5,634,002 A 5/1997 Polk et al.
5,751,941 A * 5/1998 Hindsetal. ..ccceveeneen.... 714/38
6,002,869 A 12/1999 Hinckley
6,167,537 A 12/2000 Silva et al.
B

6,182,245 B1* 1/2001 Akinetal. 714/38

400

FFamework

Assistant Examiner—Yair Leibovich
(74) Attorney, Agent, or Firm—David H. Judson

(57) ABSTRACT

A generic testing framework to automatically allocate, 1nstall
and verily a given version of a system under test, to exercise
the system against a series of tests 1n a “hands-oil” objective
manner, and then to export information about the tests to one
or more developer repositories (such as a query-able data-
base, an email list, a developer web server, a source code
version control system, a defect tracking system, or the like).
The framework does not “care” or concern itsell with the
particular implementation language of the test as long as the
test can 1ssue directives via a command line or configuration
file. During the automated testing of a given test suite having
multiple tests, and after a particular test 1s run, the framework
preferably generates an “image” of the system under test and
makes that information available to developers, even while
additional tests 1n the suite are being carried out. In this
manner, the framework preserves the system “‘state” to facili-
tate concurrent or after-the-fact debugging. The framework
also will re-install and verily a given version of the system
between tests, which may be necessary 1n the event a given
test 1s destructive or otherwise places the system in an unac-
ceptable condition.

28 Claims, 6 Drawing Sheets

Framework Laver

‘wrapper’ Script

Resylts Master

Handler Test
| System

408 412

Log Rotate Daemon Database Build
(Per Test) Master Snapshot Installer

424 426 428 432

Snapshot 430

Database Test Cluster 407
Refresh Information || Information —_—
Module Database Database
416 418 420
Cluster Gateway
Health Mount/ 04

Check Verification
436 SYStElTI

Distributed Command Handler

Tools Layer

U.S. Patent Apr. 6,2010 Sheet 1 of 6 US 7,694,181 B2

. ' :
i]
' _execution : E
| request? , '
. ' I
i) |
: ! Yes ‘104 :
i {
: 102{ igetity I_lfr.t.aj.vfu.a_b l_e_,..*,, i :
: Raesources Restar v ! !
) ' I)
I ' Available 3 ' :
| i N I
!) . '
' 106 T Retrleve . - :
| Sottwaze : F |
: S :
i t : : | |
| | |
' 108 Unverified .+ 1 :
' b |
| 'y I
B AARRCEEEEE R :
I B :
110 ----*l Fig 1B -install ' o
| C
| ; ST
! 114 B
' 112 ~ C
. ' I |
: Unavailable, ' |
| R
) { |
{ | '
i I I
i , '
i i :
' !
' ' !
' ' :
: S
Non-Applicable ! . L
TestData State NO . o
. Verified? -
| 124 o *
l o . :
i ' '
' v ‘t' Sync Test : . L Yes
: Depedencios : t)
' Tost Idontity Tost , ! X
Dopendencias | ", N
Dependencles |~ '
120 e ceaemmeen. ' 126 ; : 132

All Tests
Complete?

Figure tA

U.S. Patent Apr. 6,2010 Sheet 2 of 6 US 7,694,181 B2

t

I

 J

146 10ad command Ina

' 7 Nodules Lﬂggmg
148 y 150 V System

154

— Verity Resourca

I*I

Accessibil
v
136
Begin
Install
Instali Method Upgrade Method
v "7t s e v - m = ¥ 178
: ... ‘nnem Exisung
. 160 :
: \erification :
: '
162 v .

Y
Format Locay/ et e | Upgrada Datapase ‘
. atiached Slorage | System
Addition Method ' 166 : .)
Inhertl EXISING ' 180
Satin ":- .| ' PUSHINSIALOS |
" | Updates
' J

164 : 175

PushiGonligurs

'3' v

68 Verification
|
' 172

n
PR . PR

170

*ﬁ__
Y

Push/nsiall Syst
Patches {any langus

Segura system
- - - -
o Bl
174

e
176
Figure 1B HaltfLog Error

E]
- o S B W B OWE Ee W Al e

A

U.S. Patent

<
O

e s Bl em wem e s e Py WF MM O TAR W W O ET ™ EE EE BT B EE W B EE S EE EE S B e jEE G I W R W D B I I BBk AEE Sl SEh BEs A oen el UgE pNE DA DEE WDR DN O SDE G BN GEE NN BNE O BEm B aEm

Apr. 6,2010 Sheet 3 of 6 US 7,694,181 B2

v

Execute
Tests
. 182
184

4
____Translate test {iags
_____ 3| LOQ standarg -
' Ot
----- :
™~

B6 te... »| LOQ standarg
192 190
NO
, 193
- <<Complete?=>

' Yes g4

188

l"-m"m““F”MFMF_-'-_--'mﬂﬂ'_'ﬂ_',- " W .

v 208

Heinstall
Flagged?

* No

210

Are all tests
complete?

v Figure 1C

U.S. Patent Apr. 6,2010 Sheet 4 of 6 US 7,694,181 B2

205

———] —} 207

I =BT Il-iﬁi-ll I=H=11il I|IIIIEEII
1[5‘1-|I*IIHEIIIII\ 206

202

208
=BT
 MIDDLEWARE
DNS MANAGER FIG 3 300
el
309 334 310 312 314
\ 4
GATEWAY \
SROTOCOLS | NFS SMB | CIFS HTTP 3/13 320
316
304~ accesstavern 210 S FIXED CONTENT FILE SYSTEM WEBUI | SNMP
FILE TRANSACTION REQUEST MANAGER ADMINISTRATIVE ENGINE 322
Amn/ ADMINISTRATION 954 | FILE TRANSACTION AND THROUGHPUT SYSTEM CONFIGURATION
306 CORE SYSTEM STORAGE METADATA POLICY
CDMP/ONENTS MANAGER MANAGER MANAGER 326
308 330 / / 328
OPERATING SYSTEM 136

Il / =) Q=]

[=E
=) [=mm f=m=m] (=)

—

[=FErm) (=R (=

332

U.S. Patent Apr. 6, 2010 Sheet 5 of 6 US 7,694,181 B2

| 400
Framework Framework Laver
406 ~ ‘wrapper’ Script

Recylts Database Test | Cluster | 407
Refresh Information || information —_—
Handler
Module Database Database

408 416 418 420

Gateway

Mount/ ‘E"‘l
Verification

System

Cluster

Health

Check
436

Build Cluster

Installer viipe
437 434

Database
Snapshot

428

Log Rotate Daemon
(Per Test) Master

424 426

Snapshot 430 438
Distributed Command Handler

Tools Layer

S06 o08

cthecks the deploy
database tor script execution
rules {Scripts from the
database can be oplionalily
added or dropped)

lakes the
lated] build from
the build server

grabs the selectad
scripls from the Perlorce
sousrce server and executes
them againg the cluder

ingalls
User triggers the the build on the

sarvar from the cluster.
client program

212

then sands resulis o
spacific usersorgenaraliy lo
grindes@archivas.com

214

N

il L
.
.

41
SRR e

' Ij;iii

The emailed resullsare alo
hoded on an Apache web
server

.oy - .ﬂil.* v y!

-1

] F)

T el W r—
-

TR

sz 4 .

Figure §

U.S. Patent Apr. 6, 2010 Sheet 6 of 6 US 7,694,181 B2

teilo, This i3 ar automated email frem Grinder ipnforming you that the nightly Tes: rur is complets. The
dezailds of the i1es: run are below.

Grindar Verzion: :.0.:7%

Daze: 05 08 05

Build: latest

Paccage: fhome/grinder/imp/arc-deploy/package/arc-main~-1.0.527.0.zgz
wlient: dell-z:4
Cluster TPOF: 3

clygsIar: ciuscern
civgter Sizee §

Suize: availablilicy

¥uzkher of Tesrs ran: §

Min Fiip Size:* 1024

Nax FTiie Size: 024

“ax ©ile Lount: 5000

Dirers Resyul=g Lipgs nhr+smae s £ T =14 Avchisrae o frgrsprapy fiprnaw BT narhs SDFavray Yokt T v rra H MY~

R EET RIS Y] O - -

A C8Y containing individual test information is aztached To thig pmail .

0, REGULT, KOZES, CLQCKTINE
availabilizy/04a, 2ASS, Frinder Run, 96.9978:1:1389
availabilicy/04alp, PASS,Grinder Run, 109.803647304
aveilabilicy/06€a, PASE, Grinder Run, $9.39582216983
ava:lan:i;:v;ﬁﬁadp.Enss.”finder Runp, 4€.03203%4303
availabilizys07a, PASS, Grinder Run,58.995764930212
avallghilizy/0Valp, 2ASS, Crinder Run, 93 .58%953034
awailiabrliizy/08a, 2ASS, Zrinder Run, 89.72454%200%
Laity/QBalp, PASS, Zrinder Rin, 2:8, 564842099

‘!r‘

Figure 6

US 7,694,181 B2

1

AUTOMATED SOFTWARE TESTING
FRAMEWORK

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to quality assurance
testing of computer systems and software.

2. Description of the Related Art

There are many well-known approaches to automated test-
ing during the development of a software program or system.
During the feature/test development phase, for example, a
quality assurance engineer may devise a series of static test
cases against which a system under development may be
exercised. A set or collection of test cases 1s sometimes
referred to a test suite.

A known software-testing automation system for testing a
plurality of deployed images that are spread across multiple
software platforms 1s described 1n U.S. Pat. No. 6,662,312. In
this patent, each deployed image includes a test component
configured to accept a connection on a testing port. The test
component for a deployed image 1s inserted 1n a development
environment and 1s then integrated into the image upon
deployment. The system includes a test engine and a user
interface. The test engine 1s configured to run a plurality of
tests on the plurality of deployed images. The test engine runs
a test on an 1mage under test by requesting a connection to the
corresponding test component on the known testing port, and
sending commands over the connection. The user interface 1s
connected to the test engine to allow a user to control the test
engine and to view test results.

Another such automated system 1s described in U.S. Pat.
No. 6,301,701. This patent describes an automatic testing,
method for use during the development and other life cycle
phases of a transaction-based software application. A trans-
action tester evaluates the integrity of a transaction by gener-
ating test data from the definition of the transaction under test.
Typical values for fields may be included within the transac-
tion definition and reused as typical test values. Test results
are generated and compared against known-good values or,
alternatively, against expected test results also generated from
the transaction definition. Other software components may
also be tested including menu structures. A definition of the
menu structure 1s rigorously traversed such that each entry of
cach menu 1s thoroughly tested and reported. Results are
automatically compared and verified against known good
results or test results are automatically reviewed. Both trans-
action testing and menu testing may be incorporated into
regression testing.

U.S. Pat. No. 6,002,869 describes a test automation system
for performing functional tests of a software program. The
system 1ncludes a plurality of test functions each configured
to test a discrete component of the software program. A
user-defined test specification associated with the program
provides state definitions that specily a desired test approach
for each type of test procedure to be performed on the pro-
gram. A test engine creates all test cases appropriate for a
user-selected test type and controls the software program,
applying the test functions and state definitions 1n accordance
with the test specification. All test-specific and soitware pro-
gram-specific data are located 1n the user-defined test func-
tions and specifications while all generic test system process-
ing resides in the test engine. The test specifications are
implemented 1n modifiable text files to maintain concurrency
with an evolving software program. The test engine creates
possible permutations and combinations for performing a
desired test. These test specification includes such items as

10

15

20

25

30

35

40

45

50

55

60

65

2

the states that the software program may possess, the test
functions required to transier between one state and other
possible states, information pertaining to the values that spe-
cific inputs may have, and the like. During operation, the test
engine generates test histories indicating the results ol the test
performed 1n accordance with one of the test specifications.

U.S. Pat. No. 5,513,315 describes a system and method for
automatically testing soltware using a deterministic accep-
tance test and random command sequence selections to
uncover errors in computer soltware. A results analyzer
checks test parameters following the execution of each of a
series of predetermined test commands and a series of ran-
dom test commands to determine 1f the commands were prop-
erly executed. The test command sequences and test results
determined by the results analyzer are stored 1n a log file
which may be examined by the tester. The randomly selected
test command sequence 1s stored 1n a tracker log file. The
system also provides for error recovery. When an error 1s
detected, the system restarts the test of the computer software
and continues maintaining the log file and the tracker file. The
system also uses the probabilities for various responses that
an end-user may make 1n response to a particular screen
display or program state. The system may select random
responses corresponding to the probabilities. These prob-
abilities are calculated for each individual screen display or
soltware state. Because the system executes a random selec-
tion of command sequences, program may be tested on mul-
tiple machines, thereby decreasing the overall time required
for acceptance testing.

U.S. Pat. No. 35,751,941 describes an object-oriented
framework for testing soiftware. In this patent, a soltware
testing system includes a set-up and control system, and one
or more test systems connected to the set-up and control
system. The set-up and control system includes a user inter-
face for interacting with a user of the software testing system.
The set-up and control system stores test data and test con-
figurations. Each test system sets up test cases from the test
data and the test configurations stored 1n the set-up and con-
trol system. Each test case inherits attributes from at least one
test object within the test system. The inherited attributes
facilitates the interaction of the test system with the test cases.

Other automated testing systems are described, for

example, in U.S. Pat. Nos. 5,021,997, 5,357,452, 5,359,546,
5,490,249, 5,500,941, 5,542,043, 5,590,330, 5,634,002 and
6,167,53°7. Known prior art testing frameworks also include
solutions such as STAF (the Software Testing Automation
Framework).

While the above-described patents and systems are gener-
ally usetul, these techniques are not tlexible enough to 1imple-
ment automated software testing 1n an environment where
test cases are written 1n varied programming languages.
Moreover, such prior art systems are often closely coupled
with the applications or systems under test and thus are not
uselul to provide generic testing capabilities. A related defi-
ciency 1s that such systems are typically written or controlled
in reference to the particular tests or test types for the appli-
cation under development. Thus, the automated system nec-
essarily 1s an adjunct to the particular application or system
being developed and cannot readily support testing of a
generic program set or test suite.

BRIEF SUMMARY OF THE INVENTION

It 1s an objective of the present mmvention to provide a
generic testing framework to automatically allocate, install
and verily a latest version of a system under test, to exercise
the system against a series of tests 1n a “hands-oif” objective

US 7,694,181 B2

3

manner, and then to export information about the tests to one
or more developer repositories (such as a query-able data-
base, an email list, a developer web server, a source code
version control system, a defect tracking system, or the like).
The framework does not “care” or concern itsellf with the
particular implementation language of the test as long as the
test can 1ssue directives via a command line or configuration
file. During the automated testing of a given test suite having
multiple tests, and after a particular test 1s run, the framework
preferably generates an “image” of the system under test and
makes that information available to developers, even while
additional tests in the suite are being carried out. In this
manner, the framework preserves the system “state” to facili-
tate concurrent or after-the-fact debugging. The framework
also will re-1nstall and verily a latest version of the system
between tests, which may be necessary 1n the event a given
test 1s destructive or otherwise places the system 1n an unac-
ceptable condition.

By posting test imnformation to developer repositories,
developers have immediate access to test data during the
development process. Thus, for example, a developer can
query a test data database and identify which particular tests
tailed on which particular days or system configurations. By
publishing results 1n a web server and notitying developers
about particular test runs (e.g., by email or the like), a devel-
oper may access such data in a simple and elficient manner
(c.g., by selecting a link 1n an email). The “image™ of a
particular system under test may also be quite usetul 1n the
debugging or development process. Moreover, because a par-
ticular test run may generate a failure that needs to be reported
to a defect tracking system, preferably the framework readily
exports data to such systems where required.

Preferably, the generic testing framework 1s implemented
as a standalone client application (or “daemon’) that calls
other standalone logic modules (routines, processes, or the
like) to perform the various functions required by the client
application. Thus, for example, a first such logic module
might be a software program that fetches a latest software
build for the system under test, a second logic module might
be used a separate program to install that build on the system
under test, while a third logic module might be a software
program that then accesses a version control system to 1den-
tily a set of tests 1n a test suite to be executed against the
installed build. In one embodiment, the client application and
the associated logic modules are executed on a given
machine. In a distributed system, the client application may
execute on one machine while one or more of the logic mod-
ules are executed on one or more other machines. In this
manner, a given client application may initiate and “own” a
given test suite, even as various tools or functions used to
carry out the tests in the suite are being executed on other
machines platforms, operating systems or the like. The logic
modules may also be shared by one or more client applica-
tions, each running on different client machines.

In a representative embodiment, the client application dea-
mon executes waiting for requests to start a test suite (or a
given test within a suite). Upon receipt of a request, the
framework downloads and then 1nstalls a latest software build
for the system under test, cleaning the system as necessary
before such installation. The framework may download the
latest software build from an automated build system (e.g.,
CruiseControl). As the latest software build 1s being installed
or following installation, the framework automatically veri-
fies that installation 1s or was successtul, as the case may be.
The framework then automatically retrieves from a database
a test suite definition, which defines the test suite as well as the
test files/data associated with the test suite. The test suite

10

15

20

25

30

35

40

45

50

55

60

65

4

definition informs the framework as to the location of those
files, e.g., a code repository (such as Perforce, ClearCase,
CVS, or the like), and the framework then obtains them. As
noted above, the test suite or given tests therein may be tested
in the framework 1rrespective of their implementation lan-
guage. The framework installs the test suite and begins
executing the tests, preferably with each test being indepen-
dent. The tests may be executed in any order, e.g., 1n
sequence, or randomly. Each test either passes or fails. After
a given test 1n a test suite, the framework 1mages the system
under test, which preserves the system “‘state” for concurrent
or future analysis. If necessary (e.g., due to a prior destructive
test), the framework then reinstalls the system under test or
the latest software build and continues with a next test 1in the
suite. The system configuration may be changed during the
reinstall. After all tests 1n a suite are completed, the frame-
work aggregates the test data and 1images and exports the test
data to a query-able data store, such as a central database
accessible via a Web service or the like. An email describing
the test suite may then be delivered to one or more persons on
an email distribution list. The framework also selectively
exports given test data to a defect tracking system (e.g., Bug-
zilla).

Generalizing, the automated testing framework 1s a test
runner or test harness that automatically allocates, installs and
verifies a system under test, that provides a “clean room”
environment for tests to be run against that allocated system,
that takes “snapshots” of the system between tests, and that
reports on test results preferably at a high level (*pass™ or
“fail”’); otherwise, the framework stays out of the way of the
tests as they are run. The framework automates the manage-
ment of the system under test from start to finish while per-
forming testing (e.g., white box testing, black box testing, or
the like), preferably using reusable or even external tools and
components and language-agnostic tests.

The automated testing framework 1s flexible, easily exten-
sible, and preferably test-language and client-platiorm
agnostic. It 1s implemented in such a way as to run any test, 1n
any language. Indeed, tests can be written to run themselves
across multiple client hosts and client operating systems.

The foregoing has outlined some of the more pertinent
teatures of the invention. These features should be construed
to be merely illustrative. Many other beneficial results can be
attained by applying the disclosed invention 1n a different
manner or by modifying the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereolf, reference 1s now made to the
following descriptions taken 1n conjunction with the accom-
panying drawings, in which:

FIGS. 1A-1C are process flow diagrams illustrating an
operation of the automated testing framework of the present
imnvention;

FIG. 2 1s a simplified representation of representative sys-
tem under test, comprising a set of nodes each of which
execute a distributed software application instance, and
against which the automated testing framework 1s used to
exercise a test suite;

FIG. 3 1s a high level representation of the various compo-
nents ol an archive cluster application executing on a given
node 1n the system of FIG. 2;

FIG. 4 1llustrates a block diagram of a preferred embodi-
ment of the automated testing framework for use to exercise
the cluster shown 1n FIGS. 2-3;

US 7,694,181 B2

S

FIG. § 1llustrates an embodiment of the automated testing,
framework 1n an enterprise environment; and

FI1G. 6 illustrates a results email that 1s automatically gen-
crated following execution of a given test suite by the auto-
mated framework.

DETAILED DESCRIPTION OF AN
EMBODIMENT

The automated testing framework of the invention prefer-
ably 1s implemented as program code executable in a machine
(or across multiple machines). The particular machine details
or operating environment are not particularly relevant to the
present 1nvention. In one embodiment as previously
described, the code operates as a standalone application or
“daemon” that calls other modules that perform the various
functions required by the framework. One of more of such
modules may be native to the framework or part of some
external system. As also noted, the daemon may execute on
one machine while one or more of the service modules
execute on the same or other machines. This ensures cross-
platform compatibility of the framework.

FIGS. 1A, 1B and 1C describe a basic operation of the
automated testing framework of the invention with respect to
a given “system under test” (or SUT) that, in one example
scenar1o (described below), may be a distributed software
application. The phrase “system under test” should be
broadly construed to cover any system, product, application,
process, machine, or combination thereof. A technical advan-
tage of the mvention is that the framework 1s agnostic to the
system under test or the language in which particular tests for
the system are written. Thus, the automated testing frame-
work 1s not limited for use with a particular system under test
or type of system. Rather, the framework supports automated
testing of any system under test, regardless of whether that
system 1s a standalone or distributed system, regardless of the
system environment or purpose, and regardless of the nature
and type of application running on the system.

Referring to FIG. 1A, the automated testing framework
preferably executes as a daemon testing at step 100 to deter-
mine whether any execution request has been received by the
framework. If not, the routine cycles waiting for work. When
an execution request has been recetved, the daemon parses the
request and 1dentifies the required resources in step 102. The
request semantics typically will depend on the nature of the
system under test, although typically the request will identaf
a particular system under test (or SUT configuration), a given
soltware build, a test suite, and a data repository to which test
results should be exported. The daemon branches to step 104
and 1ssues a notify/restart command i1 the required resources
are not available, 1n which case control returns back to step
100. If the resources are available, the framework retrieves
software at step 106. Typically, this retrieval (as are one or
more other functions described below) 1s carried out by a
separate, callable logic module. In the alternative, the auto-
mated testing framework may 1include such modules as native
code, of course. The communication to retrieve the software
build may occur locally or over a network. Advantageously,
the software retrieved at step 106 1s a latest software “build”
for the system under test. As 1s well-known, complex sofit-
ware or software systems often proceed through numerous
(e.g., tens or hundreds) of software “builds™ during the devel-
opment and useful life of a given soitware application. The
automated testing framework preferably retrieves the latest
software build (or some other designated build, as identified
in the request) at step 106, e.g. by having a logic module fetch
the build from a source code or other repository, and then

10

15

20

25

30

35

40

45

50

55

60

65

6

performs a verification step at step 108. The nature and scope
ol this verification will depend on the system under test. If the
retrieved build cannot be verified, the routine once again
branches to step 104 and then returns to wait for new work. I
the software build can be verified, the framework continues at
step 110 to execute an 1install. The details of this step are
provided 1in FIG. 1B and discussed below. At step 112, the
framework performs another vernfication to determine
whether the software build was installed correctly. Step 112
may have two sub-steps. At step 114, the framework enters a
wait state (while resources are being configured) and begins
to test at step 116 whether 1t can verity the availability of the
various resources. If the framework cannot verily the avail-
ability of the resources as the install proceeds, once again
control 1s transterred back to step 104 (and, therefore, back to
step 100). I, as a result of the verification at step 112 the
system under test 1s found to be available, the process con-
tinues at step 118 to verily one or more devices or systems (or
“access vectors”) that may be required to access the system
under test. Any failure of or inaccessibility of the access
vectors causes the framework to branch over to step 116, as
previously described. At step 120, the framework performs a
final verification to determine whether the overall state of the
system under test (which may comprise miscellaneous hard-
ware and software 1n addition to the latest software build) 1s
acceptable or as otherwise necessary to perform the test suite.
If the outcome of the test at step 120 1s negative, the routine
once again branches to step 116, as previously described, to
wait for the one or more resources to install correctly.

Now, assuming that the install has been executed and the
SUT state verified, the framework 1s now ready to perform the
test suite. Thus, at step 120, the framework 1dentifies test
metadata and, at step 122, identifies any test dependencies. IT
there are dependencies, the framework synchronizes the test
dependencies at step 124; at step 126, the framework per-
forms a verification to ensure that this synchronization was
successiul. If not, the routine branches back to step 104 to
notily or restart, as the case may be. Following steps 120 and
122, the framework continues at step 128 to execute the one or
more test(s) of the test suite. FIG. 1C illustrates the test
execution process and will be described below. After a given
test 1n the test suite 1s executed, the framework tests at step
130 to determine whether 1t needs to reinstall the system
under test. (As noted above, the system configuration may be
changed during a reinstall). This may be necessary, for
example, because a given test was destructive to the system or
a given resource 1n the system under test. Alternatively, a user
may set a flag that requires the reinstall. If the outcome of the
test at step 130 indicates that a system (or component thereot)
reinstall 1s not required, the framework performs a test at step
132 to determine whether all of the tests 1n the test suite have
been completed. 11 not, the daemon returns to step 128, gets
the next test in the suite and executes 1t. A system configura-
tion may also be changed before the next test in the suit 1s
executed, even 1t a reinstall 1s not required or done. If the
outcome of the test at step 132 indicates that all of the tests 1n
the test suite are completed, the daemon continues at step 134
to aggregate the test data into a report. The daemon then
automatically publishes the results at step 136. As indicated,
typically the publishing process includes publishing to a data-
base as indicated at step 138, or publishing to a web server as
indicated at step 140. The database may be centralized and
typically includes a database management system against
which database queries (e.g., SQL) may be executed. The
web server may be available on an intranet and typically
includes an http, https or ftp service. These are merely repre-
sentative data repositories. In addition, the daemon may also

US 7,694,181 B2

7

publish the results or the fact that the test has been completed
by notifying email subscribers identified on an email list. This
1s 1llustrated as step 142. The particular ordering of the steps
in this portion of the process flow diagram 1s not meant to be
limiting of course. In addition, the daemon may publish given
information about one or more tests to a defect tracking
system, which 1s step 144.

FIG. 1B, as noted above, illustrates a process flow of a
representative install function, which was step 110 1n FIG.
1A. The process begins at step 146 with the daemon parsing
any load command load options in the execution requests. At
step 148, the daemon obtains a load configuration file that
identifies a particular system configuration that will be
needed for the test. The load configuration file typically 1den-
tifies a set of one or more load assistant modules 150 that are
needed, as well as a logging system 152 that will be used. At
step 154, the daemon verifies availability of the resources
identified 1n the load configuration file and then begins the
install. In particular, a test 1s performed at step 156 to deter-
mine what type of install 1s required. The left branch of the
process tlow diagram illustrates a basic install while the right
branch of the diagram illustrates an upgrade 1nstall. In the
basic branch, the daemon begins at step 158 by uninstalling,
the software from the system under test. Assuming a positive
outcome of a verification step at 160, the daemon then for-
mats local or attached storage at step 162; 1 necessary, the
framework then ensures that the local or attached storage
inherits existing storage settings at step 164. At step 166, the
framework pushes/installs the operating system. At step 168,
the daemon pushes/configures the target software (e.g., the
actual software build). At step 170, the framework initializes
any database as required for the test. At step 172, the frame-
work pushes/installs any system patches; it then secures the
system at step 174. Thereafter, at step 176, the framework
re-boots all software resources. These steps ensure a “clean
room” environment for the system under test. At step 175, a
test 1s performed to verity overall system state. This corre-
sponds to the test at step 120 in FIG. 1A. If system state cannot
be verified, the routine halts and writes to an error log.

The parallel processing path for the upgrade method 1s
similar, with a few minor variations. In this path, the process-
ing begins at step 178 by inheriting existing resource settings
as needed. The framework may also branch to step 175 to
verily the system state after inheriting existing resources.
Following a successiul verification at step 160, the frame-
work upgrades a database system at step 180. Any required
operating system upgrade install 1s then performed at step
166, which 1s this path 1s also followed at step 168 by the
push/configuration of the actual target soitware to be tested.
As before, at step 172, the framework pushes/installs any
system patches; 1t then secures the system at step 174. There-
after, the framework re-boots all software resources at step
176.

FIG. 1C illustrates how the tests are executed. As noted
above, an advantage of the present invention is that the frame-
work 1s language-agnostic. In other words, the framework
does not care what format the tests are written, provided that
the test language can 1ssue directives via a command line or a
configuration file. The execution routine begins at step 182 to
call a test execution module. This routine translates test flags
il necessary at step 184. This step may be required 11 the tests
are written 1n a given language requiring translation of one or
more command line or configuration file directives to seman-
tic that 1s understood by the test execution module. At step
186 a given test 1s run. The framework logs a standard output
at step 188 (when the test runs from start to finish and thus
“passes’); 1t also logs any error output at step 190 (when the

10

15

20

25

30

35

40

45

50

55

60

65

8

test does not complete and thus “fails™). As the test 1s execut-
ing, the execution module checks to determine the status of
the test at step 192 and periodically tests to determine its
status at step 193. If the test 1s not complete, the routine
returns to step 192. When the outcome of the test at step 192
indicates that the test 1s complete, the routine 1mages the
system under test at step 194 to capture a “snapshot” of the
state of one or more SUT resources. This “snapshot” provides
particularly valuable information that facilitates prompt and
accurate debugging or other maintenance. The “imaging”
process preferably has one or more sub-steps: at step 196, the
framework checks logs of the various resources; at step 198,
the SUT history 1s dumped; at step 200, the SUT database
histories are dumped; at step 202, these logs are replicated,
¢.g., to the client on which the daemon 1s executed. The image
and the pass/fail information are then added to a compilation
at step 204 that 1s available for subsequent export to the data
repositories. At step 206, the execution module reports that
the test 1s completed. A test 1s then performed at step 208 to
determine whether a re-install 1s flagged or otherwise
required. This was step 130 i FIG. 1A. I so, the routine
branches and performs the re-install. Following step 208, a
test 1s then run at step 210 to determine if all the tests 1n the
suite are complete; 11 not, the routine cycles. This completes
the processing.

In this representative embodiment, as illustrated 1n FIG. 2,
the system under test 1s an archive cluster application that
provides an archival storage management system. A storage
management system of this type 1s defined by a set of nodes
that potentially comprise different hardware and thus may be
considered “heterogeneous.” A node typically has access to
one or more storage disks, which may be actual physical
storage disks, or virtual storage disks, as 1n a storage area
network (SAN). The archive cluster application that 1s sup-
ported on each node may be the same or substantially the
same. Using the system, enterprises can create permanent
storage for many different types of fixed content information
such as documents, e-mail, video, and the like, among others.
As described in U.S. Publication No. 2005/0120025, the
archive cluster application 1s a distributed software applica-
tion executed on each node that captures, preserves, manages,
and retrieves digital assets. As illustrated 1n FIG. 2, a physical
boundary of an individual archive 1s referred to as a cluster.
Typically, a cluster 1s not a single device, but rather a collec-
tion of devices. Devices may be homogeneous or heteroge-
neous. A typical device 1s a computer or machine running an
operating system such as Linux. Clusters of Linux-based
systems hosted on commodity hardware provide an archive
that can be scaled from a few storage node servers to many
nodes that store thousands of terabytes of data. Preferably,
data 1s replicated across the cluster so that the archive is
protected from device failure. If a disk or node fails, the
cluster automatically fails over to other nodes in the cluster
that maintain replicas of the same data.

The 1illustrative cluster comprises nodes 202, a pair of
network switches 204, power distribution units (PDUSs) 206,
and, optionally, uninterruptible power supplies (UPSs) 208. A
node 202 typically comprises one or more commodity servers
and contains a CPU (e.g., Intel x86, suitable random access
memory (RAM), one or more hard drives (e.g., standard
IDE/SATA, SCSI, or the like), and network interface (NIC)
cards. The network switches 204 typically comprise an inter-
nal switch 2035 that enables peer-to-peer communication
between nodes, and an external switch 207 that allows extra-
cluster access to each node. PDUs 206 are used to power all
nodes and switches, and the UPSs 208 are used that protect all
nodes and switches. Typically, a cluster 1s connectable to a

US 7,694,181 B2

9

network, such as the public Internet, an enterprise intranet, or
other wide area or local area network. End users access the
cluster using any conventional interface or access tool. Thus,
for example, access to the cluster may be carried out over any
IP-based protocol (HTTP, FTP, NFS, AFS, SMB, a Web ser-
vice, or the like), via an API, or through any other known or
later-developed access method, service, program or tool. Cli-
ent applications access the cluster through one or more types
of external gateways such as standard UNIX file protocols, or
HTTP APIs. The archive preferably 1s exposed through a
virtual file system that sits under any standard UNIX f{ile
protocol-oriented facility.

In this example testing environment, the archive cluster
application runs on a redundant array of independent nodes
(H-RAIN) that are networked together (e.g., via Ethernet) as
a cluster. Each node runs an instance 300 of a distributed
application comprised of several runtime components as
illustrated in FIG. 3. As will be described, the present mnven-
tion generates test cases for this system under test. The soft-
ware components comprise a gateway protocol layer 302, an
access layer 304, a file transaction and administration layer
306, and a core components layer 308. The gateways provide
native file services such as NFS 310 and SMB/CIFS 312, as
well as a Web services API to build custom applications.
HTTP support 314 1s also provided. The access layer 304
provides access to the archive. A fixed content file system
(FCFS) 316 emulates a native file system to provide full
access to archive objects. The access layer 304 preferably also
includes a Web user interface (UI) 318 and an SNMP gateway
320. The Web user interface 318 provides interactive access
to an administration engine 322 in a {file transaction and
administration layer 306. The SNMP gateway 320 provides
storage management applications access to the administra-
tion engine 322, enabling them to securely monitor and con-
trol cluster activity. The administration engine monitors clus-
ter activity, including system and policy events.

The file transaction and administration layer 306 also
includes arequest manager process 324. The request manager
324 manages requests from the external world (through the
access layer 304), as well as internal requests from a policy
manager 326 in the core components layer 308. In addition to
the policy manager 326, the components may include a meta-
data manager 328, and one or more instances ol a storage
manager 330. The storage manager 330 on a given node 1s
responsible for managing the physical storage devices. The
request manager 324 1s responsible for executing the set of
operations needed to perform archive actions by interacting
with other components within the system. A metadata man-
ager 328 preferably 1s 1nstalled on each node. Collectively,
the metadata managers 1n a cluster act as a distributed data-
base, managing archive objects. The storage manager 330
provides a file system layer available to all other components
in the distributed application. Preferably, 1t stores the data
objects in anode’s local file system. The storage manager 330
also provides system information, integrity checks on the
data, and the ability to traverse local directly structures. As
also 1llustrated mn FIG. 3, the cluster manages internal and
external communication through a communications middle-
ware layer 332 and a DNS manager 334. The application
instance executes on a base operating system 336.

A cluster’s primary responsibility 1s to store an unlimited
number of files on disk reliably. The automated testing frame-
work as previously described may be used to exercise the
cluster 1n a live operating environment or in a testing facility
or laboratory. Thus, in one testing scenario, the automated
testing framework 1s capable of leveraging nodes within a
testing laboratory (whether locally or across a computer net-

10

15

20

25

30

35

40

45

50

55

60

65

10

work) to set up a RAIN or SAN cluster. In this process, the
framework uses its own native deploy software or leverages
an external module to 1nstall the cluster 1n various configura-
tions. It then uses validates the cluster’s health and executes
the test suite. The tests exercise the cluster but, 1n effect, are
not the concern of the automated testing framework 1tself,
which functions merely as a test harness. In particular, the
automated testing framework automatically allocates, installs
and verifies a given cluster, providing a “clean room™ envi-
ronment for tests to be ran against that allocated cluster; 1t
takes snapshots of the cluster 1n between tests, preferably
dumping logs and database 1images. Otherwise, however, the
framework stays out of the way of a given test or test suite and
simply records the test’s success or failure. Thus, the frame-
work typically does not mterface with a given test; rather, a
test communicates with the framework usually just to pass on
the test result (a pass or a fail). The framework records and
logs the output of the tests, but otherwise the test script can do
whatever damage or alteration to the cluster that 1t likes with-
out impairing a given test suite. Such serious damage or
alteration could 1nclude, for example, dropping nodes, cor-
rupting databases, corrupting data, and the like. The frame-
work addresses any such destruction or alteration 1ssues by
re-installing the “clean” environment before a next test in the
suite 1s run. Indeed, 1n many 1nstances 1t will be desirable to
allirmatively flag the framework to re-install the cluster
between tests so that the cluster operates, 1n effect, in a stable
“cleanroom” environment (€.g., by ensuring that all gateways
are up and functional, that the entire cluster 1s healthy, that
required soitware 1s installed, running and patched, and the
like) for each test.

Thus, according to an object of the invention, tests within a
given test suite do not have to reference directly or indirectly
any of the framework’s control functionality (e.g., objects,
methods, classes, or the like that comprise the framework, or
the framework’s daemon). In effect, the framework 1s
abstracted away from both the underlying system under test,
as well as the test themselves. This architecture obviates a
centralized control or management scheme and provides
unique advantages over the prior art, which operate as closed
systems or systems 1n which the tests have to be written for the
particular testing environment. Each of the tests 1n a suite 1s
independent and can be run 1in any order.

As noted above, preferably the framework daemon has a
number of supporting tools, namely, executable modules, that
provide the wvarious functions required. In the cluster
example, the framework daemon runs test suites (or batches),
records the results 1n a database, and stores node 1images and
logs 1n a web-accessible directory on a local machine’s web
server. The daemon preferably emails all exceptions, failures,
crashes and the like to a target set of email recipients, or
otherwise exports such information to a bug tracking system.
Thus, the framework provides a functional, cluster level
regression test running harness that 1s highly configurable and
that 1s test language agnostic.

The framework also 1s capable of running white-box test-
ing. Any test that can run on a series of hosts, or even a single
host, can be run within the automated test framework. As
noted above, one of the advantages of the framework 1s that 1t
1s lenient or flexible enough to allow a test to do anything to a
running cluster. There may be tests that expand the size of a
cluster, those that reface the cluster to be component-test
drivers, and even tests that test the installation system 1tself.
The framework provides this flexibility as noted above by
staying out of the test’s way. Thus, there 1s no theoretical limit
to what a given quality assurance engineer or developer can
put within the harness.

US 7,694,181 B2

11

Referring now to FIG. 4, a block diagram 1s shown of a
particular implementation of the automated testing frame-
work for use, for example, with a distributed cluster applica-
tion. As has been described, the framework 1s a toolbox with
a wrapper 1n the form of the daemon. It 1s an extensible
framework that provides functional, cluster-level testing,
preferably built with common, extensible, simple tools, even
tools that can utilized 1n otherwise day-to-day cluster man-
agement.

As 1llustrated 1n FIG. 4, the framework 400 according to
the embodiment has two layers: a framework layer 402, and a
tools layer 404. The framework layer 402 comprises any
logic, modules, scripts or databases that may be required to
the framework to “know’ about 1tself, the clusters (and nodes
therein) and the required tests (and execution of those tests).
The tool layer 404, 1n contrast, comprises those tools that
facilitate the de-centralized management of the cluster and
perform various tasks including, without limitation, build
installation, log management, cluster cleaning, database que-
ries, and the like. Preferably, the tools (or at least some of
them) are non-interactive, automated and re-usable, and do
not require centralized management or control.

Referring now to FIG. 4, the daemon 406 1s a network-
accessible script that allocates, 1nstalls, and verifies the clus-
ter by leveraging separate logical modules. As previously
described, this daemon listens for inbound requests to run a
given sulte against a target cluster. The results handler module
408 manages the data generated during the tests. Thus, for
example, by default results are records 1n a results directory,
which 1s preferably keyed by date/time/suite/test name.
Results for each test may be stored as a flat text file format and
uploaded into a current results database system. After a run 1s
complete, 11 a results upload flag 1s enabled, the daecmon 406
uploads these results 1into a results database. The results han-
dler module 408 also may email the results 1n a CSV-style
format for uploading into another system, and 1t may push
those results into a database, or store the results 1n files on a
disk for maximum accessibility. The test runner module 410
1s a script that 1s ultimately responsible for the execution of
the actual test suite. This script handles all details required for
the test (e.g., configuring mount points, initializing resources,
and the like). This module preferably executes tests 1n a
non-blocking/timed out manner. It expects tests to hang, or to
not complete; 1t monitors those tests and kills them as needed.
The master test system module 412 uses the test runner mod-
ule 410 and generates master level suites (framework suites,
as opposed to individual suites) to serve as a batching system
for system-level categories (e.g., long bum in, quick smokes,
performance, and the like. The code repository synchroniza-
tion module 414 is responsible for handling all repository
(e.g., Perforce) refreshes and for pulling the code builds from
the source control server. A database module tells this module
where to find the required tests, and whether or not to refresh
those tests. I a test must be refreshed, this module downloads
those tests directly from the repository. Preferably, the code
repository synchronization module synchronizes files for a
given test suite, wrrespective of whether it has a local copy.
Thus, the source control system 1s deemed to be the master
copy; the framework, in contrast, does not trust its local
copies. The database refresh module 416 handles any and all
database connectivity. This module 1s used to get information
about the cluster, and to provide that information to the dae-
mon. The refresh module 416 1s also used to get required
test/suite information. The test information database 418 1s a
database that comprises information about each test 1n a test
suite, as well as any required information for any such test to
execute. The cluster information database 420 comprises any

10

15

20

25

30

35

40

45

50

55

60

65

12

pertinent information about the clusters against which the
framework will be exercised. This database may be polled
betfore any test run (or before a given test suite 1s run) to find
the required information.

The tools layer 404 components comprise a distributed
command handler module 422 that 1s a wrapper to the tools 1n
the layer. The module 422 preferably 1s accessible via an SSH
connection to enable the tools to interact with the cluster
non-interactively, or via scripts or an open API. Access to the
distributed command handler module preferably requires
authentication. A log rotate or “1imager” module 424 dumps
system logs, checks for error messages 1n the cluster node
logs, and images databases across the cluster nodes after a test
1s complete. A daemon master module 426 1s a script that
allows granular control over daemons on the cluster, such as
starting and stopping. A database snapshot module 428 1s
provided to grab a snapshot of the databases spread out across
the cluster, and pulls those snapshots back to the local
machine. The snapshot module 430 1s a tool that actually
images the cluster, and 1t may operate with the log rotate
moduleto get the logs from all of the cluster nodes 1n between
the various test runs of a given test suite. The snapshot module
430 also grabs an 1mage of a current database on all the nodes
in the cluster, copies those files back to the local machine, and
stores them alongside the logs for that test/suite run. The
snapshot module may also verity a cluster’s integrity. A build
installer module 432 1s a script that leverages the distributed
command handler module to install the defined build across
the target cluster, including any and all required configuration
scripts. The module 432 may be implemented as script that
automatically determines the required values based on 1nfor-
mation 1n a configuration database. A cluster clean module
434 wipes or cleans the target cluster non-interactively, for-
matting the disks, database, logs, files, and the like. A cluster
health monitor 436 1s a script that verifies the integrity of a
running cluster, also checking for valid/invalid processes,
swap usage, and the like. At any point, the cluster health
monitor 436 1s called to check up on the cluster. Finally, a
gateway mount verification module 438 1s used to verily the
health of the various cluster gateways and to perform various
access methods against those gateways; this module thus
operates to verily availability of a given cluster (and the nodes
within that cluster). The module may also be used as a mount-
ing system for the test runner module to call to mount required
resources.

It should be noted that the tools shown in FIG. 4 are not
necessarily exhaustive or exclusive, as various other tools and
modules may be used by the framework Moreover, the line in
FIG. 4 between the tools layer and the function/daemon layer
1s merely representative and should be taken to limit the scope
of the 1invention 1n any way. As noted above, the framework
(regardless of how implemented) 1s merely a platform that
simply drives the tests while providing them a “clean room”
in which to operate, all the while ensuring cluster state as the
test suite progresses. In a representative embodiment, the
automated testing framework executes on a machine running
commodity hardware and the Linux operating system. This 1s
not a limitation, however. As noted above, the daemon may be
executed on a griven machine while one or more of the mod-
ules 1llustrated in FIG. 4 may operate on the same machine or
on one or more other machines. Thus, the framework also has
the ability to allocate for, and leverage non-Linux based cli-
ents, such as clients that execute on Solaris, HPUX, AIX,
IRIX, OS/X, WinXP, Windows2000, or the like. Thus, 1n an

alternative embodiment, the framework includes appropriate

US 7,694,181 B2

13

functionality to detect a given test’s platform and, upon detec-
tion, to push execution of the test ol to a specific platform that
can support it.

The following 1s an example of how the automated testing,
framework operates upon recerving an execution request such
as:

[root(@client/home/daemon|#./daemon -s risis -c¢ clus-
terfoo -b http.//pathtobuildrpm/foo.rpm --refresh
--report

This request causes the following operations:

Run the daemon

Run the risis test suite:

.. . against clusterioo

... with build foo

... and refresh tests from PerForce to get a latest test suite
... report results to a database

Thus, 1n response the request, the framework executes the
daemon wrapper, gets the cluster information (checking to
see 1f the cluster 1s running or has a build on 1t; cleaning 1f
necessary), downloads the defined build, deploys the build to
the cluster (install), starts the cluster, checks the cluster’s
health, pulls all required tests from the database (synchroniz-
ing tests from the code repository if necessary), performs
local test setup as needed (e.g., make mount points), performs
the tests, 1mages the system between tests (checks integrity,
obtain logs, and the like), shuts down the system when the
tests are done, and reports/publishes the test results and
1mages.

FIG. 5 provides another illustration of the automated test
framework (ATF). In one embodiment, an ATF server 500a
(e.g., one of a set of servers 500a-r) executes an ATF sched-
uler. ATF server 500a 1ssues a job to an ATF client that
executes on machine 502. The ATF client executes the dae-
mon. In this example, the daemon issues structions to the
ATF server 500a (or one of the other servers in the server
group), which in turn downloads a chosen (or latest) QA build
and any necessary test tools from a build server 506, 1dentifies
the target cluster 504 (e.g., from a database of available clus-
ters), installs the build on the target cluster 504, and the
verifies the installation. Under the control of the daemon, the
server 500 then downloads and runs one or more test suites
against the cluster. In this particular example, this 1s accom-
plished by having the ATF server 500 check a central database
508 for script execution rules, fetching the selected scripts
from a source server 310, and then executing the scripts. The
ATF server 500 then sends the results to one or more specific
users or, more generally, to a mailing list (e.g., using an email
server 5312). FIG. 6 1llustrates a portion of a representative
email indicating that a given nightly test run has been com-
pleted and including information about the system, its con-
figuration, the test results, and the like. The email also pret-
erably icludes a link to the full test data, which may include
the system 1mage data. By selecting the link, the user can
review the test result details directly. Email results may also
be hosted on a web server 514 or supplied to a defect tracking,
system, as previously described. In one embodiment, the tests
are run periodically, e.g., nightly, against dedicated clusters of
various sizes and configurations.

As noted above, any of the machines 1llustrated may be run
different hardware, different software, or different hardware
and different software. As a result, the framework 1s highly
scalable. It 1s flexible, easily extensible, and preferably test-
language and client-platiform agnostic. This implementation
ensures that the framework can run any test, in any language.

The following 1llustrates the type of information that may
be stored 1n a database for a given test:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Test Suite

-

I'est sub-suite

i

T'est name/code/serial
Test location (1n perforce)

Required test flags for execution (ie: -n $testnum, -s $port,

etc)

Is this a file system test? (ie: does 1t need a mount point?)

[f=true,

does 1t need a given mount?

Does it need a nfs mount?

Does it need both?

Is this an http test?

[{=true,

How 1s the http url supplied?

Loop on error?

Loop count on Error (max n)

While the process flow diagrams and the above description
provide a particular order of operations performed by certain
embodiments of the invention, 1t should be understood that
such order 1s exemplary, as alternative embodiments may
perform the operations 1n a different order, combine certain
operations, overlap certain operations, or the like. References
in the specification to a given embodiment indicate that the
embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic.

While the present invention has been described 1n the con-
text of a method or process, the present invention also relates
to apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
or 1t may comprise a general-purpose computer selectively
activated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored 1n a com-
puter readable storage medium, such as, but 1s not limited to,
any type of disk including an optical disk, a CD-ROM, and a
magnetic-optical disk, aread-only memory (ROM), a random
access memory (RAM), a magnetic or optical card, or any
type ol media suitable for storing electronic instructions, and
cach coupled to a computer system bus. As noted above, a
given implementation of the present mvention 1s software
written 1n a given programming language that runs on a
standard hardware platform running an operating system
such as Linux.

While given components of the system have been
described separately, one of ordinary skill will appreciate that
some of the functions may be combined or shared 1n given
istructions, program sequences, code portions, and the like.

Having described our invention, what we claim 1s as fol-
lows.

The invention claimed 1s:

1. A framework for automated testing of a system, com-
prising: a processor; and a process executable by the proces-
sor, the process responsive to receipt of a request to execute
one or more tests of a test suite against the system by unor-
dered steps of: (a) executing first code that obtains a given
soltware build for the system; (b) executing second code that
deploys the given software build on the system and also
verifies an operational state of the system, or given compo-
nents in the system, as the given software build 1s deployed or
1s being deployed; (¢) executing third code to obtain informa-
tion associated with the one or more tests; (d) executing
fourth code to mnitiate execution of each of the one or more
tests; (e) executing fifth code to capture an 1mage of a state of
the system after a given test of the test suite 1s executed, the
image being a snapshot of the state of the system under test
after the grven test 1s executed and before a next test of the test

US 7,694,181 B2

15

suite 1s executed, the image including debugging informa-
tion; and (1) executing sixth code to export to at least one data
repository information concerming an outcome of the one or
more tests.

2. The framework as described in claim 1 wherein the
second code also returns given resources to an 1nitial state
prior to deploying the given software build on the system.

3. The framework as described in claim 1 wherein the
second code also places given resources in a given state prior
to deploying the given software build on the system.

4. The framework as described 1n claim 1 wherein the third
code 1s executed to obtain from a code repository the infor-
mation associated with the one or more tests.

5. The framework as described in claim 2 wherein the
second code also returns given resources to an initial state and
re-installs the given software build following execution of a
grven test.

6. The framework as described in claim 1 wherein the
repository 1s one of a database, a Web server, an email list, or
a defect tracking system.

7. The framework as described 1n claim 6 wherein at least
one of the first, second, third, fourth, fifth or sixth code 1s
executed on a second machine distinct from a first machine on
which the process executes.

8. The framework as described 1n claim 7 wherein the first
and second machines run different operating systems.

9. The framework as described 1n claim 1 wherein at least
one of the tests 1s written 1n a language that 1s distinct from a
programming language 1n which the process 1s written.

10. The framework as described in claim 1 wherein each of
the one or more tests are independent and are executed 1n any
order.

11. A method of automated testing of a system, comprising
the unordered steps: responsive to a request, executing code
that calls a set of one or more code modules, the one or more
code modules implementing the following steps, 1 an auto-
mated manner: allocating, installing and verifying a target
instance of the system, wherein the target instance of the
system comprises a given build of a software program;
obtaining a given test suite having one or more tests; execut-
ing each test in the given test suite; after each test 1s executed
and belfore executing a next test, capturing an image of a state
of the target instance of the system, the image including
debugging information; prior to executing a next test in the
given test suite, re-allocating, installing and verifying the
target instance of the system; following completion of the test
suite, exporting given information about the one or more tests
in the given test suite.

12. The method as described in claim 11 wherein the given
information 1s exported to one of a database, a Web server, an
email list or a defect tracking system.

13. The method as described 1n claim 11 wherein the target
instance of the system 1s re-allocated, installed and verified as
a result of a failure 1n the system or a system component
during a prior test.

14. The method as described 1n claim 11 wherein the target
instance of the system 1s re-allocated, installed and verified as
a result of setting a configuration parameter.

10

15

20

25

30

35

40

45

50

55

16

15. The method as described 1n claim 11 wherein the step
of re-allocating, installing and verifying the target instance of
the system further includes modifying a configuration of the
system.

16. The method as described 1n claim 11 wherein the one or
more of the code modules are executed on a machine distinct
from the machine upon which the code 1s executed.

17. The method as described 1n claim 11 wherein test files
associated with the given test suite are obtained from a code
repository.

18. The method as described in claim 11 wherein the code
that calls the one or more code modules 1s written 1n a lan-
guage that 1s independent of a language 1n which a given test
1s written.

19. The method as described in claim 11 wherein the code
executes autonomously and without reference to a given test.

20. A method of automated testing of a system, compris-
Ing: responsive to receipt of a request to execute a given test
suite, automatically allocating, installing and verifying given
resources 1n the system by returming given resources to an
initial state, mnstalling a given software build, and re-booting;
executing the given test suite; generating information con-
cerning an outcome of at least one test 1n the grven test suite;
capturing an 1mage of a state of the system between each pair
of tests 1n the given test suite, the image including debugging
information; selectively re-allocating, installing and verity-
ing the given resources following execution of a test in the
given test suite; and exporting information associated with
cach test to one or more repositories; wherein a given test 1n
the test suite 1s executable 1rrespective of 1ts implementation
language.

21. The method as described 1n claim 20 wherein the given
resources 1n the system are verified dynamically as the given
resources become operational.

22. The method as described in claim 20 wherein the infor-
mation indicates whether a given test was a success or a
failure.

23. The method as described in claim 20 wherein the step
of selectively re-allocating, installing and verifying occurs as
a result of a failure in the system or a system component
during a prior test, or 1n response to setting of a configuration
parameter.

24. The method as described 1n claim 20 wherein at least
one of the steps 1s carried out under control of a daemon that
executed autonomously with respect to execution of a given
test.

25. The method as described 1n claim 20 wherein the given
resources comprise one of: given hardware, given software,
or a combination of given hardware and given software.

26. The method as described in claim 20 wherein the
repositories include one of: a database, a Web server, an email
list or a defect tracking system.

277. The method as described 1n claim 24 wherein the dae-
mon 1s executed on a first machine and at least one test in the
test suite 1s executed on a second machine.

28. The method as described 1n claim 27 wherein the first
and second machines execute different operating systems.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

