US007694004B2
a2 United States Patent (10) Patent No.: US 7,694,004 B2
Derr 45) Date of Patent: Apr. 6, 2010
(54) BIT-GRANULAR WRITES OF CONTROL 4,383,297 A * 5/1983 Wheatleyetal. 710/3
REGISTERS 4680594 A * 7/1987 Bracht ..o.oovveevvevvnnn.. 369/53.36
4691299 A * 9/1987 Rivestetal. 365/189.01
(75) Inventor: Michael N. Derr, El Dorado Hills, CA 5,128910 A * 7/1992 Ilc.la. P PTRRS 369/13.24
(US) 5752075 A * 5/1998 KiKinis «eveeevevereeereonninn, 710/1
5080276 A * 11/1999 Aritaetal. woovvevvvvnn... 439/131
. | . 5006032 A * 11/1999 Baker w.ooovveveveeeeveenvn.. 710/62
(73) Assignee: Intel Corporation, Santa Clara, CA 5099441 A * 12/1999 Runaldueetal. 365/154
(US) 6075721 A * 6/2000 Runaldueetal, 365/154
. | | o | 6,560,669 B1* 5/2003 RYAN «eoveeeeeeeeeeeenn.. 711/105
(*) Notice: Subject to any disclaimer, the term of this 6.567.953 Bl* 52003 Pomerantz 714/805
patent is extended or adjusted under 35 6,598,157 B1* 7/2003 MCKE€ ovvveeeeereeeeonnon 713/1
U.S.C. 154(b) by 1837 days. 6,704,808 B2* 3/2004 Kasamatsuetal. 710/2
(21) Appl.NO.: 09/821,116 * c1ted by examiner
(22) Filed: Mar. 30, 2001 Primary Examiner—Zarni Maung

(74) Attorney, Agent, or Firm—Caven & Aghevli LLC
(65) Prior Publication Data

(57) ABSTRACT
US 2002/0143967 A1 Oct. 3, 2002

(51) Int.ClI In an example embodiment, a method writes individual bits of
(;025 F 1 5/16 (2006.01) data to a register. Bits of data are received 1n a data field. The

GO6F 12/00 (2006.01) pumber C{f bits 1n ’[216 d:ata ﬁelq 1S gqual to the number of bits

(52) U.S.Cl 709/230- 709/250 in the register and the bit locations in the data field correspond
oo e e " respectively to the bit locations 1n the register. Enable bits are

(58) Field of Classification Search 709/230, received in a bit enable field. The number of enable bits in the

709/250; 711/142-143, 155; 365/189.01,
365/195-196

See application file for complete search history.

bit enable field 1s equal to the number of bits 1n the register.
The bit locations in the bit enable field correspond respec-
tively to bit locations 1n the register. Only the bits at the bit

(56) References Cited locations of the register for which the enable bit 1n the corre-
sponding location 1n the bit enable field 1s set are overwritten
U.S. PATENT DOCUMENTS with the bit in the corresponding location in the data field.
4,153,950 A * 5/1979 Nosowiczetal. 365/231
4,215,756 A * 81980 Huntccoceevinininnnns 180/127 22 Claims, 6 Drawing Sheets
100
'
e -
| | |I—101
& 109 —102 106
| Nieawesn il -
4] aep P won] mewony |
.[______________ _F{._..:._._f_! 105 145
103 111 S
USB (6 PORTS) POWER MANAGEM ENTI
{ —
5 —|[crock GENERATORS |
—146
| SYSTEM MANAGEMENT
IDE-PRIMARY —— ICH (TCO)
IDE-SECONDARY —— 421 BGA SMBUSIZC_ 155 1 190
["AC7 CODEC(S) 115 —FOONIGA
e PUIBUS ~ | PCIISA BRIDGE
130 FELANPHY | (OPTIONAL)
-~ i
135 GPIO — ISLOT[»«+|SLOT
140~ 120~{LPC I/F
MUXED
FIRMWARE HUBS [IMUXED} | ooeag | 16
(1-4) - 124
| — | 121 -
122 OTHER ASICS MANAGEMENT/SECURITY
123~ (OPTIONAL) | |CONTROLLER (HIGH-END ONLY)

U.S. Patent Apr. 6, 2010 Sheet 1 of 6 US 7,694,004 B2

FIG. 1,
f/

!_' '''''''''''''' I':"' __“L::':L__]"I
! 104~ copy H” 101

108—._ | | | |
N 109 |
I e N I— 7

ot sor Pdl won] wewom
TR N § S ——
e 1._-:—_: _:.:.—-_.! 105
103 111

USB {6 PORTS) POWER MANAGEMENT
125 10 CLOCK GENERATORS

SYSTEM MANAGEMENT
IDE-PRIMARY ICGH (TCO)

IDE-SECONDARY 421 BGA SMBUS/I2C 155

| AC'97 CODEC(S 15 VOORISA
- - PCI BUS PCI-ISA BRIDGE
(OPTIONAL)

130
135 GPIO SLOT[+++|SLOT
140 120~{LPC I/F

FIRMWARE HUBS (MUXED)

121

122 OTHER ASICS MANAGEMENT/SECURITY
123 (OPTIONAL) CONTROLLER (HIGH-END ONLY}

US 7,694,004 B2

Sheet 2 of 6

Apr. 6, 2010

U.S. Patent

Ovi
0cl
G|

0S1 GSl

1-7/6Ge8 _) _ - “ NS _ M'H N
opoTuLNyl| NOldY | EX0LH || ginvsas vwa mandl -snaws

9-0ldD E dl9d S
— T _
M

Vd
- -H319HY
X"Jd] ~{ (SLINN'+
19N HMd 1S-4O1VIX 01
SNAIS
19-449
D-NdD N! IvgO 1D

1SHMTO

09-H44
110 1vE019

- aA
HHIH -300030 TH

Ok HOIOL r4 .U_u_

ALMIEV.LSdL

U.S. Patent Apr. 6, 2010 Sheet 3 of 6 US 7,694,004 B2

FIG. 3
READ BYTE (~. USECS) WRITE BIT(S) (~.7 USECS)
MERGE BIT(S) (~.1 USECS)
WRITE BYTE (~.7 USECS)
FIG. 4
401 402

BIT |REGISTER
ENABLES] BITS

COMMENTS

INITIAL VALUE B
SOFTWARE WRITE 3ITS 3 AND 1 ARE ENABLED
1010 1X0XB" 1 TO BE OVERWRITTEN
BITS 3 AND 1 ARE OVER-

RESULTING VALUE WRITTEN, WHILE BITS 2

1 1

AND 0 RETAIN THEIR
INITIAL VALUES

I N
NS
1o Te
I N
o [xloke
= [>* 2o

U.S. Patent Apr. 6, 2010 Sheet 4 of 6 US 7,694,004 B2

FIG. 6 .
S 602
ADDRESS STORAGE DEVICE SO AS TO COMMAND THE ATTENTION

OF STORAGE DEVICE.

READ AN ALT-STATUS REGISTER OF STORAGE DEVICE TO DETERMINE
WHETHER STORAGE DEVICE IS BUSY.

IF STORAGE DEVICE IS BUSY, THEN RETURN 604
A"SRB_STATUS_BUSY" SIGNAL 606

IF STORAGE DEVICE IS NOT BUSY, DETERMINE WHETHER THE BM
IS ACTIVE.

608 IF THE BM ENGINE IS ACTIVE, THEN THE BM
ENGINE MAY BE TURNED OFF AND THE

DRIVE RESET.

IF THE BM ENGINE IS NOT ACTIVE, THEN 610

CALCULATE THE BLOCK COUNT AND THE 612
PROGRAM DEVICE. 614

CALCULATE THE LOGICAL BLOCK ADDRESS (LBA) AND THE PROGRAM
DEVICE.

OO PROGRAMMING UP THE DIRECT MEMORY ACCESS (DMA) DESCRIPTOR
TABLE CONTENTS.

S1SI"THE COMMAND REGISTER MAY BE PROGRAMMED WITH A READ OF
- WRITE COMMAND.

- THE DMA ENGINE MAY BE PROGRAMMED.

WAIT FOR AN INTERRUPT SIGNAL.

RECEIVE AN INTERRUPT SIGNAL.
624

US 7,694,004 B2

Sheet Sof 6

Apr. 6, 2010

U.S. Patent

ONINHO4d4d
NdO

SASYL H3HLO|3710AD O/l

dvdiH
/A01A4d
ALIHM

GNVININOO
31IHM

NO NO NO

ONIDIOOTE| |IONIMOOTE] [PNIMOOTE| ONIMOOTE PNIMOOT

L

F10AD O/1} |ATOAD O/i| |FTOAD O/l

ol

319A0 O/l

NO

310A0 O/l
NO

ONIXO01E

370A0 O/l
NO
ONIMOO14

o

-ALIAILOV
TaNNVHO V.1V

ISMSVL HIHLO

ONINHO4H4d

1dO

-ALIALLOV
NdO

US 7,694,004 B2

Sheet 6 of 6

Apr. 6, 2010

U.S. Patent

ANYINNOD

S 11HM

/AOIA3A [H3ANITAD

MO']

HAANI1MAD
JLIHM

SUSYL H3HLO DNINHO4H3d NdD

H3gGWNN| LINNOD 10d13S
d0104S| HO104S AAIHC
J1IHM

379A0 O/
311HM NG

AHOWEIN | 50018

-ALIAILOY
TANNVHO VL1V

SASYL HAHLO
ONINHO4d3d |
NdO

ALIAILOV
NdO

US 7,694,004 B2

1

BI'T-GRANULAR WRITES OF CONTROL
REGISTERS

BACKGROUND

1. Field of the Invention

This invention relates generally to data transfer operations
between computer devices. In particular, the invention relates
to methods of writing data to registers which control data
transier operations between devices 1n a computer system.

2. Description of the Related Art

The host processor of a computer system fetches and
executes 1nstructions which may cause the host processor to
transier data between the memory, a central processing unit
(CPU) and an anthmetic and logic unit (ALU) or to imitiate
input/output (I/O) data transter operations with IO devices or
peripherals external to the host processor. The computer sys-
tem typically includes at least one controller which acts as the
communications intermediary between the processor and one
or more 1/0 subsystems, which may each contain one or more
external I/O devices or peripherals. As a result transier opera-
tions may not be optimized, and the wait time for processing,
data transferred through the computer system may be unnec-
essarily lengthened. The controller may be contained 1n a
bridge, such as an I/O Controller Hub (ICH) available from
Intel Corporation of Santa Clara, Calif., provided to interface
with and buffer transfers of data between various computer
devices.

The advanced technology attachment standard, frequently
written as AT attachment (ATA) or integrated drive electron-
ics (IDE), 1s commonly used for power and data signal inter-
face communications between a host processor and a storage
device. This set of standards 1s produced by Technical Com-

mittee T13 (www.tl3.com) of the National Committee on
Information ‘Technology Standards (www.NCITS.org),

Washington, D.C. The AT Attachment Interface for Disk
Drives (ANSI X3.221-199x) 1s a disk drive interface standard
that specifies the logical characteristics of the interconnecting,
signals as well as the protocols and commands for the storage
device operation. This standard permits compatibility
between host system products and storage device products
that comply with the standard, even where these products are
produced by ditferent manufacturers.

An IDE controller 1s conventionally located between any
IDE storage device (such as a hard disk drive) and the host
processor. It serves as a translator to facilitate C(PU/IDE
device communications over each I/O cycle. For example, on
receiving an initialization command from the host processor,
the IDE interface controller presents the command into some-
thing the downstream IDE device will understand, 1.¢. that the
IDE device can handle, and sends this command to the
attached IDE device. On recerving the converted command,
the IDE device processes the command and sends back a
completion notification to the processor through the IDE
interface controller. This conventional I/O cycle from com-
mand sent to completion notification 1s a single task-file reg-
1ster access that may take approximately 1.2 microseconds
(us—one millionth (10~°) of a second).

Conventionally, the host processor dedicates a block of its
processing time to the mnitialization of a peripheral, such as an
IDE storage device. During this peripheral initialization dedi-
cation time, the host processor 1s prevented from performing
other processing functions and thus its performance 1s slowed
down. Furthermore, the performance of a bridge or a control-
ler may be burdened by demands to access memory locations
and control registers during data transier operations. Conven-
tional control registers usually offer only byte-level write

10

15

20

25

30

35

40

45

50

55

60

65

2

control. Therefore, when software must write to a specific bit
(or bits) of a byte 1n a control register, 1t must first read the
byte, merge the bit (or bits) to be modified into the read byte,
and then write the modified byte back to the register. See FIG.
3. For typical I/O and configuration registers, the processor 1s
stalled approximately 1 microsecond (about 1,000 processor
clocks) while performing this read-merge-write sequence
(perhaps only to write a single bit). If the read-merge-write
sequences are necessary for streamlining of the iitialization
command sequence, then they inherently prevent the
sequence from being posted to the controller for the external
I/0O device or peripheral.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding and appreciation of the foregoing
and of the attendant advantages of the present invention will
become apparent from the following detailed description of
example embodiments of the invention. While the foregoing
and following written and 1llustrated disclosure focuses on
disclosing example embodiments of the invention, 1t should
be clearly understood that the same 1s by way of illustration
and example only and 1s not to be taken by way of limitation.

FIGS. 1 and 2 are a generalized block diagram of an exem-
plary computer system in which an example embodiment of
the ivention may be practiced.

FIG. 3 1llustrates a prior art method of changing individual
bits 1n a control register.

FIG. 4 1s a table illustrating an example 1n which individual
bits 1n a control register are overwritten.

FIG. § illustrates a method of writing individual bits to a
control register according to an example embodiment of the
invention.

FIG. 6 illustrates a read/write command setup protocol
method which may be used in conjunction with a method of
writing individual bits to a control register according to an
example embodiment of the mnvention.

FI1G. 7 1llustrates a conventional input/output (I/O) task-file
access.

FIG. 8 illustrates a streamlining task-file access which may
be used 1n conjunction with a method of writing individual
bits to a control register according to an example embodiment
of the invention.

DETAILED DESCRIPTION

While example embodiments are described herein, the
present mnvention 1s applicable for use with all types of com-
puter systems, I/O controllers and devices, and chipsets,
including any follow-up chip designs which link together
such disparate computer devices as processors, peripherals,
storage devices, and devices for data communications. For
the sake of sitmplicity, discussions will concentrate mainly on
a desktop personal computer having several 1/0 units 1nter-
connected to a host processor by an 1/0 controller hub (ICH),
buses and 1nterfaces, although the scope of the present inven-
tion 1s not limited thereto. A wide variety of implementations,
arrangements and configurations of computer systems (e.g.,
processors, bridges and 1I/0 units) may be possible.

The system diagram of an exemplary desktop personal
computer 100 1s shown 1n FIG. 1. Although desktop computer
system 100 1s shown 1n FIG. 1, the invention may be utilized
with a wide range of processing systems having 1/O data
transier operations such as, but not limited to, a mainirame
computer, a server, a radio, a television, a set-top box, a
mobile computer, such as a laptop, a satellite system, or other
clectronic device that processes information.

US 7,694,004 B2

3

The desktop computer system 100 includes a host proces-
sor subsystem 101 which may be comprised of one or more
host processors (which may have respective associated cache
memories) and a memory controller hub (MCH) 103 con-
nected to the processor(s) by a host processor front side bus
102. The host processor(s) may be, for example, any one of
the Pentium® family of processors manufactured by the
assignee of this application, Intel corp. of Santa Clara, Calif.,
but for the sake of simplicity the host processor(s) are repre-
sented and referred to merely as CPU 104. Regardless of the
number of host processors 1n processor subsystem 101, a
single processor may operate on a single item (such as 1/0O
data transier operation), and the plurality of processors may
collectively operate on multiple items (I/O data transier
operations) on a list at the same time.

Memory subsystem 106 1s connected to MCH 103 through
at least one memory bus 105 and stores information and
instructions for use by processor subsystem 101. It has at least
one memory element, which is preferably a dynamic random-
access-memory (DRAM), but may be substituted for by other
types of memory. Memory subsystem 106 may include any
storage device that works toward holding data 1n a machine-
readable format.

The desktop computer system 100 may have a mother-
board 108 as a main board of the computer system. Mother-
board 108 may contain circuitry for a processor, a keyboard,
and a monitor as well as include slots to accept additional
circuitry. Itmay also have one or more buses, which may each
be one of a set of conductors (wires, printed circuit board
tracks or connections 1n an integrated circuit) connecting the
various functional units on motherboard 108.

A graphics subsystem having the necessary video memory
and other electronics to provide a bitmap display to a display
device (such as a cathode ray tube monitor, liquid crystal
display, or flat panel display) 1s included waith, or attached to,
motherboard 108, or with or to other components 1included
with or attached to motherboard 108. The graphics subsystem
may be an Advanced Graphics Port (AGP) video card 107
(including an AGP 4x graphics controller and a local memory
on 1ts own circuit board) connected to MCH 103 via an AGP
2.0 bus 109 as shown.

The operating system of desktop computer system 100
may 1nclude one or more device-specific drivers utilized to
establish communication with /O controllers, devices and
peripherals, and perform functions common to most drivers,
including, for example, initialization and configuration,
resource management, send/receive I/O transaction mes-
sages, direct memory access (DMA) transactions (e.g., read
and write operations), queue management, memory registra-
tion, descriptor management, message tlow control, and tran-
sient error handling and recovery. Such software driver mod-
ules may be written using high-level programming languages
such as C, C++ and Visual Basic, and may be provided on a
tangible medium, such as a memory device, magnetic disk
(fixed, floppy, and removable), other magnetic media such as
magnetic tapes; optical media such as CDD-ROM disks, or via
Internet download, which may be available to conveniently
plug-1n or download 1nto an existing installed operating sys-
tem (OS). One or more such software driver modules may
also be bundled with the existing operating system which may
be activated by a particular IO device driver.

An I/0 controller hub (ICH) 110 1s connected to MCH 103
by bus 111. It operates to bridge or interface with a plurality
of various IO devices and peripherals. Several different types
of I/O devices and peripherals controllers may be attached to
ICH 110, such as a Peripheral Component Interconnect (PCI)
bus 1135 with a plurality of slots 116. PCI bus 115 may be a

5

10

15

20

25

30

35

40

45

50

55

60

65

4

high performance 32 or 64 bit synchronous bus with auto-
matic configurability and multiplexed address, control and
data lines as described 1n the latest version of “PCI Local Bus

Specification, Revision 2.2” set forth by the PCI Special Inter-
est Group (SIG) on Dec. 18, 1998 for add-on arrangements
(e.g., expansion cards) with new video, networking, or disk
memory storage capabilities. Other types of bus architecture
such as Industry Standard Architecture (ISA) and Expanded
Industry Standard Architecture (FISA) buses may also be
supported through a Moon PCI-ISA bridge 117.

A low pin count interface (LPC I/F) 120 of ICH 110 may
support super I/O 121 for providing an interface with a plu-
rality of I/0 devices (not shown), including, for example, a
keyboard controller for controlling operations of an alphanu-
meric keyboard, a cursor control device such as a mouse,
track ball, touch pad, touch screen, joystick, digitizing tablet,
a microphone, a mass storage device such as magnetic tapes,
hard disk drives (HDD), and floppy disk drives (FDD), and
serial and parallel ports to printers, scanners, and display
devices. LPC I/F 120 may also support one or more firmware
hubs 122, possibly over multiplexed connections, other appli-
cation specific integrated circuit chips (ASICs) 123, and a
management/security controller 124,

As shown n FIG. 1, ICH 110 may have a plurality of USB
ports 125, which preferably collectively support both USB1
and USB2 protocols. ICH 110 may also support AC’97
Codec(s) 130 over an AC’97 2.1 bus, a local area network
controller 135, GPIO 140, power management 1435, including

clock generators 146, system management (1CO) 150 and
one or more SMBus device(s) over SMBus/12C 155.

The exemplary, non-limiting, ICH 110 shown in FIG. I
supports both a primary IDE and a secondary IDE. The bus
may be a 16-bit bus. One skilled 1n the art will recognize that
the bus may have more throughput, such as a 32-bit Peripheral
Component Interconnect (PCI) bus. The bus may be a first
channel having an ATA ribbon cable, one end connected to a
storage device such as an IDE device, such as a master device,
and the other connected to a second IDE device, such as a
slave device. Each ribbon cable may be a 44/80 conductor
cable or any suitable conductor cable. A secondary channel
similar to bus 126 may be coupled to the controller so as to
serve a second pair of master and slave devices.

As shown 1n FIG. 2, ICH 110 contains a plurality of con-
trollers for the supported devices connected thereto. Exem-
plary supported I/O devices and peripherals include key-
boards, mput mouses, printers, scanners, display devices,
hard disk drives, Compact Disk Read Only Memory (CD-
ROM) drnives, Compact Disk Read/Write (CD-RW) drives,
and other types of storage devices. These controllers act as a
communications translator between the supported devices
and processor subsystem 101. They may include logic that
runs protocol structions out onto the bus connecting ICH
110 to the device. One of these controllers 1s an IDE interface
controller or a controller compatible (including being back-
ward compatible) with the IDE interface. One of these
devices 1s a storage device that may require translation of
processor istructions and may employ information stored in
a location that may be connected with desktop computer
system 100. It may be a disk drive that may be adapted to read
and write at least one rigid magnetic data storage disk (hard
disk) that rotates about a central axle. Despite the particulars
of this example embodiment of the invention mvolving data
transiers between an IDE interface controller in ICH 110 and
one or more IDE storage devices, the invention 1s not limited
thereto and may be applied to data transfers between any type
of controller and device connected to the controller.

US 7,694,004 B2

S

Desktop computer system 100 may be configured ditfer-
ently, or employ some additional or different components,
than as shown i FIG. 1. Although an ICH can be imple-

mented by a variety of different components, an exemplary
ICH 1s the Intel® 82801 BA I/O Controller Hub 2 (ICH2).
Although ICH 110 includes example embodiments of the
invention and thus differs from all known prior art compo-
nents at least 1n that respect, 1t may be otherwise similar to a
previously available ICH and a member of the family includ-
ing one or more previously available ICHs, such as the Intel®
82801 BA I/O Controller Hub 2 (ICH2). In addition, in any
particular personal computer implementation, ICH 110 may
integrate many of the legacy and new standard I/O 1nterfaces
for that personal computer either presently existing or here-
alter developed.

The method of making bit-granular writes to control reg-
1sters according to the example embodiment of the imnvention
1s preferably applied specifically to the IDE controller of ICH
110. Software (preferably, a driver in the operating system
soltware) running in processor subsystem accesses the IDE
registers by running a transaction on the front side bus. The
transaction 1s accepted and forwarded to ICH 110 by MCH
103. The transaction may be 1nitially decoded by one block
within ICH 110, and then forwarded to an IDE controller
block within ICH 110. IDE accesses are forwarded to the IDE
controller block (Assuming the IDE controller block 1is
enabled for accesses) where turther decoding 1s performed to
determine the exact register bits to be accessed.

Register reads always result in a “completion packet™ back
to the processor. The read completion packet contains the data
from the register. These are passed back up through the Glo-
bal Out block (GO unit) and the Hub Link block (L1 unit).
Writes to registers, which are the primary transactions of
interest for this imvention, may not require any completion
information passed back to the processor. Writes to “I/O” or
“Configuration” space require completion packets, while
writes to “Memory” space do not require completion packets.
Note that the terms “I/O”, “Configuration” and “Memory” as
used 1n these paragrapghs only refer to a characteristic speci-
fied 1n the transaction that determines how the address should
be decoded.

IDE can be programmed to initiate Direct Memory
Accesses (DMA). DMA cycles are “memory” reads and
writes that are sent up the hub link interface to the MCH,
snooped 1n the processor’s caches, and targeted to system
DRAM. Once again, IDE-1nitiated reads to DRAM will result
in subsequent read completion packets to be delivered to the
ICH over the hub link interface.

As more fully developed below, the IDE controller in ICH
110 in the example embodiments of the mvention may be
adapted to handle imitialization completion noftification,
unlike conventional I/O data transfer techniques which
employ a CPU to handle mitialization completion notifica-
tion, so that the time the CPU dedicates to initializing an IDE
device may be reduced. Specifically, the IDE controller
allows software (including a driver 1n operating system soit-
ware executed 1n processor subsystem 101) to write specific
bits of a register while leaving other bits within the same byte
unchanged. This 1s achieved by providing a “Bit Enable™ field
composed of a number of bits equal to the number of bits 1n
the register. When writing to the register, the software speci-
fies exactly which bits are to be overwritten by placing a “1”
in the corresponding bit of the bit enable field.

FI1G. 4 1llustrates an example 1n which bit location 3 of a
register must be set to “1” and bit location 1 must be cleared
to “0”. In this example, the software provides for an 8-bit
value having a “1”” 1n the bit locations of bit enable field 401

10

15

20

25

30

35

40

45

50

55

60

65

6

that correspond to bit locations 3 and 1 of the register and a
“0” 1n the bat locations of bit enable field 401 that correspond
to bit locations 2 and 0 of the register. This enables bit loca-
tions 3 and 1 of the register to be overwritten. It also provides
a “1”1inthe bitlocations of data field 402 that correspond to bat
locations 2 and 0 of the register. (Any value may be provided
at the bit locations of data field 402 that correspond to bit
locations 2 and 0 of the register.) In the example shown 1n
FI1G. 4, the bit locations of bit enable field 401 and data field
402 are 1n the same position as the bit locations of the register.

Hardware associated with the register receives a data
packet containing the bit enable field and the data field
(““1010.sub.--1.times.” binary 1n the example of FIG. 4) and
overwrites the bit locations of the register for which the
enable bit 1n the corresponding location of the bit enable field
1s set. The other bit locations of the register are leit
unchanged. In the example shown 1n FIG. 4, bit locations 3
and 1 of the register are overwritten with the data in the
corresponding bit locations of data field 402, while bit loca-
tions 2 and 0 of the register retain their 1nitial values.

Generally speaking (without reference to the example
shown 1n FI1G. 3), the bit enable field allows any combination
of N register bits to be over-written with a 2*N-bit write
command with relatively simple hardware implementation.
The mvention can be easily applied to existing hardware
structures having existing control registers by providing an
alternate register location for implementing the “bit-granular
writes” as described above. In the case of an 1/O Controller
Hub (ICH) or other suitable hardware device, the alternate
register location may be placed 1n memory space, thereby
allowing the processor to post the bit-granular writes for use
with the streamlined technique described below.

In the example embodiments of the mvention described
herein, the methods are utilized with either one of, or both of,
IDE DMA status register and IDE command register. In par-
ticular, the methods are used when initiating a DMA sequence
for an IDE storage device.

To cause an IDE storage device or other external I/O device
or peripheral to perform I/0 data transier operations, the host
processor 1nitializes 1t so as to prepare 1t to recerve /O data
transfer operation commands. To mitialize the IDE storage
device or other external I/O device or peripheral, the host
processor transmits one or more task-file imtialization com-
mands to 1t as a data packet through what 1s called the task-file
register set. Each task-file imtialization takes a significant
length of time to execute. One reason for this 1s that each
command execution 1s verified by the host processor before
the next command may be executed.

Transmitting information to an IDE device may mvolve
several individual actions (or “writes™) to the task-file register
set, each of which conventionally may be processedinal.2 us
I/O cycle. For example, where seven individual initialization
actions are processed by an IDE interface controller, the total
I/O cycle time may be 8.4 us (=7x1.2). The collective of these
seven writes may be thought of as a task-file. The action of the
CPU 1n performing a series of commands or I/O accesses to
properly enable an IDE device for the transier of data may be
referred to as “writing the task file.”

During the time in which the IDE interface controller
device sends a task-file I/O, the processor 1s blocked from
generating further commands or receiving further requests.
Under current ATA standards, the processor would be tied up
for 8.4 us on sending a command to an IDE device with seven
individual 1/0 task-file writes. To put this wait into perspec-
tive, a 1 Ghz processor may execute about 1,000 ordinary
instructions 1n one microsecond. Thus, in the 8.4 us a proces-
sor dedicates to IDE device imitialization, up to 8,400 ordi-

US 7,694,004 B2

7

nary instructions (=1,000x8.4) could be processed by the
processor 1 a time a processor dedicates to IDE device com-
mand setup 1s reduced.

By employing a shadow register space to handle task-file
I/0O completion, the present invention works toward reducing
the time a processor may dedicate to command setup of an
IDE device by approximately 7.0 us ; from 8.4 us to approxi-
mately 1.4 us. Moreover, the mvention similarly may be
employed towards reducing the time a processor may dedi-
cate to the operation of devices internal and external to a
processor. Therefore, 1n a “fill condition,” 1.e. when a task-file
register 1s written and a processor must wait until the I/O cycle
out to the IDE device 1s completed, the register space allows
the extension 1n the IDE interface controller that 1s described
in this invention to complete the I/O cycle to the IDE device.
Thus allowing the processor to return to processing other
tasks, such as task-file writes.

An addressing method 1s used to uniquely 1dentity the
source and destination of a data transfer in desktop computer
system 100 in a meaningful manner. Each device, such as a
memory 1tegrated circuit, storage device, or processor, may
have 1ts own local address space. An address space may be the
range of addresses that a processor or process can access, or
at which a device can be accessed.

The address space of a device bus may be dependent upon
at least the width of the address; that 1s, the number of bits in
the address. A device bus having an address width of 16 bits
uniquely identifies 2'° or exactly 65,536 locations. The size of
a processor’s address space depends on the width of the
processor’s address bus and address registers. Each local
address space may start at zero. Each local address may be
mapped to a range of addresses which starts at some base
address 1n the processor’s address space. Similarly, each pro-
cess will have i1ts own address space, which may be all or a
part of the processor’s address space.

Preferably, the iitialization can be streamlined so that
processor subsystem 101 can post an entire command
sequence for setting up an I/O data transier operation with an
external 1/O device or peripheral to the control registers in a
controller for the external I/O device or peripheral. The ICH
110 preferably implements a streamlining command setup
teature that allows an IDE driver in the operating system
executed by processor subsystem 101 to perform task file
commands for a typical disk access using posted memory
writes, mstead of I/O writes. This allows CPU 104 1n proces-
sor subsystem 101 to quickly complete the IDE set up and
move on to other operations.

In a conventional I/O-based method, the CPU spends an
average ol greater than 1.2 microseconds per access that runs
to the IDE drive as shown in FIG. 3. Although the IDE 1/0
accesses are used to initiate all disk accesses regardless of
IDE mode (1.e. PIO, DMA, UDMA), this streamlining feature
must only be used for UDMA transiers. This allows the driver
software to off-load CPU 104 1n processor subsystem 101
carlier to perform other activities while waiting for the 1nter-
rupt upon the completion of the transfer.

With six PIO command accesses and two read-modily-
write accesses to the Bus Master 1/O registers, CPU 104 1s
stalled for approximately 8 microseconds at the beginning of
any disk access while performing this sequence. Based on 8
posted memory writes (on a 133 MHz front-side bus)
described below and used to replace the current I/O cycles,
the expected stall for the processor the time for a conventional
I/0 process 1s 7.91 microseconds versus a time of only 0.18
microseconds for the streamlining process. The result 15 a
98% decrease 1n time duration for an actual savings of 7.73

10

15

20

25

30

35

40

45

50

55

60

65

8

microseconds. The improvement 1s less impressive 1 the Fast
NonData PIO mode can be used with the drives on the IDE
interface.

FIG. 6 1llustrates a read/write streamlined command setup
method 600. FIG. 7 illustrates a timeline of the method of
FIG. 6. As1sreadily seen, in FIG. 7, while the ATA channel 1s
in an active state, such as writing drive select, the CPU 104 1s
blocked from performing other tasks.

Method 600 may include similarities to conventional pro-
tocols used to write a task-file. However, 1t differs at least
insofar as it involves writing to a memory mapped register
queue rather than I/O mapped task-file registers.

Method 600 may be implemented 1n software recorded 1n
any readable medium which, when executed, causes com-
puter 100, preferably processor subsystem 101, to perform
method 600. In one embodiment, method 600 may be imple-
mented through a distributed readable storage medium con-
taining executable computer program instructions which,
when executed, cause at least one of a client computer system
and a server computer system to perform method 600. Addi-
tionally, method 600 may be implemented though a computer
readable storage medium containing executable computer
program 1nstructions which, when executed, cause a com-
puter system 100 to perform method 600.

Method 600 may begin at step 602. At step 602, method
600 may address the storage device so as to command the
attention of the storage device. Bit four of the device/head
register field indicates the selected device (DEV). Thus, step
602 may include placing the proper input at bit four (the
write/drive select bit) of the device/head register field. This bit
four information 1s always sent to the 1I/O task-file.

At step 604, method 600 may read an alt-status register of
the storage device to determine whether the storage device 1s
busy. IT 1t 1s busy, then method 600 may return a “SRB_STA-
TUS_BUSY™ signal at step 506 since the small computer
system interface (SCSI) request block (SRB) field would not
be clear. From step 606, method 600 may return to step 604.

Under normal operations, the storage device may not be
busy at the first reading of its alt-status register. Thus, the read
command of step 604 may be sent to the I/O task-file. Alter-
natively, method 600 may return to step 604 up to 20,000
times. Here, the read command of step 604 may be sent to the
memory queue.

If the storage device 1s not busy, then method 600 may
continue to step 608. At step 608, method 600 may determine
whether the DMA engine of the storage device 1s active. If the
BM engine of the storage device 1s active, then the BM engine
may be turned oil and the drive reset at step 610. If the BM
engine of the storage device 1s not active, then method 600
may proceed to step 612.

At step 512, method 600 may calculate the block count and
the program device. This may mvolve writing the block
length to the memory queue of the sector count register field.
Step 612 15 distinguished from conventional techniques 1n
that, under conventional techniques, the block length 1s writ-
ten to an 1/0 task-file whereas step 612 includes writing the
block length to the memory queue.

At step 614, method 600 may calculate the logical block
address (LBA) and the program device. This may include at
least one of writing the following registers to the memory
queue: sector number, cylinder low, cylinder high, and
device/head register. Step 614 1s distinguished from conven-
tional techniques in that, under conventional techniques,
these registers are written to an I/O task-file whereas step 514
includes writing the registers to the memory queue.

Preferably, ICH 110 mmplements a Command Posting
FIFO for each IDE channel. PIO write commands are posted

US 7,694,004 B2

9

to the FIFO by writing to the memory location specified in the

IDE Command Posting Range, below. The commands are

then executed 1n order on the respective interface. The depths

of the FIFOs may be provided to software through the Pri-

mary and Secondary Posting FIFO Depth Registers. Software

must use this information to guarantee that the FIFO’s do not

overflow. The depth of each of the FIFO’s may be fixed to a

maximum (1.¢., 8) entries. One possible sequence of writes 1s:

1. Sector Count Register (02/2)

. Sector Number (03/)

. Cylinder Low (04/)

. Cylinder High (05/)

. Device/Head (06/)

. Command (07/)

. Bus Master Status Register Interrupt Cleared

. Bus Master Start/Stop bit 1s set, and the Read/Write bit 1s
written simultaneously.

These are preferably the last 8 writes in the command
sequence. As described above, software must select the ATA
device prior to this specific sequence.

At step 616, method 600 may include programming the
DMA descriptor table contents. At step 618, the command
register may be programmed with a read or write command
that may be sent to the memory queue rather than an 1I/O
task-file.

Atstep 620, the BM engine may be programmed. This may
involve clearing the BM interrupt (BMI) status bit for a spe-
cifically-accessed controller, such as a controller in ICH 110.
Additionally, the drive transfer protocol (DTP) of the BM
engine may be set. In one embodiment, the BMI_DTP regis-
ter may be set only once. Last, the BMI control may be set to
a “Start/Stop Bus Master” bait.

With the BM engine programmed at step 620, method 600
may wait for an interrupt signal from the storage device at step
622. This may 1volve returning a “SRB_STATUS_PEND-
ING” signal since the small computer system interface
(SCSI) request block (SRB) field would be connected with
change. At step 624, an interrupt signal may be received.

The invention may be employed whenever a direct memory
access read or write 1s mitiated to an ATA device. Since
typical computer systems include a primary hard disk drive
that may be enabled for accesses through a direct memory
access read or write, CPU performance may improve with
cach use of this invention. In turn, as CPU performance
improves, the disk access overhead that this invention works
towards reducing will equate to an ever-large performance
gain.

FI1G. 8 1llustrates a timeline for a method of the invention
wherein task-file access 1s streamlined. By using this example
embodiment of the invention, the CPU 1s freed up to allow
processing of other tasks.

The above embodiment can also be stored on a device or
medium and read by a machine to perform instructions. The
device or medium may include a solid state memory device
and/or a rotating magnetic or optical disk. The device or
medium may be distributed when partitions of instructions
have been separated into ditferent machines, such as across an
interconnection of computers.

While the foregoing and following written and illustrated
disclosure focuses on describing example embodiments of
the imvention, it should be understood that the same 1s by way
of illustration and example only, 1s not to be taken by way of
limitation, should not be construed as limiting the scope of the
subject matter of the claimed imnvention, and may be modified
in learned practice of the invention. The specification and
drawings are, accordingly, to be regarded in an 1illustrative
rather than a restrictive sense. Moreover, the principles of the

O ~1 O h = W N

10

15

20

25

30

35

40

45

50

55

60

65

10

invention may be applied to achieve the advantages described
herein and to achieve other advantages or to satisiy other
objectives, as well. While the foregoing has described what
are considered to be example embodiments of the 1nvention,
it 1s understood that various modifications may be made
therein and that the invention may be implemented in various
forms and embodiments, and that 1t may be applied 1n numer-
ous applications, only some of which have been described
herein. It 1s intended by the following claims to claim all such
modifications and variations.

The mvention claimed 1s:

1. A computer comprising:

a processor subsystem;

a device which transfers data to or from said processor

subsystem; and
a controller connected between said device and said pro-
cessor subsystem and adapted to control the transter of
data between said device and said processor subsystem,
said controller executing a method comprising,

recerving a data value of a write directed to a control
register in the controller,

interpreting bits o the data value as a data field, the number

of bits in the data field being equal to the number of bits
in the control register 1n the controller and bit locations
in the data field corresponding respectively to bit loca-
tions 1n the control register;

interpreting bits of the data value as enable bits 1 a bit

enable field, the number of enable bits 1n the bit enable
field being equal to the number of bits 1 the control
register and bit locations 1n the bit enable field corre-
sponding respectively to bit locations 1n the control reg-
1ster; and

overwriting only the bits at the bit locations of the control

register for which the enable bit 1n the corresponding
location 1n the bit enable field 1s set with the bit 1n the
corresponding location 1n the data field, wherein the
processor subsystem 1s to post an entire command
sequence 1n the controller for setting up an IDE (inte-
grated drive electronics) data transier.

2. The computer recited 1n claim 1, further comprising a
bridge between the processor subsystem and at least said
device, the controller being included 1n the bridge.

3. The computer recited 1n claim 2, wherein the device
comprises an IDE (integrated drive electronics) storage
device and the bridge comprises an I/O controller hub (ICH)
which controls an IDE data transfer between the processor
subsystem and the IDE storage device.

4. A software program stored 1n a tangible medium, said
program, when executed, causing a computer to execute a
method of writing individual bits of data to a register, said
method comprising:

1ssuing a write of a data value to the register,

overwriting only bits at bit locations of the register for

which a corresponding enable bit 1n the data value 1s set
with corresponding data bits 1n the data value, wherein
the computer 1s to post an entire command sequence in a
controller for setting up an IDE (integrated drive elec-
tronics) data transfer.

5. The software program recited 1n claim 4, wherein said
soltware program comprises a driver in the operating system
soltware executed by a processor subsystem 1n the computer.

6. The soitware program recited in claim 5, wherein the
register 1s a control register 1n the controller adapted to con-
trol an IDE (integrated drive electronics) data transfer opera-
tion between said processor subsystem and an IDE storage
device.

US 7,694,004 B2

11

7. The software program recited in claim 5, wherein

the processor subsystem posts an entire command
sequence for setting up the IDE (integrated drive elec-
tronics) data transier to a controller.

8. The method of claim 4 wherein

the data value comprises N enable bits and N data bits that
correspond to N bits of the register.

9. The method of claim 4 wherein

the register has a location 1n configuration space and a
location 1n memory space, and

issuing a write of a data value to the register comprises
1ssuing the write to the location in memory space for the
register.

10. A method comprising

receiving data of a single write command wherein the data

comprises a bit enable field and a data field comprising
N bits 1n each field,

updating a register with one or more bits of the data field
that are associated with enabled bits of the bit enable

field, and

posting an entire command sequence in a controller for
setting up an IDE (integrated drive electronics) data
transfer.

11. The method of claim 10 wherein

the data of the single write command comprises 2*N bits,

the bit enable field comprises N bits, and

the data field comprises N bits.

12. The method of claim 10 wherein the register has a
location 1n configuration space and a location in memory
space, further comprising,

10

15

20

25

30

12

1ssuing the single write command of the data to the location

in memory space for the register.

13. The method of claim 10 wherein

the register has a location 1n I/O space and a location 1n

memory space, and

a processor subsystem 1ssues a write of the data value to the

location 1n memory space for the register.

14. The method recited 1n claim 10, wherein the register 1s
a control register for a data transier operation.

15. The method recited in claim 14, wherein the data trans-
fer operation transfers data to or from a storage device.

16. The method recited 1in claim 15, wherein the control
register 1s a command register.

17. The method recited in claim 10, wherein some of the
bits of said register are not overwritten.

18. The method recited 1n claim 10, wherein the data field
and the bit enable field are received simultaneously.

19. The method recited 1n claim 18, wherein the data field
1s provided at an address which 1s contiguous with the address
for the bit enable field.

20. The method recited in claim 10, wherein the data trans-
fer operation comprises a data transier between a processor
subsystem and an external storage device or peripheral.

21. The method recited in claim 20, wherein the processor
subsystem posts an entire command sequence for setting up
the data transfer.

22. The method recited 1n claim 20, wherein the method 1s
carried out in a controller 1n a bridge connected between the
processor subsystem and the external storage device or
peripheral.

	Front Page
	Drawings
	Specification
	Claims

