US007693925B2
a2 United States Patent (10) Patent No.: US 7,693,925 B2
Mathew et al. 45) Date of Patent: Apr. 6, 2010
(54) MULTIPLICAND SHIFTING IN A LINEAR 6,061,706 A * 5/2000 Gaietal.c..ccrvvnn..... 708/491
SYSTOLIC ARRAY MODULAR MULTIPLIER 7,240,204 B1* 7/2007 Kocetal.ccceeenennne, 713/174
2002/0172355 Al1* 11/2002 Luetal.coooniiinil, 380/28
(75) Inventors: Sanu K. Mathew, Hillsboro, OR (US), 2003/0065813 Al* 4/2003 Ruehle ...coovveenvennnn.... 709/238
David L. Harris, Upland, CA (US); 2004/0010530 Al* 1/2004 Frekingetal. 708/491
Ram Krishnamurthy, Portland, OR 2004/0210614 Al* 10/2004 Chenetal. ...coevee...... 708/492
(US)
(73) Assignee: Intel Corporation, Santa Clara, CA * cited by examiner
(US) Primary Examiner—David H Malzahn
74) Attorney, Agent, or Firm—Thomas R. Lane
(*) Notice: Subject to any disclaimer, the term of this (74) » a8
patent 1s extended or adjusted under 35 (57) ABSTRACT
U.S.C. 154(b) by 1160 days.
(21) Appl. No.: 11/242,573 Embodiments of apparatuses and methods for multiplicand
shifting 1n a linear systolic array modular multiplier are dis-
(22) Filed: Sep. 30, 2005 closed. In one embodiment, an apparatus includes two pro-
cessing elements of a linear systolic array. One processing
65 Prior Publication Data element includes multiplication logic, multiplicand shift
p g p
US 2007/0203061 Al Auo. 30. 2007 logic, an adder, modulus logic, and modulus shift logic. The
& Y multiplication logic 1s to multiply a word of the multiplicand
(51) Int.CI and a bit of the multiplier to generate a product. The multi-
GOES '3 7 /7 (2006.01) plicand shiit logic 1s to shift the word of the multiplicand. The
(52) US.Cl ' 708/491 adder 1s to add the product to a first running sum to generate
S.CLo e a second running sum. The modulus logic is to conditionally
(58) gleld oii.(fla‘smﬁglatlfon Searclth hh None add a word of a modulus and the second running sum. The
e application lile for complete search istory. modulus shift logic 1s to shift the word of the modulus. The
(56) References Cited next processing element includes logic to multiply the shifted
word of the multiplicand and the next bit of the multiplier.
U.S. PATENT DOCUMENTS
5,903,170 A * 5/1999 Kulkarnietal. 326/134 7 Claims, 9 Drawing Sheets

323
322
- 321
j
M, [
] 326
M
1315 - 325
M(JJ 314 324
v1a13 339
2 1 333
(Joud [T
311 [
Yo | RHBU 300
X310
i | 329
Z ~(in) 3419 373
Jz. B r 343 363 %- 328
21 17 Moy ik ol P B EY,
| o 341 361
£0 Ca | (39320 Ch
47| | 344 362

U.S. Patent Apr. 6, 2010 Sheet 1 of 9 US 7,693,925 B2

100
174
|172|

r'-'-'m
{® O O o
b wr— - —

EII“
Jil!

FIG. 1
(Prior Art)

U.S. Patent Apr. 6, 2010 Sheet 2 of 9 US 7,693,925 B2

PE

211 212 213
201 | XqYOMOZ0
202 | XY MZ1

203 | Xg.Y2MZZ2 X4,YO M0 20

3 pm3 73 Tml 71
Clock 204 X0, Y~ M°,Z X,Y' M2

Cycle
/ 205 X1, Y2M2,Z2 | XoYOMOZ0

206 X1, YSM3z3 | X, yimlz
207 X2,Y2,M2,22

208 Xo,Y3,M3,23

FIG. 2
(Prior Art)

U.S. Patent Apr. 6, 2010 Sheet 3 of 9 US 7,693,925 B2

R
134
300

N 3| < NJI~-HS
CO | €O §| €O mimm
MBI COJICOPJI M
;é é

mz,-zemi
]!%'d

318
317

FIG. 3

U.S. Patent Apr. 6, 2010 Sheet 4 of 9 US 7,693,925 B2

S—dCiz0 c—C40 S 44440

P—d[410 C d| 432
Cout

400

FIG. 4

U.S. Patent Apr. 6,2010 Sheet 5 of 9 US 7,693,925 B2

P
o
Ve,
—
oD
Te Lu%
O S
| <+
| ™
w0l w
~| N
= 0| o
O
O ~
=t .
-— i Lug
— 8 G.m
= D
e N
O
- >
-
O
=

916 523
917 524

Ty
~f
To!
O
w LL
Q. o Ll
ap.
b T
Ty

£,

&
= O
D =
= 5
g S
WD

540
Mmem 543
FIG. 5

U.S. Patent Apr. 6, 2010 Sheet 6 of 9 US 7,693,925 B2

PE
| 510 520 530
601
602
603
Clock
Cycle
604
605
Ya1Y4oY
- 11Y12Y13
M11M1oMq3
211412443
YeaY14Y10 |
507 10711712

M1oM11M12
£10£11£42

U.S. Patent Apr. 6,2010 Sheet 7 of 9 US 7,693,925 B2

Modular muitiplier
500

Processor 710

Memory 720

System 700

FIG. 7

B

(u09) g 614 8 9l
6ES ol
oN
ces ’00 o
veg £e8

US 7,693,925 B2

= 0<*oN A N{})ppo 0z = (1)ppo 0Z+oAMX
S
v o
g
2 _
528 Vg €28 228 CO 028
0= Owuusyet | | 0=0x [| gAMusyeT QW 10 ghio
= i | . wqubiyaiols | | naubly aioig
=
e\
&
-
< T
0¢
L b 218 IE -
VU A 0)PPO 07 = (0)ppo ON+o>ox 0=7

U.S. Patent

(09) § 9|4

US 7,693,925 B2

GG8

2%

W WS Yo
J0 }1q M0| 163

Sheet 9 of 9

Apr. 6, 2010

U.S. Patent

798

£58

7\
O }Ig MO} J9S

28
A HIUS 4O

168
W0

)q ybiy 21013

198

058
AJO

}q yby a101g

US 7,693,925 B2

1

MULTIPLICAND SHIFTING IN A LINEAR
SYSTOLIC ARRAY MODULAR MULTIPLIER

BACKGROUND

1. Field

The present disclosure pertains to the field of data process-
ing, and more particularly, to the field of cryptography.

2. Description of Related Art

The computations required to implement many crypto-
graphic protocols, such as the Rivest-Shamir-Adleman and
Diffie-Hellman algorithms for public key encryption, include
modular exponentiation. A straightforward approach to
modular exponentiation requires dividing a multiplication
product by a modulus to find the remainder. The modulus 1s
typically a large number, so the division operation may be
very slow. Therefore, a technique known as Montgomery
multiplication may be used to perform modular exponentia-
tion more efliciently.

Montgomery multipliers perform modular exponentiation
using a transformation that allows the division operation to be
replaced by shift operations. For example, the following
radix-2 Montgomery multiplication algorithm computes the
result, Z, from multiplier X, multiplicand Y, and modulus M,
by generating and right shifting a running sum for each bt x,
of the n-bit multiplier:

Z =0

fori1=0ton-1
Z=7+xY
itfZisoddthenZ=72+M
=7/

ifZ=MthenZ=7-M

Some Montgomery multipliers include a linear systolic
array, 1.¢., a chain of 1dentical processing elements (“PE”s),
where each PE works on a portion of the computation (e.g.,
four bits ot a 1,024 bitnumber) at the same time. For example,
in the following algorithm, the n-bit result Z, multiplicand Y,
and modulus M are each broken down 1nto e words, to allow
cach PE to work on a different word of the computation at the
same time. In this algorithm, word positions are represented
using superscripts, bit positions are represented using sub-
scripts, and the concatenation of bits and/or words A and B 1s
represented as (A,B).

Z =0
for1=0ton-1
(C,.Z%) =x,Y° + Z°
odd = z,
if odd then
(C,,2°0) =M" + Z°
forj=1toe
(C,Z)=C_ +xY +7
if odd then
(C,,) =Cp+ MW + Z
= (24,2, 1.7)

In a typical hardware implementation of this algorithm, the
iterations of a j-loop would occur sequentially 1n one PE, but
the iterations of the 1-loop would occur in different PEs,
allowing the 1-loop 1terations to overlap. For example, the first
PE would work on x,, Y°, M°, and Z° during the first clock
cycle; x,, Y', M', and Z' during the second clock cycle; x,,
Y*, M?, and Z* during the third clock cycle; and so on. The
second PE would workonx,,Y", M, and Z2°; x,,Y", M", and

10

15

20

25

30

35

40

45

50

55

60

65

2

7':x,,Y?, M?, and Z*; and so on, sequentially, but could not
start until the third clock cycle. The reason for this delay 1s
that the value of the first word of the running sum based on x,
is not available until the first PE has worked with x,, Y', M,
and Z' in the second clock cycle, because the least significant
bit of Z' must be shifted to the most significant bit of Z° in the
last step of the j-loop for 1=1.

BRIEF DESCRIPTION OF THE FIGURES

The present invention 1s 1llustrated by way of example and
not limitation in the accompanying figures.

FIG. 11llustrates a prior art processing element that may be
used in a linear systolic array implementation of a word-based
radix-2 Montgomery multiplication algorithm.

FIG. 2 1s a timing diagram useful to explain the operation
of a linear systolic array including three instances of the prior
art processing element of FIG. 1.

FIG. 3 1llustrates an embodiment of the present invention in
a processing element which may be used 1n a linear systolic
array implementation of a word-based radix-2 Montgomery
multiplication algorithm.

FIG. 41llustrates carry logic for one bit of an adder that may
be used 1n an embodiment of the mvention to support dual
field operation.

FIG. 5 illustrates a modular multiplier according to an
embodiment of the present invention.

FIG. 6 1s a timing diagram usetul to explain the operation
of the modular multiplier of FIG. 5.

FIG. 7 1llustrates an embodiment of the present invention in
a system.

FIG. 8 illustrates a method for multiplicand shifting 1n a
linear systolic array modular multiplier according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of apparatuses and methods for multipli-
cand shifting in a linear systolic array modular multiplier are
described. In the following description, numerous specific
details, such as logic and circuit configurations, may be set
forth in order to provide a more thorough understanding of the
present mvention. It will be appreciated, however, by one
skilled 1n the art, that the invention may be practiced without
such specific details. Additionally, some well known struc-
tures, circuits, and the like have not been shown 1n detail, to
avold unnecessarily obscuring the present invention.

Embodiments of the present invention may be used to
reduce the latency of modular multiplication 1n a linear sys-
tolic array. In some embodiments. the reduced latency may
result 1n increased throughput. Embodiments may be used in
dedicated cryptography hardware, 1n dedicated blocks 1n net-
work or wireless processors, 1n accelerators for general pur-
pOse processors, or 1n any other hardware used to implement
modular multiplication

FIG. 1 1illustrates prior art PE 100 that may be used 1n a
linear systolic array implementation of a word-based radix-2
Montgomery multiplication algorithm. For purposes of 1llus-
tration, the word size 1n FIG. 1 1s three bits.

The data mput ports of PE 100 are multiplier input port
110, multiplicand mput ports 111, 112, and 113, modulus
input ports 114, 115, and 116, and running sum input port
117,118, and 119. Control input ports are not shown. The data
output ports of PE 100 are running sum output ports 127, 128,
and 129.

One bit of the multiplier, represented as x,, 1s recerved on
port 110; one word of the multiplicand, represented as bits 0,

US 7,693,925 B2

3

1,and 2 of Y?, is received on ports 111,112, and 113 one word
of the modulus, represented as bits 0, 1, and 2 of M, is
received onports 114,115, and 116; and one word of the input
running sum, represented as bits 0, 1, and 2 of Z(in) is
received on ports 117, 118 and 119. As 1s known to those of
ordinary skill in the art, a running sum such as 7/(in) may be
represented as a non -redundant binary number or 1n carry-
save redundant form.

Three-bit by one-bit multiplier 130, formed from AND
gates 131, 132, and 133, 1s used to compute the product of x,
and Y’. The product of x, and Y is added to the input value of
77 by three-bit adder 140 to generate an interim value of 7.
Carry-out port 143 of adder 140 1s connected to the input of
register 142, the output of which 1s connected to carry-in port
141 of adder 140, so that the carry-out from the addition of
x. Y’ and the input value of 77, represented as C ,is used as the
carry-in for the addition of x, Y/*" and the input value of Z7*"
in the next clock cycle. As 1s known to those of ordinary skill
in the art, adder 140 may be a carry propagate adder or a carry
save adder.

The lowest order bit of the sum from adder 140 1s fed nto
multiplexer 143, the output of which 1s returned to the other
input of multiplexer 143 through register 144. In this configu-
ration, multiplexer 143 may be controlled such that the lowest
order bit of the interim value of Z° is selected and stored in
register 144, and used as the variable “odd” to determine
whether or not the modulus 1s added to the running sum.

If the lowest of bit of the interim value of Z° is alogical one,
then three-bit by one-bit multiplier 150, formed from AND
gates 151, 152, and 153, passes M to three-bit adder 160, to
be added to the output of adder 140. Carry-out port 163 of
adder 160 1s connected to the input of register 162, the output
of which 1s connected to carry-in port 161 of adder 160, so
that the carry-out from the conditional addition of MY and the
interim value of 7, represented as C,, is used as the carry-in
for the conditional addition of M"*" and the interim value of
77" in the next clock cycle.

The output of adder 160 1s processed by right shifter 170 to
generate the output value of 72, represented as bits 0, 1, and 2
of 7Z/(out). Shifter 170 is formed from registers 171, 172, 173,
174, and 175. The lowest order bit, bit 0, from the output of
adder 160 passes through register 171 to running sum output
port 129, so that the lowest order bit from the result of the
computation of 77 by PE 100 during a particular clock cycle
becomes the highest order bit, bit 2, of the running sum input
word to the next PE for the next clock cycle, when that next
PE is working on 7Z~*. Also, bit 1 from the output of adder 160
1s passed through registers 172 and 173 to running sum output
port 127, and bit 2 from the output of adder 160 1s passed
through registers 174 and 175 to running sum output port 128,
so that each bit of the result of the computation of Z by PE 100
during a particular clock cycle, except the lowest order bit, 1s
right-shifted into the running sum input word to the next PE
tor the clock cycle after the next clock cycle, when that next
PE is working on 7.

The multiplicand word Y and the modulus word M that 1s
used by PE 100 must also be passed to the next PE to be used
two clock cycles later. Therefore, these words also pass
through two register stages, either or both of which may be
inside PE 100.

FIG. 2 1s a timing diagram usetul to explain the operation
of a linear systolic array including three imstances of prior art
PE 100, referred to as PE 211, PE 212, and PE 213 in FIG. 2.
FIG. 2 shows the timing for three bits of multiplier X to be
applied to four words of multiplicand Y and modulus M.

In clock cycle 201, PE 211 applies x, to Y°, M°, and Z°. In
clock cycle 202, PE 211 appliesx,toY',M", and Z'. In clock

5

10

15

20

25

30

35

40

45

50

55

60

65

4

cycle 203, PE 211 applies x, to Y*, M?, and Z°, while PE 212
applies x, to Y°, M”, and Z°. In clock cycle 204, PE 211
applies x, to Y°, M, and Z°, while PE 212 applies x, to Y,
M, and Z". In clock cycle 205, PE 212 applies x, toY>, M~,
and Z°, while PE 213 applies x, to Y, M®, and Z°. In clock
cycle 206, PE 212 applies x, toY>, M, and Z°, while PE 213
applies x, to Y', M', and Z'. In clock cycle 207, PE 213
applies x, to Y, M?, and Z°. In clock cycle 208, PE 213
applies x, toY>, M>, and Z°.

FIG. 3 illustrates an embodiment of the present invention in
PE 300, which may be used in a linear systolic array imple-
mentation of a word-based radix-2 Montgomery multiplica-
tion algorithm. For purposes of illustration, the word size in
FIG. 3 1s three bits, however, the invention may be practiced
with a word size of any number of baits.

The data input ports of PE 300 are multiplier input port
310, multiplicand mput ports 311, 312, and 313, modulus
input ports 314, 315, and 316, and running sum input port
317,318, and 319. Control input ports are not shown. The data
output ports of PE 300 are multiplicand output ports 321, 322,
and 323; modulus output ports 324, 325, and 326; and running
sum output ports 327, 328, and 329.

One bit of the multiplier, represented as x,, 1s recerved on
port 310; one word of the input multiplicand, represented as
bits 0, 1, and 2 of Y/(in), is received on ports 311, 312, and
313; one word of the input modulus, represented as bits 0, 1,
and 2 of MV(in), is received on ports 314, 315, and 316; and
one word of the mput running sum, represented as bits 0, 1,
and 2 of Z/(in) is received on ports 317, 318 and 319.

Three-bit by one-bit multiplier 330, formed from AND
gates 331, 332, and 333, 1s used to compute the product of x,
and Y’(in). Any alternative logic to compute the product of x,
and Y’(in) may be used within the scope of the present inven-
tion.

The product of x, and Y’(in) is added to Z(in) by three-bit
adder 340 to generate an interim value of 7. Three-bit adder
340 may be any type of adder, such as a carry-save adder or a
carry-propagate adder, and Z/(in) or any other input may be in
redundant or non-redundant form. For ease of illustration, all
inputs are represented 1n non-redundant form in FIG. 3.

In one embodiment, adder 340, as well as adder 360
described below, may be a carry-save adder that supports dual
field operation, 1.e., 1t may be configurable to handle crypto-
graphic protocols 1n which carries are propagated, such as
those using modular arithmetic 1n Galois Field GF(p), and in
which carries are not propagated, such as those using modular
arithmetic 1n Galois Field GF(27).

FI1G. 4 1llustrates carry logic 400 for one bit of an adder that
may be used 1n an embodiment of the invention to support
dual field operation. The sum logic for the adder may be any
known three-input exclusive-or gate.

The inputs to carry logic 400 are represented as P. which
may be one of the bits of the product x, and Y’(in), S, which
may be the corresponding bit of Z/(in), C, which, depending
on the bit position 1n which carry logic 400 1s used, may be the
carry-in to the adder, a carry-out from a lower order bit of the
adder, or part of a carry-save redundant representation of
7/ (in), and FSEL, which may be a configuration variable used
to select the field of operation for which the adder 1s config-
ured.

In this embodiment, carry logic 400 1s implemented 1n
complementary metal-oxide-semiconductor (MOS) technol-
ogy, using P-type (PMOS) and N-type (NMOS) transistors,
although any technology may be used within the scope of the
present 1nvention.

In carry logic 400, the gates of PMOS transistor 410 and
NMOS transistor 411 receive the P input. This configuration

US 7,693,925 B2

S

may be desired because the P input may be available later than
the S or C inputs. The gates of PMOS transistors 420 and 422,

and of NMOS transistors 421 and 423 recerve the S input. The
gates of PMOS transistors 430 and 432, and of NMOS tran-
sistors 431 and 433 recerve the C input. The gates of PMOS
transistor 440 and NMOS transistor 441 recetve the FSEL
input.

Theretfore, the output of carry logic 400, which 1s repre-
sented as the complement of Cout, 1s always a logical one
when both the FSEL input and the C input are logical zeroes.
In other words, FSEL may be set to logical zero to kill carries.
Carry logic 400 takes advantage of the knowledge that the C
input will always be a logical zero when the FSEL mnput 1s a
logical zero, by adding only two transistors, 440 and 441, to
make carry logic 400 configurable, instead of adding all of the
transistors that would be necessary to kill carries 11 the value
of a carry-1n could be alogical one. Therefore, carry logic 400
may be preferable to another implementation of carry logic
for the adders of PE 300.

On the other hand, when FSEL 1s a logical one, the output
of carry logic 400 will be a logical zero only when atleasttwo
of the three of the other inputs, P, S, and C, are logical ones.
Therefore, when FSEL 1s a logical one, a carry-out will be
generated 1t atleast two of P, S, and C are logical ones. In other
words, carry logic 400 behaves as an ordinary minority gate
when FSEL 1s a logical one.

Returning now to FI1G. 3, carry-out port 343 of adder 340 1s
connected to the input of register 342, the output of which 1s
connected to carry-in port 341 of adder 340, so that the
carry-out from the addition of X ' Y’(in) and 7Z/(in), represented
as C_, is used as the carry-in for the addition of x,Y/*'(in) and
77 (in) in the next clock cycle.

The lowest order bit of the sum from adder 340 1s fed into
multiplexer 343, the output of which 1s returned to the other
input of multiplexer 343 through register 344. In this configu-
ration, multiplexer 343 may be controlled such that the lowest
order bit of the interim value of Z° is selected and stored in
register 344, and used as the variable “odd” to determine
whether or not the modulus 1s added to the running sum.
Register 344 and the other registers 1n FIG. 3 may be any
storage element used 1n sequential logic, such as a pulsed
latch or a thp-flop.

If the lowest of bit of the interim value of Z° is a logical one,
then three-bit by one-bit multiplier 350, formed from AND
gates 351, 352, and 353, passes M/(in) to three-bit adder 360,
to be added to the output of adder 340.

Carry-out port 363 of adder 360 1s connected to the input of
register 362, the output of which 1s connected to carry-in port
361 of adder 360, so that the carry-out from the conditional
addition of MY(in) and the interim value of 7 represented as
C,, 1s used as the carry-in for the conditional addition of
M*!(in) and the interim value of Z*' in the next clock cycle.

Any other approach to or logic for the conditional addition
of MV(in) and the interim value of 7/, based on the variable
“odd,” may be used within the scope of the present invention.

Bits 0, 1, and 2 from the output of adder 360 are passed
through registers 371, 372, and 373, respectively, to running
sum output ports 327, 328, and 329, respectively, without
shifting any bits to the right or to the left. Therefore, because
the Montgomery multiplication algorithm calls for a right
shift of the running sum at the end of each j-loop, 1 PE 300
generates bits 0,1, and 2 of 7/, they will beused as bit3 of 77"
and bits 0 and 1 of 7/, respectively, by the next PE in the next
clock cycle.

Theretfore, that next PE in an embodiment of the present
invention may work on all but the most significant bit of 7/ in

N B

that next clock cycle, unlike the prior art approach using PE

10

15

20

25

30

35

40

45

50

55

60

65

6

100, where there 1s a two clock cycle delay between consecu-
tive PEs working on 7/, as described above in FIG. 2.

To provide for the next PE to work on all but the most
significant bit of 77 in that next clock cycle, the multiplicand
and modulus mput words used by PE 100 are left-shifted by
one bit before being passed to the next PE. This shifting 1s
performed inside PE 300 1n the embodiment of FIG. 3, but
may also occur outside of a PE in other embodiments.

Multiplicand shifter 380 1s formed from registers 381, 382,
383, and 384. Bit 0 of the multiplicand input word 1s passed
through register 381 to multiplicand output port 322, and bit
1 of the multiplicand 1nput word 1s passed through register
382 to multiplicand output port 323, so that each bit of the
multiplicand mput word to PE 300 for a particular clock
cycle, except the highest order bit, 1s left-shifted into the
multiplicand 1nput word to the next PE for the next clock
cycle, to line up with the running sum baits.

Additionally, the highest order bit, bit 2, of the multipli-
cand mput word passes through registers 383 and 384 to
multiplicand output port 321, so that the highest order bit of
the multiplicand input word to PE 300 for a particular clock
cycle becomes the lowest order bit, bit 0, of the multiplicand
input word to the next PE for the clock cycle after the next
clock cycle, when that next PE is working on bit 0 of 77 and
bits 1 and 2 of Z*". One exception to this rule is that when a
PE 1s working on ZD a logical zero value 1s multiplexed nto
register 384 by multiplexer 385, because the data coming
from register 383 1n that case 1s not valid.

Modulus shifter 390 1s formed from registers 391, 392,
393, and 394. Bit 0 of the modulus mmput word 1s passed
t_n‘ough register 391 to modulus output port 325, and bit 1 of
the modulus mput word 1s passed through register 392 to
modulus output port 326, so that each bit of the modulus input
word to PE 300 for a particular clock cycle, except the highest
order bit, 1s left-shifted into the modulus mput word to the
next PE for the next clock cycle, to line up with the runming
sum bits.

Additionally, the highest order bit, bit 2, of the modu.
input word passes through registers 393 and 394 to modulus
output port 324, so that the highest order bit of the modulus
input word to PE 300 for a particular clock cycle becomes the
lowest order bit, bit 0, of the modulus mput word to the next
PE for the clock cycle after the next clock cycle, when that
next PE is working on bit 0 of 77 and bits 1 and 2 of Z7**. One
exception to this rule is that when a PE is working on Z°, a
logical zero value 1s multiplexed into register 394 by multi-
plexer 395, because the data coming from register 393 1n that
case 1s not valid.

Any other approach to or logic for the shifting of the
multiplicand and modulus words that achieves the same result
as the logic described above may be used within the scope of
the present invention.

FIG. 5 1llustrates modular multiplier 500 according to an
embodiment of the present invention. Although any number
of PEs may be used, modular multiplier 500 shows three PEs,
PE 510, PE 520, and PE 530, each configured according to the
embodiment of the invention illustrated in FIG. 3. As
described above with respect to FIG. 3, the runnming sums are
shown 1n FIG. 5 1in non-redundant form, but in other embodi-
ments they may be in redundant form, or converted one or
more times between non-redundant and redundant form or
viCe-versa.

In PE 510, multiplier input port 511 receives a multiplier
bit from multiplier bit selector 541, multiplicand iput port
512 recerves a multiplicand mmput word from multiplicand
memory 542, modulus mmput port 513 receives a modulus
input word from modulus memory 543, and running sum

US

US 7,693,925 B2

7

input port 514 receives a running sum input word from mul-
tiplexer 544. Multiplicand memory 342 and modulus
memory 543 may be any type of memory and may be separate
or combined.

In PE 520, multiplier input port 321 recetves a multiplier
bit from multiplier bit selector 5341. PE 520 1s coupled to PE
510 such that in PE 520, multiplicand input port 522 receives
a multiplicand 1input word from multiplicand output port 515
of PE 510, modulus input port 523 recerves a modulus 1mnput
word from modulus output port 316 of PE 510, and running
sum 1nput port 524 recerves a running sum input word from
running sum output port 517 of PE 510.

In PE 530, multiplier input port 331 recetves a multiplier
bit from multiplier bit selector 5341. PE 530 1s coupled to PE
520 such that in PE 530, multiplicand input port 532 receives
a multiplicand input word from multiplicand output port 5235
of PE 520, modulus 1mnput port 533 receives a modulus input
word from modulus output port 526 of PE 520, and runming,
sum 1nput port 534 recerves a running sum input word from
running sum output port 527 of PE 520.

First-in first-out register (“FIFO’”) 545 receives the running
sum output from running sum output port 537 of PE 530. One
input of multiplexer 544 receives the output of FIFO 345, and
the other mput of multiplexer 544 receives a logical zero
value to imitialize the runnming sum at the start of a multipli-
cation.

Sequence controller 540 generates control signals (not
shown 1n FI1G. 5) to control modular multiplier 500, such that
in the first clock cycle, PE 510 receirves the lowest order
multiplier bit, the lowest order multiplicand word, the lowest
order modulus word, and a logical zero value for the running
sum 1mnput word.

Sequence controller 540 also generates the control signal
for the multiplexer 1n PE 510 that selects, 1n the first clock
cycle, the lowest order bit of the interim value of the running
sum to be used, and stored, as the variable “odd” to determine
whether or not the modulus 1s added to the running sum. In all
subsequent clock cycles in PE 510 using the lowest order
multiplier bit, sequence controller 540 causes that multi-
plexer to select the stored value.

Similarly, sequence controller 340 generates the control
signal for the multiplexers in PE 510 that select, 1n the first
clock cycle, logical zero values for the lowest order bit of the
output values of the running sum, the multiplicand, and the
modulus. In all subsequent clock cycles 1n PE 510 using the
lowest order multiplier bit, sequence controller 540 causes
that multiplexer to select the value from the highest order bit
of the previous clock cycle, as described above 1n connection
with the description of FIG. 3.

In the second clock cycle, PE 520 recerves the lowest order
multiplicand word, the lowest order modulus word, and the
lowest order running sum word from PE 3510, after the left-
shifts described above in connection with the description of
FIG. 3. Also 1n the second clock cycle, PE 520 receives the
second lowest order multiplier bit, and PE 510 receives the
receives the lowest order multiplier bit, the second lowest
order multiplicand word, the second lowest order modulus
word, and a logical zero value for the running sum input word.

Sequence controller 540 also generates the control signal
tor the multiplexer in PE 520 that selects, 1n the second clock
cycle, the lowest order bit of the interim value of the running
sum to be used, and stored, as the variable “odd” to determine
whether or not the modulus 1s added to the running sum. In all
subsequent clock cycles 1n PE 520 using the second lowest
order multiplier bit, sequence controller 540 causes that mul-
tiplexer to select the stored value.

10

15

20

25

30

35

40

45

50

55

60

65

8

Similarly, sequence controller 540 generates the control
signal for the multiplexers in PE 520 that select, 1in the second
clock cycle, logical zero values for the lowest order bit of the
output values of the running sum, the multiplicand, and the
modulus. In all subsequent clock cycles 1n PE 520 using the
second lowest order multiplier bit, sequence controller 540
causes that multiplexer to select the value from the highest
order bit of the previous clock cycle, as described above 1n
connection with the description of FIG. 3.

Execution continues as such i modular multiplier 500.
Since PE 3530 1s the third and last PE in modular multiplier
500, the running sum word from PE 530 after the third clock
cycle should be the first data out of the linear systolic array
based on the present inputs. However, 1n this implementation,
where the number of bits 1n the word equals the number of
PEs, this data represents the values 1n running sum bits posi-
tions that are less significant than the least significant valid bit
position (1.e., bits =3, -2, and —1) and are ignored. Therelore,
alter the fourth clock cycle, the running sum words from PE
530 are stored 1n FIFO 545 until PE 510 1s done applying the
lowest order bit of the multiplier to the highest order word of
the multiplier and the modulus, which may be padded with
logical zeroes to prevent overflow. Then, the oldest valid
running sum in FIFO 345 1s recycled through the linear sys-
tolic array, followed by the next oldest, as so on, for PE 510 to
apply the third lowest order multiplier bit.

FIG. 6 1s a timing diagram usetul to explain the operation
of modular multiplier 500 of FIG. 5. FIG. 6 shows the timing
for three bits of multiplier X to be applied to four words of
multiplicand Y and modulus M. In this description of FIG. 6,
bit positions that are less significant than the least significant
valid bit position are represented as negative bit positions, and
are 1gnored. Also, bit positions higher than the most signifi-
cant bit, which 1s bit 11 1n this example, represent zero pad-
ding.

In clock cycle 601, PE 510 applies x, to bits 0, 1, and 2 of
Y, M, and Z. In clock cycle 602, PE 510 applies x, to bits 3, 4,
and 5 oY, M, and Z, while PE 520 applies x,, to bits -1, 0, and
101Y, M, and 7. In clock cycle 603, PE 520 applies x, to bits
6,7,and 8 0ot'Y, M, and Z, while PE 520 applies x, to bits 2, 3,
and 4 o1Y, M, and Z, and PE 530 applies x, to bits -2, -1, and
0 oY, M, and Z. In clock cycle 604, PE 510 applies x to bits
9,10, and 11 of Y, M, and Z, while PE 520 applies x, to bits 5,
6,and 7 oY, M, and Z, and PE 530 applies x,, to bits 1, 2, and
3o01Y, M, and 7. In clock cycle 605, PE 520 applies x, to bits
8,9, and 10 of Y, M, and Z, while PE 530 applies x, to bits 4,
5,and 6 oY, M, and Z. In clock cycle 606, PE 520 applies x,
to bits 11, 12, and 13 of Y, M, and Z, while PE 330 applies x,
to bits 7, 8, and 9 o1 Y, M, and Z. In clock cycle 607, PE 530
applies x, to bits 10, 11, and 12 o1 Y, M, and 7.

The result of the computation of FIG. 6 1s available after
seven clock cycles, compared to e1ght clock cycles in the prior
art approach of FIG. 2. Different embodiments of the present
invention may provide different latency reductions, depend-
ing on the number of PEs uses in the linear systolic area, the
word si1ze 1n each PE, and the number of words 1n the multi-
plicand and modulus. In particular, when the word length 1s
relatively short and the number of PEs 1s relatively large, the
present mvention requires about half as many cycles as the
prior art approach of FIG. 2 because 1t has a latency of one
cycle rather than two between PEs.

Also note that the clock cycles referred to 1n this descrip-
tion may be any fraction or multiple of any clock used 1n the
apparatus or method 1n which the invention 1s embodied, and
the number and configurations of registers may vary accord-
ingly. For example, the processing described above as being
performed by a PE in one clock cycle may be performed in

US 7,693,925 B2

9

two clock cycles, and registers may be used to hold the
interim values of the running sums between those two clock
cycles.

FI1G. 7 illustrates an embodiment of the present invention in
system 700. System 700 includes processor 710 and system
memory 720. Processor 710 may be any cryptographic, net-
work, wireless, general purpose or other processor, co-pro-
cessor, or accelerator. Processor 710 includes modular mul-
tiplier 500, and may also include any other logic or circuitry.

System memory 720 may be any type of memory, such as
semiconductor-based static or dynamic random access
memory, semiconductor-based flash or read only memory, or
magnetic or optical disk memory. In system 700, system
memory 720 may be used to store the values of the multiplier,
multiplicand, modulus, and running sum described above. In
another embodiment, the modular multiplier may have local
memory.

Processor 710 and system memory 720 may be coupled to
cach other 1n any arrangement, with any combination of buses
or direct or point-to-point connections, and through any other
components. System 700 may also include any number of
buses, such as a peripheral bus, or components, such as input/
output devices, not shown 1n FIG. 7.

FIG. 8 illustrates a method for multiplicand shifting 1n a
linear systolic array modular multiplier according to an
embodiment of the present invention. The word size of the
multiplicand, modulus, and running sum words referred to in
this description of FIG. 8 may be any number of bits.

In box 810, a running sum 1s set to logical zero. In box 811,
the lowest order word of a multiplicand 1s multiplied by the
lowest order bit of a multiplier, and the product 1s added to the
lowest order word of the running sum to generate a stage-one
lowest order running sum mterim word. In box 812, a variable
“odd(0)” 1s set to the value of the lowest order bit of the
stage-one lowest order running sum interim word. If odd(0)
equals logical one 1n box 813, then, in box 814, the lowest
order word of a modulus 1s added to the stage-one lowest
order running sum interim word to generate a lowest order
running sum output word and a carry-out. If odd(0) equals
logical zero i box 813, then, in box 813, the lowest order
running sum output word 1s set to the stage-one lowest order
running sum interim word.

In box 820, the highest order bit of the lowest order word of
the multiplicand 1s stored. In box 821, the highest order bit of
the lowest order word of the modulus 1s stored. In box 822, the
lowest order word multiplicand word 1s left shifted to gener-
ate a lowest order multiplicand output word. In box 823, the
lowest order bit of the lowest order multiplicand output word
1s set to logical zero. In box 824, the input modulus word 1s
left shifted to generate a lowest order modulus output word. In
box 825, the lowest order bit of the lowest order modulus
output word 1s set to logical zero.

In box 831, the lowest order multiplicand output word 1s
multiplied by the second lowest order bit of the multiplier,
and the product 1s added to the lowest order running sum
output word to generate a stage-two lowest order running sum
interim word and a carry-out. In box 832, a vaniable “odd(1)”
1s set to the value of the lowest order bit of the stage-two
lowest order running sum interim word. If odd(1) equals
logical one 1n box 833, then, 1n box 834, the lowest order
modulus output word 1s added to the stage-two lowest order
running sum interim word to generate a stage-two lowest
order running sum output word and a carry-out. If odd(1)
equals logical zero 1n box 833, then, in box 835, the stage-two
lowest order running sum output word 1s set to the stage-two
lowest order running sum nterim word.

10

15

20

25

30

35

40

45

50

55

60

65

10

In box 841, the second lowest order word of the multipli-
cand 1s multiplied by the lowest order bit of a multiplier, and
the product 1s added to the second lowest order word of a
running sum to generate a stage-one second lowest order
running sum interim word. If odd(0) equals logical one in box
843, then, 1n box 844, the second lowest order word of the
modulus 1s added to the stage-one second lowest order run-
ning sum interim word, with a carry-in equal to the carry-out
from box 814, to generate a second lowest order running sum
output word and a carry-out. If odd(0) equals logical zero 1n
box 843, then, 1n box 845, the second lowest order running
sum output word 1s set to the stage-one second lowest order
running sum interim word.

In box 850, the highest order bit of the second lowest order
word of the multiplicand 1s stored. In box 851, the highest
order bit of the second lowest order word of the modulus 1s
stored. In box 852, the second lowest order word of the
multiplicand 1s leit shifted to generate a second lowest order
multiplicand output word. In box 853, the lowest order bit of
the second lowest order multiplicand output word 1s set to the
value stored 1n box 820. In box 854, the second lowest order
word of the modulus word 1s lett shifted to generate a second
lowest order modulus output word. In box 8355, the lowest
order bit of the second lowest order modulus output word 1s
set to the value stored 1n box 821.

In box 861, the second lowest order multiplicand output
word 1s multiplied by the second lowest order bit of the
multiplier, and the product 1s added to the second lowest order
running sum output word to generate a stage-two second
lowest order running sum interim word. If odd(1) equals
logical one 1n box 863, then, 1n box 864, the second lowest
order modulus output word 1s added to the stage-two second
lowest order running sum interim word, with a carry-in equal
to the carry-out from box 834, to generate a stage-two second
lowest order running sum output word. ITf odd(1) equals logi-
cal zero 1n box 863, then, 1n box 865, the second lowest order
running sum output word 1s set to the stage-two second lowest
order running sum interim word.

The method of FIG. 8 may continue to implement a com-
plete Montgomery multiplication algorithm. Within the
scope of the present invention, the method illustrated in FIG.
8 may be performed 1n a different order and/or with illustrated
boxes performed 1n parallel, performed with 1llustrated boxes
omitted, performed with additional boxes added, or per-
formed with a combination of reordered, omitted, or addi-
tional boxes.

Some portions of the above descriptions have been pre-
sented 1n terms of algorithms and symbolic representations of
operations on data bits within a computer system’s registers
or memory. These algorithmic descriptions and representa-
tions are the means used by those skilled in the data process-
ing arts to etlectively convey the substance of their work to
others skilled in the art. An algorithm 1s here, and generally,
concetrved to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical or magnetic signals capable of being stored, transterred,
combined, compared, and otherwise manipulated. It may
have proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, ele-
ments, symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, 1t 1s to
be appreciated that throughout the present invention, discus-

US 7,693,925 B2

11

s1ons utilizing terms such as “processing” or “computing’ or
“calculating” or “determining” or the like, may refer to the
action and processes ol a computer system, or similar elec-
tronic computing device, that manipulates and transforms
data represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter-system memories or registers or other such information
storage, transmission or display devices.

Furthermore, processor 710, or any other component or
portion of a component designed according to an embodi-
ment of the present ivention, may be designed 1n various
stages, from creation to simulation to fabrication. Data rep-
resenting a design may represent the design 1in a number of
manners. First, as 1s useful in simulations, the hardware may
be represented using a hardware description language or
another functional description language. Additionally or
alternatively, a circuit level model with logic and/or transistor
gates may be produced at some stages of the design process.
Furthermore, most designs, at some stage, reach a level where
they may be modeled with data representing the physical
placement of various devices. In the case where conventional
semiconductor fabrication techniques are used, the data rep-
resenting the device placement model may be the data speci-
tying the presence or absence of various features on different
mask layers for masks used to produce an integrated circuait.

In any representation of the design, the data may be stored
in any form of a machine-readable medium. An optical or
clectrical wave modulated or otherwise generated to transmut
such information, a memory, or a magnetic or optical storage
medium, such as a disc, may be the machine-readable
medium. Any of these media may “carry” or “indicate” the
design, or other information used 1 an embodiment of the
present invention, such as the instructions 1n an error recovery
routine. When an electrical carrier wave indicating or carry-
ing the information 1s transmitted, to the extent that copying,
bullering, or re-transmission of the electrical signal 1s per-
formed, a new copy 1s made. Thus, the actions of a commu-
nication provider or a network provider may constitute the
making of copies of an article, e.g., a carrier wave, embodying,
techniques of the present invention.

Thus, apparatuses and methods for multiplicand shifting in
a linear systolic array modular multiplier have been dis-
closed. While certain embodiments have been described, and
shown 1n the accompanying drawings, it 1s to be understood
that such embodiments are merely 1llustrative and not restric-
tive of the broad invention, and that this invention not be
limited to the specific constructions and arrangements shown
and described, since various other modifications may occur to
those ordinarily skilled in the art upon studying this disclo-
sure. In an area of technology such as this, where growth 1s
fast and further advancements are not easily foreseen, the
disclosed embodiments may be readily modifiable 1n arrange-
ment and detail as facilitated by enabling technological
advancements without departing from the principles of the
present disclosure or the scope of the accompanying claims.

What 1s claimed 1s:

1. An apparatus comprising:

a first processing element of a linear systolic array, includ-

ng:

first multiplication logic to multiply a multiplicand input
word by a first bit of a multiplier to generate a first
product;

first multiplicand shift logic to shift the multiplicand
input word to generate a multiplicand output word,;

a first adder to add the first product and a first running
sum to generate a second running sum;

10

15

20

25

30

35

40

45

50

55

60

65

12

first modulus logic to conditionally add a modulus 1nput
word and the second running sum to generate a third
running sum; and

first modulus shift logic to shitt the modulus mput word
to generate a modulus output word; and

a second processing element of the linear systolic array,
including:
second multiplication logic to multiply the multiplicand

output word by a second bit of the multiplier to gen-
erate a second product.

2. The apparatus of claim 1, wherein

the second processing element also includes:

a second adder to add the second product and the third
running sum to generate a fourth running sum;

second modulus logic to conditionally add the modulus
output word and the fourth running sum:;

second multiplicand shift logic to shift the multiplicand
output word; and

second modulus shift logic to shift the modulus output
word.

3. The apparatus of claim 1, wherein the first processing,

clement also comprises:

a first storage element to store the highest order bit of the
multiplicand 1nput word 1n a first clock cycle to shift to
the lowest order bit of the multiplicand output word in a
second clock cycle; and

a second storage element to store the highest order bit of the
modulus iput word 1n the first clock cycle, to shift to the
lowest order bit of the modulus output word 1n the sec-
ond clock cycle.

4. The apparatus of claim 3, wherein the first processing

clement also comprises:

a third storage element to store the lowest order bit of the
second running sum 1n a {irst clock cycle to qualify the
conditional addition of the first modulus logic 1n a sec-
ond clock cycle.

5. The apparatus of claim 1, wherein the first adder and the

second adder are configurable to support dual field operation.

6. The apparatus of claim 5, wherein the first adder and the

second adder each include carry logic to generate and propa-
gate carries responsive to a first value of a field select input,
and to kill carries responsive to a second value of the field
select input.

7. A system comprising:

a memory; and

a processor including:

a first processing element of a linear systolic array, hav-
Ing:
first multiplication logic to multiply a multiplicand
input word by a first bit of a multiplier to generate
a first product;
first multiplicand shift logic to shift the multiplicand
input word to generate a multiplicand output word;
a first adder to add the first product and a first running
sum to generate a second running sum;
first modulus logic to conditionally add a modulus
input word and the second running sum to generate
a third running sum; and
first modulus shift logic to shift the modulus input word
to generate a modulus output word; and
a second processing element of the linear systolic away,
having:;
second multiplication logic to multiply the multipli-
cand output word by a second bit of the multiplier
to generate a second product.

	Front Page
	Drawings
	Specification
	Claims

