12 United States Patent

Burka et al.

US007685600B1

US 7,685,600 B1
Mar. 23, 2010

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(51)
(52)

(58)

SYNCHRONIZER WITH OUT-OF-LINE
MONITORS FOR SHARED OBJECTS IN
READ-ONLY MEMORY

Inventors: Peter W. Burka, Ottawa (CA); Gianni
S. Duimovich, Ottawa (CA); Angela
Lin, Kanata (CA); Andrew R. Low,
Stittsville (CA); Peter D. Shipton,

Ottawa (CA)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 12/341,142

Filed: Dec. 22, 2008

Int. Cl.

GO6l 9/46 (2006.01)

US.CL ... 718/104; °718/100; 719/316;
711/100;711/102

Field of Classification Search 718/100,

718/104; 719/316; 711/100, 102
See application file for complete search history.

Implement the special

lockword pattern for shared \/

read-only objects

v

An executing thread seeks
access to a shared object

Does the shared object
header lockword contain
the special pattern?

NO

l

The referenced object is
mutable and standard
procedure is applied

YES —»

(56) References Cited

U.S. PATENT DOCUMENTS

6,237,043 Bl 5/2001 Brown et al.
6,754,898 B2* 6/2004 Zhangetal. 718/104
6,951,018 B2* 9/2005 Longetal. 718/100

* cited by examiner

Primary Examiner—Andy Ho
(74) Attorney, Agent, or Firm—Weitzman Law Offices, LLC;
Kenneth S. Weitzman

(57) ABSTRACT

A computer-implemented method for referencing a mutable
out-of-line monitor for a shared object 1n read-only memory,
comprising creating a lockword with a pointer field set to zero
and a pre-set intlated bit when the object is stored in read-only
memory. An out-of-line monitor table i1s referenced when
encountering the lockword with the pointer field set to zero
and the pre-set inflated bit. The desired monitor referenced 1n
the out-oi-line monitor table 1s identified based on the address
of the lockword.

1 Claim, 3 Drawing Sheets

4

I

(Go out-of-line to a table to
locate the monitor object
associated with the shared
read-only object by address
of the lockword

U.S. Patent Mar. 23, 2010 Sheet 1 of 3 US 7,685,600 B1

1001 1002
1000
1003
Monitor
2001 2002
2000
I T D
2003
2004
Monitor Table Monitor

FIG. 2

U.S. Patent Mar. 23, 2010 Sheet 2 of 3 US 7,685,600 B1

Writable

102 Memory
105

Network Executing
Device CPU Thread
104 101
103
Read-Only
Memory
200 400
300

FIG. 3

U.S. Patent Mar. 23, 2010 Sheet 3 of 3 US 7,685,600 B1

Implement the special
lockword pattern for shared
read-only objects

An executing thread seeks
access to a shared object

Go out-of-line to a table to

locate the monitor object
YES —»| associated with the shared

read-only object by address

Does the shared object
header lockword contain
the special pattern?

of the lockword

NO

The referenced object is

mutable and standard
porocedure Is applied

FIG. 4

US 7,685,600 Bl

1

SYNCHRONIZER WITH OUT-OF-LINE
MONITORS FOR SHARED OBJECTS IN
READ-ONLY MEMORY

BACKGROUND

1. Field of the Invention

This disclosure relates generally to distributed environ-
ment synchronizers, and, more particularly, to out-of-line
monitors for shared objects stored 1n read-only memory.

2. Description of Related Art

It1s often desirable to share data structures between threads
or processes 1n a distributed computing environment to coor-
dinate and communicate between multiple threads or pro-
cesses 1n execution. However, implementation of a shared
object invariably requires the implementation of access con-
trol. A monitor 1s one data structure that satisfies this need. A
monitor enables mutually exclusive access to variables within
the shared object. Additionally, a monitor allows one thread
or process to wait for conditions triggered by another thread
or process accessing the shared object. Monitors are therefore
successiul data structures for implementing access control.

Monitors typically require some form of mutabaility to 1ndi-
cate and handle a “contention” event, which occurs when one
computing thread or process attempts to acquire a lock on a
shared object while the lock 1s already held by another thread
or process. Monitor data 1s traditionally stored 1n the header
for a shared object. This presents a challenge when the shared
object 1s stored 1n read-only memory, because a read-only
object will invariably have a read-only header. The common
solution places the monitor data within a table, rather than 1n
the header. In a mixed environment contaiming both read-only
and read-write objects, this solution causes unnecessary per-
formance degradation, because read-only and read-write
objects are 1dentical from the viewpoint of the managed runt-
ime. A table search would be required to access the monitor of
any object. The traditional solution of referencing monitor
information within the object headers 1s far more optimal.

BRIEF SUMMARY

A computer-implemented method for referencing a
mutable out-of-line monitor for a shared object in read-only
memory 1s disclosed herein. A lockword 1s created with a
pointer field set to zero and a pre-set inflated bit when the
object 1s stored 1n read-only memory. An out-oi-line monitor
table 1s referenced when encountering the lockword with the
pointer field set to zero and the pre-set intlated bit. The desired
monitor referenced in the out-oi-line monitor table 1s 1denti-
fied based on the address of the lockword.

The foregoing has outlined rather generally the features
and technical advantages of one or more embodiments of this
disclosure 1n order that the following detailed description
may be better understood. Additional features and advantages
of this disclosure will be described hereinafter, which may
form the subject of the claims of this application.

BRIEF DESCRIPTION OF THE DRAWINGS

This disclosure 1s further described 1n the detailed descrip-
tion that follows, with reference to the drawings, 1n which:

FIG. 1 1s a high level representation of a distributed envi-
ronment synchronizer used with monitors for shared objects
stored 1n writable memory;

FI1G. 2 1s a high level representation of a distributed envi-
ronment synchronizer used with out-of-line monitors for
shared objects stored 1n read-only memory;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s a high level representation of a distributed com-
puting environment; and

FIG. 41s a flow diagram illustrating a preferred sequence of
steps for implementing a distributed environment synchro-
nizer used with out-oi-line monitors for shared objects stored
in read-only memory.

DETAILED DESCRIPTION

This application discloses a computer-implemented sys-
tem and method for referencing a mutable out-of-line monitor
for a shared object 1n read-only memory for use 1n a distrib-
uted computing environment. The disclosed embodiment
retains much of the runtime efficiency gained by referencing
monitor data within the header of an associated object, while
retaining the security benefits of placing shared objects 1n
read-only memory when mutability 1s not desired. Further-
more, although many objects may be used for locking, a large
subset of these objects has a low chance of becoming locked
under contention. Because the information pertaining to this
set of objects may be a significant size, the disclosed embodi-
ment enables one to safely share these objects and realize a
memory savings while retaining the ability to lock 1 an
exceptlion case.

As will be appreciated by one skilled in the art, the present
application may be embodied as a system, method or com-
puter program product. Accordingly, the present application
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
soltware, micro-code, etc.) or an embodiment combining
solftware and hardware aspects that may all generally be
referred to herein as a “system.”

Furthermore, the present application may take the form of
a computer program product embodied 1n any tangible
medium of expression having computer usable program code
embodied in the medium. Any combination of one or more
computer usable or computer readable medium(s) may be
utilized. The computer-usable or computer-readable medium
may be, for example but not limited to, an electronic, mag-
netic, optical, electromagnetic, intfrared, or semiconductor
system, apparatus, device, or propagation medium. More spe-
cific examples (a non-exhaustive list) of the computer-read-
able medium would include the following: an electrical con-
nection having one or more wires, a portable computer
diskette, a hard disk, a random access memory, a read-only
memory, an erasable programmable read-only memory (e.g.,
EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory, an optical storage device, a
transmission media such as those supporting the Internet or
an 1ntranet, or a magnetic storage device. Note that the com-
puter-usable or computer-readable medium could even be
paper or another suitable medium upon which the program 1s
printed, as the program can be electronically captured, via, for
instance, optical scanning of the paper or other medium, then
compiled, iterpreted, or otherwise processed 1n a suitable
manner, 11 necessary, and then stored 1n a computer memory.
In the context of this document, a computer-usable or com-
puter-readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the mstruction execution system,
apparatus, or device. The computer-usable medium may
include a propagated data signal with the computer-usable
program code embodied therewith, either in base band or as
part of a carrier wave. The computer usable program code
may be transmitted using any appropriate medium, including
but not limited to wireless, wire line, optical fiber cable, RF,
etc.

US 7,685,600 Bl

3

Computer program code for carrying out operations of the
present application may be written 1in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute

entirely on the user’s computer, partly on the user’s computer,
as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer, or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type ol network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

The present application 1s described below with reference

to tlowchart 1llustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-

ing to one or more embodiments. It will be understood that
cach block of the tlowchart illustrations and/or block dia-
grams, and combinations of blocks 1n the flowchart 1llustra-
tions and/or block diagrams, can be implemented by com-
puter program 1instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified 1n the flowchart and/or block diagram block or

blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function 1n
a particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including istruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks. The computer program instructions may also be
loaded onto a computer or other programmable data process-
ing apparatus to cause a series ol operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram

block or blocks.

FI1G. 1 1s a high-level representation of a standard distrib-
uted environment synchronizer used with standard monitors
tor shared objects in writable memory. The synchronizer may
be implemented as a lockword 1000, which 1s preferably part
of the header of an object (shared or unshared), and contains
the monitor data (1f any) for that object. Lockword 1000
contains at least pomnter 1001 and bit 1002. Pointer 1001
references or “points’ to the monitor (if any) associated with
the shared object directly. Bit 1002 describes the “contention”™
state of the object, and may be set to either “0” or *“1,”
depending on the degree of contention of a shared object. A
contention 1s an attempt by one computing thread or process
to acquire a lock while the lock 1s still held by another thread
or process. When there 1s a low degree of contention, a “0” 1s
preferably placed in bit 1002, which indicates that pointer
1001 1dentifies whether the shared object1s locked, and which
thread or process 1t 1s locked by. When there 1s a high degree

10

15

20

25

30

35

40

45

50

55

60

65

4

ol contention, bit 1002 1s preferably set to “1,” and pointer
1001 1s set to reference a real monitor that controls access to
the shared object. Real monitors are preferably used only
when there 1s a high degree of contention, maximizing runt-
ime elliciency.

When the object (and 1ts associated header) 1s to be placed
in read-only memory, a problem arises. Because the environ-
ment 1s read-only, pointer 1001 and bit 1002 are immutable
and cannot be written. To preserve the functionality of the
monitor (as described above), the monitor data for the shared
object must be stored externally. As discussed earlier, this
invariably requires additional data structures and computa-
tional steps for both read-only and read-write objects, there-
fore degrading the performance of the distributed runtime
environment.

FIG. 2 1s a high level representation of the preferred dis-
tributed environment synchronizer used with monitors for
shared objects stored in read-only memory. The preferred
synchronizer may be implemented as a lockword 2000, which
enables in-header mutable monitors for shared objects stored
in read-only memory.

Referring to FIG. 3, lockword 2000 may be implemented
on an exemplary distributed computing environment consist-
ing of computers 100, 200, 300 and 400 on network 900. It 1s
understood the distributing computing environment 1s not
limited to this variation. Computer 100 may be equipped with
a central processing unit (CPU) 101 for executing instruc-
tions. Computer 100 may also have memory regions, writable
memory 102 and read-only memory 103 for storing informa-
tion. The regions may constitute physically separate devices,
partitions on a single device or abstract regions with write
access defined via software programming. Network device
104 15 used to communicate with other computers on network
900, which may be a local network, Internet or a corporate
intranet. Computers 200, 300 and 400 may be similar 1n
structure and operation to computer 100. Thread or process
105 1s preferably a thread or process executing on computer
100.

FIG. 415 a tlow diagram illustrating a preferred sequence of
steps for implementing a distributed environment synchro-
nizer used with out-of-line monitors for shared objects stored
in read-only memory. In step 1, a special lockword bit pattern
may be used to 1dentify shared objects stored 1n read-only
memory. In the preferred embodiment, the special lockword
bit pattern for shared read-only objects corresponds to the
overall bit pattern where the lockword pointer field 2001 1s set
to zero, and the pre-set inflated bit 2002 1s set to “1.”” Lock-
word 2000 (and the shared object 1t controls) may be stored in
read-only memory region 103.

In step 2, executing thread or process 105 may seek access
to the shared object controlled by lockword synchronizer
2000. A check may be performed to determine whether the
shared object lockword contains the special pattern. In step 3,
CPU 101 1s instructed to determine whether the bit pattern 1n
lockword 2000 corresponds to the predefined special lock-
word bit pattern where the lockword pointer field 2001 1s zero
and the pre-set inflated bit 1s set to “1.”

If the bit pattern 1n lockword 2000 corresponds to the
special lockword bit pattern, then 1n step 4, the shared object
associated with lockword 2000 1s determined to be a shared
object stored in read-only memory and executing thread or
process 105 1s directed to reference out-of-line monitor table
2003, which 1s indexed by address of the lockword 2000.
Executing thread or process may then instruct CPU 101 to
return the appropriate monitor 2004 associated with the
address of lockword 2000 1n the out-of-line monitor table

2003.

US 7,685,600 Bl

S

If the bit pattern 1 lockword 2000 does not correspond to
the special lockword bit pattern, then in step 5 the object
associated with lockword 2000 1s determined to not be an
object stored 1n read-only memory. Executing thread or pro-
cess 105 may utilize standard procedures to interact with the
object associated with lockword 2000, which must be an
object 1n writable memory.

Having described and illustrated the principles of this
application by reference to one or more preferred embodi-
ments, 1t should be apparent that the preferred embodiment(s)
may be modified in arraignments and detail without departing,
from the principles disclosed herein and that 1t 1s intended that
the application be construed as including all such modifica-
tions and variations insofar as they come within the spirit and
scope of the subject matter disclosed herein.

5

10

6

What 1s claimed 1s:
1. A computer-implemented method for referencing a
mutable out-of-line monitor for a shared object in read-only
memory, comprising;
creating a lockword with a pointer field set to zero and a
pre-set 1nflated bit set to one to reference when the
shared object is stored in read-only memory;

referencing an out-of-line monitor table when encounter-
ing the lockword with the pointer field set to zero and the
pre-set inflated bit set to one; and

identilying the mutable out-oi-line monitor for the shared

object referenced 1n the out-of-line monitor table based
on an address of the lockword.

	Front Page
	Drawings
	Specification
	Claims

